JP2006064489A - Measuring instrument using static pressure gas bearing and supporting stand - Google Patents

Measuring instrument using static pressure gas bearing and supporting stand Download PDF

Info

Publication number
JP2006064489A
JP2006064489A JP2004246206A JP2004246206A JP2006064489A JP 2006064489 A JP2006064489 A JP 2006064489A JP 2004246206 A JP2004246206 A JP 2004246206A JP 2004246206 A JP2004246206 A JP 2004246206A JP 2006064489 A JP2006064489 A JP 2006064489A
Authority
JP
Japan
Prior art keywords
measuring instrument
static pressure
compressed air
convex
support base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004246206A
Other languages
Japanese (ja)
Inventor
Shigeru Umemoto
茂 梅本
Hidetada Kawaguchi
秀忠 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004246206A priority Critical patent/JP2006064489A/en
Publication of JP2006064489A publication Critical patent/JP2006064489A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To raise a precision in a measuring process, and each efficiency of positioning and conveyance by suppressing friction with a surface plate and vibration produced by instrumentation operation, and moreover to raise the efficiency of operation such as handling by suppressing friction with the surface plate, etc., when a measuring instrument wanted to support is heavy, since instrumentation precision lowers owing to friction and vibration and workability becomes inefficient, when smoothness in a horizontal direction is measured with a dial gauge (2) or the like, or marking-off in the horizontal direction is carried out with a height gauge or the like. <P>SOLUTION: By improving an existing invention which floats and supports, by static pressure, a measuring instrument or the like with a measuring instrument supporting stand (10) having a static pressure gas bearing mechanism, friction produced from the instrumentation action etc. is suppressed, vibration is suppressed, a load on an instrumentation mechanism is reduced, and a burden on a worker in respect of weight is lightened. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は機械工学において、静圧気体軸受を用いて計測精度と、作業能率の向上を可能にする計測器および支持台に関するものである。   The present invention relates to a measuring instrument and a support base that can improve measurement accuracy and working efficiency using a static pressure gas bearing in mechanical engineering.

従来、ダイヤルゲージ等での計測過程で、計測器支持台と定盤との間に、潤滑剤として油脂等を用いていた。潤滑剤を使用せず計測作業していた場合には定盤上の計測器や材料の移動、位置決めの際、それらの重量が過大である時、相互の摩擦により時間と労力を浪費し非能率という欠点があった。 Conventionally, in a measurement process using a dial gauge or the like, oil or fat was used as a lubricant between the measuring instrument support and the surface plate. When measuring work without using a lubricant, when measuring and moving the measuring instruments and materials on the surface plate and their weight is excessive, time and labor are wasted due to mutual friction and inefficiency There was a drawback.

これらの問題に対処するため相互の摩擦を減らそうと、計測器支持台を静圧気体軸受で浮上させても、ニューマチックハンマー(振動)が発生し、計測精度の向上は容易でなかった。ニューマチックハンマーが発生しない場合でも支持台の座りが不安定なため計測作業に不向きであった。さらに静圧気体軸受は、軸受け内の回転運動や軌道上の往復運動での相互の摩擦を減らすための潤滑に用いるものが大半であった。
特開2002−39180号公報 特願2004−212751号 十合晋一著「気体軸受設計ガイドブック」共立出版株式会社 2002年1月10日初版
To counteract these problems, a pneumatic hammer (vibration) was generated even if the measuring instrument support was lifted by a static pressure gas bearing to reduce the mutual friction, and it was not easy to improve measurement accuracy. Even when a pneumatic hammer does not occur, the seating of the support base is unstable, making it unsuitable for measurement work. Furthermore, most of the static pressure gas bearings are used for lubrication to reduce mutual friction in the rotational motion in the bearing and the reciprocating motion on the track.
JP 2002-39180 A Japanese Patent Application No. 2004-212751 Junichi Juai "Gas bearing design guidebook" Kyoritsu Shuppan Co., Ltd. January 10, 2002 First edition

計測器支持台を定盤上で移動しながら計測作業する際、計測器支持台と定盤との相互の摩擦による振動で計測に誤差が生じ、かつ作業性が悪く、重量のある計測器だと長時間、反復する計測作業で従事者の負担になる。さらに、計測器と定盤との摩擦で磨耗による精度低下が相互に生じ、磨耗による汚れが生じ作業性が低下する。
計測器支持台と定盤との摩擦による振動で、計測装置の機構に無用の疲労を与え計測器の精度を低下させるため、計測精度を維持できない。
When measuring while moving the measuring instrument support on the surface plate, the measurement error occurs due to the vibration caused by the friction between the measuring instrument support and the surface plate. And it takes a burden on the workers in repeated measurement work for a long time. Furthermore, the friction between the measuring instrument and the surface plate causes a decrease in accuracy due to wear, resulting in contamination due to wear, resulting in reduced workability.
Measurement accuracy cannot be maintained because vibration due to friction between the measuring instrument support and the surface plate causes unnecessary fatigue to the mechanism of the measuring device and lowers the accuracy of the measuring instrument.

上記の問題を解決するため、静圧気体軸受(以下静圧と略称す)による浮上支持台で計測器を支持する場合、静圧による支持剛性を上げると、静圧気体軸受特有のニューマチィックハンマーの振動が発生し、支持台と定盤との空隙(h)が一定せず、計測精度を上げることができない。しかもニューマチィックハンマーの振動がない状態で、計測器支持台を静圧で単に浮上させても、やはり支持台と定盤との空隙が一定せず、支持台は不安定なため、精度は期待できないので、静圧作動時に支持台の座りの安定とニューマチィックハンマー発生を防止する静圧浮上支持機構を備えた計測器支持台を応用した計測器の提供を目的とする。   In order to solve the above problems, when a measuring instrument is supported by a levitating support base using a static pressure gas bearing (hereinafter abbreviated as static pressure), if the support rigidity by static pressure is increased, the pneumatic characteristic peculiar to the static pressure gas bearing The vibration of the hammer occurs, the gap (h) between the support base and the surface plate is not constant, and the measurement accuracy cannot be increased. Moreover, even if the measuring instrument support is simply lifted by static pressure in the absence of vibration of the pneumatic hammer, the gap between the support and the surface plate is not constant, and the support is unstable. Since it cannot be expected, it aims at providing the measuring instrument which applied the measuring instrument support stand provided with the static pressure floating support mechanism which prevents the stability of the support stand and the generation of the pneumatic hammer during the static pressure operation.

定盤上で大型の円筒スコヤーを移動することは、摩擦で双方を磨耗し、精度低下につながる。さらに、巨大なスコヤーは人力では容易に動かず、移動につきチェンブロック等の設備をもってして吊上げねばならず非常に使い勝手が悪い。一方、ボール盤のテーブル上においては重量のある材料を反復加工する際、あるいは重量のあるバイスを使用して材料を加工する際、加工ポイントの位置決めに労力を浪費する。   Moving a large cylindrical scorer on the surface plate wears both sides due to friction, leading to reduced accuracy. Furthermore, a huge scoyer cannot be moved easily by human power, and must be lifted with equipment such as a chain block for movement, which is very inconvenient. On the other hand, when a heavy material is repeatedly processed on a table of a drilling machine, or when a material is processed using a heavy vise, labor is wasted in positioning a processing point.

そこでこの発明の他の課題は、定盤・テーブルと計測器・位置決め台との相互の摩擦を静圧の浮上支持で減少し、作業性改善をもたらす円筒スコヤーと位置決め補正台の提供を課題としている。   Therefore, another object of the present invention is to provide a cylindrical scorer and a positioning correction table that reduce the mutual friction between the surface plate / table and the measuring instrument / positioning table with the floating support of static pressure and improve workability. Yes.

本発明の第一の特徴は、例えば図1に示すように、通常大気を外部の圧縮機で圧縮し空圧源となるホースから圧縮空気が支持台等の内部に構成するチャンバーに至り、さらにチャンバー内の圧縮空気が絞られ吐出口(13)から排出され計測器等の底面と定盤との間で発生した静圧により作業したい平面上において計測器等を浮上支持することで縦横どの方向にでも容易に移動できる。
2次元平面上に静圧機構を開放した既存の発明を、さらに計測と位置決め補正および搬送の実施に応用し、作業効率を高めた本発明はこの点で大きな特徴がある。
The first feature of the present invention is, for example, as shown in FIG. 1, a normal atmosphere is compressed by an external compressor, and a hose that is an air pressure source leads to a chamber in which compressed air is configured inside a support base, etc. Compressed air in the chamber is squeezed and discharged from the discharge port (13), and the vertical and horizontal directions are supported by levitating and supporting the measuring instrument on the plane to be operated by the static pressure generated between the bottom surface of the measuring instrument and the surface plate. Can move easily.
The present invention in which the existing invention in which the static pressure mechanism is opened on the two-dimensional plane is further applied to the measurement, positioning correction, and conveyance and the work efficiency is improved has a great feature in this respect.

請求項1の発明による計測器は、計測器支持台上部面(11a)に計測部を角度自在に連結するアーム(20a,20b)の固定用支柱(22)を備え、該計測器支持台の底面内側(12a)が凹状であり底面外側(12b)が凸状で、該凸状面が静圧軸受面領域となりそこに圧縮空気の吐出口(13)と、圧縮空気の逃げ溝(17)を設けたことを特徴とする。例えば図1に示すように、板状アームがダイヤルゲージ等の計測部(2)を任意の角度(φ1、φ2、φ3)で自在に支えかつ、該アームを支柱で計測器支持台に固定する計測器であり。さらに、計測器支持台の該底面形状により静圧で自体を浮上支持しながら使用する水平度計測器(20)が提供できる。   The measuring instrument according to the first aspect of the present invention includes a fixing column (22) for fixing the arm (20a, 20b) to the measuring instrument support base upper surface (11a) at an angle, and the measuring instrument support base. The bottom surface inner side (12a) is concave and the bottom surface outer side (12b) is convex. The convex surface becomes a hydrostatic bearing surface region, and there is a compressed air discharge port (13) and a compressed air escape groove (17). Is provided. For example, as shown in FIG. 1, a plate-shaped arm freely supports a measuring unit (2) such as a dial gauge at an arbitrary angle (φ1, φ2, φ3), and the arm is fixed to a measuring instrument support with a column. It is a measuring instrument. Further, the leveling instrument (20) can be provided which is used while being floated and supported by static pressure due to the bottom shape of the instrument support base.

請求項2の発明による計測器支持台は、静圧ベース底面内側が凹状(31f)であり底面外側が凸状で、該凸状面(31e)が静圧軸受面領域となりそこに圧縮空気の吐出口(13)と圧縮空気の逃げ溝(17)を設け、可変ベースを該静圧ベースの上で傾き自在に連結した、該可変ベース上面部に計測器を載置できることを特徴とする。図4に例示するように、1個の静圧ベース(36c)と2個の可変ベース(36a,36b)、合計3個の部品で計測器支持台(36)の概形を構成している。可変ベースはおのおの3点支持で下の部品に接地し、3点のうち1点が調整ネジ(37a,37b)であるため、該調整ネジの上下により各可変ベースの上面部(31a)の傾斜を変化させることができ、かつ、該底面形状により静圧で自体を浮上支持しながら使用する計測器支持台(36)が提供できる。   The measuring instrument support according to the second aspect of the present invention has a concave (31f) inside the bottom surface of the static pressure base and a convex shape outside the bottom surface, and the convex surface (31e) becomes a static pressure bearing surface region where compressed air flows. A discharge port (13) and a compressed air escape groove (17) are provided, and a measuring instrument can be mounted on the upper surface of the variable base in which the variable base is tiltably connected on the static pressure base. As illustrated in FIG. 4, one static pressure base (36 c) and two variable bases (36 a, 36 b), a total of three parts, constitute a general shape of the measuring instrument support base (36). . Each of the variable bases is supported by three points and is grounded to the lower part, and one of the three points is an adjustment screw (37a, 37b), so that the upper surface portion (31a) of each variable base is inclined by the upper and lower sides of the adjustment screw. And a measuring instrument support (36) that can be used while floating and supporting itself with static pressure due to the shape of the bottom surface.

