JP2006063424A - Method for producing superconducting fine wire of carbon-containing tungsten metal - Google Patents

Method for producing superconducting fine wire of carbon-containing tungsten metal Download PDF

Info

Publication number
JP2006063424A
JP2006063424A JP2004250333A JP2004250333A JP2006063424A JP 2006063424 A JP2006063424 A JP 2006063424A JP 2004250333 A JP2004250333 A JP 2004250333A JP 2004250333 A JP2004250333 A JP 2004250333A JP 2006063424 A JP2006063424 A JP 2006063424A
Authority
JP
Japan
Prior art keywords
tungsten metal
tungsten
carbon
fine wire
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004250333A
Other languages
Japanese (ja)
Other versions
JP2006063424A5 (en
Inventor
Kazuto Hirata
和人 平田
Hadi Sadki El
ハジ サドキ エル
Shuichi Oi
修一 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2004250333A priority Critical patent/JP2006063424A/en
Publication of JP2006063424A publication Critical patent/JP2006063424A/en
Publication of JP2006063424A5 publication Critical patent/JP2006063424A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an epoch-making method for producing a superconductive fine wire of carbon-containing tungsten metal, in which a superconducting fine wire with a nanosize can be produced. <P>SOLUTION: A tungsten organic metal gas containing carbon atoms is decomposed by a convergent ion beam or an electron beam, tungsten metal is directly deposited on a substrate, so as to be plotted, and, at this time, the carbon atoms in the tungsten organic metal gas are incorporated into the tungsten metal. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この出願の発明は、炭素含有タングステン金属の超伝導細線の製造方法に関するものである。さらに詳しくは、この出願の発明は、ナノサイズの超伝導細線を簡便に作製することのできる炭素含有タングステン金属の超伝導細線の製造方法に関するものである。   The invention of this application relates to a method of manufacturing a superconducting fine wire of carbon-containing tungsten metal. More specifically, the invention of this application relates to a method for producing a superconducting fine wire of carbon-containing tungsten metal, which can easily produce a nano-sized superconducting fine wire.

これまでの超伝導細線の製造方法は、
1)カーボンナノチューブに超伝導体を堆積させる方法(たとえば、非特許文献1参照)2)アルミナナノポーラス膜内に超伝導体を電気分解により生成させる方法(たとえば、非特許文献2参照)
3)超伝導薄膜を収束イオンビームにより描画し、イオンエッチングする方法、または電子線リソグラフィーにより描画し、エッチング等の工程を経る方法
が主流であった。
C.N.Lau et al., Physical Review Letters, 21, 87(2001) D.Y.Vodolazov et al., Physical Review Letters, 15, 91(2003)
The conventional superconducting wire manufacturing method is
1) Method of depositing superconductor on carbon nanotube (for example, see Non-patent Document 1) 2) Method of generating superconductor in alumina nanoporous film by electrolysis (for example, see Non-Patent Document 2)
3) The mainstream is a method of drawing a superconducting thin film with a focused ion beam and performing ion etching, or a method of drawing by electron beam lithography and passing through processes such as etching.
CNLau et al., Physical Review Letters, 21, 87 (2001) DYVodolazov et al., Physical Review Letters, 15, 91 (2003)

しかしながら、上記の方法は、多段のステップを必要としており、超伝導細線の製造方法として必ずしも簡便なものではなかった。   However, the above method requires multi-steps and is not always simple as a method for manufacturing a superconducting thin wire.

この出願の発明は、このような事情に鑑みてなされたものであり、ナノサイズの超伝導細線を簡便に作製することのできる、画期的な炭素含有タングステン金属の超伝導細線の製造方法を提供することを解決すべき課題としている。   The invention of this application has been made in view of such circumstances, and an epoch-making method for producing a superconducting fine wire of carbon-containing tungsten metal capable of easily producing a nano-sized superconducting fine wire. Providing is a problem to be solved.

この出願の発明は、上記の課題を解決するものとして、炭素原子を含むタングステン有機金属ガスを収束イオンビームまたは電子線により分解し、タングステン金属を直接基板上に堆積させ、描画するとともに、その際に、タングステン有機金属ガス中の炭素原子をタングステン金属に含有させることを特徴とする炭素含有タングステン金属の超伝導細線の製造方法を提供する。   In order to solve the above problems, the invention of this application decomposes tungsten organometallic gas containing carbon atoms with a focused ion beam or electron beam, deposits tungsten metal directly on the substrate, draws, Further, the present invention provides a method for producing a superconducting fine wire of carbon-containing tungsten metal, characterized in that tungsten metal contains carbon atoms in tungsten organometallic gas.

