JP2006070124A - Coke oven and method for controlling temperature of upper part of coke oven carbonization chamber - Google Patents

Coke oven and method for controlling temperature of upper part of coke oven carbonization chamber Download PDF

Info

Publication number
JP2006070124A
JP2006070124A JP2004253859A JP2004253859A JP2006070124A JP 2006070124 A JP2006070124 A JP 2006070124A JP 2004253859 A JP2004253859 A JP 2004253859A JP 2004253859 A JP2004253859 A JP 2004253859A JP 2006070124 A JP2006070124 A JP 2006070124A
Authority
JP
Japan
Prior art keywords
combustion
chamber
gas
coke oven
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004253859A
Other languages
Japanese (ja)
Inventor
Hirokazu Takahashi
弘和 高橋
Hisashi Ueda
尚 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004253859A priority Critical patent/JP2006070124A/en
Publication of JP2006070124A publication Critical patent/JP2006070124A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coke Industry (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coke oven having a new structure, capable of controlling the temperature of the upper part of a carbonization chamber and to provide a method for controlling the temperature of the upper part of the carbonization chamber of the coke oven. <P>SOLUTION: In the coke oven in which a heat storage chamber is installed in the lower part of an oven body and a combustion chamber and a carbonization chamber are alternately arranged in the upper part and coke dry-distilled in the carbonization chamber is pushed out from PS (pusher side) of the oven body to CS (coke side), a horizontal flue extending to oven length direction (direction pushing out coke from PS of the oven body to CS) and opening to PS and CS of the oven body is installed above the combustion chamber or in the upper part of the combustion chamber and a combustion apparatus for introducing a combustion exhaust gas into the end of the horizontal flue. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、石炭を炭化室で乾留するコークス炉に関し、特に炭化室上部の温度を制御できるコークス炉に関する。   The present invention relates to a coke oven for carbonizing coal in a carbonization chamber, and more particularly to a coke oven capable of controlling the temperature of the upper portion of the carbonization chamber.

コークス炉は石炭を乾留する炭化室、燃料ガスを燃焼させる燃焼室、燃焼排ガスの予熱を利用するための蓄熱室及び蓄熱室下部のソーリュフリューと、を備える。燃焼室は多数の垂直フリュー(加熱炎道)に細分されている。   The coke oven includes a carbonizing chamber for carbonizing coal, a combustion chamber for burning fuel gas, a heat storage chamber for using preheating of combustion exhaust gas, and a solid refuge at the bottom of the heat storage chamber. The combustion chamber is subdivided into a number of vertical flues.

炉の加熱には発熱量の高いコークス炉ガス(富ガス)、発熱量の低い高炉ガス、又はコークス炉ガスと高炉ガスとの混合ガス(貧ガス)を使用する。富ガス加熱の場合は蓄熱室では空気だけを予熱し、富ガスは蓄熱室を通らないで各垂直フリューに供給される。貧ガス加熱の場合は、空気と貧ガスが蓄熱室下部のソールフリューを経てそれぞれ別の蓄熱室で予熱されて垂直フリューに入る。垂直フリュー内で貧ガスと空気が会合して燃焼し、燃焼排ガスはさらに別の蓄熱室に引落とされ、蓄熱室内の蓄熱煉瓦を加熱してソールフリューを経て煙道にぬける。コークス炉では予熱、蓄熱を繰り返し、熱効率を高めるために20〜30分ごとにガスの流れの方向を転換させている。   For the heating of the furnace, a coke oven gas (rich gas) having a high calorific value, a blast furnace gas having a low calorific value, or a mixed gas (poor gas) of coke oven gas and blast furnace gas is used. In the case of rich gas heating, only the air is preheated in the heat storage chamber, and the rich gas is supplied to each vertical flue without passing through the heat storage chamber. In the case of poor gas heating, air and poor gas are preheated in separate heat storage chambers through the sole flue at the bottom of the heat storage chamber and enter the vertical flue. In the vertical flue, the poor gas and air associate and burn, and the flue gas is further drawn down to another heat storage chamber, heating the heat storage bricks in the heat storage chamber and passing through the sole flue to the flue. In the coke oven, preheating and heat storage are repeated, and the direction of gas flow is changed every 20 to 30 minutes in order to increase thermal efficiency.

炭化室の上部は石炭が装入されない空間となっていて、石炭の乾留中にこの上部空間を乾留ガスが抜け出る。炭化室の上部空間の温度は以下の(1)〜(4)の要因で決まるといわれている。(1)燃焼室内の上部温度、(2)燃焼室の寸法、高さ、形状、(3)装入炭の性状(揮発分)、(4)装入炭量(高さ)。   The upper part of the carbonization chamber is a space in which no coal is charged, and the carbonization gas escapes from this upper space during the coal distillation. It is said that the temperature of the upper space of the carbonization chamber is determined by the following factors (1) to (4). (1) Combustion chamber upper temperature, (2) Combustion chamber dimensions, height, shape, (3) Charging properties (volatiles), (4) Charging amount (height).

従来から炭化室の上部空間の温度は750〜800℃が最適と言われている。通常の操業においては、(2)、(3)及び(4)は変更できず、コッパース式コークス炉のみが燃焼室上部の構造に調整機能があり、(1)燃焼室内の上部温度が調整可能であった。   Conventionally, the temperature of the upper space of the carbonization chamber is said to be optimal at 750 to 800 ° C. In normal operation, (2), (3) and (4) cannot be changed, only the Coppers coke oven has an adjustment function on the structure of the upper part of the combustion chamber, and (1) the upper temperature of the combustion chamber can be adjusted. Met.

図7は、特許文献1に記載されたコッパース式コークス炉の燃焼室の炉長方向に沿った断面を示す。この図7には、富ガス又は貧ガスによって加熱されるいわゆる複式炉が図示されている。   FIG. 7 shows a cross section along the furnace length direction of the combustion chamber of the Coppers coke oven described in Patent Document 1. FIG. 7 shows a so-called dual furnace heated by a rich gas or a poor gas.

富ガス加熱の場合、富ガスは交互に富ガスノズル1又は2を介して上向きに導く垂直フリュー3に供給される。燃焼用空気は蓄熱室を経由して流出開口5,6,7を介して同様に上向きに導く垂直フリュー3内に供給される。燃焼室はヘアピンフリューを採用しており、2つの隣接する垂直フリュー3及び3aはその上部で結合されている。二連垂直フリュー3及び3aの一方は他方の垂直フリューと交互に、富ガス及び空気を上向きに導きながら燃焼させるか又は排ガスを下向きに排出させる。   In the case of the rich gas heating, the rich gas is supplied to the vertical flues 3 that alternately lead upward through the rich gas nozzles 1 or 2. Combustion air is supplied through the heat storage chamber into the vertical flue 3 that similarly leads upward through the outflow openings 5, 6, 7. The combustion chamber employs a hairpin flue and two adjacent vertical flues 3 and 3a are joined at the top. One of the dual vertical flues 3 and 3a alternately burns while exhausting exhaust gas downward while guiding rich gas and air upward, alternately with the other vertical flue.

