JP2006069823A - Truly spherical tin oxide micro secondary particle comprising crystalline nano primary particle and its manufacturing method - Google Patents

Truly spherical tin oxide micro secondary particle comprising crystalline nano primary particle and its manufacturing method Download PDF

Info

Publication number
JP2006069823A
JP2006069823A JP2004253107A JP2004253107A JP2006069823A JP 2006069823 A JP2006069823 A JP 2006069823A JP 2004253107 A JP2004253107 A JP 2004253107A JP 2004253107 A JP2004253107 A JP 2004253107A JP 2006069823 A JP2006069823 A JP 2006069823A
Authority
JP
Japan
Prior art keywords
tin oxide
particles
particle
spherical
oxide according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004253107A
Other languages
Japanese (ja)
Inventor
Takeshi Sakai
剛 酒井
Takeshi Kijima
剛 木島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Miyazaki NUC
Original Assignee
University of Miyazaki NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Miyazaki NUC filed Critical University of Miyazaki NUC
Priority to JP2004253107A priority Critical patent/JP2006069823A/en
Publication of JP2006069823A publication Critical patent/JP2006069823A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide truly spherical tin oxide micro-particles each of which includes crystalline tin oxide nano primary particles as constitutive components and in which the particle diameter of each secondary particle being an aggregate is controlled to 0.5-50 μm, by developing a technology for controlling the shape and the size of the tin oxide secondary particles. <P>SOLUTION: The truly spherical tin oxide micro-particles, each of which includes crystalline tin oxide nano primary particles as constitutive components and in which the particle diameter of each secondary particle being an aggregate is controlled to 0.5-50 μm, are formed by mixing a water-soluble tin compound and one or more kinds of surfactants or one or more kinds of long chain alcohols, then heating the resulting mixture in a closed vessel to obtain a precursor, and heat treating the precursor, and are recovered. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ガスセンサー、透明電極膜、陶磁器、顔料、触媒、フォトニクス・エレクトロニクス・情報技術用基礎素材または機能素子、電子機器製造用等のペースト・スペーサー、電子部品用の電気抵抗体、マイクロリアクター構成部材、物質貯蔵材料などとして使用される酸化スズからなる新規な真球状マイクロ二次粒子及びその製造方法に関する。   The present invention relates to gas sensors, transparent electrode films, ceramics, pigments, catalysts, basic materials or functional elements for photonics / electronics / information technology, pastes / spacers for manufacturing electronic devices, electrical resistors for electronic components, microreactors The present invention relates to a novel true spherical micro secondary particle made of tin oxide used as a component, a material storage material, and the like, and a method for producing the same.

酸化スズは、優れた耐熱性、耐酸化性、耐還元性、耐食性、電気化学特性などを有し、従来から顔料、ガスセンサー、陶磁器、触媒等の多方面の分野において使用されている。これらの機能やその性能は、例えばガスセンサー特性に見られるように、母体の組成や一次粒子径、二次粒子径といった構造に敏感に依存することが知られている。   Tin oxide has excellent heat resistance, oxidation resistance, reduction resistance, corrosion resistance, electrochemical characteristics, and the like, and has been conventionally used in various fields such as pigments, gas sensors, ceramics, and catalysts. It is known that these functions and their performance depend sensitively on structures such as the matrix composition, primary particle diameter, and secondary particle diameter, as seen in the gas sensor characteristics, for example.

これらの用途に用いられる酸化スズ粉末は、通常、金属スズを強熱酸化させる方法、水溶性スズ化合物を酸性あるいは塩基性溶液で処理して加水分解によって得られるスズ酸を熱分解する方法、有機金属塩を直接加熱処理する方法、または、スズアルコキシドの加水分解で得られる前駆体を加熱分解する方法等により生産されている。これらの方法のうち、液相法によって一次粒子径が比較的均一なものが得られるものの、上記の方法では、一般に一次粒子の粒子径が粗く、不揃いで、一次粒子から成る約500 nm以上の二次粒子にいたっては、大きさ・形状をほとんど制御できていなかった。   The tin oxide powder used in these applications is usually a method in which metallic tin is ignited by ignition, a method in which a water-soluble tin compound is treated with an acidic or basic solution, and stannic acid obtained by hydrolysis is thermally decomposed, organic It is produced by a method of directly heat-treating a metal salt or a method of thermally decomposing a precursor obtained by hydrolysis of tin alkoxide. Among these methods, those having a relatively uniform primary particle size can be obtained by the liquid phase method. However, in the above method, the particle size of the primary particles is generally coarse, irregular, and approximately 500 nm or more consisting of primary particles. The size and shape of the secondary particles were hardly controlled.

一次粒子径が比較的均一な酸化スズは、水熱処理法によって得られることが報告されている(例えば、特許文献1、2、あるいは非特許文献1参照)。また、上記以外の学術文献には、酸化スズを主成分とする半導体ガスセンサーの特性が、一次粒子径だけでなく、二次粒子径および二次粒子間に形成される細孔に大きく影響されることが理論的に証明されたとの報告も記載されている(非特許文献2、3)。しかしながら、一次粒子が凝集して形成する二次粒子の形状及び大きさについては制御する方法がなかった。   It has been reported that tin oxide having a relatively uniform primary particle size can be obtained by a hydrothermal treatment method (see, for example, Patent Documents 1 and 2 or Non-Patent Document 1). In addition to the above, academic literature other than the above is characterized not only by the primary particle size, but also by the secondary particle size and the pores formed between the secondary particles. It has also been reported that it has been proved theoretically (Non-Patent Documents 2 and 3). However, there has been no method for controlling the shape and size of secondary particles formed by aggregation of primary particles.

