JP2006068404A - Artificial eye system - Google Patents
Artificial eye system Download PDFInfo
- Publication number
- JP2006068404A JP2006068404A JP2004257791A JP2004257791A JP2006068404A JP 2006068404 A JP2006068404 A JP 2006068404A JP 2004257791 A JP2004257791 A JP 2004257791A JP 2004257791 A JP2004257791 A JP 2004257791A JP 2006068404 A JP2006068404 A JP 2006068404A
- Authority
- JP
- Japan
- Prior art keywords
- artificial eye
- circuit
- eye system
- current pulse
- stimulation current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Prostheses (AREA)
Abstract
Description
本発明は、盲目患者の網膜を電気的に刺激する人工眼システムに関し、より詳細には、様々な疾患レベルの患者にも適用可能で、低消費電力な人工眼システムに関する。 The present invention relates to an artificial eye system that electrically stimulates the retina of a blind patient, and more particularly, to an artificial eye system that can be applied to patients of various disease levels and has low power consumption.
末期の光受容体変性疾患を患っている盲目患者の網膜を電気的に刺激し、眼の代替を行う人工視覚器への関心が高まっている。この人工視覚器においては、患者の網膜損傷の程度に応じて、刺激電流波形のパラメータ(例えば頻度、振幅、パルス幅、および、パルス間隔)を調整する必要がある。これらの内容は、例えば、非特許文献1、非特許文献2に詳しく示されている。 There is a growing interest in artificial visual instruments that electrically stimulate the retina of a blind patient suffering from a late-stage photoreceptor degenerative disease and replace the eye. In this artificial visual device, it is necessary to adjust parameters (for example, frequency, amplitude, pulse width, and pulse interval) of the stimulation current waveform in accordance with the degree of retinal damage of the patient. These contents are shown in detail in Non-Patent Document 1 and Non-Patent Document 2, for example.
しかしながら、眼内装置は、電力伝送、および、熱発生を十分に考慮して、できるだけ消費電力を低く保つことが要求されるが、これら文献に示された方法ではその解決策を十分には示していない。
上記のように従来の人工眼システムは、網膜に与える伝記的刺激の波形パラメータを制御できるものの、その消費電力に問題があった。 As described above, the conventional artificial eye system can control the waveform parameter of the biographical stimulus given to the retina, but has a problem in power consumption.
本発明は、効率の良い電力伝達手段を含み、かつ低電力化を図った人工眼システムを提供することを目的としている。 It is an object of the present invention to provide an artificial eye system that includes an efficient power transmission means and achieves low power consumption.
本発明によれば、眼球内に埋め込み、眼球内網膜上の光を検知し、検知した光の強弱を刺激電流として眼球内網膜に伝える人工眼システムにおいて、システム動作を眼瞼運動によって制御することを特徴とする人工眼システムが得られる。 According to the present invention, in an artificial eye system that is embedded in an eyeball, detects light on the retina in the eyeball, and transmits the detected light intensity to the retina in the eyeball as a stimulation current, the system operation is controlled by eyelid movement. A characteristic artificial eye system is obtained.
また本発明は、具体的構成として、眼外装置と眼内装置とで構成する。眼外装置は送信機と一次コイルを含み、眼内装置は、二次コイルと信号伝送回路とバイアス制御回路と刺激電流発生回路とを含み、二次コイルは前記信号伝送回路に接続され、バイアス制御回路は前記信号伝送回路出力により前記刺激電流発生回路を制御することを特徴とする人工眼システムを提供する。 In addition, the present invention is configured by an extraocular device and an intraocular device as a specific configuration. The extraocular device includes a transmitter and a primary coil, and the intraocular device includes a secondary coil, a signal transmission circuit, a bias control circuit, and a stimulation current generation circuit, and the secondary coil is connected to the signal transmission circuit and biased. The control circuit provides the artificial eye system, wherein the stimulation current generation circuit is controlled by the output of the signal transmission circuit.
本発明によれば、人工眼用の刺激電流発生回路に光検知機能と低消費電力回路機能を同時に持つCMOS技術を用い、更に人間の眼瞼運動によって制御される新しい信号伝送回路(テレメトリ回路)を用いたので、患者に無理なく利用可能な低消費電力の人工眼システムを提供できるという効果が得られる。 According to the present invention, a new signal transmission circuit (telemetry circuit) that is controlled by human eyelid movement is used by using a CMOS technology having a light detection function and a low power consumption circuit function at the same time as a stimulation current generation circuit for an artificial eye. Since it used, the effect that the artificial eye system of the low power consumption which can be utilized without difficulty for a patient can be provided is acquired.