貧ガス加熱の場合、高炉ガス及びコークス炉ガスからの貧ガスは、蓄熱室で予熱された後、垂直フリュー底部の流出開口7を介して供給される。燃焼用空気は蓄熱室を経由して流出開口5,6を介して同様に上向きに導く垂直フリュー3内に供給される。上向きに導く垂直フリュー3内で生ずる排ガスは上側で連絡壁の開口を介して下向きに導く隣接する垂直フリュー3aに越流し、この垂直フリュー3a内の開口5及び中空連絡通路8並びに底部開口6,7を介してかつ蓄熱室を介して排出される。   In the case of the poor gas heating, the poor gas from the blast furnace gas and the coke oven gas is preheated in the heat storage chamber and then supplied through the outflow opening 7 at the bottom of the vertical flue. Combustion air is supplied through the heat storage chamber into the vertical flue 3 that similarly leads upward through the outflow openings 5 and 6. The exhaust gas generated in the vertical flue 3 leading upward flows over the adjacent vertical flue 3a leading downward through the opening of the connecting wall on the upper side, the opening 5 and the hollow communication passage 8 in this vertical flue 3a and the bottom opening 6, 7 and through the heat storage chamber.

燃焼室の上部には、炭化室の上部空間の温度を調整するために補助炎道9が設けられる。補助炎道9と燃焼室の天井とを分ける隔壁10には、燃焼室と補助炎道9とを連通する開口10aが設けられ、この隔壁10は一対の風量調整ダンパ4(スライド煉瓦)で開閉可能に塞がれる。人がフックを用いて点検孔10bから風量調整ダンパ4を完全にあるいは部分的に開けることによって、燃焼ガスが補助炎道に流れ、炭化室上部の温度が調整される。
特表平4−501876号公報
In the upper part of the combustion chamber, an auxiliary flame passage 9 is provided to adjust the temperature of the upper space of the carbonization chamber. The partition wall 10 that separates the auxiliary flame path 9 and the ceiling of the combustion chamber is provided with an opening 10a that allows the combustion chamber and the auxiliary flame path 9 to communicate with each other, and the partition wall 10 is opened and closed by a pair of air volume adjusting dampers 4 (slide bricks). Blocked as possible. When a person opens the air volume adjusting damper 4 completely or partially from the inspection hole 10b using a hook, the combustion gas flows into the auxiliary flame path, and the temperature of the upper portion of the carbonization chamber is adjusted.
Japanese National Patent Publication No. 4-501876

炭化室上部の石炭が装入されない空間の温度は高すぎても低すぎても問題が生ずる。
炭化室上部の温度が高すぎると炭化室上部にカーボンが析出・付着するので、石炭を装入する装炭作業ができなくなったり、石炭を平らに均すレベリング作業ができなくなったりする。付着したカーボンを除去しようとすると、人力で落とさなければならず、それによって煉瓦を損傷してしまう。一方、炭化室下部の温度が低すぎると上部石炭が未乾留になってしまい、乾留時間の延長が必要になってしまう。
Problems arise if the temperature of the space above the carbonization chamber where the coal is not charged is too high or too low.
If the temperature in the upper part of the carbonization chamber is too high, carbon deposits and adheres to the upper part of the carbonization chamber, so that it is not possible to perform the coal loading operation for charging the coal or the leveling operation to level the coal. Any attempt to remove the adhering carbon must be done manually, thereby damaging the brick. On the other hand, if the temperature of the lower part of the carbonization chamber is too low, the upper coal will be in the dry distillation, and it will be necessary to extend the dry distillation time.

コッパース式コークス炉のみが、燃焼室の上部が2段構造になっていて、補助炎道へのガス導入量を調整することにより、炭化室上部の温度を制御できる。しかし補助炎道へのガス導入量を調整するために風量調整ダンパを閉めると、点検孔から燃焼室内の観察ができなくなるという欠点があった。   Only in the Coppers type coke oven, the upper part of the combustion chamber has a two-stage structure, and the temperature of the upper part of the carbonization chamber can be controlled by adjusting the amount of gas introduced into the auxiliary flameway. However, if the air volume adjustment damper is closed in order to adjust the amount of gas introduced into the auxiliary flameway, there is a drawback that observation of the combustion chamber through the inspection hole becomes impossible.

そこで本発明は、炭化室上部の温度を調整できる新たな構造のコークス炉及びコークス炉の炭化室上部の温度制御方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a coke oven having a new structure capable of adjusting the temperature of the upper part of the coking chamber and a method for controlling the temperature of the upper part of the coking chamber of the coke oven.

上記課題を解決するために、請求項1の発明は、炉体の下部に蓄熱室があり、その上部に燃焼室と炭化室とが交互に配列されていて、炭化室で乾留されたコークスを炉体のPS(プッシャサイド)からCS(コークサイド)に向かって押し出すコークス炉において、燃焼室の上方又は上部に、炉長方向(炉体のPSからCSに向かってコークスを押し出す方向)に伸び、且つ炉体のPS及び/又はCSに開口する水平フリューを設け、前記水平フリューの端部に前記水平フリュー内に燃焼排ガスを導入する燃焼装置を設けることを特徴とする。   In order to solve the above-mentioned problem, the invention of claim 1 has a heat storage chamber in the lower part of the furnace body, and combustion chambers and carbonization chambers are alternately arranged in the upper part, and coke that has been carbonized in the carbonization chamber is obtained. In a coke oven that pushes from the PS (pusher side) of the furnace body toward CS (coke side), it extends in the furnace length direction (direction in which coke is pushed from the PS of the furnace body toward CS) above or above the combustion chamber. In addition, a horizontal flue opening to the PS and / or CS of the furnace body is provided, and a combustion device for introducing combustion exhaust gas into the horizontal flue is provided at an end of the horizontal flue.

請求項2の発明は、請求項1に記載のコークス炉において、前記水平フリューと前記燃焼室とを分岐道で接続することを特徴とする。   According to a second aspect of the present invention, in the coke oven according to the first aspect, the horizontal flue and the combustion chamber are connected by a branch path.

請求項3の発明は、請求項1または2に記載のコークス炉において、一つの前記燃焼室に対して二列の前記水平フリューを、前記燃焼室両側の前記炭化室の間に設けることを特徴とする。   A third aspect of the present invention is the coke oven according to the first or second aspect, wherein two rows of the horizontal flue are provided between the carbonization chambers on both sides of the combustion chamber with respect to one combustion chamber. And

請求項4の発明は、請求項1ないし3いずれかに記載のコークス炉において、前記燃焼装置は、一端が開放され、他端部には管軸方向に沿ってスリットが形成された管状の燃焼室と、先端部の形状が偏平でかつその開口面積が縮小された燃料ガスと酸素含有ガスよりなる予混合気を吹き込むノズルと、を有し、予混合気を吹き込むノズルが、前記スリットに接続されて前記装置燃焼室の内壁面の接線方向に向けて設けられていることを特徴とする。   According to a fourth aspect of the present invention, in the coke oven according to any one of the first to third aspects, the combustion device is a tubular combustion in which one end is opened and a slit is formed in the other end portion along the tube axis direction. And a nozzle for blowing a premixed gas composed of a fuel gas and an oxygen-containing gas having a flat tip shape and a reduced opening area, and the nozzle for blowing the premixed gas is connected to the slit And is provided toward the tangential direction of the inner wall surface of the apparatus combustion chamber.