最近公表された特許文献の中には、四塩化スズ等の出発原料ガスを酸化性ガスの存在下で、レーザーを照射し、レーザーによる熱分解反応によって、外観形状が球形を呈したナノ粒子からなる一次粒子が特定の粒径に二次粒子として集合してなることについて言及した、いわゆる熱分解法による酸化スズ粒子が提案されている(特許文献3)。この提案におけるレーザーを用いた反応プロセスにより生成した酸化スズ粒子は、一次粒子の外観形状、及び二次粒子の大きさについて規定しているが、二次粒子がどのような外観形状に集合しているのかについては言及、規定されていない。すなわち、この提案は、あくまでも高温熱分解法による気相からの析出法による球形一次粒子とその二次的集合体に係る提案であって、酸化スズ二次粒子においても、真円形状とすることについては記載がない。そして、その開示された製造プロセスは、界面活性剤によるテンプレートによって制御される、再現性に富みしかも量産化に適ったいわゆる液相法による合成法によるものではなく、レーザーを備えた気相反応装置による気相からの析出法によるものである。   Among the recently published patent documents, a starting material gas such as tin tetrachloride is irradiated with a laser in the presence of an oxidizing gas, and from a nanoparticle whose appearance shape is spherical due to a thermal decomposition reaction by the laser. There has been proposed a tin oxide particle by a so-called pyrolysis method, which mentions that the primary particles are aggregated as secondary particles at a specific particle size (Patent Document 3). The tin oxide particles produced by the reaction process using a laser in this proposal specify the appearance shape of the primary particles and the size of the secondary particles. There is no mention or stipulation. In other words, this proposal is a proposal related to spherical primary particles and their secondary aggregates by precipitation from the gas phase by the high-temperature pyrolysis method. Is not described. The disclosed production process is not based on a reproducible and so-called liquid phase synthesis method that is controlled by a template using a surfactant and is suitable for mass production, but a gas phase reactor equipped with a laser. It is based on the precipitation method from the gaseous phase by.

一方、いわゆる液相法による結晶質酸化スズの合成法も特許文献に提案されている(特許文献4、5)。しかしながら、この提案は、酸化スズゾルないし酸化スズと酸化アンチモンとの均一混合ゾルを提供するものであって、これによって酸化スズ単一粒子あるいは両者を混合した、酸化スズと酸化アンチモンを必要とする利用分野に対して利便性のある原料を提供しようというものにすぎない。そこには、いわゆるナノ粒子レベルの酸化スズ一次粒子を提供すること、その二次粒子の形状を球形形状に制御することについて、言及し、調製するとの記載はない。   On the other hand, a method for synthesizing crystalline tin oxide by a so-called liquid phase method has also been proposed in Patent Documents (Patent Documents 4 and 5). However, this proposal is intended to provide a tin oxide sol or a uniform mixed sol of tin oxide and antimony oxide, whereby a tin oxide single particle or a mixture of both is used, which requires tin oxide and antimony oxide. It is just a matter of providing convenient raw materials for the field. There is no mention of providing and preparing so-called nanoparticle-level tin oxide primary particles and controlling the shape of the secondary particles into a spherical shape.

さらにまた、上記特許文献以外の特許文献にも、無機質化合物あるいはそれ以外の物質、例えば薬剤等を含めた物質を対象とした微粒子ないしは超微粒子の作製手段まで含めると、多数の提案がされている。すなわち、特定の圧縮ガス、液体又は超臨界流体を選定し、対象物質をこの圧縮溶液に溶解し、この圧縮溶液を急速に膨張させることによって、液中に溶解した物質を析出させることにより(サブ)ミクロンレベルの微細粒を生成し、回収すること(特許文献6)、微粒子単体が二次的に凝集し、しかも単体としての機能を損なわない球状凝集微粒子を作製する方法(特許文献7)、火炎溶射法による球状化処理を施してなる、無機質球状粉末の製造方法(特許文献8、9)、スズ化合物をゲル化し、次いで三酸化二アンモニウムを加えて処理して結晶質酸化スズ・アンチモンゾルを得ることからなる、結晶質酸化スズ・アンチモンゾルの製造方法(特許文献10)等が提案されている。   Furthermore, in patent documents other than the above-mentioned patent documents, a number of proposals have been made to include means for producing fine particles or ultra fine particles targeting inorganic compounds or other substances, for example, substances including drugs. . That is, by selecting a specific compressed gas, liquid, or supercritical fluid, dissolving the target substance in the compressed solution, and rapidly expanding the compressed solution to precipitate the dissolved substance in the liquid (sub ) Generating and collecting micron-level fine particles (Patent Document 6), a method of producing spherical aggregated fine particles in which the single particles are secondarily aggregated and do not impair the function of the single particles (Patent Document 7), Crystalline tin oxide / antimony sol produced by a method of producing an inorganic spherical powder (Patent Documents 8 and 9) obtained by subjecting a spheroidizing treatment to a flame spraying method, gelling a tin compound, and then adding diammonium trioxide A method for producing a crystalline tin oxide / antimony sol (Patent Document 10) is proposed.