以下、本発明の実施の形態について図面を参照しながら説明する。
人工眼システムのブロック図、および、その概念図を図1, 2に示す。このシステムは、電磁誘導によって接続される眼外装置1、および、眼内装置2から成る。
眼外装置1は、一次コイル3を有する送信機4から成る。
眼内装置2は、二次コイル5と三次元構造人工眼チップ10より構成されている。詳しくは、眼内装置2は、二次コイル5、人間の眼瞼運動によって制御される信号伝送(テレメトリ)回路6、バイアス制御回路7、刺激電流発生回路9を含む画素回路8から構成される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The block diagram of the artificial eye system and its conceptual diagram are shown in Figs. This system comprises an extraocular device 1 and an intraocular device 2 connected by electromagnetic induction.
The extraocular device 1 comprises a transmitter 4 having a primary coil 3.
The intraocular device 2 includes a secondary coil 5 and a three-dimensional structure artificial eye chip 10. Specifically, the intraocular device 2 includes a pixel coil 8 including a secondary coil 5, a signal transmission (telemetry) circuit 6 controlled by a human eyelid movement, a bias control circuit 7, and a stimulation current generation circuit 9.
図1のブロック図で示された人工眼システムを概念図で示すと図2のようになる。ブロック図で示された三次元構造人工眼チップ10は、その構造に、光検知器11、撮像回路12、垂直配線13、刺激電流発生回路9、信号伝送(テレメトリ)回路6、電極アレイ14を含む。この三次元構造人工眼チップ10は、CMOS多層構造を持つLSIチップで、光検知機能と低消費電力回路機能を同時に持つ特徴を有している。また、多層の配線構造を取る事により小型化を実現し、患者の生体内に無理なく取り込める形態を実現している。 A conceptual diagram of the artificial eye system shown in the block diagram of FIG. 1 is as shown in FIG. The three-dimensional structure artificial eye chip 10 shown in the block diagram includes a photodetector 11, an imaging circuit 12, a vertical wiring 13, a stimulation current generation circuit 9, a signal transmission (telemetry) circuit 6, and an electrode array 14 in its structure. Including. The three-dimensional artificial eye chip 10 is an LSI chip having a CMOS multilayer structure, and has a feature of having a light detection function and a low power consumption circuit function at the same time. In addition, by adopting a multilayer wiring structure, downsizing is realized, and a form that can be easily taken into a patient's living body is realized.
眼内装置2は、電力伝送、および、熱発生を十分に考慮して、できるだけ消費電力を低く保つことが要求される。
この必要条件を満たすために、眼内装置2には2つの状態を設定する。「EDIT」、および、「RUN」の状態である。
The intraocular device 2 is required to keep power consumption as low as possible in consideration of power transmission and heat generation.
To satisfy this requirement, two states are set for the intraocular device 2. It is in the state of “EDIT” and “RUN”.
まず、「EDIT」状態を説明する。患者が眼瞼を閉じると、眼内装置2は「EDIT」状態へ移行する。このとき、刺激電流発生回路9は刺激電流のパルスをほとんど発生しないので、眼内装置2の消費電力は低くなる。信号伝送(テレメトリ)回路6は、「EDIT」状態の時に送信機4からデータ信号を取り込む。したがって、信号伝送(テレメトリ)回路6は刺激電流発生回路9と同時には動作しない。
これらの回路の詳細を図3、図4で説明する。
First, the “EDIT” state will be described. When the patient closes the eyelid, the intraocular device 2 transitions to the “EDIT” state. At this time, since the stimulation current generation circuit 9 hardly generates a pulse of stimulation current, the power consumption of the intraocular device 2 is reduced. The signal transmission (telemetry) circuit 6 takes in a data signal from the transmitter 4 in the “EDIT” state. Therefore, the signal transmission (telemetry) circuit 6 does not operate simultaneously with the stimulation current generation circuit 9.
Details of these circuits will be described with reference to FIGS.
図3に示すように、バイアス制御回路7は、主制御部15、同期回路16、レジスタ17、バイアス生成回路18およびDAC(ディジタル アナログ コンバータ)19から成る。
眼外から伝送されてレジスタ17に格納されたビット・データに従って、DAC19はバイアス電圧を供給する。これにより、刺激電流発生回路9に供給するバイアス電圧を眼外から制御して刺激電流波形パラメータを調整する。
As shown in FIG. 3, the bias control circuit 7 includes a main control unit 15, a synchronization circuit 16, a register 17, a bias generation circuit 18, and a DAC (digital analog converter) 19.