請求項5の発明は、請求項1ないし3いずれかに記載のコークス炉において、前記燃焼装置は、一端が開放され、他端部には管軸方向に沿ってスリットが形成された管状の燃焼室と、先端部の形状が偏平でかつその開口面積が縮小された燃料ガスを吹き込むノズルと酸素含有ガスを吹き込むノズルと、を有し、これらのガス吹き込みノズルが、前記スリットに接続されて前記装置燃焼室の内壁面の接線方向に向けて設けられていることを特徴とする。   According to a fifth aspect of the present invention, in the coke oven according to any one of the first to third aspects, the combustion device has a tubular combustion in which one end is opened and a slit is formed along the tube axis direction at the other end. A chamber, a nozzle for blowing a fuel gas having a flat tip shape and a reduced opening area, and a nozzle for blowing an oxygen-containing gas, and these gas blowing nozzles are connected to the slits and It is provided toward the tangential direction of the inner wall surface of the apparatus combustion chamber.

請求項6の発明は、請求項1に記載のコークス炉を用い、前記燃焼装置からの燃焼排ガスを前記水平フリューに導入することによって、前記炭化室上部の温度を制御することを特徴とするコークス炉炭化室上部の温度制御方法である。   The invention according to claim 6 is a coke characterized in that the coke oven according to claim 1 is used to control the temperature of the upper part of the carbonization chamber by introducing combustion exhaust gas from the combustion device into the horizontal flue. This is a temperature control method for the upper part of the furnace carbonization chamber.

請求項1の発明によれば、燃焼装置からの燃焼排ガスを水平フリューに導入することで、炭化室上部の温度を適正に制御することができる。   According to the first aspect of the present invention, the combustion exhaust gas from the combustion apparatus is introduced into the horizontal flue so that the temperature of the upper portion of the carbonization chamber can be appropriately controlled.

請求項2の発明によれば、燃焼バーナの燃焼排ガスの熱を蓄熱室に蓄熱することができ、燃焼排ガスの熱を有効に利用することができる。   According to the invention of claim 2, the heat of the combustion exhaust gas from the combustion burner can be stored in the heat storage chamber, and the heat of the combustion exhaust gas can be used effectively.

請求項3の発明によれば、燃焼室の両側の炭化室に均等に熱を伝えることができる。
さらに水平フリューの両端部に燃焼装置を設けることで、燃焼排ガスによる水平フリューの温度を長手方向で略均等にすることができる。
According to the invention of claim 3, heat can be evenly transferred to the carbonization chambers on both sides of the combustion chamber.
Furthermore, by providing combustion devices at both ends of the horizontal flue, the temperature of the horizontal flue due to the combustion exhaust gas can be made substantially uniform in the longitudinal direction.

請求項4又は請求項5の発明によれば、高負荷燃焼が可能で、かつ燃焼量の調節範囲が非常に大きい燃焼装置が得られるので、水平フリューを加熱するのに適した燃焼装置になる。   According to the invention of claim 4 or claim 5, a combustion apparatus capable of high-load combustion and having a very large combustion amount adjustment range is obtained, so that the combustion apparatus is suitable for heating the horizontal flue. .

図1及び図2は本発明の一実施形態におけるコークス炉を示す。図1はコークス炉の炉体の炉長方向(炉体のPS(プッシャサイド)からCS(コークサイド)に向かってコークスを押し出す方向)に沿った断面形状を示し、炭化室11の断面と燃焼室12の断面の双方が示されている。勿論実際には炭化室11と燃焼室12とは図1の奥行き方向で位置がずれている。図2は炉長方向と直交する炉体の断面形状を示し、炭化室11と燃焼室12が交互に配置されている。なおこの図2では、炭化室11及び燃焼室12の数は実際よりも少なく示されている。   1 and 2 show a coke oven in one embodiment of the present invention. FIG. 1 shows a cross-sectional shape along the length of a coke oven furnace body (direction in which coke is pushed from PS (pusher side) to CS (coke side) of the furnace body). Both cross sections of the chamber 12 are shown. Of course, the carbonization chamber 11 and the combustion chamber 12 are actually displaced in the depth direction of FIG. FIG. 2 shows a cross-sectional shape of the furnace body orthogonal to the furnace length direction, and the carbonization chambers 11 and the combustion chambers 12 are alternately arranged. In FIG. 2, the number of the carbonization chambers 11 and the combustion chambers 12 is smaller than the actual number.

コークス炉の炉体の下部には蓄熱室があり、その上部には燃焼室12と炭化室11とが交互に配列されている。炭化室11は例えば長さ12〜16m、高さ4〜7m、幅400〜800mm、石炭装入量12〜50t程度の大きさを有する。コークスの押出を容易にするために、コークガイド車のあるCSの炭化室の幅が押出し機のあるPSよりも広い。炭化室11の加熱の際には幅の広いCSと幅の狭いPSの炉壁温度に差がつけられる。   There is a heat storage chamber at the lower part of the furnace body of the coke oven, and combustion chambers 12 and carbonization chambers 11 are alternately arranged at the upper part thereof. The carbonization chamber 11 has, for example, a length of 12 to 16 m, a height of 4 to 7 m, a width of 400 to 800 mm, and a coal charge amount of about 12 to 50 t. In order to facilitate the extrusion of coke, the width of the carbonization chamber of the CS with the coke guide wheel is wider than the PS with the extruder. When the carbonization chamber 11 is heated, a difference is made in the furnace wall temperature between the wide CS and the narrow PS.

燃焼室12は、多数の垂直フリュー(加熱炎道)に細分されていて、この実施形態では交互に配列されている燃焼フリュー13と引落しフリュー13aとで一つの燃焼室が構成される。このような燃焼室12は双子炎道式(ヘアピン式)と呼ばれる。   The combustion chamber 12 is subdivided into a number of vertical flues (heating flame paths), and in this embodiment, the combustion flues 13 and the drawn flues 13a arranged alternately constitute one combustion chamber. Such a combustion chamber 12 is called a twin flame path type (hairpin type).

炉の加熱には発熱量の高いコークス炉ガス(富ガス)、発熱量の低い高炉ガス、又はコークス炉ガスと高炉ガスとの混合ガス(貧ガス)を使用する。富ガス加熱の場合は蓄熱室では空気だけを予熱し、富ガスは蓄熱室を通らないで流出開口20を介して各フリュー13,13aに供給される。   For the heating of the furnace, a coke oven gas (rich gas) having a high calorific value, a blast furnace gas having a low calorific value, or a mixed gas (poor gas) of coke oven gas and blast furnace gas is used. In the case of rich gas heating, only the air is preheated in the heat storage chamber, and the rich gas is supplied to each of the flues 13 and 13a through the outflow opening 20 without passing through the heat storage chamber.