しかしながら、これらの特許文献には、前掲文献と同様、その何れにもナノメートルレベルの酸化スズ一次粒子をさらに特定の大きさの酸化スズ球形二次粒子に形成すること、界面活性剤の作るミセルによるテンプレートによって作製することについては全く記載もなく、示唆する記載がない。   However, in these patent documents, similarly to the above-mentioned documents, in each of them, a nanometer-level tin oxide primary particle is further formed into a tin oxide spherical secondary particle of a specific size, and a micelle made by a surfactant. There is no description and suggestion about making the template by the above.

また、転動法による造粒工程と焼結工程によって高密度で強度の高い球状セラミック焼結体を製造すること(特許文献11)、特定構造のノズルバーナーから原料粉体と酸素ガス、燃料ガスを噴射することによって球状シリカ粒子を製造すること(特許文献12)、アルミン酸ソーダ水溶液から出発して、球状凝集粒子よりなる遷移アルミナ、αアルミナを得るまでのプロセスとその条件について言及した提案(特許文献13)、噴霧装置によるインクジェットまたはバブルジェットによって微細液滴を生成し、この液滴を乾燥および/又は焼成することによって連続的に微粒子を製造すること(特許文献14)等の提案がなされている。しかしながら、これらの文献を精査しても、前述特許文献と同様、ナノメートルレベルの酸化スズ一次粒子により特定の大きさの酸化スズ球形二次粒子を形成させること、界面活性剤ミセルによる鋳型法に基づいて液相法により作製することについて示唆する記載はない。   In addition, a spherical ceramic sintered body with high density and high strength is manufactured by a granulation process and a sintering process by a rolling method (Patent Document 11), raw material powder, oxygen gas, and fuel gas from a nozzle burner having a specific structure (Patent Document 12), starting from an aqueous solution of sodium aluminate, and a proposal referring to a process and conditions for obtaining transition alumina and α-alumina composed of spherical agglomerated particles (Patent Document 12) Patent Document 13), proposals have been made for producing fine particles continuously by producing fine droplets by inkjet or bubble jet using a spraying device, and drying and / or firing the droplets (Patent Document 14). ing. However, even if these documents are scrutinized, as in the above-mentioned patent documents, tin oxide spherical secondary particles of a specific size can be formed by primary particles of tin oxide at the nanometer level, and a template method using surfactant micelles can be used. There is no description which suggests producing by a liquid phase method based on this.

特許1830529Patent 1830529 特許1786804Patent 1786804 特表2002−505993Special table 2002-505993 特開昭62−223019JP-A-62-223019 特開昭62−207717JP-A-62-207717 特表2002−511398Special table 2002-511398 特開2003−252627JP 2003-252627 A 特開2003−40613JP2003-40613 特開昭61−234922JP 61-234922 A 特開昭63−156016JP 63-156016 A 特開2000−185976JP 2000-185976 A 特開11−199219JP 11-199219 A 特開平9−86924JP-A-9-86924 特開平6−277486JP-A-6-277486 特開2004−34228JP 2004-34228 A

J.Am.Ceram.Soc.、83、p.2983−2987(2000)J. et al. Am. Ceram. Soc. 83, p. 2983-2987 (2000) G.Sakai 他3名、Sensors and Actuators B、77、p.116−121(2001)G. Sakai and three others, Sensors and Actuators B, 77, p. 116-121 (2001) G.Sakai 他3名、Sensors and Actuators B、80、p.125−131(2001)G. Sakai and three others, Sensors and Actuators B, 80, p. 125-131 (2001) T.Kijima 他3名、Langmuir、18、 p.6453−6457(2002)T.A. Kijima and 3 others, Langmuir, 18, p. 6453-6457 (2002) T.Kijima 他6名、Angew.Chem.、Int.Ed.、43、p.228−232(2004)T.A. Kijima and 6 others, Angew. Chem. Int. Ed. 43, p. 228-232 (2004)

本発明は、上記従来技術の現状に鑑み、すなわち、酸化スズ二次粒子の形状及び大きさを制御する技術がない実情に鑑み、制御可能な技術を提供しようというものである。   The present invention is intended to provide a controllable technology in view of the above-described state of the art, that is, in view of the fact that there is no technology for controlling the shape and size of tin oxide secondary particles.

発明者を含めた研究グループにおいては、最近、非イオン性界面活性剤と陽イオン界面活性剤を混合して得られるネマチック液晶相を反応場とすることにより、直径1μm程度のワイヤ状臭化銀と酸化スズが得られることを見出し、さらに研究を進めた結果、複合界面活性剤系がナノ構造体の合成に有効であるとの重要な知見を得、これを学術文献に発表した(非特許文献4参照)。また、2種類の界面活性剤を用いる複合鋳型法によって、外径6nm、内径3nm、長さ数百nmの貴金属ナノチューブが合成できることを報告し(特許文献15、非特許文献5参照)、複合界面活性剤系がナノサイズの構造制御に有効であるとの知見を得た。   In a research group including the inventor, recently, a wire-like silver bromide having a diameter of about 1 μm is obtained by using a nematic liquid crystal phase obtained by mixing a nonionic surfactant and a cationic surfactant as a reaction field. As a result of further research, we obtained important knowledge that the composite surfactant system is effective for the synthesis of nanostructures, and published this in academic literature (non-patented) Reference 4). In addition, it has been reported that a noble metal nanotube having an outer diameter of 6 nm, an inner diameter of 3 nm, and a length of several hundred nm can be synthesized by a composite template method using two types of surfactants (see Patent Document 15 and Non-Patent Document 5). It was found that the activator system is effective for nano-sized structure control.

