JP2006063369A - Hard carbon nitride film manufacturing method - Google Patents

Hard carbon nitride film manufacturing method Download PDF

Info

Publication number
JP2006063369A
JP2006063369A JP2004245494A JP2004245494A JP2006063369A JP 2006063369 A JP2006063369 A JP 2006063369A JP 2004245494 A JP2004245494 A JP 2004245494A JP 2004245494 A JP2004245494 A JP 2004245494A JP 2006063369 A JP2006063369 A JP 2006063369A
Authority
JP
Japan
Prior art keywords
nitride film
carbon nitride
hard carbon
producing
film according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004245494A
Other languages
Japanese (ja)
Other versions
JP4497466B2 (en
Inventor
Konosuke Inagawa
幸之助 稲川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2004245494A priority Critical patent/JP4497466B2/en
Publication of JP2006063369A publication Critical patent/JP2006063369A/en
Application granted granted Critical
Publication of JP4497466B2 publication Critical patent/JP4497466B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a carbon nitride film of high hardness by realizing the film having firm and dense chemical bond of nitrogen with carbon by increasing the nitrogen content of the carbon nitride film. <P>SOLUTION: In the method for depositing a hard carbon nitride film on the surface of a work, raw carbon materials are heated and sublimed by utilizing hollow cathode discharge while introducing gaseous nitrogen or ammonium gas, and nitrogen and carbon are activated by inducing microwave plasma discharge in a vicinity of the surface of the work at the same time, and the hard carbon nitride film is vapor-deposited on the surface of the work. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、耐摩耗性、摺動性、装飾、耐凝着性、離型性などの目的でダイヤモンド状炭素(DLC)膜よりも硬質な窒化炭素膜を作製することが可能な方法に関する。   The present invention relates to a method capable of producing a carbon nitride film harder than a diamond-like carbon (DLC) film for the purposes of wear resistance, slidability, decoration, adhesion resistance, releasability, and the like.

従来法による硬質窒化炭素膜の作製は、PVD(物理蒸着)法として、反応性DCスパッタリング、反応性RFスパッタリング、レーザーアブレーション、イオン注入、イオンアシストDCスパッタリング、イオンアシストダイナミックミキシング、アークイオンプレーティング、ホローカソード放電(HCD)イオンプレーティグなどが、また、CVD(化学蒸着)法としてRFプラズマCVDなどがある。
これらの手法における原料としては、PVD法では炭素源としては黒鉛が、また、窒素源としては窒素ガスが使用されている。CVD法では炭素源としてはCH4などの炭化水素が、窒素源としては窒素ガスが用いられている。
また、これら原料から窒化炭素膜を形成するのに、前記手法が単一に用いられているのみで、原料の分解と膜形成のための付加的な活性手段は取り入れられていない。
The production of hard carbon nitride films by conventional methods includes reactive DC sputtering, reactive RF sputtering, laser ablation, ion implantation, ion-assisted DC sputtering, ion-assisted dynamic mixing, arc ion plating, as PVD (physical vapor deposition) methods. Hollow cathode discharge (HCD) ion plating and the like, and CVD (chemical vapor deposition) methods include RF plasma CVD and the like.
As raw materials in these methods, graphite is used as a carbon source and nitrogen gas is used as a nitrogen source in the PVD method. In the CVD method, a hydrocarbon such as CH 4 is used as a carbon source, and nitrogen gas is used as a nitrogen source.
Further, only the above-described method is used to form a carbon nitride film from these raw materials, and no additional active means for decomposition of the raw materials and film formation are incorporated.