貧ガス加熱の場合は、空気と貧ガスが蓄熱室下部のソールフリューを経てそれぞれ別の蓄熱室で予熱された後、流出開口14,15,16を介して燃焼フリュー13に入る。貧ガスは燃焼フリュー底部の流出開口14を介して燃焼フリュー13内に導かれ、空気はフリュー底部の流出開口15を介して、かつ中空連絡通路17及び上側の流出開口16を介して燃焼フリュー13内に導かれる。燃焼フリュー13内では貧ガスと空気が会合して燃焼する。より詳しくは貧ガスが空気用の下側の流出開口15が設けられる燃焼フリューの底部で一次燃焼した後、上側の流出開口16が設けられている部分で二次燃焼し、燃焼フリュー13を上昇する(図3も参照)。炉長方向におけるガスと空気の分配調整は、例えば蓄熱室下部に設けた調整板(ノズルプレート)により調整される。   In the case of the poor gas heating, air and the poor gas are preheated in separate heat storage chambers through the sole flue in the lower part of the heat storage chamber, and then enter the combustion flue 13 through the outflow openings 14, 15, 16. The poor gas is introduced into the combustion flue 13 through the outflow opening 14 at the bottom of the combustion flue, and the air is supplied through the outflow opening 15 at the bottom of the flue and through the hollow communication passage 17 and the upper outflow opening 16. Led in. In the combustion flue 13, the poor gas and air are associated and burned. More specifically, the poor gas first burns at the bottom of the combustion flue provided with the lower outflow opening 15 for air, then undergoes secondary combustion at the portion provided with the upper outflow opening 16 and raises the combustion flue 13. (See also FIG. 3). The gas and air distribution adjustment in the furnace length direction is adjusted by, for example, an adjustment plate (nozzle plate) provided in the lower part of the heat storage chamber.

燃焼フリュー13内で生ずる排ガスは上側の連絡通路18を経由して、排ガスを下向きに導く引落しフリュー13aに流れる。燃焼排ガスはさらに流出開口14,15,16を介して別の蓄熱室に引落とされ、蓄熱室内の蓄熱煉瓦を加熱して蓄熱室下部のソールフリューを経て煙道にぬける。コークス炉では予熱、蓄熱を繰り返し、熱効率を高めるために20〜30分ごとに13,13aを切り換えてガスの流れの方向を転換させている。このことはガスの切替と呼ばれる。   The exhaust gas generated in the combustion flue 13 flows to the pulling flue 13a that guides the exhaust gas downward through the upper communication passage 18. The combustion exhaust gas is further drawn down to another heat storage chamber through the outflow openings 14, 15, 16, heats the heat storage brick in the heat storage chamber and passes through the sole flue in the lower portion of the heat storage chamber and enters the flue. In the coke oven, preheating and heat storage are repeated, and the gas flow direction is changed by switching between 13 and 13a every 20 to 30 minutes in order to increase thermal efficiency. This is called gas switching.

燃焼室12の温度を熱電対で測定し、この測定値に基づいてソールフリューへの燃料ガスの供給量を操作し、燃焼室全体の温度を制御する。また炉長方向における各燃焼室12の温度を点検孔26から光学的な温度測定装置で測定し、この測定値に基づいて各燃焼室12のガスと空気の分配調整を行い、炭化室の炉長方向の温度勾配を調整する。   The temperature of the combustion chamber 12 is measured with a thermocouple, the amount of fuel gas supplied to the sole flue is manipulated based on this measured value, and the temperature of the entire combustion chamber is controlled. In addition, the temperature of each combustion chamber 12 in the furnace length direction is measured by an optical temperature measuring device from the inspection hole 26, and the distribution of gas and air in each combustion chamber 12 is adjusted based on this measured value. Adjust the temperature gradient in the long direction.

燃焼フリュー13と引落としフリュー13aとを分ける隔壁の底部には、サーキュレーション開口19が開けられる。燃焼排ガスはこのサーキュレーション開口19から燃焼フリュー13内に再流入する。図3に示されるように、空気用の流出開口15及び16を2段に設けることによる2段燃焼と、この燃焼排ガスの循環により、燃焼排ガス中のNOxを低減することができる。   A circulation opening 19 is opened at the bottom of the partition that separates the combustion flue 13 and the withdrawal flue 13a. The combustion exhaust gas flows again into the combustion flue 13 from the circulation opening 19. As shown in FIG. 3, NOx in the combustion exhaust gas can be reduced by the two-stage combustion by providing the air outlet openings 15 and 16 in two stages and the circulation of the combustion exhaust gas.

燃焼室12の上部には、炭化室の上部空間の温度を調整するために補助炎道21が設けられる。補助炎道21と燃焼室12の天井とを分ける隔壁22には、燃焼室12と補助炎道21とを連通する開口23が設けられ、この開口23は一対の風量調整ダンパ25(スライド煉瓦、図4参照)で開閉可能に塞がれる。図1に示されるように、人がフックを用いて点検孔26から風量調整ダンパ25を図4(A)に示されるように完全にあるいは部分的に開けることによって、ガスが補助炎道に流れ、炭化室上部の温度が調整される。図4(B)は開口23が風量調整ダンパ25で塞がれた状態を示す。   An auxiliary flame passage 21 is provided at the upper part of the combustion chamber 12 in order to adjust the temperature of the upper space of the carbonization chamber. The partition wall 22 that divides the auxiliary flame path 21 and the ceiling of the combustion chamber 12 is provided with an opening 23 that allows the combustion chamber 12 and the auxiliary flame path 21 to communicate with each other. The opening 23 has a pair of air volume adjustment dampers 25 (slide bricks, (See FIG. 4). As shown in FIG. 1, when a person opens the air volume adjustment damper 25 from the inspection hole 26 completely or partially using a hook as shown in FIG. 4A, the gas flows into the auxiliary flameway. The temperature at the top of the carbonization chamber is adjusted. FIG. 4B shows a state in which the opening 23 is closed by the air volume adjustment damper 25.

図1及び図2に示されるように、燃焼室12の上方又は上部(燃焼室12の天井よりも上か又は天井よりも下の燃焼室12の上部)には炉長方向に伸びる水平フリュー27が設けられる。この水平フリュー27は両端がそれぞれ炉体のPS及びCSに開口する。またこの水平フリュー27は一つの燃焼室12に対して二列設けられ、二列の水平フリュー27は燃焼室12両側の炭化室11の間で点検孔26を避けた左右の場所に設けられる(図2参照)。二列の水平フリュー27は炉体の同じ高さに設けられるのが望ましいが、若干高さを異ならせてもよい。   As shown in FIGS. 1 and 2, a horizontal flue 27 extends in the furnace length direction above or above the combustion chamber 12 (above the ceiling of the combustion chamber 12 or above the combustion chamber 12 below the ceiling). Is provided. Both ends of the horizontal flue 27 open to PS and CS of the furnace body. The horizontal flues 27 are provided in two rows for one combustion chamber 12, and the two rows of horizontal flues 27 are provided between the carbonization chambers 11 on both sides of the combustion chamber 12 at positions on the left and right sides avoiding the inspection holes 26 ( (See FIG. 2). The two rows of horizontal flues 27 are preferably provided at the same height of the furnace body, but may be slightly different in height.