そこで、発明者らは、複合界面活性剤系を基礎とする合成法により、酸化スズ一次粒子凝集体、すなわち、二次粒子の形状及び大きさの制御を実現すべく、用いるスズ源と界面活性剤の種類ならびに反応条件についてさらに鋭意研究を進めた結果、親水部サイズの比較的小さい非イオン界面活性剤またはイオン性界面活性剤と親水部サイズの比較的大きい部類の非イオン界面活性剤の2成分を混和してできる分子組織にスズ成分を加え、密閉容器内で反応させた後に、熱処理することで真球状の酸化スズ二次粒子凝集体が得られることを究明した。   Therefore, the inventors have used a synthetic method based on a composite surfactant system to achieve the control of the shape and size of the primary particle aggregate of tin oxide, that is, the secondary particles, and the surface activity of the tin source used. As a result of further diligent research on the types of agents and reaction conditions, it was found that nonionic surfactants with a relatively small hydrophilic part size or ionic surfactants and nonionic surfactants with a relatively large hydrophilic part size It was investigated that a tin-shaped aggregate of secondary particles of tin oxide can be obtained by adding a tin component to the molecular structure formed by mixing the components and reacting in a sealed container, followed by heat treatment.

すなわち、本発明者等は、鋭意研究をした結果、前示課題を以下に記載する技術的構成が講じられた発明によって解決、達成することに成功したものである。
すなわち、第1の発明は、結晶質酸化スズのナノ一次粒子を構成成分とし、その凝集体である二次粒子の粒子径を0.5〜50μmで制御した真球状形態を特徴とする酸化スズマイクロ粒子である。
That is, as a result of intensive studies, the present inventors have succeeded in solving and achieving the above-described problem by the invention in which the technical configuration described below is taken.
That is, the first invention is a tin oxide characterized by having a spherical shape in which nano-primary particles of crystalline tin oxide are used as constituents and the particle diameter of secondary particles as aggregates thereof is controlled to 0.5 to 50 μm. Microparticles.

また、第2の発明は、水溶性スズ化合物と1種類以上の界面活性剤あるいは1種類以上の長鎖アルコールを混合し、密閉容器内での加熱によって得られる前駆体を熱処理することで生成する真球状酸化スズマイクロ粒子の製造方法。   The second invention is produced by mixing a water-soluble tin compound and one or more surfactants or one or more long-chain alcohols, and heat-treating a precursor obtained by heating in a sealed container. Method for producing true spherical tin oxide microparticles.

また、以下、第3ないし第9の発明は、第1の発明の酸化スズマイクロ粒子の用途発明を提示しているものである。
すなわち、第3の発明は、(3)前記(1)記載の酸化スズを各種センサ設計における材料として用いることを特徴とした、センサ設計用材料。
第4の発明は、(4)前記各種センサが、温度、圧力、湿度、結露、流量、風速、光、ガス、酸素濃度、各種変位を検出あるいは測定するセンサ、もしくは形状記憶センサである、請求項3記載のセンサ設計用材料。
第5の発明は、(5)前記(1)記載の酸化スズを専ら電気分解用等の電極材料として用いることを特徴とした、電極材料。
第6の発明は、(6)前記(1)記載の酸化スズを専ら電気配線材、電気抵抗体、あるいはキャパシタ用設計材料として用いることを特徴とした、電気材料。
第7の発明は、(7)前記(1)記載の酸化スズを専らペースト材料として使用することを特徴とした、ペースト。
第8の発明は、(8)前記(1)記載の酸化スズを専ら顔料として使用することを特徴とする、顔料。
第9の発明は、(9)前記(1)記載の酸化スズをマイクロリアクター構成部材として使用することを特徴とする、マイクロリアクター。
Further, hereinafter, the third to ninth inventions present inventions of use of the tin oxide microparticles of the first invention.
That is, the third invention is (3) a sensor design material characterized by using the tin oxide described in (1) as a material in various sensor designs.
4th invention is (4) The said various sensors are a sensor which detects or measures temperature, pressure, humidity, dew condensation, flow volume, wind speed, light, gas, oxygen concentration, various displacements, or a shape memory sensor. Item 3. A sensor design material according to Item 3.
A fifth invention is (5) an electrode material characterized by using the tin oxide described in (1) as an electrode material exclusively for electrolysis.
A sixth invention is (6) an electrical material characterized in that the tin oxide described in (1) is exclusively used as an electrical wiring material, an electrical resistor, or a design material for a capacitor.
The seventh invention is (7) a paste characterized in that the tin oxide described in (1) is exclusively used as a paste material.
The eighth invention is (8) a pigment characterized in that the tin oxide described in (1) is exclusively used as a pigment.
A ninth aspect of the present invention is (9) a microreactor using the tin oxide described in (1) as a microreactor constituent member.