従来法では、窒化炭素膜の構成元素である炭素と窒素の化学的活性度を強くする手段が付加されていないため、窒化炭素膜の硬質膜としての理論的化学量論組成β−C34の組成比N/C=1.33よりかなり小さな値で、ほとんどの場合0.5程度であり、また、大きくても1未満である。また、β−C34についての理論的計算結果(A.Y.Liu and M.L.Cohen,Science,245(l989)841)によれば、この物質はβ−S34と同じ結晶構造を有し、ダイヤモンドを凌ぐ体積弾性率、即ちダイヤモンドに勝る硬さを持つとされているが、その様な特性の超硬質窒化炭素膜は得られていない。
そこで、本発明では、窒化炭素膜の窒素含有量を多くして、且つ窒素と炭素の化学結合が強固で緻密な膜にすることにより、硬さの大きい窒化炭素膜を作製する方法を提供することを目的とする。
In the conventional method, since no means for increasing the chemical activity of carbon and nitrogen, which are constituent elements of the carbon nitride film, is added, the theoretical stoichiometric composition β-C 3 N as a hard film of the carbon nitride film. The composition ratio N / C of 4 is much smaller than 1.33, and is almost 0.5 in most cases, and less than 1 at most. According to the theoretical calculation results for β-C 3 N 4 (AYLiu and MLCohen, Science, 245 (l989) 841), this substance has the same crystal structure as β-S 3 N 4 and contains diamond. Although it is said that the volume modulus of elasticity surpasses that of diamond, that is, hardness superior to diamond, an ultra-hard carbon nitride film having such characteristics has not been obtained.
Therefore, the present invention provides a method for producing a carbon nitride film having high hardness by increasing the nitrogen content of the carbon nitride film and making the chemical bond between nitrogen and carbon strong and dense. For the purpose.