水平フリュー27の両端部には、水平フリュー27内に燃焼排ガスを導入する燃焼装置として燃焼バーナ31が設けられる。燃焼バーナ31は投入されるガス量と空気量を調節し、燃焼排ガス温度を300〜1300℃に調整する。水平フリュー27の中間部は複数個所を燃焼室に分岐道32で接続され、燃焼バーナ31の燃焼排ガスは燃焼室上部に排出される。燃焼バーナ31はコークス炉の燃焼時間と同じタイミングで燃焼し、コークス炉の燃焼を休止する時間は煙道が切り替わるので、燃焼バーナ31も休止する。燃焼バーナ31の構造については後述する。   At both ends of the horizontal flue 27, combustion burners 31 are provided as combustion devices for introducing combustion exhaust gas into the horizontal flue 27. The combustion burner 31 adjusts the amount of gas and the amount of air introduced, and adjusts the combustion exhaust gas temperature to 300 to 1300 ° C. An intermediate portion of the horizontal flue 27 is connected to a combustion chamber at a plurality of points by branch paths 32, and combustion exhaust gas from the combustion burner 31 is discharged to the upper portion of the combustion chamber. The combustion burner 31 burns at the same timing as the combustion time of the coke oven, and the combustion burner 31 also stops because the flue is switched during the time when the combustion of the coke oven is stopped. The structure of the combustion burner 31 will be described later.

燃焼室12の温度は1200℃〜1300℃である。これに対して、従来から石炭が装入されていない炭化室上部33の温度は750℃〜800℃が最適といわれている。炭化室上部33の温度が高すぎると炭化室上部にカーボンが析出・付着する一方、炭化室上部33の温度が低すぎると上部石炭が未乾留になってしまい、乾留時間の延長が必要になってしまう。   The temperature of the combustion chamber 12 is 1200 to 1300 ° C. On the other hand, it is said that the temperature of the upper part 33 of the carbonization chamber in which no coal is conventionally charged is optimally 750 ° C. to 800 ° C. If the temperature of the carbonization chamber upper portion 33 is too high, carbon is deposited and deposited on the carbonization chamber upper portion. On the other hand, if the temperature of the carbonization chamber upper portion 33 is too low, the upper coal becomes undried, and it is necessary to extend the carbonization time. End up.

本実施形態のように温度300〜1300℃に調整された燃焼排ガスを水平フリュー27に導入することで、炭化室上部33の温度を適正に制御することができる。具体的には炭化室上部33の温度が例えば800℃より高い場合には、温度の低い燃焼排ガスを水平フリュー27に導入し、炭化室上部33の温度を下げる。これと反対に炭化室上部33の温度が例えば750℃より低い場合には、温度の高い燃焼排ガスを水平フリュー27に導入し、炭化室上部33の温度を上げる。水平フリュー27を設けることで、補助炎道の風量調整ダンパ25を開けた燃焼室内の観察が可能な状態で、炭化室上部33の温度を制御することが可能になる。ここで水平フリュー27に導入される燃焼排ガスの温度を300℃以上としたのは、炉体にヒートショックを与えないためである。   By introducing the combustion exhaust gas adjusted to a temperature of 300 to 1300 ° C. into the horizontal flue 27 as in this embodiment, the temperature of the upper carbonization chamber 33 can be controlled appropriately. Specifically, when the temperature of the upper carbonization chamber 33 is higher than 800 ° C., for example, combustion exhaust gas having a low temperature is introduced into the horizontal flue 27 to lower the temperature of the upper carbonization chamber 33. On the other hand, when the temperature of the upper carbonization chamber 33 is lower than, for example, 750 ° C., high-temperature combustion exhaust gas is introduced into the horizontal flue 27 to raise the temperature of the upper carbonization chamber 33. By providing the horizontal flue 27, it becomes possible to control the temperature of the upper carbonization chamber 33 in a state in which the combustion chamber in which the air volume adjustment damper 25 of the auxiliary flame passage is opened can be observed. The reason why the temperature of the combustion exhaust gas introduced into the horizontal flue 27 is set to 300 ° C. or higher is to prevent heat shock from being applied to the furnace body.

また、燃焼バーナ31の燃焼排ガスを燃焼室12に導入させれば、燃焼バーナ31の燃焼排ガスの熱も蓄熱室に蓄熱することができ、燃焼排ガスの熱を有効に利用することができる。さらに一つの燃焼室12に二列の水平フリュー27を設けることで、燃焼室12の両側の炭化室11に均等に熱を伝えることができる。さらに水平フリュー27の両端部に燃焼バーナ31を設けることで、燃焼排ガスによる水平フリュー27の温度を長手方向で略均等にすることができる。   If the combustion exhaust gas from the combustion burner 31 is introduced into the combustion chamber 12, the heat of the combustion exhaust gas from the combustion burner 31 can also be stored in the heat storage chamber, and the heat of the combustion exhaust gas can be used effectively. Furthermore, by providing two rows of horizontal flues 27 in one combustion chamber 12, heat can be evenly transmitted to the carbonization chambers 11 on both sides of the combustion chamber 12. Furthermore, by providing the combustion burners 31 at both ends of the horizontal flue 27, the temperature of the horizontal flue 27 by the combustion exhaust gas can be made substantially uniform in the longitudinal direction.

なお図示しないが、炭化室上部33に熱電対等の温度測定装置を設置し、この温度測定装置の測定値に基づいて燃焼バーナ31へ投入される空気量と燃料ガス量を遠隔操作し、炭化室上部の温度を自動的に制御してもよい。この他にも装入炭性状、装入量に合わせて燃焼バーナ31へ投入される空気量と燃料ガス量を遠隔操作し、炭化室上部33の温度を制御してもよい。   Although not shown, a temperature measuring device such as a thermocouple is installed in the upper part 33 of the carbonization chamber, and the air amount and the fuel gas amount supplied to the combustion burner 31 are remotely controlled based on the measured value of the temperature measuring device, The upper temperature may be controlled automatically. In addition to this, the temperature of the upper carbonization chamber 33 may be controlled by remotely controlling the amount of air and the amount of fuel gas charged into the combustion burner 31 in accordance with the charging charcoal properties and the charging amount.

以下燃焼バーナ31の構造について説明する。本実施形態では燃焼バーナ31として、高負荷燃焼が可能で、かつ燃焼量の調節範囲が非常に大きく、小型化されると共に、環境汚染が起こりにくい管状火炎バーナを使用する。   Hereinafter, the structure of the combustion burner 31 will be described. In the present embodiment, as the combustion burner 31, a tubular flame burner that can perform high-load combustion, has a very large adjustment range of the combustion amount, is miniaturized, and hardly causes environmental pollution is used.