請求項3の発明は、計測部(2b、2c)を連結する水平断面が中空状であるリフトの内側面に圧縮空気の吐出口を設けて、空隙を開け該リフトが抱え込むリニアガイドとの間に静圧軸受面領域を形成し、該リフトは直立したリニアガイドを抱え込んだまま上下にスライドすることを特徴とする計測器で、請求項2の計測器支持台の上面部において載置する。例えば図4に示すように、テストゲージ等の計測部を設置できるリフト(32)を有し、円環状(図6)の該リフトはリニアガイド(37)の側面(37c)を4方から空隙を開けて抱え込んでいる。リフトの内側面(32a)とそれに対向するリニアガイドの凸面(i2)との空隙(図7−h3)は静圧軸受面領域を形成し、該領域のリフト内側面に圧縮空気の吐出口(32e)を設けてある。上限はリフトの上面部(30a)とストッパーが当たるまで、下限はリフトの下面部(30b)と計測器支持台上面部(31a)が当たるまでをストロークとし、直立したリニアガイドを抱え込んだままリフトを上下方向にスライドできる。このようなスライドする構造部を請求項2の発明による計測器支持台の可変ベース上面部に設けたことにより自体を静圧で浮上支持する垂直度・水平度計測器が提供できる。   According to a third aspect of the present invention, there is provided a compressed air discharge port on the inner surface of a lift having a hollow horizontal cross section for connecting the measuring sections (2b, 2c), and a gap is opened between the linear guide and the lift is held by the linear guide. A hydrostatic bearing surface area is formed on the upper surface of the measuring instrument support base of the second aspect, and the lift slides up and down while holding an upright linear guide. For example, as shown in FIG. 4, it has a lift (32) in which a measuring part such as a test gauge can be installed, and the annular (FIG. 6) lift has a clearance from four sides on the side surface (37c) of the linear guide (37). Open and carry it. An air gap (FIG. 7-h3) between the inner surface (32a) of the lift and the convex surface (i2) of the linear guide facing the lift forms a hydrostatic bearing surface region, and a compressed air discharge port ( 32e). The upper limit is the stroke until the upper surface part (30a) of the lift hits the stopper, and the lower limit is the stroke until the lower surface part (30b) of the lift hits the upper surface part (31a) of the measuring instrument support. Can slide up and down. By providing such a sliding structure on the upper surface of the variable base of the measuring instrument support base according to the second aspect of the present invention, it is possible to provide a verticality / horizontality measuring instrument that floats and supports itself with static pressure.

請求項4の発明は、円筒スコヤーの底面内側が凹状(49)であり底面外側が凸状(48)で該凸状面が静圧軸受面領域となり、圧縮空気吐出口を該静圧軸受面領域に配置したことを特徴とする。例えば図9に示すように円筒スコヤー(40)の底面部(41b)において、静圧気体軸受のための吐出口(43)を底面の該静圧軸受面領域である底面凸状部(48)に複数配置したことにより、静圧による気体潤滑で定盤等と非接触で自体を浮上し移動できることを特徴とする円筒スコヤーを提供できる。   According to the invention of claim 4, the inner side of the bottom surface of the cylindrical scorer is concave (49), the outer side of the bottom surface is convex (48), the convex surface becomes a hydrostatic bearing surface region, and the compressed air discharge port is connected to the hydrostatic bearing surface. It is arranged in a region. For example, as shown in FIG. 9, in the bottom surface portion (41b) of the cylindrical scorer (40), the discharge port (43) for the static pressure gas bearing is the bottom surface convex portion (48) which is the static pressure bearing surface region of the bottom surface. By providing a plurality of them, a cylindrical scorer can be provided that can float and move itself without contact with a surface plate or the like by gas lubrication by static pressure.

請求項5の発明による計測器支持台は、枠状外装部(71)の中空部分にコマ(72)を挿入して一体の計測器支持台となり、該支持台上部面に計測器を載置できるが、該枠状外装部とコマの両方に、又は、枠状外装部とコマのいずれか一方において両者が接触する内部面(図12−72s、72ss)に圧縮空気のチャンバー(75)を形成するための溝構造を設け、かつ、底部面(70b)においては内側部分が凹状(79)となり、余の外側部分は凸状で、該凸状面に圧縮空気吐出口と逃げ溝(77)を設けたことを特徴とする。図11に例示するように、上部面(70a)に計測器を載置したまま、 静圧軸受面領域を計測器支持台(70)の底面に設け、静圧気体軸受の吐出口(73)を底面の該静圧軸受面領域である底面凸状部(78)に配置したことにより、静圧による気体潤滑で定盤と非接触で移動できることを特徴とする計測器支持台を提供できる。   According to the fifth aspect of the present invention, there is provided a measuring instrument support base comprising a frame (72) inserted into a hollow portion of the frame-shaped exterior part (71) to form an integral measuring instrument support base, and the measuring instrument is placed on the upper surface of the support base However, a compressed air chamber (75) is provided on both the frame-shaped exterior part and the frame, or on the inner surface (FIGS. 12-72s, 72ss) where the frame-shaped exterior part and the frame are in contact with each other. A groove structure is provided, and the inner surface of the bottom surface (70b) is concave (79), the other outer portion is convex, and the compressed air discharge port and escape groove (77) are formed on the convex surface. ) Is provided. As illustrated in FIG. 11, the static pressure bearing surface region is provided on the bottom surface of the measuring instrument support base (70) while the measuring instrument is placed on the upper surface (70a), and the discharge port (73) of the static pressure gas bearing is provided. Can be moved in a non-contact manner with a surface plate by gas lubrication by static pressure, thereby providing a measuring instrument support.

請求項6の発明は、位置決め補正台の底面部に圧縮空気吐出口を設け該底面を静圧軸受面領域とし、圧縮空気吐出のオン・オフスイッチを有する持ち手角度自在なハンドル(54)を設けたことを特徴とする。図15に例示するように、底面部(53b)全体を静圧軸受面領域とし、浮上支持でテーブル上を移動できる静圧気体軸受の吐出口(56)を支持台(50)の該底面に設けたことにより、静圧による気体潤滑で下のテーブルと非接触で移動できることで、ボール盤での加工ポイントの位置決め補正を可能にし、しかも、静圧を停止して即座に作業者が任意の角度でハンドルを握った状態で自体を固定支持できることを特徴とする位置決め補正台(50,50t)を提供できる。   According to a sixth aspect of the present invention, there is provided a handle (54) having an adjustable handle having a compressed air discharge on / off switch provided with a compressed air discharge port in a bottom surface portion of a positioning correction base, the bottom surface serving as a hydrostatic bearing surface region. It is provided. As illustrated in FIG. 15, the entire bottom surface portion (53b) is a hydrostatic bearing surface region, and the discharge port (56) of the hydrostatic gas bearing that can move on the table by levitation support is formed on the bottom surface of the support base (50). By providing it, it can move without contact with the lower table by gas lubrication by static pressure, enabling positioning correction of the processing point on the drilling machine, and the operator can immediately stop the static pressure at any angle It is possible to provide a positioning correction stand (50, 50t) characterized in that it can be fixedly supported while the handle is held.

請求項1記載の発明によれば、ダイヤルゲージなどを計測部(2)として水平方向の平滑度を計測する際、浮上支持が出来る静圧気体軸受の吐出口を計測器支持台底面に設けたことより、静圧で自体は浮上支持し定盤と非接触で摩擦が著しく減少するため、計測器支持台の底面(11b)と定盤(3)との直接接触での摩擦による振動がないので、ダイヤルゲージの計測機構に無用の負荷がかからず、精度低下を防止でき、かつ自体が安定した水平移動するので精度の高い計測ができる。   According to the first aspect of the present invention, when measuring the smoothness in the horizontal direction by using a dial gauge or the like as the measuring section (2), the discharge port of the static pressure gas bearing capable of supporting floating is provided on the bottom surface of the measuring instrument support base. As a result, the static pressure itself supports the surface, and the friction is remarkably reduced without contact with the surface plate. Therefore, there is no vibration caused by friction between the bottom surface (11b) of the measuring instrument support and the surface plate (3). Therefore, an unnecessary load is not applied to the dial gauge measuring mechanism, the accuracy can be prevented from being lowered, and the device itself can be moved horizontally in a stable manner, so that highly accurate measurement can be performed.

アーム(20a,20b)を板状とすることで、剛性を確保しつつ該計測器を軽量・小型化できる。軽量・小型化することで、僅かな空圧の供給で静圧による浮上を維持し、かつ狭い作業環境で利用することができる。したがって、医薬品や食料品を扱うクリーンルーム等、恒温、恒湿、防塵、で作業条件に制約がある場合に、非接触で計測動作を行う本計測器は、磨耗によるチリが無く、油潤滑のように汚れることも無く、空圧源(s)からの供給気を清浄にコントロールさえすれば有効に活用できる。   By making the arms (20a, 20b) plate-like, the measuring instrument can be reduced in weight and size while ensuring rigidity. By reducing the weight and size, it is possible to maintain the ascent by static pressure by supplying a slight air pressure and to use it in a narrow work environment. Therefore, when there are restrictions on working conditions such as constant temperature, humidity, dustproof, etc., such as in clean rooms that handle pharmaceuticals and foodstuffs, this measuring instrument that performs non-contact measurement operation does not have dust due to wear, and is oil-lubricated. If the supply air from the air pressure source (s) is controlled cleanly, it can be used effectively.

請求項2記載の発明によれば、可変ベース(36a,36b)の傾斜を任意に調整できるので、静圧による自体の浮上支持の際、計測部アームの伸縮で重心移動により計測器支持台の上面部が水平でなくなった場合でも、2本の調整ネジ(37a,37b)で上面部を水平に修正でき、該水平修正がそのまま計測器支持台の上面部において直立設置した請求項3記載の発明によるリニアガイドの垂直修正になるので、静圧で浮上したまま垂直度・直角度計測が可能になる。   According to the second aspect of the present invention, the inclination of the variable base (36a, 36b) can be adjusted arbitrarily. The upper surface portion can be corrected horizontally with two adjustment screws (37a, 37b) even when the upper surface portion becomes non-horizontal, and the horizontal correction is installed upright on the upper surface portion of the measuring instrument support base. Since the vertical correction of the linear guide according to the invention is performed, it becomes possible to measure the verticality and the perpendicularity while floating with static pressure.

従来のこのような垂直度・直角度計測器は大きく重量があり移動・計測に際し作業者は計測器を両手で支持して計測をした。この場合、計測器底面と定盤との相互摩擦が大きく精度低下につながり、労力を浪費する。しかし、本発明は静圧で計測器自体を浮上支持するため、相互摩擦による磨耗が無く精度低下を防止でき、また、計測器移動の省力化・能率向上をはかって従来の問題克服した。   Conventional vertical and perpendicularity measuring instruments are heavy and heavy, and workers move and measure the instrument with both hands. In this case, the mutual friction between the bottom surface of the measuring instrument and the surface plate is greatly reduced in accuracy, and labor is wasted. However, the present invention floats and supports the measuring instrument itself with static pressure, so there is no wear due to mutual friction and it is possible to prevent a decrease in accuracy, and overcoming conventional problems by saving labor and improving efficiency of measuring instrument movement.

請求項3記載の発明によれば、リフト(32)は静圧でリニアガイドをエアチャッキングするため、リフトの内側面(32a)とリニアガイドの側面(37c)は非接触であるためスライド時の相互磨耗やガタが無く、かつ、静圧による抱え込みで常時センタリング効果があるため、精度の高い垂直方向の計測が維持できる。さらに、リフトを任意の高さで固定すれば本計測器は水平方向にも静圧で移動できるため、そのまま同じ計測部で水平度計測も可能になるメリットがある。   According to the third aspect of the present invention, since the lift (32) air-chucks the linear guide with static pressure, the inner surface (32a) of the lift and the side surface (37c) of the linear guide are not in contact with each other. In addition, there is no mutual wear and backlash, and since there is a constant centering effect due to holding by static pressure, highly accurate vertical measurement can be maintained. Furthermore, if the lift is fixed at an arbitrary height, the measuring instrument can be moved in the horizontal direction with static pressure, so that there is an advantage that the same measuring unit can measure the levelness as it is.

請求項4記載の発明によれば、浮上支持で定盤上などを移動できる静圧気体軸受の吐出口(43)を円筒スコヤーの底面部(41b)に設けたことにより、静圧による気体潤滑で定盤等と非接触とすることで定盤等との摩擦を著しく減少し、側面からの微小な力で定盤上などを移動できるので、定盤のうえで移動するのは容易でない重量が過大な円筒スコヤー(40)でも、静圧によりそれ自身を浮上させることで、簡便に計測ポイントまで移動できるため、計測作業を容易に継続できる利点がある。   According to the fourth aspect of the present invention, by providing the discharge port (43) of the static pressure gas bearing capable of moving on the surface plate or the like by the floating support at the bottom surface portion (41b) of the cylindrical scorer, gas lubrication by static pressure is performed. By making non-contact with the surface plate etc., the friction with the surface plate etc. is remarkably reduced, and it can move on the surface plate etc. with a minute force from the side, so it is not easy to move on the surface plate Even if the cylinder scorer (40) is excessively large, it is possible to easily move to the measurement point by levitating itself by static pressure, so that there is an advantage that measurement work can be easily continued.