The DAC 19 supplies a bias voltage according to the bit data transmitted from outside the eye and stored in the register 17. Thereby, the bias voltage supplied to the stimulation current generation circuit 9 is controlled from outside the eye to adjust the stimulation current waveform parameter.
次に本発明の主眼となる信号伝送(テレメトリ)回路6の動作について説明する。
この信号伝送(テレメトリ)回路6は、人間の眼瞼運動によって制御されるがそのブロック図を図4に示す。構成は、電力再生回路20、クロック/データ再生回路21、及び、人間の眼瞼運動検出器(DHEM)22から成る。
Next, the operation of the signal transmission (telemetry) circuit 6 which is the main point of the present invention will be described.
The signal transmission (telemetry) circuit 6 is controlled by a human eyelid movement, and its block diagram is shown in FIG. The configuration consists of a power recovery circuit 20, a clock / data recovery circuit 21, and a human eyelid movement detector (DHEM) 22.
患者が眼瞼を閉じると、刺激電流発生回路9が刺激電流パルスをほとんど発生しなくなるので、眼内装置2の電力消費量は低くなる。この「EDIT」状態の間に、クロック/データ再生回路21がクロック信号、および、ビット・データを受信し、レジスタ17にビット・データを格納する。 When the patient closes the eyelid, the stimulation current generation circuit 9 hardly generates stimulation current pulses, so that the power consumption of the intraocular device 2 is reduced. During this “EDIT” state, the clock / data recovery circuit 21 receives the clock signal and the bit data, and stores the bit data in the register 17.
反対に、患者が眼瞼を開いている間に刺激電流発生回路9は刺激電流パルスを発生させる。この刺激電流発生回路9は、クロック信号を必要としないアナログ非同期回路で構成され、レジスタ17に格納されているビット情報によって制御される。
患者が眼瞼を開いている間のこれら動作状態を「RUN」状態と呼び、この「RUN」状態の間は、クロック/データ再生回路21に供給される電力を切り離すことによって、眼内装置2の電力消費量を減らすことができる。
Conversely, the stimulation current generation circuit 9 generates stimulation current pulses while the patient opens the eyelid. The stimulation current generation circuit 9 is constituted by an analog asynchronous circuit that does not require a clock signal, and is controlled by bit information stored in the register 17.
These operating states while the patient opens the eyelids are referred to as “RUN” states, and during this “RUN” state, the power supplied to the clock / data recovery circuit 21 is disconnected, so that the intraocular device 2 Power consumption can be reduced.
図5にDHEM22の詳細回路を示すが、DHEM22は、人工眼への入射光をセンシングして人間の眼瞼運動を検出し、「EDIT」、および、「RUN」状態を制御する。
まばたきと閉瞼の状態を混同するのを防止するために、DHEM22の時定数は、まばたき(ほぼ100ms)の時間よりも大きくなるように設定する。
刺激電流発生回路9は、例えば0.35μm、2層ポリシリコン、3層メタルのCMOS技術を使用してLSI化することが出来る。
FIG. 5 shows a detailed circuit of the DHEM 22. The DHEM 22 senses light incident on the artificial eye to detect human eyelid movement, and controls the “EDIT” and “RUN” states.
In order to prevent confusion between the blinking state and the closed state, the time constant of the DHEM 22 is set to be larger than the blinking time (approximately 100 ms).
The stimulation current generation circuit 9 can be formed into an LSI using, for example, 0.35 μm, 2-layer polysilicon, 3-layer metal CMOS technology.
図6は、光検出機能を有する刺激電流発生回路9の詳細回路図を示す。この構成によるLSIを測定した結果を図7に示すが、この回路は入射光を検出し、その照度情報を両極の刺激電流パルスに変換できることを示している。図8は、負極の負電流パルス幅(Cathodic Pulse Width)のバイアス電圧(BIAS2)の特性を示すものである。図8に示すようにバイアス電圧(BIAS2)を制御することによって、負極の負電流パルス幅を約0.5msから5msまで調整可能である。また、負極の負電流パルス幅と同様にバイアス電圧(BIAS5,
BIAS4)を制御することにより、正極の正電流パルス幅を制御でき、又、両極の電流パルス間隔を約0.5msから5msまで調整できる。
また、システムの安定性向上のためには、電源投入直後の安定動作の仕組みが不可欠である。本発明の人工眼システムにおいては、電源を入れるとまず、自動的に待機モードとなる。次に、動作をするためのデータが送られた時点で動作モードに移行し、入力データの指示に基づいて先に説明した動作を開始するよう構成している。このことにより、電源投入時のシステムの暴走を防止できる。
FIG. 6 shows a detailed circuit diagram of the stimulation current generation circuit 9 having a light detection function. FIG. 7 shows the result of measuring an LSI with this configuration, which shows that this circuit can detect incident light and convert the illuminance information into bipolar stimulation current pulses. FIG. 8 shows the characteristic of the bias voltage (BIAS2) of the negative current pulse width (Cathodic Pulse Width) of the negative electrode. By controlling the bias voltage (BIAS2) as shown in FIG. 8, the negative current pulse width of the negative electrode can be adjusted from about 0.5 ms to 5 ms. In addition, the bias voltage (BIAS5,
By controlling BIAS4), the positive current pulse width of the positive electrode can be controlled, and the current pulse interval between the two electrodes can be adjusted from about 0.5 ms to 5 ms.