図5及び図6は燃焼バーナの一例を示す図で、図5は一部を切り欠いた側面図、図6は図5におけるA−A矢視の断面図である。40は管状の装置燃焼室であり、一端が水平フリュー27に接続されて燃焼排ガスの排出口になっている。そして、他端部には管軸方向に沿ってスリットが形成されており、このスリットに接続させて燃料ガスと酸素含有ガスよりなる予混合気を吹き込むノズル41が設けられている。   5 and 6 are views showing an example of the combustion burner. FIG. 5 is a side view with a part cut away, and FIG. 6 is a cross-sectional view taken along the line AA in FIG. Reference numeral 40 denotes a tubular device combustion chamber, one end of which is connected to the horizontal flue 27 and serves as a discharge port for combustion exhaust gas. A slit is formed in the other end portion along the tube axis direction, and a nozzle 41 is provided for blowing a premixed gas composed of a fuel gas and an oxygen-containing gas connected to the slit.

ノズル41は装置燃焼室40の内壁面の接線方向に向けて設けられており、予混合気の吹き込みによって、装置燃焼室40内に旋回流が形成されるようになっている。又、ノズル41は先端部の形状が偏平で、かつその開口面積が縮小されており、予混合気が高速で吹き込まれるようなになっている。42は点火プラグである。   The nozzle 41 is provided toward the tangential direction of the inner wall surface of the apparatus combustion chamber 40, and a swirling flow is formed in the apparatus combustion chamber 40 by blowing the premixed gas. Further, the nozzle 41 has a flat tip portion and a reduced opening area so that the premixed gas is blown at a high speed. Reference numeral 42 denotes a spark plug.

なお、図5、図6においては、ノズル41が複数設けられたものが示されているが、予混合気を燃焼させる場合には、ノズル41は、必ずしも、複数でなければならない訳ではなく、1基だけのものであってもよい。   5 and 6, a plurality of nozzles 41 are shown. However, when the premixed gas is burned, the number of nozzles 41 is not necessarily plural. There may be only one.

上記の構成によるバーナにおいて、ノズル41から吹き込まれて旋回流が形成された予混合気に点火すると、装置燃焼室40内のガスが密度差によって層別され、火炎43の両側に密度の異なるガス層ができる。すなわち、旋回速度の小さい軸心側には高温の燃焼排ガスが存在し、旋回速度の大きい装置燃焼室40の内壁側には未燃焼のガスが存在するようになる。   In the burner configured as described above, when the premixed gas blown from the nozzle 41 and ignited with the swirl flow is ignited, the gas in the apparatus combustion chamber 40 is stratified by the density difference, and the gas having different densities on both sides of the flame 43. You can layer. That is, high-temperature combustion exhaust gas exists on the axis side where the turning speed is low, and unburned gas exists on the inner wall side of the apparatus combustion chamber 40 where the turning speed is high.

また、内壁近傍では、旋回速度が火炎伝播速度を上回っているため、火炎は内壁近傍にとどまることはできない。このため、装置燃焼室40内には火炎が管状の形になって生成する。43は管状の火炎を示す。又、装置燃焼室の内壁付近には未燃焼のガスが存在しているので、装置燃焼室40の壁面が直接的な伝熱により高温に加熱されることはない。そして、装置燃焼室40内のガスは旋回しながら下流側へ流れるが、その間、内壁側のガスが順次燃焼して軸心側へ移動し、開放端部から排出される。   Further, in the vicinity of the inner wall, the turning speed exceeds the flame propagation speed, so that the flame cannot remain in the vicinity of the inner wall. For this reason, a flame is generated in the apparatus combustion chamber 40 in a tubular shape. 43 shows a tubular flame. In addition, since unburned gas exists near the inner wall of the apparatus combustion chamber, the wall surface of the apparatus combustion chamber 40 is not heated to a high temperature by direct heat transfer. The gas in the apparatus combustion chamber 40 flows to the downstream side while swirling. Meanwhile, the gas on the inner wall side sequentially burns, moves to the axial center side, and is discharged from the open end.

ところで、上記図5及び図6に示す実施の形態のように、複数のノズル41が設けられている場合、それらのノズルに燃料ガス配管又は酸素含有ガス配管を接続して、燃料ガス用のノズルと酸素含有ガス用のノズルとに区分し、燃料ガスと酸素含有ガスを別々に吹き込むことができる。このようにして、燃料ガスと酸素含有ガスを別々に吹き込んでも、それぞれのガスは装置燃焼室40の接線方向に向かって高速で吹き込まれ、装置燃焼室40内の内壁に近い領域で効率よく混合されるので、火炎帯の厚みが幾分増加することを除けば、実質的に予混合気が燃焼する場合とほぼ同様の火炎形状になる。   By the way, when the some nozzle 41 is provided like embodiment shown in the said FIG.5 and FIG.6, fuel gas piping or oxygen-containing gas piping is connected to these nozzles, and the nozzle for fuel gas The fuel gas and the oxygen-containing gas can be blown separately. In this way, even if the fuel gas and the oxygen-containing gas are blown separately, each gas is blown at high speed toward the tangential direction of the device combustion chamber 40 and is efficiently mixed in a region near the inner wall in the device combustion chamber 40. Thus, except for a slight increase in the thickness of the flame zone, the flame shape is substantially the same as when the premixed gas burns.

上記の構成によるバーナは、次に記すような利点を有する。装置燃焼室40内で燃焼してしまい、装置燃焼室40の外(バーナの外)には火炎43が存在しないので、バーナの前方に燃焼用の空間を確保しなくてもよい。   The burner having the above configuration has the following advantages. Since it burns in the apparatus combustion chamber 40 and the flame 43 does not exist outside the apparatus combustion chamber 40 (outside the burner), it is not necessary to secure a combustion space in front of the burner.

さらに、バーナの外に火炎が存在しないので、燃焼排ガスの導入先に流れ場が形成されていても、火炎に影響を及ぼすことがなく、保炎器等を設ける必要がない。   Furthermore, since there is no flame outside the burner, even if a flow field is formed at the introduction destination of the combustion exhaust gas, it does not affect the flame and it is not necessary to provide a flame holder or the like.

又、予混合気が高速で吹き込まれるにも拘らず、装置燃焼室40内の中央部は旋回速度が小さく、ここで火炎が安定化されるので、吹込速度が大きい場合にも安定な予混合火炎が形成され、高負荷の燃焼が可能となる。そして、安定な予混合火炎が形成されることによって、下記のような利点が付加される。   In addition, although the premixed gas is blown at a high speed, the central portion in the apparatus combustion chamber 40 has a small swirl speed, and the flame is stabilized here, so that stable premixing is possible even when the blow speed is high. A flame is formed, and high-load combustion is possible. And the following advantages are added by forming a stable premixed flame.

排出される燃焼排ガスの温度のバラツキが小さく、燃焼排ガスの導入先における各部の温度がバラツキのない状態に維持される。   The variation in the temperature of the exhaust gas discharged is small, and the temperature of each part in the introduction destination of the combustion exhaust gas is maintained in a state where there is no variation.