従来は重量が過大なスコヤーであればチェーンブロック等で吊上げて移動したり、定盤の上に置いたままであったりしたが、請求項4記載の発明により人力では移動が困難な重量が過大なスコヤーでも、軽い力で移動できる。   Conventionally, if the weight is too heavy, it is lifted by a chain block or the like, or left on the surface plate. However, according to the invention of claim 4, the weight that is difficult to move by human power is excessive. Even a squayer can move with light force.

請求項5の発明によれば、計測器を上部面に載置することができ、かつ、静圧軸受面領域を計測器支持台(70)の底面に設け、静圧気体軸受の吐出口(73)を底面の該静圧軸受面領域である底面凸状部(78)に配置したことにより、静圧による気体潤滑で定盤と非接触で移動できる。しかも、構成上厚みを10mm前後まで薄くすることができるため、既製のハイトゲージ等を載置して即座に静圧で浮上させたまま計測作業ができるため、水平方向のけがき、又は、水平度測定の作業効率を著しく向上できる。その他の利用法として、本支持台の上部にジャッキを設置して複数(3点以上)定盤に配置し、該ジャッキの上に重量物の下部面が当たるように裁置すれば、本支持台の個数を増やすだけで、重量物の水平調整が出来る搬送装置にも利用できる。   According to invention of Claim 5, a measuring instrument can be mounted in an upper surface, and a static pressure bearing surface area | region is provided in the bottom face of a measuring instrument support stand (70), and the discharge port ( 73) is arranged on the bottom convex portion (78) which is the hydrostatic bearing surface area of the bottom surface, and can move without contact with the surface plate by gas lubrication by static pressure. In addition, because the thickness can be reduced to around 10 mm, the measurement work can be carried out with the ready-made height gauge mounted and immediately floating with static pressure. The working efficiency of measurement can be remarkably improved. As another method of use, install a jack on the top of the support base, place it on multiple (three or more) surface plates, and place it on the jack so that the lower surface of the heavy object hits the main support. It can also be used in conveyors that can adjust the level of heavy objects simply by increasing the number of platforms.

請求項6記載の発明によれば、底面部を静圧軸受面領域とし、浮上支持でテーブル上などを移動できる静圧気体軸受の吐出口を補正台(50)の該底面部に設けたことにより、静圧による気体潤滑で下のテーブル等と非接触とすることでテーブル等との摩擦を著しく減少し、側面からの小さな力でテーブル等の上を移動できるので、例えば図14のように、1個の材料をボール盤で加工する際、ボール盤のテーブル(61)上に静圧で浮上支持する補正台(50)を設置し、その上に材料を置けば、材料(Wk)が重量物であっても軽い力で移動できるので、加工ポイントの位置決め時間の短縮と省力化ができる利点がある。又、図16に例示したように、1個の材料に複数の位置決めをする方法としてマシニングセンターでドリルによる浅い仮穴(F1)をもって、加工ポイントのマーキングをしておき、その後ボール盤での本加工で先ほどの仮穴にボール盤取付けの回転させたドリルの円錐状先端部(3e)を軽くすり合わせるだけで、本補正台に材料を載せて浮上支持しておけば、ドリルの回転力が穴位置のセンタリングを行い正確な位置決めが終了し、そのままボーリング加工に移ることが可能になる。   According to the sixth aspect of the present invention, the bottom surface portion is a hydrostatic bearing surface region, and the discharge port of the hydrostatic gas bearing that can move on the table or the like by floating support is provided on the bottom surface portion of the correction base (50). Therefore, the friction with the table or the like can be remarkably reduced by non-contact with the lower table or the like by gas lubrication by static pressure, and the table or the like can be moved with a small force from the side surface. For example, as shown in FIG. When a single material is processed with a drilling machine, a correction table (50) that floats and supports with static pressure is placed on the table (61) of the drilling machine, and the material (Wk) is heavy when placed on it. However, since it can be moved with a light force, there is an advantage that the processing point positioning time can be shortened and labor can be saved. In addition, as illustrated in FIG. 16, as a method for positioning a plurality of materials in one material, a machining point is used to mark a processing point with a shallow temporary hole (F1) by a drill, and then in the main processing with a drilling machine. By simply rubbing the conical tip (3e) of the drill that has been rotated and mounted on the drilling machine into the temporary hole just above, if the material is placed on the correction table and supported to float, the rotational force of the drill can be adjusted to the position of the hole. Centering is performed and accurate positioning is completed, and it is possible to proceed to boring as it is.

従来は1個の材料をボール盤で反復して加工する際、材料が重量物である場合あるいは重量のあるバイスで材料を固定している場合は、次の加工ポイントの位置決めするたびにテーブル等との大きな摩擦があるため、労力と時間を浪費していた、又、位置決めの精度については、加工ポイントのマーキングの後ドリルの位置あわせは、その都度目視によるため材料を正面から見て左右方向の誤差を無くすのは容易だが、材料を側面から見て前後の誤差を無くすることは、作業者の姿勢が崩れ困難で非常に能率が悪かった。しかし、請求項6記載の発明により加工ポイントの位置決め時間の短縮と省力化・加工精度保持ができる利点がある。   Conventionally, when repeatedly processing a single material with a drilling machine, if the material is heavy or if the material is fixed with a heavy vise, each time the next processing point is positioned, Because of the large amount of friction, labor and time were wasted. Also, regarding the positioning accuracy, the drill positioning after the marking of the processing point was visually observed each time. Although it is easy to eliminate the error, it was very inefficient to eliminate the error before and after seeing the material from the side because the posture of the operator was difficult to collapse. However, the invention according to claim 6 has the advantages of shortening the processing point positioning time, saving labor, and maintaining processing accuracy.

従来は支持台の上面部、図13では(53a)に吐出口を設け材料を浮上させて移動する装置があったが、吐出口が上向きなため切削くずがその中に入り目詰まりを起こしていた。しかし、請求項6記載の発明では吐出口が底面部(53b)にあるため、加工から発生する切削くずが吐出口(56)にはいらず、目詰まりを起こさない長所がある。   In the past, there was a device that provided a discharge port on the upper surface of the support base, and in FIG. 13 (53a), and moved the material up and moved, but since the discharge port was upward, cutting waste entered it and caused clogging. It was. However, since the discharge port is in the bottom surface portion (53b) in the invention described in claim 6, there is an advantage that the cutting waste generated from the processing does not enter the discharge port (56) and clogging does not occur.

材料の上面部(Wk1)における加工ポイントの位置決めが終わった後、同ポイントのボーリング加工作業に移る時、右手でボーリングハンドルを操作し、左手で補正台(50)側面に設置したハンドル(54)を任意の角度で握ることによって、材料(Wk)を間接的に固定できるが、この時左手で補正台のハンドル(54)を握ったまま、該ハンドルに設置した圧縮空気吐出のオン・オフスイッチを指一本でオフにし、支持台を安定させることにより、支持台の静圧は停止して、補正台はボール盤のテーブルの上に着地し、なおかつハンドルを左手で支えるため、ボーリング加工作業時にドリルの回転につれ回ろうとする材料に対向できるだけの十分な安定性を保つことができるという利点がある。   After finishing the positioning of the processing point on the upper surface of the material (Wk1), when moving to the boring processing of the same point, operate the boring handle with the right hand and the handle (54) installed on the side of the correction table (50) with the left hand The material (Wk) can be indirectly fixed by grasping at an arbitrary angle. At this time, while holding the handle (54) of the correction table with the left hand, an on / off switch for discharging compressed air installed on the handle With one finger off, stabilizing the support base stops the static pressure of the support base, the correction base lands on the table of the drilling machine, and supports the handle with the left hand. There is an advantage that sufficient stability can be maintained to face the material to be rotated as the drill rotates.

従来はあるポイントの加工が終了後、軽い材料ならば同じ材料の上面(Wk1)における次の加工ポイントの位置決めは片手で出来たが、材料が重量物である場合あるいは重量のあるバイスで材料を固定している場合は、どうしても両手でなければ次の加工ポイントへの位置決めのための材料の移動が出来ないところ、請求項6記載の発明は、たとえ材料が重量物である場合あるいは重量のあるバイスで材料を固定している場合であってでも、軽い材料を扱うように片手で次の加工ポイントの位置決めをすることが出来るようになる長所がある。   Conventionally, after processing at a certain point, if the material is light, positioning of the next processing point on the upper surface (Wk1) of the same material can be done with one hand. However, if the material is heavy or if it is a heavy material, In the case where the material is fixed, the material cannot be moved for positioning to the next processing point unless both hands are unavoidable. The invention according to claim 6 is the case where the material is heavy or heavy. Even when the material is fixed with a vise, there is an advantage that the next processing point can be positioned with one hand so as to handle a light material.

計測器等の底面からの静圧により、定盤上を安定して浮上するという既存の発明を応用し、計測と搬送においてさらに使い勝手が良いよう、できうる限り少ない部品点数で十分な強度を確保しつつ以下の実施例を実現した。   Applying the existing invention that floats stably on the surface plate by static pressure from the bottom surface of measuring instruments, etc., ensuring sufficient strength with as few parts as possible so that it is more convenient for measurement and transport However, the following examples were realized.

図1は本発明の第1実施例を示したものである。計測部のダイヤルゲージ(2)は計測器支持台(10)の上部面(11a)端に2種類のアームと支柱(22)をもって設置し水平方向の平滑度計測をおこなう。上部面右端に支柱を設置するのは、支柱が支える計測部およびアームを図のように左方向へ向けて使用すると、21bのつまみ辺りに位置する計測部およびアームの重心は、概ね計測器支持台の上方に位置するため、本計測器(20)全体の重心の移動が少なく、自体の浮上支持の安定に資するからである。   FIG. 1 shows a first embodiment of the present invention. The dial gauge (2) of the measuring unit is installed with two types of arms and a column (22) at the end of the upper surface (11a) of the measuring instrument support (10), and performs horizontal smoothness measurement. The column is installed at the right end of the upper surface. When the measuring unit and arm supported by the column are used to the left as shown in the figure, the center of gravity of the measuring unit and arm located near the knob 21b is generally supported by the measuring instrument. This is because the position of the center of gravity of the entire measuring instrument (20) is small because it is located above the table, which contributes to the stability of its own floating support.

計測部を固定していれば計測器支持台底面の傾斜は一定で安定静止状態を維持し、定盤上を水平縦横に平行移動できる。圧縮空気が空圧源(S)より一定圧で供給されれば、定盤(3)との間の空隙(h)も一定で浮上し続けるので、精度の高い計測ができる計測器である。供給圧を任意の気圧に設定するにはコンプレッサーから空圧源までの間に、空気圧レギュレーターを介することになる。   If the measuring unit is fixed, the inclination of the bottom surface of the measuring instrument support base is constant and a stable stationary state can be maintained, and it can be translated horizontally and vertically on the surface plate. If the compressed air is supplied at a constant pressure from the air pressure source (S), the gap (h) between the surface plate (3) and the surface plate (3) keeps rising, so that the measuring instrument can measure with high accuracy. In order to set the supply pressure to an arbitrary pressure, an air pressure regulator is interposed between the compressor and the air pressure source.

2種類のアームがなす角度(φ2)を大きくし計測部の位置を左方向に移動した場合、計測部を連結した計測器支持台の重心も左方向に移動するため、その結果、空隙h2は空隙hよりも小さくなり、底面(11b)は傾斜するが、そのまま安定静止状態を維持し計測を継続できる。また、計測部およびアームを図とは逆に右方向へ伸ばすと、空隙h2は空隙hよりも大きくなり
底面傾斜は逆転する。しかも、先ほどより傾斜が急になるが、それでも安定静止状態を維持し計測を継続できる。ただ、底面は水平に近い状態がより安定であるため、計測部およびアームは図のように左方向へ伸ばして利用する方が好ましい。
When the angle (φ2) formed by the two types of arms is increased and the position of the measuring unit is moved to the left, the center of gravity of the measuring instrument support base connected to the measuring unit also moves to the left. Although it becomes smaller than the space | gap h and a bottom face (11b) inclines, it can maintain a stable still state as it is and can continue measurement. Further, when the measuring unit and the arm are extended to the right in the opposite direction, the gap h2 is larger than the gap h, and the bottom slope is reversed. Moreover, although the slope becomes steeper than before, the measurement can be continued while still maintaining a stable stationary state. However, since the bottom surface is more stable in a horizontal state, it is preferable to use the measurement unit and the arm by extending leftward as shown in the figure.