In order to improve the stability of the system, a mechanism for stable operation immediately after power-on is indispensable. In the artificial eye system of the present invention, when the power is turned on, the standby mode is automatically entered first. Next, when the data for operation is sent, the mode is shifted to the operation mode, and the operation described above is started based on the instruction of the input data. This prevents the system from running away when the power is turned on.
以上のように、本発明による人工眼システムによれば、人間の眼瞼運動によって制御される新しい信号伝送(テレメトリ)回路を有し、このシステムでは、患者が眼瞼を開いている期間中は、信号伝送(テレメトリ)回路に供給される電力が切り離される。これにより眼内装置の電力消費量を減らすことが可能となり、発熱の少ない小型の人工眼システムを構成できる。又、プロトタイプ・チップに実装された刺激電流発生回路は、クロック信号を利用せずに刺激電流パルスを発生させることができるため更に低消費電力型のものを構成できる。 As described above, the artificial eye system according to the present invention has a new signal transmission (telemetry) circuit controlled by a human eyelid movement. In this system, a signal is transmitted during a period when the patient opens the eyelid. The power supplied to the transmission (telemetry) circuit is disconnected. As a result, the power consumption of the intraocular device can be reduced, and a small artificial eye system with less heat generation can be configured. Further, since the stimulation current generation circuit mounted on the prototype chip can generate the stimulation current pulse without using the clock signal, it can be configured to be of a lower power consumption type.
一方で、バイアス電圧を制御することによって、刺激電流の電流パルス幅、および、両極の電流パルス間隔を約0.5msから5msまで調整できるので、幅広い症状の患者に適用できる人工眼システムの構築が可能である。 On the other hand, by controlling the bias voltage, the current pulse width of the stimulation current and the current pulse interval between the bipolar electrodes can be adjusted from about 0.5 ms to 5 ms, enabling the construction of an artificial eye system that can be applied to patients with a wide range of symptoms. It is.
本発明に係る人工眼システムは、末期の光受容体変性疾患を患っている盲目患者人工視覚器の分野に適用できる。 The artificial eye system according to the present invention can be applied to the field of artificial vision devices for blind patients suffering from terminal photoreceptor degenerative diseases.
特に、患者の網膜損傷の程度に応じて、刺激電流波形のパラメータ(例えば頻度、振幅、パルス幅、および、パルス間隔)を容易に調整することが可能で、患者の症状に応じ広く用いることが出来る。 In particular, parameters (eg, frequency, amplitude, pulse width, and pulse interval) of the stimulation current waveform can be easily adjusted according to the degree of retinal damage of the patient, and can be widely used according to the patient's symptoms. I can do it.