酸素利用効率を高めることができ、これに関連して余分な酸素含有ガスを供給する必要がなくなるため、高温の燃焼排ガスを発生させることができる。又、燃料ガス成分が非常に希薄の状態になる条件でも燃焼させることができるので、バーナ自身の安定燃焼範囲が広がると共に、低温の燃焼排ガスを発生させることもできる。   Oxygen utilization efficiency can be increased, and it is not necessary to supply extra oxygen-containing gas in connection with this, so that high-temperature combustion exhaust gas can be generated. Further, since combustion can be performed even under conditions where the fuel gas component is very lean, the stable combustion range of the burner itself can be expanded and low-temperature combustion exhaust gas can be generated.

燃焼排ガスの温度のバラツキが小さく、燃焼時に局部的な高温部が発生しないので、NOXなどの有害物質の生成量が少ない。 Small variations in the temperature of the combustion exhaust gas, since no local high-temperature portion occurs during combustion, the amount of harmful substances such as NO X is small.

燃料と酸素との混合性が良好であり、局所的な低温領域ができないので、炭化水素などの未燃焼分の残留量が極めて少なくなく、ススも殆ど生成しない。   Since the mixing property of fuel and oxygen is good and a local low temperature region is not formed, the residual amount of unburned hydrocarbons and the like is not very small and soot is hardly generated.

そして又、複数のノズル41を設け、燃料ガス用のノズルと酸素含有ガス用のノズルとに区分した場合には、供給するガスを着火点以上の高温領域まで予熱することができるので、火炎温度を高くすることができると共に、排ガス等との熱交換による熱回収を効果的に行うことができる。   In addition, when a plurality of nozzles 41 are provided and divided into fuel gas nozzles and oxygen-containing gas nozzles, the gas to be supplied can be preheated to a high temperature region above the ignition point. In addition to being able to increase the temperature, it is possible to effectively perform heat recovery by heat exchange with exhaust gas or the like.

なお本実施形態は本発明の要旨を変更しないで種々変更可能である。例えば本発明の水平フリューは、2段補助炎道を有さない多段燃焼式のカールスティル式コークス炉、オットー式コークス炉に適用可能である。またヘアピン方式でないゾーン方式のカールスティル式コークス炉、オットー式コークス炉にも適用可能である。   The present embodiment can be variously modified without changing the gist of the present invention. For example, the horizontal flue of the present invention is applicable to a multi-stage combustion type Karl-Steel type coke oven and an Otto type coke oven that do not have a two-stage auxiliary flame path. Further, the present invention can be applied to a zone-type Carlstil type coke oven and an Otto type coke oven that are not hairpin type.

また水平フリューは炉体のPS及びCSのどちらか一方のみに開口してもよいし、燃焼バーナは炉体のPS及びCSのどちらか一方のみに設けられてもよい。さらに炉体によって温められた燃焼排ガスのみを燃焼室に導くために、水平フリューの中間部を全ての燃焼室に接続しなくても、炉長方向の中央の燃焼室のみに接続してもよい。   Further, the horizontal flue may be opened only in one of PS and CS of the furnace body, and the combustion burner may be provided in only one of PS and CS of the furnace body. Furthermore, in order to guide only the combustion exhaust gas heated by the furnace body to the combustion chamber, the middle part of the horizontal flue may not be connected to all the combustion chambers, but may be connected only to the center combustion chamber in the furnace length direction. .

本発明の一実施形態におけるコークス炉の炉体の炉長方向に沿った断面図。Sectional drawing along the furnace length direction of the furnace body of the coke oven in one Embodiment of this invention. 炉長方向と直交する炉体の断面図。Sectional drawing of the furnace body orthogonal to the furnace length direction. 燃焼室内の2段燃焼と排ガス循環を示す概略図。Schematic showing two-stage combustion and exhaust gas circulation in the combustion chamber. 補助炎道内の風量調整ダンパを示す斜視図(図中(A)はダンパを開けた状態を示し、図中(B)はダンパを閉めた状態を示す)。The perspective view which shows the air volume adjustment damper in an auxiliary flame path ((A) in a figure shows the state which opened the damper, (B) shows the state which closed the damper in the figure). 燃焼バーナを示す側面図。The side view which shows a combustion burner. 図5のA−A線断面図。AA line sectional view of Drawing 5. 従来のコッパース式コークス炉を示す断面図。Sectional drawing which shows the conventional Coppers type coke oven.

符号の説明Explanation of symbols

11…炭化室
12…燃焼室
27…水平フリュー
31…燃焼装置(燃焼バーナ)
32…分岐道
33…炭化室上部
40…装置燃焼室
41…ノズル
11 ... Carbonization chamber 12 ... Combustion chamber 27 ... Horizontal flue 31 ... Combustion device (combustion burner)
32 ... Branch 33 ... Carbonization chamber upper part 40 ... Device combustion chamber 41 ... Nozzle

Claims (6)