側面図の計測器支持台はその断面図を示したものである。静圧用の圧縮空気は通常大気を用い、空圧源(S)のホースを支持台の側面の穴(W)に取り付けることによりそこから伸びるトンネル(19)を通過して、チャンバー(15)内に送り込まれる。チャンバーは外装部(10a)にコマ(14)が入ることにより環状の密閉された空間となり、内部は等圧の空気で満たされる。チャンバー内に送り込まれた圧縮空気はOリング(14r)によって密閉が保持される。その結果、チャンバーより圧縮空気が絞られ底面の6個全部の吐出口(13)から排気され計測器支持台の底面(11b)と定盤(3)との間に発生した静圧により、定盤との間にわずかな空隙(h)を継続して形成する。計測器支持台(10)は、静圧用の圧縮空気が空圧源より一定圧で供給されれば、定盤との間の空隙(h,h2)も一定で浮上する。   The measuring instrument support of the side view is a cross-sectional view. The compressed air for static pressure is usually the atmosphere, and the hose of the pneumatic pressure source (S) is attached to the hole (W) on the side surface of the support base, passes through the tunnel (19) extending from the inside, and enters the chamber (15). Is sent to. The chamber becomes an annular sealed space when the frame (14) enters the exterior part (10a), and the inside is filled with air of equal pressure. The compressed air sent into the chamber is kept sealed by an O-ring (14r). As a result, the compressed air is squeezed from the chamber and exhausted from all six outlets (13) on the bottom surface, and the static pressure generated between the bottom surface (11b) of the measuring instrument support base and the surface plate (3) is fixed. A slight gap (h) is continuously formed between the plates. When the compressed air for static pressure is supplied at a constant pressure from the air pressure source, the gap (h, h2) between the measuring instrument support (10) and the surface plate is also kept constant.

コマ(14)を支持台(10)に固定する方法として、固定ボルトを用いたりあるいは、支持台の内凹部自体にねじ山を切り、ねじ状のコマを入れる等の方法が考えられるが、本例では固定ボルト(18)でコマを固定することとした。底面図では内側凹状面(12a)の中央部に固定ボルトを配置した。側面図において、固定ボルトはコマ中央部を下から上へ向かって貫通し、外装部下側に設けた雌ねじに入り締付け外装部とコマは一体化する。   As a method for fixing the top (14) to the support base (10), a fixing bolt may be used, or a method of cutting a screw thread into the inner recess itself of the support base and inserting a screw-shaped top may be considered. In the example, the frame is fixed with the fixing bolt (18). In the bottom view, a fixing bolt is arranged at the center of the inner concave surface (12a). In the side view, the fixing bolt penetrates from the bottom to the top of the top, enters into a female screw provided on the lower side of the exterior, and the tightened exterior and the top are integrated.

図1の底面図は計測器支持台の底面を示した。形状を円形としたのは、旋盤による成形加工の容易さと、定盤との接触頻度を減らすためである。チャンバー(15)内に送り込まれた圧縮空気は、底面の6つ全部の吐出口(13)から排出される。そして、底面の6つの吐出口は等間隔で配置した。底面外周(CL)と内凹部外周(CS)は同心円で、底面凸部を底面の出来るだけ外側に配置して座りの安定を確保するため、内凹部外周(CS)の直径は底面外周(CL)の直径の1/2以上であることが好まれる。   The bottom view of FIG. 1 shows the bottom surface of the measuring instrument support. The reason why the shape is circular is to facilitate the forming process by a lathe and reduce the frequency of contact with the surface plate. The compressed air sent into the chamber (15) is discharged from all six outlets (13) on the bottom surface. The six discharge ports on the bottom surface were arranged at equal intervals. The outer periphery of the inner recess (CL) and the outer periphery of the inner recess (CS) are concentric circles, and the diameter of the outer periphery of the inner recess (CS) is set to the outer periphery of the bottom ) Is preferably at least 1/2 of the diameter.

図2は外装部にコマを挿入していない状態での計測器支持台断面図を示した。11s、11ss、11dの各面で囲まれる外装部内部面の空間は11s、11ssを側面とする円柱形であり、挿入するコマも同じ外形である。コマの外径は外装部の内側面(11s)の径より公差分だけ小さくほぼ同寸で、コマは外装部の内側面(11s)に沿って挿入する。その結果、外装部の内部面(11g,11u,11t)とコマの側面(14a)の4面で閉鎖された環状チャンバー(15)が形成される。該チャンバーの密閉度を上げるため、外装部とコマとの接触面(11s)でありかつ、チャンバーより下の位置においてOリング(14r)等の環状パッキンを設けるのが好ましい。   FIG. 2 shows a cross-sectional view of the measuring instrument support base in a state where no frame is inserted into the exterior part. The space on the inner surface of the exterior part surrounded by the surfaces of 11s, 11ss, and 11d is a columnar shape having the sides of 11s and 11ss, and the frames to be inserted have the same outer shape. The outer diameter of the frame is smaller than the diameter of the inner side surface (11s) of the exterior part by approximately the same dimension, and the frame is inserted along the inner side surface (11s) of the exterior part. As a result, an annular chamber (15) is formed which is closed by four surfaces, that is, the inner surface (11g, 11u, 11t) of the exterior portion and the side surface (14a) of the frame. In order to increase the degree of sealing of the chamber, it is preferable to provide an annular packing such as an O-ring (14r) on the contact surface (11s) between the exterior part and the top and below the chamber.

計測器支持台の底面にある6本の溝(17)は、図1の底面内側凹部(16)の空間に生じる空気だまりを外部へ逃がすために設けた気体排気溝である。溝数を多くしたり溝幅を広げたりすると、空気が逃げ易いので圧縮空気の消費量は増えるがニューマチィックハンマー(振動)発生は起き難い。また排気ムラが無いよう気体排気溝と吐出口(13)とは等間隔で、かつ溝は固定ボルト(18)から見て放射状に配置するのが好ましい。吐出口の穴径は小さいと絞り効果が大きく静圧剛性が上がるが、汚れによる目づまりが生じ易い。穴径は大きいと汚れによる目づまりが生じ難いが、絞り効果は小さく静圧剛性が下がり浮上支持が難しくなる。そのため、使用目的に応じて吐出口の穴径を決めるのが好ましい。   The six grooves (17) on the bottom surface of the measuring instrument support base are gas exhaust grooves provided to escape the air pool generated in the space of the bottom surface inner side recess (16) in FIG. If the number of grooves is increased or the width of the grooves is increased, the air easily escapes, so the consumption of compressed air increases, but the occurrence of pneumatic hammer (vibration) is unlikely to occur. Further, it is preferable that the gas exhaust groove and the discharge port (13) are equidistant from each other so that there is no exhaust unevenness, and the grooves are arranged radially when viewed from the fixing bolt (18). If the hole diameter of the discharge port is small, the squeezing effect is great and the static pressure rigidity is increased, but clogging due to dirt is likely to occur. If the hole diameter is large, clogging due to dirt is difficult to occur, but the squeezing effect is small and the static pressure rigidity is lowered, making it difficult to support floating. Therefore, it is preferable to determine the hole diameter of the discharge port according to the purpose of use.

図1における支持台の底面(CL)と(CS)の間の静圧軸受面領域であるドーナツ型の外側凸状面(12b)の表面は、鏡面仕上げであることおよび、鏡面仕上げ状態を維持するために、計測器支持台に鉄鋼材を用いた場合は焼きいれなどで硬度を高めておくことが好ましい。なぜなら、該凸部平面に何らかの衝撃でひずみ突出部を生じると、その部分が定盤と接触し支持台の浮上支持が難しくなるためである。   The surface of the donut-shaped outer convex surface (12b), which is the hydrostatic bearing surface region between the bottom surfaces (CL) and (CS) of the support base in FIG. 1, is mirror-finished and maintains the mirror-finished state. For this reason, when a steel material is used for the measuring instrument support base, it is preferable to increase the hardness by burning or the like. This is because when a strain protrusion is generated on the convex surface due to some impact, the portion comes into contact with the surface plate and it becomes difficult to support the floating of the support base.

図3は水平投影したアームの分解図である。2種類のアーム部材(20a,20b)を板状としたのは加工性のよさからで、20a,20bを各部材断面長手方向が垂直に立つよう2枚づつ並列に連結して1本のアームとすることで軽量でも強度を確保した。また、図1側面図に示したように支柱から計測部へ向かってアーム幅を小さくし、アームの中ほどで、つまみとつまみの間に複数の円形孔を設けたのは剛性を確保しつつ更なる軽量化とアーム(20b)への集中する過重負担の軽減を果たすためである。また、リンク構造なのでつまみ(21a,21b,21c)の調整で角度(φ1、φ2、φ3)を変更し計測部を自在な位置に設定できる。   FIG. 3 is an exploded view of the arm projected horizontally. The two types of arm members (20a, 20b) are plate-shaped because of their good workability. Two arms 20a, 20b are connected in parallel so that the longitudinal direction of each member cross-section is vertical, and one arm is connected. As a result, strength was ensured even with light weight. In addition, as shown in the side view of FIG. 1, the arm width is reduced from the support to the measuring unit, and a plurality of circular holes are provided between the knobs in the middle of the arm while ensuring rigidity. This is in order to further reduce the weight and reduce the heavy load concentrated on the arm (20b). In addition, since the link structure is used, the angle (φ1, φ2, φ3) can be changed by adjusting the knobs (21a, 21b, 21c) to set the measuring unit at a free position.

リンク構造の組立は、凸ナットa(20na)の凸部(20nt)をアームaの端穴(20ah)とカラa(20ka)の内部のホール1(20h1)を貫通し、反対方向から凸リングa(20ra)の凸部(20rt)をもう一方の並列した一個のアームa端穴を貫通し、カラaのホール1内部にいたることによって、ホール1の内部で凸ナットaの凸部と凸リングaの凸部が間隔を開けて対向しかつ、凸ナットaと凸リングaで2枚の並列したアームaを挟み込む構成となる。さらに、つまみa(21a)先端の雄ネジを凸リングaの逃げ穴(20h)を貫通し凸ナットaの凸部内の雌ネジまで進入させ、ネジ機構で締め付けるようにする。つまみb(21b),つまみc(21c)いずれも同じように締め付けるようにするが、リンク構造の要になるつまみbは4枚の板状アームを挟み込む。カラcよりもカラb、カラbよりもカラaと、径も長さも小さくしアーム支持の安定を図るのが好ましい。板状アームは並列だが平行に配置しないのは計測部側のアームの重量を減らしてつまみ(21c)側のアーム部分へ集中する過重負担を軽減するためである。それに対し凸ナットとつまみで締付けるアームの部分は全て平行に配置するのは、他の部品の形状を単純にできるからである。その結果、2種類の板状アームは各ポイント(p1,p2,p3,p4)で微妙に折れた形状になる。   Assembling the link structure, the convex part (20nt) of the convex nut a (20na) passes through the end hole (20ah) of the arm a and the hole 1 (20h1) inside the collar a (20ka) and protrudes from the opposite direction. The projecting part (20rt) of a (20ra) passes through the end hole of the other parallel arm a and enters the hole 1 of the collar a. The convex part of the ring a is opposed to each other with a gap, and the two parallel arms a are sandwiched between the convex nut a and the convex ring a. Further, the male screw at the tip of the knob a (21a) passes through the relief hole (20h) of the convex ring a and enters the female screw in the convex portion of the convex nut a, and is tightened by the screw mechanism. Both the knob b (21b) and the knob c (21c) are tightened in the same manner, but the knob b, which is a key part of the link structure, sandwiches four plate-like arms. It is preferable to stabilize the arm support by reducing the diameter and length of the collar b than the collar c and the collar a than the collar b. The reason why the plate-like arms are arranged in parallel but not in parallel is to reduce the weight of the arm on the measuring unit side and reduce the overload concentrated on the arm portion on the knob (21c) side. On the other hand, the parts of the arm that are tightened with the convex nut and the knob are all arranged in parallel because the shape of the other parts can be simplified. As a result, the two types of plate-like arms are slightly bent at each point (p1, p2, p3, p4).

本リンク構造により、3個のつまみ締付の緩和によるアーム姿勢の変更、更なる締付によるアーム姿勢の固定を個々のつまみで独立してできるため、アームの先端に設置した計測部の位置決めを容易に果たすことができる。また、リンク構造になお強度を加えたい場合は、アーム部材の厚み(20z)を厚くしたり、材質を変更するなど設計変更が非常に簡単で、しかも加工過程は変更せずにできるという利点がある。   With this link structure, the arm posture can be changed by loosening the three knobs and the arm posture can be fixed independently by further tightening, so that the measuring unit installed at the tip of the arm can be positioned. Can be played easily. Also, if you want to add strength to the link structure, it is very easy to change the design, such as increasing the thickness (20z) of the arm member or changing the material, and there is an advantage that it can be done without changing the machining process. is there.