本発明は、結晶質一次粒子から成る均一なマイクロメートルサイズの真球状二次粒子を提供するものであり、この粒子は、次のような効果が発現することが期待される。
1)これを温度、圧力、湿度、結露、流量、風速、光、ガス、酸素濃度、または変位を検出あるいは測定するセンサ、もしくは形状記憶センサとして用いた場合、検出精度・感度が格段に向上し、素子の小型化・高性能化が実現される。
2)これを電気分解用等の電極として用いた場合、従来の材料に比べて電極表面積の大幅な増大と二次粒子間に形成される大きな細孔によって物質移動が容易になり反応効率の飛躍的な上昇をもたらすことが期待される。
3)これをペーストとして用いた場合、従来の材料に比べて焼結温度が格段に低く均質な抵抗ペースト等を提供することとなる。
4)これを顔料として用いた場合、均一なサイズを有することから色むらがない均質な顔料を提供することになる。
5)これを電気抵抗体やキャパシタとして用いた場合、従来の材料に比べて均質で微細な電子回路の製作を可能にすること、および高容量の電極材料を供することとなる。
6)これをマイクロリアクター構成部材として用いた場合、従来の材料に比べて格段に優れた耐食性、耐酸化性、各種反応に対する優れた触媒性、電気化学特性、あるいはサイズ選択性等を兼ね備えたリアクターが供しえられる。
The present invention provides uniform micrometer-sized true spherical secondary particles composed of crystalline primary particles, and these particles are expected to exhibit the following effects.
1) When this is used as a sensor for detecting or measuring temperature, pressure, humidity, condensation, flow rate, wind speed, light, gas, oxygen concentration, or displacement, or a shape memory sensor, the detection accuracy and sensitivity are greatly improved. Thus, miniaturization and high performance of the element are realized.
2) When this is used as an electrode for electrolysis, the mass transfer is facilitated by the large increase in the electrode surface area and the large pores formed between the secondary particles compared to conventional materials. Is expected to bring about a positive rise.
3) When this is used as a paste, the sintering temperature is much lower than that of conventional materials, and a uniform resistance paste or the like is provided.
4) When this is used as a pigment, since it has a uniform size, it provides a homogeneous pigment with no color unevenness.
5) When this is used as an electric resistor or capacitor, it is possible to produce a homogeneous and fine electronic circuit as compared with conventional materials, and to provide a high-capacity electrode material.
6) When this is used as a microreactor component, a reactor that has excellent corrosion resistance, oxidation resistance, excellent catalytic properties for various reactions, electrochemical properties, or size selectivity compared to conventional materials Is offered.

この出願の発明は、以上の特徴を持つものであるが、以下実施例を添付した図面に基づき、具体的に説明する。ただし、これらの実施例は、あくまでも本発明の一つの態様を開示するものであり、決して本発明を限定する趣旨ではない。すなわち、本発明のねらいとするところは酸化スズ一次粒子を構成成分として組織された真球状凝集体二次粒子を提供するところにあることは、前述したとおりである。   The invention of this application has the above-described features, and will be specifically described below with reference to the accompanying drawings. However, these examples merely disclose one aspect of the present invention, and are not intended to limit the present invention. That is, as described above, the aim of the present invention is to provide true spherical aggregate secondary particles organized using tin oxide primary particles as constituent components.

また、製造方法の骨子は、少なくとも2種類の界面活性剤と金属塩の水溶液とを適切な条件で混合することによって得られる前駆体を焼成して特定寸法の真球状二次粒子を誘導するというものであり、前駆体を構築するための最適温度や混合条件も対象とするスズ化合物や用いる界面活性剤の特性によって多様に変化する。対して、実施例は、本発明に対して、あくまでもその一態様例を示すものにすぎず、本発明を構成するスズ化合物種や製造方法もこの実施例によって限定されるべきではない。   In addition, the gist of the production method is that a precursor obtained by mixing at least two types of surfactants and an aqueous solution of a metal salt under appropriate conditions is fired to induce spherical secondary particles of a specific size. However, the optimum temperature and mixing conditions for constructing the precursor also vary depending on the properties of the tin compound and the surfactant used. On the other hand, an Example shows only the example of the aspect with respect to this invention, and the tin compound seed | species and manufacturing method which comprise this invention should not be limited by this Example.

図1は、本発明の真球状酸化スズ二次粒子の透過型電子顕微鏡による観察写真であり、これによると、本発明の真球状酸化スズ二次粒子は真球状構造を呈していることが観察される。   FIG. 1 is a photograph of an observation of the true spherical tin oxide secondary particles of the present invention by a transmission electron microscope. According to this, it is observed that the true spherical tin oxide secondary particles of the present invention have a true spherical structure. Is done.

図2は、本発明の真球状酸化スズ二次粒子における表面付近の透過型電子顕微鏡による観察写真であり、これによると、本発明の真球状酸化スズ二次粒子は微細なナノメートルスケールの結晶質一次粒子を構成成分としていることが観察される。   FIG. 2 is a photograph taken by a transmission electron microscope near the surface of the true spherical tin oxide secondary particles of the present invention. According to this, the true spherical tin oxide secondary particles of the present invention are fine nanometer-scale crystals. It is observed that the primary particle is a constituent component.