炉体の下部に蓄熱室があり、その上部に燃焼室と炭化室とが交互に配列されていて、炭化室で乾留されたコークスを炉体のPS(プッシャサイド)からCS(コークサイド)に向かって押し出すコークス炉において、
燃焼室の上方又は上部に、炉長方向(炉体のPSからCSに向かってコークスを押し出す方向)に伸び、且つ炉体のPS及び/又はCSに開口する水平フリューを設け、
前記水平フリューの端部に前記水平フリュー内に燃焼排ガスを導入する燃焼装置を設けることを特徴とするコークス炉。
There is a heat storage chamber at the bottom of the furnace body, and combustion chambers and carbonization chambers are alternately arranged at the top, and the coke that has been carbonized in the carbonization chamber is changed from PS (pusher side) to CS (coke side) of the furnace body. In the coke oven that pushes out
A horizontal flue that extends in the furnace length direction (direction in which coke is pushed from PS of the furnace body toward CS) and opens to the PS and / or CS of the furnace body is provided above or above the combustion chamber,
A coke oven, wherein a combustion device for introducing combustion exhaust gas into the horizontal flue is provided at an end of the horizontal flue.
前記水平フリューと前記燃焼室とを分岐道で接続することを特徴とする請求項1に記載のコークス炉。   The coke oven according to claim 1, wherein the horizontal flue and the combustion chamber are connected by a branch road. 一つの前記燃焼室に対して二列の前記水平フリューを、前記燃焼室両側の前記炭化室の間に設けることを特徴とする請求項1または2に記載のコークス炉。   The coke oven according to claim 1 or 2, wherein two rows of the horizontal flues are provided between the carbonization chambers on both sides of the combustion chamber with respect to one combustion chamber. 前記燃焼装置は、
一端が前記水平フリューに接続され、他端部には管軸方向に沿ってスリットが形成された管状の燃焼室と、
先端部の形状が偏平でかつその開口面積が縮小された燃料ガスと酸素含有ガスよりなる予混合気を吹き込むノズルと、を有し、
予混合気を吹き込むノズルが、前記スリットに接続されて前記装置燃焼室の内壁面の接線方向に向けて設けられていることを特徴とする請求項1ないし3いずれかに記載のコークス炉。
The combustion device comprises:
A tubular combustion chamber having one end connected to the horizontal flue and a slit formed along the tube axis direction at the other end;
A nozzle that blows a premixed gas composed of a fuel gas and an oxygen-containing gas having a flat tip shape and a reduced opening area; and
The coke oven according to any one of claims 1 to 3, wherein a nozzle for injecting a premixed gas is provided in a direction tangential to an inner wall surface of the apparatus combustion chamber connected to the slit.
前記燃焼装置は、
一端が前記水平フリューに接続され、他端部には管軸方向に沿ってスリットが形成された管状の燃焼室と、
先端部の形状が偏平でかつその開口面積が縮小された燃料ガスを吹き込むノズルと酸素含有ガスを吹き込むノズルと、を有し、
これらのガス吹き込みノズルが、前記スリットに接続されて前記装置燃焼室の内壁面の接線方向に向けて設けられていることを特徴とする請求項1ないし3いずれかに記載のコークス炉。
The combustion device comprises:
A tubular combustion chamber having one end connected to the horizontal flue and a slit formed along the tube axis direction at the other end;
A nozzle for blowing a fuel gas and a nozzle for blowing an oxygen-containing gas having a flat tip shape and a reduced opening area;
The coke oven according to any one of claims 1 to 3, wherein these gas blowing nozzles are connected to the slit and are provided in a tangential direction of an inner wall surface of the apparatus combustion chamber.
請求項1に記載のコークス炉を用い、
前記燃焼装置からの燃焼排ガスを前記水平フリューに導入することによって、前記炭化室上部の温度を制御することを特徴とするコークス炉炭化室上部の温度制御方法。
Using the coke oven according to claim 1,
A temperature control method for an upper part of a coke oven carbonization chamber, wherein the temperature of the upper part of the carbonization chamber is controlled by introducing combustion exhaust gas from the combustion device into the horizontal flue.
JP2004253859A 2004-09-01 2004-09-01 Coke oven and method for controlling temperature of upper part of coke oven carbonization chamber Pending JP2006070124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004253859A JP2006070124A (en) 2004-09-01 2004-09-01 Coke oven and method for controlling temperature of upper part of coke oven carbonization chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004253859A JP2006070124A (en) 2004-09-01 2004-09-01 Coke oven and method for controlling temperature of upper part of coke oven carbonization chamber

Publications (1)

Publication Number Publication Date
JP2006070124A true JP2006070124A (en) 2006-03-16

Family

ID=36151088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004253859A Pending JP2006070124A (en) 2004-09-01 2004-09-01 Coke oven and method for controlling temperature of upper part of coke oven carbonization chamber

Country Status (1)

Country Link
JP (1) JP2006070124A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102925180A (en) * 2012-10-25 2013-02-13 新疆宝明矿业有限公司 Oil shale external heat radiation type retort
CN103756691A (en) * 2014-01-29 2014-04-30 刘运良 Coke oven capable of horizontally heating continuously and vertically extracting coke
JP2014162917A (en) * 2013-02-28 2014-09-08 Jfe Steel Corp Coke oven operation method and coke oven
CN107936999A (en) * 2017-12-22 2018-04-20 中冶焦耐(大连)工程技术有限公司 The Bidirectional heating system and heating means of external-heat low order fine coal continuous shale oven
CN108315025A (en) * 2018-03-30 2018-07-24 中冶焦耐(大连)工程技术有限公司 A kind of carbonization chamber upper space temperature regulation structure and adjusting method
CN112812784A (en) * 2021-02-05 2021-05-18 中冶焦耐(大连)工程技术有限公司 Coke oven combustion chamber top supplementary heating structure and method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102925180A (en) * 2012-10-25 2013-02-13 新疆宝明矿业有限公司 Oil shale external heat radiation type retort
JP2014162917A (en) * 2013-02-28 2014-09-08 Jfe Steel Corp Coke oven operation method and coke oven
CN103756691A (en) * 2014-01-29 2014-04-30 刘运良 Coke oven capable of horizontally heating continuously and vertically extracting coke
CN107936999A (en) * 2017-12-22 2018-04-20 中冶焦耐(大连)工程技术有限公司 The Bidirectional heating system and heating means of external-heat low order fine coal continuous shale oven
CN107936999B (en) * 2017-12-22 2024-03-19 中冶焦耐(大连)工程技术有限公司 Bidirectional heating system and heating method of external heating type low-order pulverized coal continuous carbonization furnace
CN108315025A (en) * 2018-03-30 2018-07-24 中冶焦耐(大连)工程技术有限公司 A kind of carbonization chamber upper space temperature regulation structure and adjusting method
CN108315025B (en) * 2018-03-30 2023-11-24 中冶焦耐(大连)工程技术有限公司 Carbonization chamber upper space temperature adjusting structure and adjusting method
CN112812784A (en) * 2021-02-05 2021-05-18 中冶焦耐(大连)工程技术有限公司 Coke oven combustion chamber top supplementary heating structure and method

Similar Documents

Publication Publication Date Title
CA2896477C (en) Systems and methods for controlling air distribution in a coke oven
US9273249B2 (en) Systems and methods for controlling air distribution in a coke oven
JPH05126316A (en) Method and device for burning fuel in fire box
JP2006070124A (en) Coke oven and method for controlling temperature of upper part of coke oven carbonization chamber
TWI681049B (en) Coke oven device having centric recirculation for the production of coke, and method for operating the coke oven device, and control installation, and use thereof
JP2017171901A (en) Furnace body drying method and burner during firing in furnace body facility of coke oven
WO2011048878A1 (en) Combustion device for melting furnace, and melting furnace
CN110044176B (en) Combustion device of tunnel kiln for vertical upward-spraying combustion of premixed airflow
KR20030035460A (en) Outside air interception apparatus of discharge door for furnace
RU2417341C2 (en) Procedure facilitating combustion of fuel
JP2007040692A (en) Pottery kiln
JP2006070188A (en) Coke oven and method of inhibiting attachment of carbon to upper part of carbonization chamber in coke oven
JP2013234768A (en) Wood-fired kiln for ceramic art
JP2003342582A (en) Method for burning gas in coke oven
CN106047377B (en) A kind of quirk of pyrolysis oven, pyrolysis oven and application
JP2006274059A (en) Method for operating coke oven and coke oven
JP2020186298A (en) Method of drying coke oven
US3087868A (en) Compound coke oven battery
CN114739184B (en) Blast furnace gas combustion heat accumulation stabilizing device
JP7144484B2 (en) Glass melting furnace and method of operating the glass melting furnace
KR101078845B1 (en) Full-Time Regenerative Compact Burner
JP2023079359A (en) Chamber oven-type coke oven and method for producing coke
CN217103703U (en) Coke oven with combustion chamber width changing along height direction
CN113278423A (en) Coke oven with combustion chamber width changing along height direction
JPH07268329A (en) Method for raising temperature of end part of coke oven