図4は本発明の第2実施例を示したものである。請求項2の発明による計測器支持台の上に、請求項3の発明による計測器を設置したもので1個の計測器(30)とし、第2実施例とした。3層のベースからなる支持台(36)の上面部にリニアガイドを長手方向垂直に設置し、上端は4本の固定ボルト(34b)でストッパーと固定し、下端は4本の固定ボルト(39a)で可変ベースと固定する。該リニアガイドの直立状態の維持を4本の支柱(38)とストッパー(34)が果たす。リニアガイドを囲い込んで上下にスライドするリフトに複数の計測部を設置できる。左側の計測部(2b)は主に垂直度計測を、右側の計測部(2c)は水平度計測を目的とし、いずれの場合も静圧で定盤上にて本計測器自体を浮上しながら計測作業できる設計とした。   FIG. 4 shows a second embodiment of the present invention. A measuring instrument according to the third aspect of the present invention is installed on the measuring instrument support base according to the second aspect of the present invention to form one measuring instrument (30), which is the second embodiment. A linear guide is installed vertically on the upper surface of the support base (36) consisting of a three-layer base, the upper end is fixed to the stopper with four fixing bolts (34b), and the lower end is fixed to four fixing bolts (39a ) And fix to the variable base. The four pillars (38) and the stopper (34) maintain the linear guide in an upright state. A plurality of measuring units can be installed on a lift that surrounds the linear guide and slides up and down. The measurement unit (2b) on the left side is mainly used for measuring the verticality, and the measurement unit (2c) on the right side is for the purpose of measuring the levelness. In either case, the measuring instrument itself floats on the surface plate with static pressure. Designed to allow measurement work.

左側の計測部(2b)で垂直度計測を行う場合、リフト(32)が垂直に上下する必要があるので、リニアガイド(37)を垂直に補正するため支持台を3層構造にした。なぜならば、自体を浮上しながら計測作業するが、計測部アーム(32bm)の伸縮で自体の重心が移動する場合があり、底面(31b)と定盤との間の空隙は、重心移動があった側が小さくなりリニアガイドが傾く。そのため、支持台に設けた2本の調整ネジ(37a,37b)でリニアガイドの垂直調整を計測前に実施することになる。   When the vertical measurement is performed by the measurement unit (2b) on the left side, the lift (32) needs to move up and down vertically, so the support base has a three-layer structure in order to correct the linear guide (37) vertically. This is because although the measurement work is performed while floating, the gravity center of the measurement unit arm (32bm) may move and the center of gravity of the measurement unit may move, and the gap between the bottom surface (31b) and the surface plate may move the center of gravity. The linear side becomes smaller and the linear guide tilts. Therefore, the vertical adjustment of the linear guide is performed before the measurement with the two adjustment screws (37a, 37b) provided on the support base.

4本の支柱(38)はリニアガイドをストッパー(34)を介して支え、かつ、異物との接触から保護する役目も果たす。また、リニアガイド設置ではストッパー側の固定ボルトと可変ベース側の固定ボルトにより、リニアガイドに上下方向の引っ張り応力が働くような実施が好ましい。なぜなら、ストッパー・支柱・支持台と本計測器全体が引っ張り応力により一体化が強まることと、リニアガイドが歪みにくいことから、計測精度の維持につながるからである。   The four struts (38) support the linear guide via the stopper (34) and also serve to protect against contact with foreign matter. Further, in the linear guide installation, it is preferable that the tensile stress in the vertical direction acts on the linear guide by the fixing bolt on the stopper side and the fixing bolt on the variable base side. This is because the integration of the stopper / support / support and the entire measuring instrument is strengthened by tensile stress, and the linear guide is not easily distorted, which leads to maintenance of measurement accuracy.

右側の計測部(2c)で水平方向の計測を行うには、本計測器(30)自体を浮上しながら定盤上を水平に移動させれば実施できる。自体を浮上させる静圧ベースの静圧発生のしくみは、実施例1の0030項〜0037項で述べた技術と同様である。   The measurement in the horizontal direction can be performed by the measurement unit (2c) on the right side by moving the measurement instrument (30) itself horizontally while moving on the surface plate. The mechanism for generating a static pressure based on the static pressure that floats itself is the same as the technique described in the paragraphs 0030 to 0037 of the first embodiment.

図5の平面図は本計測器を真上から見たもので、中央部の固定ボルト(34b)4個はストッパーを貫通しリニアガイド上端の雌ねじ穴に入り固定している。余の4個ある固定ボルト(34p)はストッパーを貫通し各4本の支柱上端の雌ねじ穴に入り固定している。支柱下端は固定ボルト(図4−破線)で可変ベースaと固定している。図上方の計測部(2d)は図4において隠れていたもので、3個目の計測部を設けることができることを示した。3個の計測部と固定つまみを上下左右各々90度の方向に配置にしたのは、本計測器自体が少ない微調整で水平浮上となるよう、バランスを狙った為である。又、材料強度の点から加工後の肉厚確保のため、ストッパーの中央部より見て、計測部および固定ボルトを各々等角度で放射状に配置するのが好ましい。   The plan view of FIG. 5 is a view of the measuring instrument from directly above, and four fixing bolts (34b) in the center pass through the stopper and are fixed in the female screw holes at the upper end of the linear guide. The remaining four fixing bolts (34p) pass through the stopper and are fixed in the female screw holes at the upper ends of the four columns. The lower end of the column is fixed to the variable base a by a fixing bolt (dashed line in FIG. 4). The measurement unit (2d) in the upper part of the figure is hidden in FIG. 4 and shows that a third measurement unit can be provided. The reason why the three measuring units and the fixed knob are arranged in directions of 90 degrees in the vertical and horizontal directions is that the measuring instrument itself is aimed for balance so that it can be floated horizontally with few fine adjustments. Further, from the viewpoint of material strength, it is preferable to dispose the measurement parts and fixing bolts radially at equal angles as viewed from the center part of the stopper in order to secure the thickness after processing.

図6はリニアガイドとリフトの形状を示した。リニアガイド断面図を見ると、概形は1辺のガイド幅が(j)の正方形であるが4方の角は面(i4)を取り、各側面にガイド溝が深さ(k)で入り込んでいる。各側面の1辺は2つのガイド凸面(i2)と1つのガイド溝幅(i1)およびコーナー面(i3)で構成される。8面ある各ガイド凸面は硬度が高く鏡面仕上げでかつ、平面度の高い状態が高精度計測に好ましい。リニアガイド断面図については図7で詳述する。   FIG. 6 shows the shape of the linear guide and the lift. Looking at the linear guide cross-sectional view, the outline is a square with a side guide width of (j), but the four corners have a face (i4), and the guide groove enters each side with a depth (k). It is out. One side of each side surface is composed of two guide convex surfaces (i2), one guide groove width (i1), and a corner surface (i3). Each of the eight guide convex surfaces has a high hardness, a mirror finish, and a high flatness is preferable for high accuracy measurement. The linear guide sectional view will be described in detail with reference to FIG.

リフト断面図の下には、リフト内装部と外装部を分解した平面図と側面図を上下に並べて示した。リフトの側面全体を覆うリフト外装部(32m)は薄手の円筒状であり、内装部(32n)の外周面(32f)に焼きばめ法で密着させるため、焼きばめ加工に適した材質と内周面(32g)の表面仕上げを必要とする。又、形状を円筒としたのも焼きばめ加工に適した形態だからである。   Below the lift sectional view, an exploded plan view and side view of the lift interior and exterior parts are shown side by side. The lift exterior part (32m) that covers the entire side surface of the lift is a thin cylindrical shape, and is closely attached to the outer peripheral surface (32f) of the interior part (32n) by shrink fitting. A surface finish of the inner peripheral surface (32 g) is required. The reason why the shape is cylindrical is that it is suitable for shrink fitting.

リフト外装部の右側にリフト内装部(32n)平面図と側面図を上下に並べて図示した。リフト内装部の横断面は概ね円環状であるが、側面から見ると横断面の径(L1)より上下の長さ(L2)の方が長くしてある。L2はL1の1.5倍以上あることが好ましい。また、径(L1)はリフト外装部の内周面の径(L3)より公差分小さくなり、該公差は焼きばめで密着する為のものであることを考慮する必要がある。円環状エア通路はリフト内装部の上下長手方向の両端寄りで2箇所設けて、ベルト状の溝を深さ(h6)で形成し内装部の周囲全体を走っている。エア通路を上下長手方向の両端に寄せることでスライド動作にガタ発生の予防を図った。さらに、両端に寄せて設けた2つのエア通路には、静圧を発生させる絞り機能をもつチャンバー(32b)を周囲にそれぞれ8個づつ設けた。   A plan view and a side view of the lift interior part (32n) are shown on the right side of the lift exterior part. The cross section of the lift interior portion is generally annular, but when viewed from the side, the vertical length (L2) is longer than the diameter (L1) of the cross section. L2 is preferably at least 1.5 times L1. Further, it is necessary to consider that the diameter (L1) is smaller in tolerance than the diameter (L3) of the inner peripheral surface of the lift exterior part, and that the tolerance is for close contact by shrink fitting. Two annular air passages are provided near both ends in the vertical direction of the lift interior part, and a belt-like groove is formed at a depth (h6) and runs around the entire interior part. The air passage is moved to both ends in the vertical direction, thereby preventing backlash from occurring in the sliding operation. Furthermore, in each of the two air passages provided close to both ends, eight chambers (32b) each having a throttling function for generating a static pressure were provided in the periphery.

図7は本計測器のチャンバーのある位置で水平切断した横断面と、圧縮空気の流れを示した。周囲4箇所の円形は支柱の断面を表し、中程の比較的大きな円形とその内部はリニアガイドを抱え込んだリフトの断面を示した。リフト断面図の中の内側面(32a)で囲まれた正方形は中空で、該正方形をなす4つの内側面の中にリニアガイド(37)を抱え込む。ガイド凸面(i2)が静圧軸受面領域となるため、ガイド凸面のなかほどに吐出口(32e)が向かうよう8箇所全てのガイド凸面に向けて同じく8箇所の吐出口を配置する。エア通路から圧縮空気を絞って吐出口へ供給するチャンバー(32b)をエア通路と吐出口の間に設ける。以上の構成で空圧源(s)から供給された圧縮空気は外装部(32m)内を1周するエア通路(33c)を巡り矢印の方向で8箇所のチャンバーに向かい、そこからさらに絞られ各8箇所の吐出口から噴出して、4方8箇所の全ガイド凸面で静圧が発生し、その結果、空隙(h3)を保持してエアチャッキングする。リニアガイドの各側面中程にガイド溝(37g)を設けることにより、リニアガイド4方のコーナーを占めるガイド凸面の静圧軸受面領域のみでエアチャッキングするため、静圧のセンタリング効果により、リフトが水平方向での回転力に対向してブレのないスライドを実現できる。さらに、ガイド溝がそのまま静圧の排気溝になるため、静圧独特の振動の予防にもなる。また、リニアガイドの4方の角に面(i4)を設けたが、これも排気溝になるため、やはり振動の予防になる。円筒形の外装部(32m)は、内装部(32n)の側面全部を覆い、かつ、焼きばめで密着するが、密閉目的のパッキン装着を省略できるからである。   FIG. 7 shows a cross section horizontally cut at a position of the chamber of the measuring instrument and the flow of compressed air. The surrounding four circles represent the cross section of the column, and the relatively large circle in the middle and the inside of it showed the cross section of the lift holding the linear guide. The square surrounded by the inner surface (32a) in the lift sectional view is hollow, and the linear guide (37) is held in the four inner surfaces forming the square. Since the guide convex surface (i2) serves as a hydrostatic bearing surface region, eight discharge ports are similarly arranged toward all the eight guide convex surfaces so that the discharge ports (32e) are directed to the guide convex surface. A chamber (32b) that squeezes compressed air from the air passage and supplies it to the discharge port is provided between the air passage and the discharge port. The compressed air supplied from the air pressure source (s) with the above configuration travels around the air passage (33c) that goes around the inside of the exterior part (32m) toward the eight chambers in the direction of the arrows, and is further restricted from there. Ejected from each of the eight discharge ports, static pressure is generated on all four convex surfaces of the four sides in the four directions. As a result, air chucking is performed while holding the gap (h3). By providing guide grooves (37g) in the middle of each side of the linear guide, air chucking is performed only on the hydrostatic bearing surface area of the guide convex surface that occupies the corner of the linear guide 4 side. However, it is possible to realize a non-blurring slide facing the rotational force in the horizontal direction. Furthermore, since the guide groove becomes an exhaust groove of static pressure as it is, it also prevents vibration unique to static pressure. Further, although the surface (i4) is provided at the four corners of the linear guide, this also serves as an exhaust groove, which also prevents vibration. This is because the cylindrical exterior portion (32m) covers the entire side surface of the interior portion (32n) and is in close contact by shrink fitting, but it is possible to omit packing for sealing purposes.