この出願の発明の炭素含有タングステン金属の超伝導細線の製造方法によれば、ナノサイズの超伝導細線を簡便に作製することができる。   According to the carbon-containing tungsten metal superconducting wire manufacturing method of the invention of this application, nano-sized superconducting wires can be easily produced.

以下、実施例を示し、この出願の発明の炭素含有タングステン金属の超伝導細線の製造方法についてさらに詳しく説明する。   Hereinafter, an Example is shown and it demonstrates further in detail about the manufacturing method of the superconducting fine wire of the carbon containing tungsten metal of invention of this application.

この出願の発明の炭素含有タングステン金属の超伝導細線の製造方法では、炭素原子を含むタングステン有機金属ガスを収束イオンビームまたは電子線により分解し、タングステン金属を直接基板上に堆積させ、描画するとともに、その際に、タングステン有機金属ガス中の炭素原子をタングステン金属に含有させる。操作としては、真空容器内に基板を配置し、高真空とした真空容器内に炭素原子を含むタングステン有機金属ガスを導入し、基板に向けて収束イオンビームまたは電子線を照射する。この操作によりタングステン有機金属ガスが分解し、タングステン金属が、収束イオンビームまたは電子線の照射された
基板上に堆積し、描画され、超伝導細線が形成される。収束イオンビームまたは電子線による描画は数ナノメートルまでの加工精度を有しており、ナノサイズの超伝導細線の作製が可能である。ナノサイズの超伝導細線が簡便に作製される。
In the method for producing a superconducting thin wire of carbon-containing tungsten metal according to the invention of this application, tungsten organometallic gas containing carbon atoms is decomposed by a focused ion beam or electron beam, tungsten metal is directly deposited on a substrate, and drawing is performed. In this case, carbon atoms in the tungsten organometallic gas are contained in the tungsten metal. As an operation, a substrate is placed in a vacuum vessel, a tungsten organometallic gas containing carbon atoms is introduced into the vacuum vessel in a high vacuum, and a focused ion beam or an electron beam is irradiated toward the substrate. By this operation, the tungsten organometallic gas is decomposed, and tungsten metal is deposited on the substrate irradiated with the focused ion beam or the electron beam, and is drawn to form a superconducting thin wire. Drawing with a focused ion beam or electron beam has a processing accuracy of up to several nanometers, and it is possible to produce nano-sized superconducting wires. Nano-sized superconducting wires are easily produced.

基板上に堆積し、描画されるタングステン金属には、上記のとおり、タングステン有機金属中の炭素原子が混入する。タングステン金属の超伝導転移温度は、含有される炭素原子の量により決定される。そこで、炭素原子量は、0.02at%から80at%までを目安として例示することができる。このようなタングステン金属中の炭素原子量は、収束イオンビームまたは電子線のエネルギー、電流量により調節可能である。また、炭素原子量の調節は、タングステン金属堆積後のアニーリング等の後処理によっても行うことができる。   As described above, carbon atoms in the tungsten organic metal are mixed in the tungsten metal deposited and drawn on the substrate. The superconducting transition temperature of tungsten metal is determined by the amount of carbon atoms contained. Therefore, the carbon atom weight can be exemplified with 0.02 at% to 80 at% as a guide. The amount of carbon atoms in such tungsten metal can be adjusted by the energy and current amount of the focused ion beam or electron beam. The carbon atom amount can also be adjusted by post-treatment such as annealing after tungsten metal deposition.

さらに、収束イオンビームまたは電子線のエネルギー、電流量の調節により、超伝導細線の厚さ、幅および長さも調節される。厚さ、幅および長さの次元性により素子特性が発現する。   Furthermore, the thickness, width, and length of the superconducting thin wire are also adjusted by adjusting the energy and current amount of the focused ion beam or electron beam. Element characteristics are manifested by the dimensionality of thickness, width and length.