1 眼外装置
2 眼内装置
3 一次コイル
4 送信機
5 二次コイル
6 信号伝送回路
7 バイアス制御回路
8 画素回路
9 刺激電流発生回路
10 三次元構造人工眼チップ
11 光検知器
12 撮像回路
13 垂直配線
14 電極アレイ
15 主制御回路
16 同期回路
17 レジスタ
18 バイアス生成回路
19 DAC
20 電力再生回路
21 クロックデータ再生回路
22 人間の眼瞼運動検出器(DHEM)
1 Ocular device
2 Intraocular devices
3 Primary coil
4 Transmitter
5 Secondary coil
6 Signal transmission circuit
7 Bias control circuit
8 pixel circuit
9 Stimulation current generation circuit
10 Three-dimensional structure artificial eye chip
11 Light detector
12 Imaging circuit
13 Vertical Wiring 14 Electrode Array 15 Main Control Circuit 16 Synchronous Circuit 17 Register 18 Bias Generation Circuit 19 DAC
20 Power regeneration circuit
21 Clock data recovery circuit 22 Human eyelid movement detector (DHEM)
Claims (10)
2. The artificial eye shim system according to claim 1, wherein when the system is turned on, first, the operation input data standby mode is set, and the operation based on the operation input data is started after the operation input data is obtained.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004257791A JP2006068404A (en) | 2004-09-03 | 2004-09-03 | Artificial eye system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004257791A JP2006068404A (en) | 2004-09-03 | 2004-09-03 | Artificial eye system |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006068404A true JP2006068404A (en) | 2006-03-16 |
Family
ID=36149606
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004257791A Pending JP2006068404A (en) | 2004-09-03 | 2004-09-03 | Artificial eye system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006068404A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008079799A (en) * | 2006-09-27 | 2008-04-10 | Ryukoku Univ | Artificial retina and its manufacturing method |
KR101025743B1 (en) * | 2008-10-13 | 2011-04-04 | 한국전자통신연구원 | The artificial retina driving apparatus using middle-distance wireless power transfer technology |
WO2013049890A1 (en) * | 2011-10-06 | 2013-04-11 | The Bionics Institute Of Australia | Visual prosthesis apparatus |
KR20220163037A (en) * | 2021-06-02 | 2022-12-09 | 아주대학교산학협력단 | Artificial retinal device with two-phase stimulation time control and method for operating the same |
-
2004
- 2004-09-03 JP JP2004257791A patent/JP2006068404A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008079799A (en) * | 2006-09-27 | 2008-04-10 | Ryukoku Univ | Artificial retina and its manufacturing method |
KR101025743B1 (en) * | 2008-10-13 | 2011-04-04 | 한국전자통신연구원 | The artificial retina driving apparatus using middle-distance wireless power transfer technology |
WO2013049890A1 (en) * | 2011-10-06 | 2013-04-11 | The Bionics Institute Of Australia | Visual prosthesis apparatus |
AU2013202058B2 (en) * | 2011-10-06 | 2015-01-22 | The Bionics Institute Of Australia | Visual prosthesis apparatus |
US9314626B2 (en) | 2011-10-06 | 2016-04-19 | The Bionics Institute Of Australia | Visual prosthesis apparatus |
KR20220163037A (en) * | 2021-06-02 | 2022-12-09 | 아주대학교산학협력단 | Artificial retinal device with two-phase stimulation time control and method for operating the same |
KR102564879B1 (en) * | 2021-06-02 | 2023-08-07 | 아주대학교산학협력단 | Artificial retinal device with two-phase stimulation time control and method for operating the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lo et al. | A fully-integrated high-compliance voltage SoC for epi-retinal and neural prostheses | |
JP4597979B2 (en) | Active retinal implant with multiple pixel elements | |
Yip et al. | A fully-implantable cochlear implant SoC with piezoelectric middle-ear sensor and arbitrary waveform neural stimulation | |
US9421369B2 (en) | Circuit architecture for high channel count high-voltage neural stimulator | |
JP4546184B2 (en) | Rectification circuit and visual reproduction assisting device having the same | |
US8751012B2 (en) | Implantable vestibular prosthesis system with power saving mode including soft start and soft power-down | |
US8244362B2 (en) | Vision regeneration assisting apparatus | |
US8504167B2 (en) | Living tissue stimulation circuit | |
US7974699B2 (en) | Vision regeneration assisting device | |
JP2009520578A (en) | Charge-integrated artificial retina and method | |
JP2009539569A (en) | Cochlear implant power supply system and method | |
EP2964325B1 (en) | System for cochlea stimulation | |
JP2010187747A (en) | Visual reproduction supporting apparatus | |
Jung et al. | Design of safe two-wire interface-driven chip-scale neurostimulator for visual prosthesis | |
US8849401B2 (en) | Implantable device | |
JP2006068404A (en) | Artificial eye system | |
EP2460559A2 (en) | Living tissue stimulation apparatus | |
US20230225840A1 (en) | Electric field generating device for oral care and oral care device including same | |
CN208888607U (en) | A kind of signal generation apparatus and the equipment with signal generation apparatus | |
JP2005279001A (en) | Visual reproduction assisting apparatus | |
CN111450415A (en) | Eye wave therapeutic apparatus with heart rate monitoring function | |
JP4171614B2 (en) | Visual reproduction assist device | |
Deguchi et al. | Retinal Prosthesis System with Telemetry Circuit Controlled by Human Eyelid Movement | |
Liu et al. | Semiconductor-based implantable microsystems | |
JP5866758B2 (en) | Biological tissue stimulator |