本図下方にこの横断面では現れない固定つまみ(33)を破線で配置を示した。固定つまみ(33)の一端は雄ネジ構造でリフト外装部側面の穴(32r)を貫通しさらに、リフト内装部の雌ネジ穴(32p)に侵入して固定できる。そして、リフト内側面(32b)を貫き突出した先端(33e)が対向するリニアガイド溝に向かい、固定つまみを締めれば、先端(33e)がリニアガイド溝にぶつかり、かつ、固定つまみ先端が貫いたリフト内側面に対向するリフト内側面(32c)とその向かい側のリニアガイド凸面(i2c)2面とが接触し、リニアガイドを両方から挟み込む形となる。このようにして、リニアガイドのスライドストローク内における任意の位置でリフトを固定できる。また、リフトを上下にスライドさせる際には、該固定つまみを指でつまんだまま緩め、リニアガイドを挟み込みから開放する。固定つまみを締めるまではリフトが落ちないように指でつまんだまま支持する必要がある。   The fixed knob (33) which does not appear in this cross section is shown by a broken line below the figure. One end of the fixing knob (33) has a male screw structure and penetrates the hole (32r) on the side surface of the lift exterior part, and further enters the female screw hole (32p) of the lift interior part and can be fixed. When the tip (33e) protruding through the lift inner surface (32b) faces the opposing linear guide groove and the fixing knob is tightened, the tip (33e) collides with the linear guide groove and the fixing knob tip penetrates. The lift inner surface (32c) facing the lift inner surface contacts the two linear guide convex surfaces (i2c) opposite to the lift inner surface to sandwich the linear guide from both sides. In this way, the lift can be fixed at an arbitrary position within the slide stroke of the linear guide. When the lift is slid up and down, the fixing knob is loosened while pinching it with a finger, and the linear guide is released from being caught. Until the fixing knob is tightened, it is necessary to support with the fingers pinched so that the lift does not fall.

図8は3層構造の支持台(36)を分解したものである。上から可変ベースa(36a),可変ベースb(36b)、静圧ベース(36c)、その下のコマは静圧ベースの一部となる。可変ベースaは該底面に設置したピース2個と調整ネジYの3点で可変ベースbの上部面の窪みである3箇所のシンク(36s)に接地する。可変ベースbは該底面に設置したピース2個と調整ネジXの3点で静圧ベース上部面の3箇所のシンクに接地する。シンクの配置はピース2個と調整ネジの合計3点の配置と対応しており、該3点の配置は各々のベース中心を中央に見る正三角形を形成し、2つのドーナツ状上部面(36bf、36cs)の縁にあたらない中ほどに設定するのが強度上好ましい。そして、シンク窪みの底もピースと調整ネジの接地させる先端の形状も平面とする。又、シンク窪みの底もピースと調整ネジの接地させる先端の形状を半球形としても良いが、その場合シンクの球半径の方を大きくしシンク内でピースや調整ネジの先端を点接地させるとベース同士が緩やかに噛合う状態で、座りを安定させるのが好ましい。   FIG. 8 is an exploded view of a three-layer support base (36). The variable base a (36a), the variable base b (36b), the static pressure base (36c) from the top, and the coma below it become a part of the static pressure base. The variable base a is grounded to three sinks (36s) which are depressions on the upper surface of the variable base b at three points, two pieces installed on the bottom surface and the adjusting screw Y. The variable base b is grounded to three sinks on the upper surface of the static pressure base at three points, two pieces installed on the bottom surface and the adjusting screw X. The arrangement of the sinks corresponds to the arrangement of two pieces and a total of three adjustment screws. The arrangement of the three points forms an equilateral triangle with the center of each base as the center, and two donut-shaped upper surfaces (36bf , 36cs), it is preferable from the standpoint of strength that it is set so as not to hit the edge. The bottom of the sink recess and the shape of the tip of the piece and the adjusting screw that are grounded are also flat. In addition, the bottom of the sink recess may have a hemispherical shape for the tip of the piece and the adjustment screw to be grounded, but in that case, if the sphere radius of the sink is increased and the tip of the piece or the adjustment screw is grounded in the sink It is preferable to stabilize the seat while the bases are gently engaged with each other.

各調整ネジは、設置する可変ベースの底面から下方へ突出し、他の設置した2個のピースと同様の突出程度が好ましい。また、調整ネジYはホールY(37hy)内の雌ネジに対応し、調整ネジXはホールX2(37hx2)内の雌ネジに対応し、可変ベースaホールX(37hx)を貫通するだけである。そのため、可変ベースaの厚み分だけ調整ネジXの長さを調整ネジYより長くするのが好ましい。中央部から見た、2つの調整ネジ(37a,37b)のなす角度(θ)は90度とするが、リニアガイドの垂直微調整を調整ネジの最小回転で実現するためである。   Each adjustment screw protrudes downward from the bottom surface of the variable base to be installed, and preferably has a protruding degree similar to that of the other two installed pieces. The adjusting screw Y corresponds to the female screw in the hole Y (37hy), the adjusting screw X corresponds to the female screw in the hole X2 (37hx2), and only passes through the variable base a hole X (37hx). . Therefore, it is preferable to make the length of the adjustment screw X longer than the adjustment screw Y by the thickness of the variable base a. The angle (θ) formed by the two adjustment screws (37a, 37b) as viewed from the center is 90 degrees, but this is for realizing the fine vertical adjustment of the linear guide with the minimum rotation of the adjustment screw.

コマ(36k)の外形は大小2つの円柱を上下に重ね、側面から見ると凸状の階段構造の回転体である。この形状に対応し静圧ベースの内部をくり抜き、静圧ベースの下方からコマを挿入すると、凸状階段構造の回転体のコマと凹状にくり抜いた静圧ベース内部の階段構造の回転体空間(陰のため省略)に公差を残して噛合う構成が好ましい。コマの上部面(36ka)は静圧ベース中央のホール(36h)に覗くことができ、該ホール最上部より突出しないのが好ましい。凸状階段構造の回転体のコマは凹状にくり抜いた静圧ベース内部の階段構造の回転体空間よりも公差分小さく、コマの上部面と底面(図4−31f)の2面以外は凹状にくり抜いた静圧ベース内部空間の面(陰のため省略)に接触するのが好ましい。このようにコマは静圧ベースと一体となり、その結果、両者が閉鎖する空間(図4―35)は静圧発生のための円環状チャンバーを形成する。チャンバーと底面(31b)等の形状および静圧発生にしくみは実施例1の0030項〜0037項で述べた技術と重複するため省略する。ただし、静圧ベースには中央のホール(36h)があるため空気の漏れを止めるパッキンを追加して設けるのが好ましい。図8ではパッキンとなるOリングの描写を省略したが、図4に示したようにコマと静圧ベースが上下で接触する面(36kf)に設置するのが好ましく、この点が実施例1と異なる。   The outer shape of the frame (36k) is a rotating body having a convex staircase structure as viewed from the side, with two large and small cylinders stacked one above the other. Corresponding to this shape, hollow out the interior of the static pressure base and insert a piece from the bottom of the static pressure base to insert a piece of rotating body with a convex staircase structure and a rotating body space of the staircase structure inside the static pressure base hollowed out into a concave shape ( It is preferable to have a configuration in which a tolerance is left in place and the meshing is omitted. The upper surface (36ka) of the top can be seen through the hole (36h) in the center of the static pressure base, and preferably does not protrude from the top of the hole. The top of the rotating body of the convex staircase structure has a smaller tolerance than the space of the rotating body of the staircase structure in the static pressure base hollowed out in a concave shape, and the concave surface is concave except for the top and bottom surfaces (Fig. 4-31f) of the top. It is preferable to make contact with the surface of the interior space of the hollow static pressure base (omitted for shade). In this way, the coma is integrated with the static pressure base, and as a result, the space in which both are closed (FIG. 4-35) forms an annular chamber for generating static pressure. The shape of the chamber, the bottom surface (31b), etc. and the mechanism for generating static pressure overlap with the technique described in the paragraphs 0030 to 0037 of the first embodiment, and will be omitted. However, since the static pressure base has a central hole (36h), it is preferable to provide an additional packing for stopping air leakage. Although the depiction of the O-ring serving as the packing is omitted in FIG. 8, it is preferable to install the O-ring on the surface (36 kf) in which the top and the static pressure base are in contact with each other as shown in FIG. Different.

固定ボルト(図4−39b)はコマを静圧ベースに固定する役割を果たすが、本図8では省略した。締付ボルト(39)が入る雌ねじは一番上の可変ベースa下部面中央の穴(陰のため省略)に切ってあり、可変ベースbを静圧ベースと可変ベースaが上下から挟み込んで締付ける構成となる。締付ボルトは固定はせず、遊びをもたせることによって、0017、0042,0052項で述べた調整ネジの上下により支持台の上面部(31a)の傾斜の微調整ができ、そのまま、リニアガイドの垂直補正にもなる。さらに、締付ボルトの遊びにバネを挿入することで弾力性のある締付けを実現する。該バネは狭いスペースでも十分な弾性を発揮する皿バネ(39s)が好ましい。皿バネの装着にあたり、一番下がワッシャー(39w)でその上に複数の皿バネを交互に向きを変え各穴をそろえて配置し、締付ボルトのネジ山のある方を上にして該各穴を全て貫通させる。また、図には示さなかったが締付ボルトによる過剰締付を防止するために、重なった皿バネを側面から包み込む円筒状の部品を組み込むことも有益と考えられる。以上のように、3層構造の支持台は締付剛性を確保したフレキシブルなクランプで、リニアガイドの直立保持と簡便な垂直補正を実現した。   The fixing bolt (FIG. 4-39b) plays the role of fixing the top to the static pressure base, but is omitted in FIG. The female screw into which the tightening bolt (39) is inserted is cut in a hole (not shown for shade) at the top of the upper surface of the variable base a, and the variable base b is clamped between the static pressure base and the variable base a from above and below. It becomes composition. The clamping bolt is not fixed, but by providing play, the inclination of the upper surface portion (31a) of the support base can be finely adjusted by moving the adjustment screw described in the paragraphs 0017, 0042, and 0052, as it is. It also becomes vertical correction. Furthermore, elastic tightening is realized by inserting a spring into the play of the tightening bolt. The spring is preferably a disc spring (39s) that exhibits sufficient elasticity even in a narrow space. When mounting the disc spring, the bottom is a washer (39w), and a plurality of disc springs are alternately placed on the washer with the holes aligned, with the screw bolts facing upward. All holes are penetrated. Although not shown in the drawing, in order to prevent excessive tightening by the tightening bolt, it is considered beneficial to incorporate a cylindrical part that wraps the overlapping disc spring from the side. As described above, the support base of the three-layer structure is a flexible clamp that secures the tightening rigidity, and realizes the linear guide upright holding and simple vertical correction.

図9は本発明の第3の実施例を示したものである。円筒スコヤ(40)自体が静圧による浮上支持で容易に定盤上を移動できる。静圧用の圧縮空気は、空圧源(S)のホースを円筒スコヤの側面の穴(W)に取り付けることにより、そこから伸びるトンネル(42)を通過して、チャンバー(45)内に送り込む。チャンバーはコマ(44)が入ることによりドーナツ状の空間となっており、その内部は等圧の圧縮空気で満たされる。チャンバーから圧縮空気が絞られ底面の全部の吐出口(43)から排気され円筒スコヤの底面(41b)と定盤(3)との間に発生した静圧により、定盤との間にわずかな空隙(h)を継続して形成する。静圧用の圧縮空気が一定圧で供給されれば、定盤との間の空隙も一定で浮上し続ける。静圧発生の詳しいしくみは実施例1の0030項〜0037項で述べた。   FIG. 9 shows a third embodiment of the present invention. The cylindrical squirt (40) itself can be easily moved on the surface plate by the floating support by static pressure. The compressed air for static pressure is sent into the chamber (45) through the tunnel (42) extending therefrom by attaching the hose of the pneumatic pressure source (S) to the hole (W) on the side surface of the cylindrical skewer. The chamber becomes a donut-shaped space by entering the top (44), and the inside is filled with compressed air of equal pressure. Compressed air is squeezed from the chamber, exhausted from all the discharge ports (43) on the bottom surface, and slightly generated between the surface plate due to the static pressure generated between the bottom surface (41b) of the cylindrical disc and the surface plate (3). The void (h) is continuously formed. If the compressed air for static pressure is supplied at a constant pressure, the air gap between the surface plate and the surface plate also keeps rising. The detailed mechanism of the generation of static pressure was described in the paragraphs 0030 to 0037 of Example 1.