図3は、本発明の真球状酸化スズ二次粒子の走査型電子顕微鏡による観察写真であり、これによると、本発明の真球状酸化スズ二次粒子は真球状構造を呈していることが観察される。   FIG. 3 is a scanning electron microscope observation photograph of the true spherical tin oxide secondary particles of the present invention. According to this, it is observed that the true spherical tin oxide secondary particles of the present invention have a true spherical structure. Is done.

図4は、本発明の真球状酸化スズ二次粒子のX線回折図であり、これによると、本発明の真球状酸化スズ二次粒子は微細な結晶質一次粒子から成ることが観察される。   FIG. 4 is an X-ray diffraction diagram of the true spherical tin oxide secondary particles of the present invention. According to this, it is observed that the true spherical tin oxide secondary particles of the present invention are composed of fine crystalline primary particles. .

実施例1;
試験管に秤り取った四塩化スズ(SnCl)の水溶液にノナエチレングリコールモノデシルエーテル(C12EO)を滴下し、60 ℃に昇温した。ついでポリオキシエチレン(20)ソルビタンモノステアレート(Tween60;米国 Atlas Powder社 商品名)を加えて60 ℃の湯浴で15分間振とうした後、密閉容器に移した。
仕込みモル比SnCl:C12EO:Tween60:HO=1:1:1:60の反応混合物を調製し、容器内に密閉した状態で150℃まで昇温して、そのまま12時間反応させた。得られた前駆体を磁性るつぼに移し、500℃で5時間焼成して灰白色粉末を得た。
透過型顕微鏡および走査型顕微鏡による観察により、この粉末は、その主生成物が直径2μmの真球状粒子であることが確認された(図1および図3)。また、真球状粒子の外周を詳細に観察した結果、直径6nmの一次粒子が観察された(図2)。これは、マイクロ粒子が、直径6nmの一次粒子が凝集することにより構成されることを示している。また、得られた灰白色粉末をX線回折法により調べた結果、マイクロ粒子が結晶質酸化スズからなることが示された(図4)。
Example 1;
Nonaethylene glycol monodecyl ether (C 12 EO 9 ) was dropped into an aqueous solution of tin tetrachloride (SnCl 4 ) weighed in a test tube, and the temperature was raised to 60 ° C. Subsequently, polyoxyethylene (20) sorbitan monostearate (Tween 60; trade name of Atlas Powder, USA) was added, and the mixture was shaken in a 60 ° C. hot water bath for 15 minutes, and then transferred to a sealed container.
A reaction mixture having a charged molar ratio of SnCl 4 : C 12 EO 9 : Tween 60: H 2 O = 1: 1: 1: 60 was prepared, the temperature was raised to 150 ° C. in a sealed state in the container, and the reaction was continued for 12 hours. I let you. The obtained precursor was transferred to a magnetic crucible and calcined at 500 ° C. for 5 hours to obtain an off-white powder.
Observation with a transmission microscope and a scanning microscope confirmed that the main product of the powder was a true spherical particle having a diameter of 2 μm (FIGS. 1 and 3). Moreover, as a result of observing the outer periphery of the spherical particles in detail, primary particles having a diameter of 6 nm were observed (FIG. 2). This indicates that the microparticle is constituted by aggregation of primary particles having a diameter of 6 nm. Moreover, as a result of examining the obtained grayish white powder by the X-ray diffraction method, it was shown that microparticles consist of crystalline tin oxide (FIG. 4).

実施例2;
ノナエチレングリコールモノデシルエーテル(C12EO)を試験管に秤りとり、四塩化スズ(SnCl)の水溶液を加え、60 ℃に昇温した。さらに、温度を保った状態でポリオキシエチレン(20)ソルビタンモノステアレート(Tween60;米国 Atlas Powder社 商品名)を加えて60 ℃の湯浴で5分間振とうした後、密閉容器に移して25℃で20分間放置した。
仕込みモル比SnCl:C12EO:Tween60:HO=1:1:1:50の反応混合物を調製し、容器内に密閉した状態で150℃まで昇温して、そのまま24時間反応させた。得られた前駆体を磁性るつぼに移し、500℃で5時間焼成して灰白色粉末を得た。
透過型顕微鏡および走査型顕微鏡による観察により、この粉末は、その主生成物が直径3μmの真球状粒子であることが確認された。
Example 2;
Nonaethylene glycol monodecyl ether (C 12 EO 9 ) was weighed in a test tube, an aqueous solution of tin tetrachloride (SnCl 4 ) was added, and the temperature was raised to 60 ° C. Furthermore, after maintaining the temperature, polyoxyethylene (20) sorbitan monostearate (Tween 60; trade name of Atlas Powder, USA) was added, and the mixture was shaken in a 60 ° C. water bath for 5 minutes, then transferred to a sealed container and 25 Left at 20 ° C. for 20 minutes.
A reaction mixture having a charged molar ratio of SnCl 4 : C 12 EO 9 : Tween 60: H 2 O = 1: 1: 1: 50 was prepared, and the temperature was raised to 150 ° C. in a sealed state in the container, and the reaction was continued for 24 hours. I let you. The obtained precursor was transferred to a magnetic crucible and calcined at 500 ° C. for 5 hours to obtain an off-white powder.
Observation with a transmission microscope and a scanning microscope confirmed that the main product of the powder was a true spherical particle having a diameter of 3 μm.