作製される超伝導細線は、ナノサイズの超伝導素子として利用することができ、超伝導細線デバイスをはじめ、その配線材料、SQUID(超伝導量子干渉素子)の微小ピックアップコイル、さらに、半導体デバイスとの複合デバイスや半導体デバイスの配線材料、また、複合デバイスの配線材料等として広く活用することができる。   The produced superconducting wire can be used as a nano-sized superconducting device, including a superconducting wire device, its wiring material, a micro pickup coil of SQUID (superconducting quantum interference device), and a semiconductor device. It can be widely used as wiring materials for composite devices and semiconductor devices, and as wiring materials for composite devices.

Si半導体基板上に絶縁体であるSiO2が形成された表面にGa金属をソースとする
収束イオンビームを照射して炭素含有タングステン金属の超伝導細線を形成した。
A superconducting fine wire of carbon-containing tungsten metal was formed by irradiating a surface of the Si semiconductor substrate on which SiO 2 as an insulator was formed with a focused ion beam using Ga metal as a source.

高真空とした真空容器内にタングステン有機金属(W(CO)6)ガスを導入し、真空
度3×10-5Torrとし、印加電圧30kV、電流100pA、総ドーズ量1nC/μm2の条件で収束イオンビームを照射してタングステン有機金属(W(CO)6)ガスを分解し、基板表面にタングステン金属を堆積させ、描画した。この際、堆積したタングステン金属中に炭素原子が含有される。作製された細線は、図1に示したように、約250nmの幅を有していた。基板表面には幅約2μmの抵抗測定用電極を4本形成しており、細線は、これら抵抗測定用電極を横断するように描画して作製された。細線の電気抵抗の温度変化を4本の抵抗測定用電極を用いて測定した。その結果は図2に示したとおりである。
Tungsten organometallic (W (CO) 6 ) gas was introduced into the vacuum vessel in a high vacuum, the degree of vacuum was 3 × 10 −5 Torr, the applied voltage was 30 kV, the current was 100 pA, and the total dose was 1 nC / μm 2 . Irradiation with a focused ion beam decomposed tungsten organometallic (W (CO) 6 ) gas, and tungsten metal was deposited on the substrate surface for drawing. At this time, carbon atoms are contained in the deposited tungsten metal. The produced thin line had a width of about 250 nm as shown in FIG. Four resistance measuring electrodes having a width of about 2 μm were formed on the surface of the substrate, and the thin line was produced by drawing so as to cross these resistance measuring electrodes. The temperature change of the electric resistance of the thin wire was measured using four resistance measuring electrodes. The result is as shown in FIG.

図2に示したように、約5.5Kで超伝導転移し、約4.5Kで抵抗がゼロとなった。超伝導細線であることが確認される。   As shown in FIG. 2, the superconducting transition occurred at about 5.5K, and the resistance became zero at about 4.5K. It is confirmed that it is a superconducting thin wire.

この超伝導細線は、磁化測定において反磁性を示すことが確認された。   This superconducting thin wire was confirmed to exhibit diamagnetism in the magnetization measurement.

もちろん、この出願の発明は、以上の実施例によって限定されるものではない。細部については様々な態様が可能であることはいうまでもない。   Of course, the invention of this application is not limited by the above embodiments. It goes without saying that various aspects are possible for the details.

収束イオンビームにより堆積させ、描画した炭素含有タングステン金属の超伝導細線を示した電子顕微鏡写真である。It is the electron micrograph which showed the superconducting fine wire of the carbon containing tungsten metal which was deposited and drawn by the focused ion beam. 実施例で作製された炭素含有タングステン金属の電気抵抗特性を示したグラフである。It is the graph which showed the electrical resistance characteristic of the carbon containing tungsten metal produced in the Example.

Claims (1)

炭素原子を含むタングステン有機金属ガスを収束イオンビームまたは電子線により分解し、タングステン金属を直接基板上に堆積させ、描画するとともに、その際に、タングステン有機金属ガス中の炭素原子をタングステン金属に含有させることを特徴とする炭素含有タングステン金属の超伝導細線の製造方法。

Tungsten organometallic gas containing carbon atoms is decomposed by focused ion beam or electron beam, tungsten metal is deposited directly on the substrate and drawn, and at that time, carbon atoms in tungsten organometallic gas are contained in tungsten metal A method of producing a superconducting fine wire of carbon-containing tungsten metal, characterized by comprising:

JP2004250333A 2004-08-30 2004-08-30 Method for producing superconducting fine wire of carbon-containing tungsten metal Pending JP2006063424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004250333A JP2006063424A (en) 2004-08-30 2004-08-30 Method for producing superconducting fine wire of carbon-containing tungsten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004250333A JP2006063424A (en) 2004-08-30 2004-08-30 Method for producing superconducting fine wire of carbon-containing tungsten metal

Publications (2)

Publication Number Publication Date
JP2006063424A true JP2006063424A (en) 2006-03-09
JP2006063424A5 JP2006063424A5 (en) 2007-09-20

Family

ID=36110165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004250333A Pending JP2006063424A (en) 2004-08-30 2004-08-30 Method for producing superconducting fine wire of carbon-containing tungsten metal

Country Status (1)

Country Link
JP (1) JP2006063424A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014045111A (en) * 2012-08-28 2014-03-13 Nippon Telegr & Teleph Corp <Ntt> Method for manufacturing superconducting circuit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03126836A (en) * 1989-10-11 1991-05-30 Hitachi Ltd Superconducting material
JP2004059958A (en) * 2002-07-25 2004-02-26 Seiko Instruments Inc Method and apparatus for depositing superconducting film by irradiating substrate surface with gas fed thereto with fib

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03126836A (en) * 1989-10-11 1991-05-30 Hitachi Ltd Superconducting material
JP2004059958A (en) * 2002-07-25 2004-02-26 Seiko Instruments Inc Method and apparatus for depositing superconducting film by irradiating substrate surface with gas fed thereto with fib

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014045111A (en) * 2012-08-28 2014-03-13 Nippon Telegr & Teleph Corp <Ntt> Method for manufacturing superconducting circuit

Similar Documents

Publication Publication Date Title
Wang et al. Synthesis of Large‐Sized Single‐Crystal Hexagonal Boron Nitride Domains on Nickel Foils by Ion Beam Sputtering Deposition
Chang et al. Nitrogen‐doped tungsten oxide nanowires: low‐temperature synthesis on Si, and electrical, optical, and field‐emission properties
US9034687B2 (en) Method of manufacturing graphene nanomesh and method of manufacturing semiconductor device
Cui et al. Nanogap electrodes towards solid state single‐molecule transistors
Chung et al. Non-oxidized bare copper nanoparticles with surface excess electrons in air
JP2010212619A (en) Graphene manufacturing method, graphene, graphene manufacturing device, and semiconductor device
Nguyen et al. Synthesis of single-crystalline sodium vanadate nanowires based on chemical solution deposition method
TW200405465A (en) Method of forming nanotip arrays
US8722430B2 (en) Production method for oxidized carbon thin film, and element having oxidized carbon thin film and production method therefor
Ageev et al. Photoactivation of the processes of formation of nanostructures by local anodic oxidation of a titanium film
Wang et al. Size dependence and UV irradiation tuning of the surface potential in single conical ZnO nanowires
Hoseinzadeh et al. Investigation of Ta/NII-WO3/FTO structures as a semiconductor for the future of nanodevices
Tian et al. Production of large‐area nucleus‐free single‐crystal graphene‐mesh metamaterials with zigzag edges
Mentel et al. Area‐Selective Atomic Layer Deposition on Functionalized Graphene Prepared by Reversible Laser Oxidation
Zhang et al. Unconventional giant “magnetoresistance” in bosonic semiconducting diamond nanorings
Sovizi et al. Plasma Processing and Treatment of 2D Transition Metal Dichalcogenides: Tuning Properties and Defect Engineering
JP2006063424A (en) Method for producing superconducting fine wire of carbon-containing tungsten metal
Wang et al. Structure and surface effect of field emission from gallium nitride nanowires
Bisht et al. Growth of dense CNT on the multilayer graphene film by the microwave plasma enhanced chemical vapor deposition technique and their field emission properties
JP4774665B2 (en) Manufacturing method of semiconductor device
JP5173087B1 (en) Manufacturing method of oxidized carbon thin film, element having oxidized carbon thin film, and manufacturing method thereof
Al-Amin et al. Bandgap engineering of single layer graphene by randomly distributed nanoparticles
Chen et al. Fabrication, characterization and thermal properties of nanowires
Mero et al. Synthesis and Characterization of Air-Stable Elemental Fe Thin Films by Chemical Vapor Deposition of Fe 3 (CO) 12
JP2014045111A (en) Method for manufacturing superconducting circuit

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070802

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111213