図10は文字通りの円筒形スコヤで実施例を示した。図9のスコヤと大きく異なるのはパイプ状なので内部は空洞であり、コマへ上下に貫通する排気口(47h)を設ければ静圧の排気を自体の内部を貫通し下から上へ逃がせることである。本図を例示したのは円筒スコヤの重量が過大である場合、自体を浮上させる底面での静圧剛性の強化を考慮する必要性が生じる為である。空圧源から供給するエア節約のため、供給空圧を上げない底面の静圧剛性強化法として例えば、底面凸状部(48)である静圧軸受面の面積を拡大するため、溝(47)の幅を狭めたり、本数を減らしたりする。この場合、溝の深さを深くして排気の逃げを確保する。別の方法として、底面凸状部の溝を一切なくしてしまう。この場合、コマ(44)と蓋(42)を貫通する排気口・排気出口(47e)を設け、該排気口・排気出口と円筒スコヤの空洞(40e)を通じて排気の逃げを確保する。また、底面凸状部ほどではないが底面凹状部(49)でも円筒スコヤ自体を浮上させる力が働くため、排気の逃げが大きすぎると該底面凹状部で自体を浮上させる力が無くなりエアを浪費し易く、排気の逃げが小さすぎるとエアの浪費はなく浮上し易いが振動(ニューマチィックハンマー)が起き易い欠点がある。いづれにしても、排気のコントロールは本計測器の大きさと作業環境と密接した問題なため、状況に応じ排気用の溝、排気口・排気出口の形状等を設定するのが好ましい。   FIG. 10 shows an embodiment with a literal cylindrical scorer. The difference from the square in FIG. 9 is that it is pipe-shaped, so the inside is a cavity, and if an exhaust port (47h) that penetrates up and down is provided in the top, static pressure exhaust can pass through itself and escape from the bottom to the top That is. This figure is illustrated because it is necessary to consider the enhancement of the static pressure rigidity at the bottom surface on which the cylinder scorer is levitated when the weight of the cylindrical skewer is excessive. In order to save air supplied from the air pressure source, as a method for enhancing the static pressure rigidity of the bottom surface without increasing the supply air pressure, for example, in order to enlarge the area of the hydrostatic bearing surface which is the bottom surface convex portion (48), the groove (47 ) Or reduce the number. In this case, the depth of the groove is increased to ensure exhaust escape. As another method, the groove on the bottom convex portion is eliminated. In this case, an exhaust port / exhaust outlet (47e) penetrating the top (44) and the lid (42) is provided, and exhaust escape is ensured through the exhaust port / exhaust port and the hollow (40e) of the cylindrical skewer. In addition, although the bottom concave part (49) is not as strong as the bottom convex part, the force to lift the cylindrical square itself works. Therefore, if the exhaust escape is too large, the bottom concave part does not have the force to lift itself and wastes air. If the exhaust escape is too small, air is not wasted and it is easy to float, but there is a drawback that vibration (pneumatic hammer) is likely to occur. In any case, since the exhaust control is a problem closely related to the size of the measuring instrument and the working environment, it is preferable to set the exhaust groove, the shape of the exhaust outlet / exhaust outlet, etc. according to the situation.

円筒スコヤ底面の構造および材質は実施例1と概ね同じである。蓋は円筒スコヤ上端に空洞を覆うように埋め込んで取り付け、固定ボルト(42b)で固定した。   The structure and material of the bottom surface of the cylindrical scorer are substantially the same as those in the first embodiment. The lid was embedded by being embedded in the upper end of the cylindrical square so as to cover the cavity, and fixed with a fixing bolt (42b).

図11は本発明の第4の実施例を示した。計測器支持台(70)の概形は円盤状であり、円環状の外装部(71)と円柱状のコマ(72)の2個の主要部品で構成する。外装部とコマを円環状、円柱状としたのは旋盤加工でにおける作業性の容易さからである。平面図は該支持台を上から見たもので、外装部とのコマは同心円に配置する。この円形の上部面にハイトゲージ等の計測器を載せて計測作業を行うが、大型の計測器を載せたい場合は平面図と同じ水平投影面積のみを拡大すれば安定した載置ができ、厚み(70h)を大きくする必要がない。その結果、低い位置からの計測と、低い重心での安定利用ができる点が最大の長所である。また、載せたい計測器の底面積が小さい場合、計測器の底面にマグネット装着の物ならばそのまま使用できるが、マグネットでなければコマを貫通するボルト穴(74)等を設け、該ボルト穴を貫通するボルトを用いて計測器と本支持台を上部面(72a)で固定することも可能である。   FIG. 11 shows a fourth embodiment of the present invention. The general shape of the measuring instrument support (70) is disk-shaped, and is composed of two main parts, an annular exterior part (71) and a columnar frame (72). The reason why the exterior part and the top are formed in an annular shape and a cylindrical shape is that workability in lathe processing is easy. In the plan view, the support is viewed from above, and the frame with the exterior portion is arranged concentrically. A measuring instrument such as a height gauge is mounted on the upper surface of this circle, but when a large measuring instrument is to be mounted, stable mounting can be achieved by expanding only the same horizontal projection area as the plan view. There is no need to increase 70h). As a result, the greatest advantage is that measurement from a low position and stable use at a low center of gravity are possible. Also, when the bottom area of the measuring instrument to be placed is small, if the magnet is attached to the bottom of the measuring instrument, it can be used as it is, but if it is not a magnet, a bolt hole (74) etc. that penetrates the top is provided, It is also possible to fix the measuring instrument and the main support base on the upper surface (72a) using a penetrating bolt.

チャンバー、底部面(70b)等の形状および静圧発生のしくみは実施例1の0030項〜0037項で述べたことと重複するため省略する。ただし、外装部は円環状なので内部が中空のため空気の漏れを止めるパッキンをチャンバーより高い位置と低い位置に2ヶ所(72r1、72r2)、コマの側面(72s)に設けるのが好ましく、この点が実施例1と異なる。   The shape of the chamber, the bottom surface (70b) and the like and the mechanism for generating static pressure are the same as those described in the paragraphs 0030 to 0037 of the first embodiment, and are therefore omitted. However, since the exterior part is annular, the inside is hollow, so it is preferable to provide packing that stops air leakage at two locations (72r1, 72r2) and a side surface (72s) above and below the chamber. Is different from the first embodiment.

実施例1乃至実施例3のいずれの場合においても、計測器を設置する定盤表面の平滑度、平坦度は精度のより高い状態が好ましい。   In any case of Examples 1 to 3, it is preferable that the smoothness and flatness of the surface of the surface plate on which the measuring instrument is installed have a higher accuracy.

請求項5ではチャンバー形成のための溝構造を設ける場所につき外装部とコマの両方、又は外装部かコマのいずれか、という3つの選択肢を示したが、本実施例では成形加工の工程の少なさから、枠状の外装部のみに溝構造を設ける方法をとった。   In claim 5, three options of either the exterior part and the frame, or either the exterior part or the frame, are shown for the location where the groove structure for forming the chamber is provided. Therefore, a method of providing a groove structure only in the frame-shaped exterior part was adopted.

図12は外装部を側面から見て縦断面図を示した。コマの入る穴径(m2)よりも若干小さい径(m1)を形成するするエッジ(eg)を設けることのより、その下部面(71d)に下から挿入したコマが当たって停止することとなる。停止したコマは2個のOリング(72r1,72r2)の弾力による密着力で固定できる。72s、72ssの2面は元来1個の面であったが、旋盤による突っ切りで2個に分断された。そうして出来た71e、71f、71gの3つの切削面がチャンバー形成のための溝構造を構成する。静圧発生のしくみについては実施例1の0030〜0037項と重なるので省略する。   FIG. 12 shows a longitudinal sectional view of the exterior part as seen from the side. By providing an edge (eg) that forms a diameter (m1) slightly smaller than the hole diameter (m2) into which the frame enters, the frame inserted from below hits the lower surface (71d) and stops. . The stopped frame can be fixed by the adhesion force due to the elasticity of the two O-rings (72r1, 72r2). The two surfaces of 72s and 72s were originally one surface, but were divided into two by a parting with a lathe. The three cut surfaces 71e, 71f and 71g thus formed constitute a groove structure for forming a chamber. Since the mechanism for generating static pressure overlaps with the items 0030 to 0037 in Example 1, the description thereof is omitted.

図13,14は本発明の第5の実施例を示したものである。位置決め補正台(50,50t)は静圧による浮上支持で支持台下のテーブル等と非接触となり、容易にボール盤等のテーブル(61)上を移動できる。静圧用の圧縮空気は、空圧源(S)の供給ホースを補正台の側面穴(W)に取り付け、側面から内部まで貫くトンネル(59)を経て、チャンバー(55)内に送り込む。チャンバー内は等圧の圧縮空気で満たされ、さらに絞られ底面の全部の吐出口(56)から排気され補正台底面部(53b)とテーブルとの間で発生する静圧により、テーブルとの間にわずかな空隙(h)を継続して形成する。支持台は、静圧用の圧縮空気が空圧源より一定圧で供給されれば、テーブルとの間の静圧による空隙も一定で浮上し続ける。   13 and 14 show a fifth embodiment of the present invention. The positioning correction table (50, 50t) is supported in a floating manner by static pressure and is not in contact with the table or the like under the support table and can easily move on the table (61) such as a drilling machine. The compressed air for static pressure is sent into the chamber (55) through the tunnel (59) penetrating from the side surface to the inside by attaching the supply hose of the pneumatic pressure source (S) to the side hole (W) of the correction table. The inside of the chamber is filled with compressed air of equal pressure, and is further squeezed and exhausted from all the discharge ports (56) on the bottom surface, and the static pressure generated between the correction table bottom surface portion (53b) and the table causes a gap between the chamber and the table. A slight void (h) is continuously formed. When the compressed air for static pressure is supplied at a constant pressure from the air pressure source, the gap between the support table and the table due to the static pressure continues to float.

図15の位置決め補正台の底面部(53b)の表面は、静圧軸受面領域であるから鏡面仕上げであること、および、鏡面仕上げ状態を維持するために、支持台に鉄鋼材を用いた場合は焼きいれなどで硬度を高めておくことが好ましい。理由は、衝撃による歪みで底面に突出部が生じると、該突出部との接触により安定した浮上支持が難しくなるからである。   When the surface of the bottom surface portion (53b) of the positioning correction table in FIG. 15 is a hydrostatic bearing surface region, it is mirror-finished, and when a steel material is used for the support table in order to maintain the mirror-finished state It is preferable to increase the hardness by burning or the like. The reason is that if a protruding portion is generated on the bottom surface due to distortion caused by an impact, stable floating support becomes difficult due to contact with the protruding portion.

図15は位置決め補正台(50)を下から見た形状を示した。底面部の吐出口は、静圧に剛性を持たせること、また支持台内部チャンバー(55)をボーリング加工により形成する作業性の点からも、面全体に等間隔で行列状に配置するの好ましい。   FIG. 15 shows the shape of the positioning correction table (50) viewed from below. The discharge ports on the bottom surface portion are preferably arranged in a matrix at equal intervals over the entire surface from the viewpoint of giving rigidity to static pressure and workability for forming the support base internal chamber (55) by boring. .

図13のハンドル(54)は、ボール盤加工に際し、加工ポイントの位置決めが終わった後、左手で補正台のハンドルを握ったまま、該ハンドルに設置した圧縮空気吐出のオン・オフスイッチ(51)を指一本でオフにし、静圧を停止して位置決め補正台を着地させる。そこで右手を使ってボーリング作業に移るが左手で補正台のハンドル(54)を握っているので、材料を間接的に固定しており安定した作業ができる。このように、左右双方の手はそれぞれ同じハンドルを握ったまま、位置決め・精度の高いセンタリング・固定・加工の一連の動作を反復してできるので効率がよい。   The handle (54) shown in FIG. 13 has a compressed air discharge on / off switch (51) installed on the handle, while holding the handle of the correction table with the left hand after the machining point has been positioned. Turn off with one finger, stop the static pressure, and land the positioning correction stand. Therefore, the right hand is used for boring work. Since the left hand is holding the handle (54) of the correction table, the material is indirectly fixed and stable work can be performed. In this way, both the left and right hands hold the same handle, and the series of operations of positioning, high-precision centering, fixing, and machining can be repeated, which is efficient.