本発明は、以上の実施例に加え、多岐にわたる実験例を積み重ね、得られたデータを整理した結果、前記(1)に記載する結晶質酸化スズのナノ一次粒子を構成成分とし、その凝集体である二次粒子の粒子径を0.5〜5μmで制御した真球状形態を特徴とする酸化スズマイクロ粒子であることが確認されたものである。   In addition to the above examples, the present invention accumulates various experimental examples, and as a result of arranging the obtained data, the nano-primary particles of crystalline tin oxide described in (1) above are used as constituents, and aggregates thereof. It is confirmed that the particles are tin oxide microparticles characterized by a true spherical shape in which the particle diameter of the secondary particles is controlled at 0.5 to 5 μm.

本発明は、結晶質酸化スズのナノ一次粒子を構成成分とし、その凝集体である二次粒子の粒子径を0.5〜50μmで制御した真球状形態を有する酸化スズを開発し、得ることに成功したものであり、その意義は極めて大であると確信する。その詳細な物性や、諸特性及び各種技術分野における作用効果に関する具体的データ等の開示、及びこれに関漣して誘導される新たな技術的可能性、発展性等の研究開発は、今後の研究に待つところ大であり、委ねられているものであるが、新規な粒子形態の基本的材料を提供するもので、今後は、以下に列記する各種用途に利用され、優れた作用効果が奏され、大いに利用され産業の発展に寄与するものと期待される。   The present invention develops and obtains tin oxide having a spherical shape in which the primary particle of crystalline tin oxide is a constituent component and the particle size of the secondary particles that are aggregates thereof is controlled at 0.5 to 50 μm. I am convinced that it has been successful, and its significance is extremely large. Disclosure of detailed physical properties, specific data on various characteristics and effects in various technical fields, etc., and research and development on new technical possibilities and developments related to this will be made in the future. It is a matter of waiting for research, and it is entrusted, but it provides a basic material with a new particle form. In the future, it will be used for various applications listed below and has excellent effects. Is expected to contribute greatly to industrial development.

すなわち、本発明による酸化スズマイクロ二次粒子は、その用途を列記すると、ガスセンサー、透明電極膜、陶磁器、顔料、触媒、フォトニクス・エレクトロニクス・情報技術用基礎素材または機能素子、電子機器製造用等のペースト・スペーサー、電子部品用の電気抵抗体、マイクロリアクター構成部材、物質貯蔵材料などが挙げられ、特定の分野に限定されない基本的工業材料として利用することが出来る。勿論、それ以外の用途にも使用され、多様な性質を有し、且つ優れた材料として、今後大いに利用され、産業の発展に寄与することが期待される。   That is, the tin oxide micro secondary particles according to the present invention are listed as their applications, gas sensors, transparent electrode films, ceramics, pigments, catalysts, basic materials or functional elements for photonics / electronics / information technology, for manufacturing electronic devices, etc. Paste spacers, electrical resistors for electronic components, microreactor components, material storage materials, and the like, and can be used as basic industrial materials that are not limited to specific fields. Of course, it is also used for other purposes, and it is expected that it will be widely used in the future as an excellent material with various properties and contribute to the development of industry.

本発明の真球状マイクロ粒子の透過型電子顕微鏡による観察図Observation view of true spherical microparticles of the present invention by transmission electron microscope 本発明の真球状マイクロ粒子の表面付近の透過型電子顕微鏡による観察図Observation view by transmission electron microscope near the surface of the spherical microparticles of the present invention 本発明の真球状マイクロ粒子の走査型電子顕微鏡による観察図Observation view of the spherical microparticles of the present invention with a scanning electron microscope 本発明の真球状マイクロ粒子のX線回折図X-ray diffraction pattern of true spherical microparticles of the present invention

Claims (9)

結晶質酸化スズのナノ一次粒子を構成成分とし、その凝集体である二次粒子の粒子径を0.5〜5μmで制御した真球状形態を特徴とする酸化スズマイクロ粒子。   Tin oxide microparticles characterized by a true spherical shape in which nanoparticle primary particles of crystalline tin oxide are used as constituents and the particle diameter of secondary particles as aggregates thereof is controlled to 0.5 to 5 μm. 水溶性スズ化合物と1種類以上の界面活性剤あるいは1種類以上の長鎖アルコールを混合し、密閉容器内での加熱によって得られる前駆体を熱処理することで生成する真球状酸化スズマイクロ粒子の製造方法。   Producing spherical spherical tin oxide microparticles produced by mixing a water-soluble tin compound with one or more surfactants or one or more long-chain alcohols and heat-treating the precursor obtained by heating in a sealed container. Method. 請求項1記載の酸化スズを各種センサ設計における材料として用いることを特徴とした、センサ設計用材料。   A sensor design material, wherein the tin oxide according to claim 1 is used as a material in various sensor designs. 各種センサが、温度、圧力、湿度、結露、流量、風速、光、ガス、酸素濃度、または変位を検出あるいは測定するセンサ、もしくは形状記憶センサである、請求項3記載のセンサ設計用材料。   The sensor design material according to claim 3, wherein the various sensors are sensors for detecting or measuring temperature, pressure, humidity, condensation, flow rate, wind speed, light, gas, oxygen concentration, or displacement, or shape memory sensors. 請求項1記載の酸化スズを専ら電気分解用等の電極材料として用いることを特徴とした、電極材料。   An electrode material, wherein the tin oxide according to claim 1 is exclusively used as an electrode material for electrolysis or the like. 請求項1記載の酸化スズを専ら電気配線材、電気抵抗体、あるいはキャパシタ用設計材料として用いることを特徴とした、電気材料。   An electric material characterized in that the tin oxide according to claim 1 is exclusively used as an electric wiring material, an electric resistor, or a design material for a capacitor. 請求項1記載の酸化スズを専らペースト材料として使用することを特徴とした、ペースト。   A paste characterized by using the tin oxide according to claim 1 exclusively as a paste material. 請求項1記載の酸化スズを専ら顔料として使用することを特徴とした、顔料。   A pigment characterized in that the tin oxide according to claim 1 is exclusively used as a pigment. 請求項1記載の酸化スズをマイクロリアクター構成部材として使用することを特徴とした、マイクロリアクター。   A microreactor using the tin oxide according to claim 1 as a microreactor constituent member.
JP2004253107A 2004-08-31 2004-08-31 Truly spherical tin oxide micro secondary particle comprising crystalline nano primary particle and its manufacturing method Pending JP2006069823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004253107A JP2006069823A (en) 2004-08-31 2004-08-31 Truly spherical tin oxide micro secondary particle comprising crystalline nano primary particle and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004253107A JP2006069823A (en) 2004-08-31 2004-08-31 Truly spherical tin oxide micro secondary particle comprising crystalline nano primary particle and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006069823A true JP2006069823A (en) 2006-03-16