図13には、補正台への材料取付手段として、穴型・T溝型の2つのタイプを例示したが、作業目的に応じて使い分けるのが好ましい。T溝型のハンドルに空圧源のホースが連結されていないのは、圧縮空気吐出のオン・オフスイッチを足踏み式である場合を想定した物で、スイッチを足踏み式にした場合でも加工の一連の動作を反復するのに効率がよい。足踏み式スイッチの描写は省略した。   In FIG. 13, two types of hole type and T-groove type are illustrated as means for attaching the material to the correction table, but it is preferable to use them properly according to the purpose of the work. The reason why the pneumatic source hose is not connected to the T-groove handle is based on the assumption that the compressed air discharge on / off switch is a stepping type. It is efficient to repeat the operation. The illustration of the foot switch is omitted.

図13のハンドルがリンク構造で伸縮するものであるので、位置きめ時と加工時とでハンドルの長さを使い分けでき、作業効率を向上させることができる。
又、アーム部材の長さや部品点数を変えることにより、作業者の環境に合わせることが容易である。
Since the handle of FIG. 13 expands and contracts with a link structure, the length of the handle can be properly used for positioning and processing, and work efficiency can be improved.
Further, by changing the length of the arm member and the number of parts, it is easy to match the operator's environment.

図16はボール盤加工を例に、位置決め補正のしくみを説明するものである。材料の加工予定域(F2)のセンター(α2)に合わせてもみつけ加工による仮穴(F1)を設けた後、ドリル(3)で本加工する場合を想定し側面図を描いた。目視でドリルの先端のセンター(α1)に仮穴のセンター(α2)が向かうよう位置決め補正台に載った材料を移動する。しかし、両センター(α1、α2)は容易に一致しないが、回転したドリルをゆっくり降下させ円錐先端部(3e)を仮穴に軽くすり合わせるだけで、浮上支持されている材料は降下するドリルの回転力によって微細な横方向の位置補正がなされ、両センター(α1、α2)一直線になり加工予定域へ正確なボーリングを行える。従来は両センターが一致しないままボーリング加工し、当然に加工予定域からズレてしまい不良品になったり、ドリルを破損させることもあったが、本発明によりこのような問題を克服できた。   FIG. 16 illustrates the mechanism of positioning correction, taking drilling as an example. A side view was drawn assuming that a temporary hole (F1) was formed by staking processing in accordance with the center (α2) of the planned processing region (F2) of the material, and then this processing was performed with a drill (3). The material placed on the positioning correction table is moved so that the center (α2) of the temporary hole faces the center (α1) of the tip of the drill visually. However, although both centers (α1, α2) do not match easily, the material that is supported by the descent is lowered only by slowly lowering the rotated drill and lightly sliding the cone tip (3e) into the temporary hole. The lateral position is finely corrected by the rotational force, and both centers (α1, α2) are aligned, and accurate boring can be performed to the planned machining area. Conventionally, the two centers have been bored without matching, and naturally they have shifted from the planned machining area, resulting in a defective product or damage to the drill. However, the present invention has overcome such problems.

本発明は平滑度、垂直の計測あるいは重量物の移動について、設計、加工、組立、いずれの場面でも利用されうる。静圧で浮上支持しようとする目的物が鉄鋼製品などの重量物であるほど、利用価値が広がる。また逆に材料が小さく、小型の定盤上で計測したい場合は、計測器・計測器のアーム・計測器支持台のいずれも小型の物を用いれば本発明の効果を実現できる。また、実施例1,2,3、4を組み合わせて使用すればある程度の3次元測定が簡便になる。大型の3次元測定器のように熱変異、自重によるたわみ等の構造的ひずみがほとんど問題にならず、低コストで場所もとらず、多くの現場で既存の設備をかえず精度向上を実現でき利用可能性は高い。   The present invention can be used in any of the design, processing, and assembly scenes regarding smoothness, vertical measurement, or heavy object movement. The more the object to be lifted and supported by static pressure is a heavy object such as a steel product, the more the utility value is expanded. On the other hand, if the material is small and measurement is desired on a small surface plate, the effect of the present invention can be realized by using a small object for the measuring instrument, measuring instrument arm, and measuring instrument support. If Examples 1, 2, 3, and 4 are used in combination, a certain degree of three-dimensional measurement is simplified. Structural distortions such as thermal variation and deflection due to its own weight are hardly a problem like a large three-dimensional measuring instrument, and it is possible to improve accuracy without changing existing facilities at many sites at low cost. The availability is high.

計測器の実施方法を示した説明図 (実施例1)Explanatory drawing which showed the implementation method of a measuring instrument (Example 1) 計測器支持台外装部の断面図 (実施例1)Sectional view of instrument support base exterior (Example 1) アーム分解図 (実施例1)Arm exploded view (Example 1) 計測器の実施方法を示した説明図 (実施例2)Explanatory drawing which showed the implementation method of a measuring instrument (Example 2) 計測器の平面図 (実施例2)Plan view of measuring instrument (Example 2) リニアガイド・リフト断面図 (実施例2)Cross section of linear guide / lift (Example 2) 計測器の断面図 (実施例2)Sectional view of measuring instrument (Example 2) 計測器支持台の分解図 (実施例2)Exploded view of measuring instrument support (Example 2) 計測器の実施方法(円柱)を示した説明図 (実施例3)Explanatory drawing which showed the implementation method (cylinder) of a measuring instrument (Example 3) 計測器の実施方法(円筒)を示した説明図 (実施例3)Explanatory drawing which showed the implementation method (cylinder) of a measuring instrument (Example 3) 計測器支持台の実施方法を示した説明図 (実施例4)Explanatory drawing which showed the implementation method of a measuring device support stand (Example 4) 外装部の断面図 (実施例4)Sectional view of exterior part (Example 4) 位置決め補正台の実施方法を示した説明図 (実施例5)Explanatory drawing which showed the implementation method of a positioning correction stand (Example 5) 位置決め補正台の正面図 (実施例5)Front view of positioning correction table (Example 5) 位置決め補正台の底面図 (実施例5)Bottom view of positioning correction table (Example 5) 補正の説明図 (実施例5)Explanatory drawing of correction (Example 5)

符号の説明Explanation of symbols

10 計測器支持台
20 計測器
30 計測器
40 計測器(円筒スコヤ)
70 計測器支持台
50 位置決め補正台
h 空隙
h2 空隙
h3 空隙
10 Measuring instrument support stand 20 Measuring instrument 30 Measuring instrument 40 Measuring instrument (cylindrical square)
70 Measuring instrument support base 50 Positioning correction base h Air gap h2 Air gap h3 Air gap

Claims (6)

計測器支持台上部面に計測部を角度自在に連結するアームの固定用支柱を備え、該計測器支持台の底面内側が凹状であり底面外側が凸状で、該凸状面が静圧軸受面領域となりそこに圧縮空気の吐出口と、圧縮空気の逃げ溝を設けたことを特徴とする計測器。 A support column for an arm that connects the measuring unit to the measuring device support base at an angle is provided on the upper surface of the measuring instrument support base, the inner bottom surface of the measuring instrument support base is concave, the outer bottom surface is convex, and the convex surface is a hydrostatic bearing. A measuring instrument characterized in that a compressed air discharge port and a compressed air relief groove are provided in a surface area. 静圧ベース底面内側が凹状であり底面外側が凸状で、該凸状面が静圧軸受面領域となりそこに圧縮空気の吐出口と圧縮空気の逃げ溝を設け、可変ベースを該静圧ベースの上で傾き自在に連結した、該可変ベース上面部に計測器を載置できることを特徴とする計測器支持台。 The inside of the bottom surface of the static pressure base is concave and the outside of the bottom surface is convex, and the convex surface becomes a static pressure bearing surface area, which is provided with a discharge port for compressed air and a relief groove for compressed air. A measuring instrument support, characterized in that a measuring instrument can be placed on the upper surface of the variable base that is tiltably connected to the top of the instrument. 計測部を連結する水平断面が中空状であるリフトの内側面に圧縮空気の吐出口を設けて、空隙を開け該リフトが抱え込むリニアガイドとの間に静圧軸受面領域を形成し、該リフトは直立したリニアガイドを抱え込んだまま上下にスライドするようにしたことを特徴とする、請求項2の計測器支持台に載置する計測器。 A discharge port for compressed air is provided on the inner surface of the lift that has a hollow horizontal cross section connecting the measuring unit, and a hydrostatic bearing surface area is formed between the lift and the linear guide that the lift holds. The instrument mounted on the instrument support base according to claim 2, wherein the instrument slides up and down while holding an upright linear guide. 底面内側が凹状であり底面外側が凸状で該凸状面が静圧軸受面領域となり、圧縮空気吐出口を該静圧軸受面領域に配置したことを特徴とする円筒スコヤー。 A cylindrical scorer characterized in that a bottom inner side is concave, a bottom outer side is convex, the convex surface is a hydrostatic bearing surface region, and a compressed air discharge port is disposed in the hydrostatic bearing surface region. 枠状外装部の中空部分にコマを挿入して一体の計測器支持台となり、該支持台上部面に計測器を載置できるが、該枠状外装部とコマの両方に、又は、枠状外装部とコマのいずれか一方において両者が接触する内部面に圧縮空気のチャンバーを形成するための溝構造を設け、かつ、底部面においては内側部分が凹状となり、余の外側部分は凸状で、該凸状面に圧縮空気吐出口と逃げ溝を設けたことを特徴とする計測器支持台。 The frame is inserted into the hollow part of the frame-shaped exterior part to become an integrated measuring instrument support base, and the measuring instrument can be placed on the upper surface of the support base. A groove structure for forming a chamber of compressed air is provided on the inner surface where either the exterior part or the top is in contact, and the inner part is concave on the bottom part, and the other outer part is convex. A measuring instrument support, wherein the convex surface is provided with a compressed air discharge port and a relief groove. 位置決め補正台の底面部に圧縮空気吐出口を設け、該底面を静圧軸受面領域とし、圧縮空気吐出のオン・オフスイッチを有する持ち手角度自在なハンドルを設けたことを特徴とする位置決め補正台。 Positioning correction table with a compressed air discharge port on the bottom, a hydrostatic bearing surface area on the bottom, and a handle with a handle that has an ON / OFF switch for compressed air discharge. Stand.
JP2004246206A 2004-08-26 2004-08-26 Measuring instrument using static pressure gas bearing and supporting stand Pending JP2006064489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004246206A JP2006064489A (en) 2004-08-26 2004-08-26 Measuring instrument using static pressure gas bearing and supporting stand

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004246206A JP2006064489A (en) 2004-08-26 2004-08-26 Measuring instrument using static pressure gas bearing and supporting stand

Publications (1)

Publication Number Publication Date
JP2006064489A true JP2006064489A (en) 2006-03-09

Family

ID=36111106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004246206A Pending JP2006064489A (en) 2004-08-26 2004-08-26 Measuring instrument using static pressure gas bearing and supporting stand

Country Status (1)

Country Link
JP (1) JP2006064489A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102878897A (en) * 2012-09-24 2013-01-16 常州市双成工具有限公司 Quick detector for ball-head boss in workpiece groove

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102878897A (en) * 2012-09-24 2013-01-16 常州市双成工具有限公司 Quick detector for ball-head boss in workpiece groove

Similar Documents

Publication Publication Date Title
WO2020224614A1 (en) Split-type adjustable-swing-angle aerostatic bearing device for static balancing of rotor, and gas-flotation support device for static balancing of rotating ring-shaped part
US8992086B2 (en) X-Y constraining unit, and stage apparatus and vacuum stage apparatus including the same
JP4769011B2 (en) Aerostatic balancer for machine tools
CN107128695A (en) The adjusting method of regulation instrument, air floating platform and air floating platform
US10391595B2 (en) Floating type machining platform and floating type machining system
KR20060069362A (en) Supporting unit, and moving table device and linear-motion guiding device using the supporting unit
JPH06330944A (en) Static pressure moving guide device
JP2006064489A (en) Measuring instrument using static pressure gas bearing and supporting stand
KR100568207B1 (en) Transporting apparatus
CN108061096B (en) Porous gas static pressure rotary platform
CN107061497B (en) A kind of high-precision interferometer gas-static snubber base
CN113176037A (en) Dynamic balance testing machine
JPH0123262B2 (en)
JP5868709B2 (en) Static pressure gas bearing device
CN111195828A (en) Direct-acting mechanism, balancing device and machine tool
US10364842B2 (en) Long travel air bearing linear stage
JP2001241439A (en) Moving device provided with hydrostatic bearing
JP2006030119A (en) Instrument support stand using static pressure gas bearing, and instrument
US20180111235A1 (en) Work positioner
US20230234176A1 (en) Fluid balancer and machine tool
JPH09222124A (en) Static pressure gas bearing
JP5082297B2 (en) Non-contact cylinder device
JP5211542B2 (en) Bellows device for slide table
CN105880680A (en) Drilling machine for processing of sealing elements
TW202120242A (en) machine tool