Family

ID=36150821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004253107A Pending JP2006069823A (en) 2004-08-31 2004-08-31 Truly spherical tin oxide micro secondary particle comprising crystalline nano primary particle and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006069823A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010120800A (en) * 2008-11-18 2010-06-03 Toyota Central R&D Labs Inc Spherical oxide semiconductor particle, and aggregate and photoelectrode using the same
JP2012051762A (en) * 2010-09-01 2012-03-15 Nano Cube Japan Co Ltd Method for producing tin oxide ultrafine particle
CN105271374A (en) * 2015-11-21 2016-01-27 河南师范大学 Preparation method of stannic oxide microspheres of oriented connection microstructure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010120800A (en) * 2008-11-18 2010-06-03 Toyota Central R&D Labs Inc Spherical oxide semiconductor particle, and aggregate and photoelectrode using the same
JP2012051762A (en) * 2010-09-01 2012-03-15 Nano Cube Japan Co Ltd Method for producing tin oxide ultrafine particle
CN105271374A (en) * 2015-11-21 2016-01-27 河南师范大学 Preparation method of stannic oxide microspheres of oriented connection microstructure

Similar Documents

Publication Publication Date Title
Si et al. Controlled-synthesis, self-assembly behavior, and surface-dependent optical properties of high-quality rare-earth oxide nanocrystals
Mao et al. Synthesis of classes of ternary metal oxide nanostructures
TWI243798B (en) Production of fine-grained particles
Bang et al. Applications of ultrasound to the synthesis of nanostructured materials
Mimani et al. Solution combustion synthesis of nanoscale oxides and their composites
US6652967B2 (en) Nano-dispersed powders and methods for their manufacture
Hakuta et al. Continuous production of BaTiO3 nanoparticles by hydrothermal synthesis
TWI291455B (en) Infrared shielding material microparticle dispersion, infrared shield, process for producing infrared shielding material microparticle, and infrared shielding material microparticle
Barhoum et al. Sol-gel hot injection synthesis of ZnO nanoparticles into a porous silica matrix and reaction mechanism
Kuai et al. Aerosol-spray diverse mesoporous metal oxides from metal nitrates
Hwangbo et al. Facile synthesis of zirconia nanoparticles using a salt-assisted ultrasonic spray pyrolysis combined with a citrate precursor method
Namratha et al. Novel solution routes of synthesis of metal oxide and hybrid metal oxide nanocrystals
Motl et al. Aerosol-assisted synthesis and assembly of nanoscale building blocks
Punginsang et al. Ultrafine Bi2WO6 nanoparticles prepared by flame spray pyrolysis for selective acetone gas-sensing
Shanmugasundaram et al. Hierarchical mesoporous In2O3 with enhanced CO sensing and photocatalytic performance: distinct morphologies of In (OH) 3 via self assembly coupled in situ solid–solid transformation
JP5731376B2 (en) Nanometer-sized ceramic materials, their synthesis and use
Ye et al. Controllable synthesis and photoluminescence of single-crystalline BaHfO3 hollow micro-and nanospheres
Mouyane et al. Sintering behavior of magnesium aluminate spinel MgAl2O4 synthesized by different methods
Tsuyumoto et al. Nanosized tetragonal BaTiO3 powders synthesized by a new peroxo-precursor decomposition method
Gomes et al. An eco-friendly method of BaTiO 3 nanoparticle synthesis using coconut water
Almjasheva et al. Phase formation under conditions of self-organization of particle growth restrictions in the reaction system
Corr et al. Spontaneously formed porous and composite materials
JP2006069823A (en) Truly spherical tin oxide micro secondary particle comprising crystalline nano primary particle and its manufacturing method
Martirosyan et al. Combustion synthesis of nanomaterials
Casey Nanoparticle technologies and applications

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061222