上記課題を解決するために、本発明者は鋭意検討の結果、ホローカソード放電を利用した窒化炭素膜を形成する際に、被処理材の表面近傍にマイクロ波プラズマ放電を誘起することにより、上記課題を解決することを見出した。
一般に、1GHz以上の周波数領域の放電をマイクロ波プラズマ放電というが、最もよく使用されているのは2.45GHzである。マイクロ波は導波管でプラズマ発生部に送られ、電力を局所的に注入できるため、他の放電によって得られるプラズマに比して高密度のプラズマを生成できる。そのため気体分子の励起及びイオン化が促進され、活性種としての多量のラジカルとイオンの発生効率がよいなどの特徴がある。このマイクロ波のエネルギーを被処理材に入射する直前の窒素及び炭素に供給することにより、それらを化学的に活性化し、それによりN/C組成比が高く、且つ緻密な、優れた硬質窒化炭素膜を形成する方法が本発明である。
即ち、本発明の硬質窒化炭素膜の作製方法は、請求項1に記載のとおり、被処理材の表面に硬質窒化炭素膜を形成するための方法であって、処理室内において、窒素ガス又はアンモニアガスを導入しながら、原料炭素類をホローカソード放電を利用して加熱、昇華させ、それと同時に被処理材の表面近傍にマイクロ波プラズマ放電を誘起して窒素及び炭素を活性化し、前記被処理材の表面に硬質窒化炭素膜を蒸着形成することを特徴とする。
請求項2に記載の硬質窒化炭素膜の作製方法は、請求項1に記載の硬質窒化炭素膜の作製方法において、前記ホローカソード放電のホローカソード電流を150〜300Aとしたことを特徴とする。
また、請求項3に記載の硬質窒化炭素膜の作製方法は、請求項1又は2に記載の硬質窒化炭素膜の作製方法において、前記窒素ガスの導入量を50〜500sccmとし、その時の成膜中の圧力を0.04〜0.6Paとしたことを特徴とする。
また、請求項4に記載の硬質窒化炭素膜の作製方法は、請求項1又は2に記載の硬質窒化炭素膜の作製方法において、前記アンモニアガスの導入量を30〜400sccmとし、その時の成膜中の圧力を0.05〜0.7Paとしたことを特徴とする。
また、請求項5に記載の硬質窒化炭素膜の作製方法は、請求項3又は4に記載の硬質窒化炭素膜の作製方法において、前記窒素ガス又はアンモニアガスを導入するガス導入ノズルの直流印加電圧を0〜200Vとしたことを特徴とする。
また、請求項6に記載の硬質窒化炭素膜の作製方法は、請求項1乃至5のいずれかに記載の硬質窒化炭素膜の作製方法において、前記ホローカソード放電時の生成プラズマをコイル磁場で収束することを特徴とする。
また、請求項7に記載の硬質窒化炭素膜の作製方法は、請求項6に記載の硬質窒化炭素膜の作製方法において、前記コイル磁場は、原料炭素類を収容するハースの周囲に配置されるコイルによって生成されるものであることを特徴とする。
また、請求項8に記載の硬質窒化炭素膜の作製方法は、請求項6又は7に記載の硬質窒化炭素膜の作製方法において、前記コイルに通電するコイル電流を120〜240Aとしたことを特徴とする。
また、請求項9に記載の硬質窒化炭素膜の作製方法は、請求項1乃至8に記載の硬質窒化炭素膜の作製方法において、前記マイクロ波プラズマ放電の投入電力を300〜3000Wとしたことを特徴とする。
In order to solve the above-mentioned problems, the present inventors have conducted intensive studies, and when forming a carbon nitride film using hollow cathode discharge, by inducing microwave plasma discharge near the surface of the material to be processed, I found out that the problem was solved.
Generally, a discharge in a frequency region of 1 GHz or more is called a microwave plasma discharge, but 2.45 GHz is most often used. Since the microwave is sent to the plasma generation unit through the waveguide and electric power can be locally injected, it is possible to generate high-density plasma as compared with plasma obtained by other discharges. Therefore, excitation and ionization of gas molecules are promoted, and a large amount of radicals and ions as active species are generated efficiently. By supplying this microwave energy to nitrogen and carbon immediately before entering the material to be treated, they are chemically activated, thereby having a high N / C composition ratio and a fine hard carbon nitride. The method of forming a film is the present invention.
That is, the method for producing a hard carbon nitride film according to the present invention is a method for forming a hard carbon nitride film on the surface of a material to be processed as claimed in claim 1, wherein nitrogen gas or ammonia is formed in the processing chamber. While introducing the gas, the raw material carbons are heated and sublimated using hollow cathode discharge, and at the same time, microwave plasma discharge is induced near the surface of the material to be treated to activate nitrogen and carbon, A hard carbon nitride film is deposited on the surface of the film.
The method for producing a hard carbon nitride film according to claim 2 is characterized in that, in the method for producing a hard carbon nitride film according to claim 1, a hollow cathode current of the hollow cathode discharge is set to 150 to 300A.
A method for producing a hard carbon nitride film according to claim 3 is the method for producing a hard carbon nitride film according to claim 1 or 2, wherein the amount of nitrogen gas introduced is 50 to 500 sccm, and the film is formed at that time. The inside pressure is set to 0.04 to 0.6 Pa.
The method for producing a hard carbon nitride film according to claim 4 is the method for producing a hard carbon nitride film according to claim 1 or 2, wherein the ammonia gas is introduced in an amount of 30 to 400 sccm, and the film is formed at that time. The inside pressure is 0.05 to 0.7 Pa.
The method for producing a hard carbon nitride film according to claim 5 is the method for producing a hard carbon nitride film according to claim 3 or 4, wherein the direct current applied voltage of the gas introduction nozzle for introducing the nitrogen gas or ammonia gas is used. Is 0 to 200V.
The method for producing a hard carbon nitride film according to claim 6 is the method for producing a hard carbon nitride film according to any one of claims 1 to 5, wherein the plasma generated during the hollow cathode discharge is converged by a coil magnetic field. It is characterized by doing.
The method for producing a hard carbon nitride film according to claim 7 is the method for producing a hard carbon nitride film according to claim 6, wherein the coil magnetic field is arranged around a hearth containing raw material carbons. It is generated by a coil.
The method for producing a hard carbon nitride film according to claim 8 is characterized in that, in the method for producing a hard carbon nitride film according to claim 6 or 7, the coil current applied to the coil is 120 to 240A. And
The method for producing a hard carbon nitride film according to claim 9 is the method for producing a hard carbon nitride film according to claim 1 to 8, wherein an input power of the microwave plasma discharge is set to 300 to 3000 W. Features.

このように、本発明によれば、処理室内において、窒素ガス又はアンモニアガスを導入しながら、原料炭素類をホローカソード放電を利用して加熱、昇華させ、同時に前記被処理材の表面近傍にマイクロ波プラズマ放電を発生させながら該被処理材表面に硬質窒化炭素膜を蒸着することにより、マイクロ波プラズマ放電を付加しない場合よりもN/C化学組成比が大きくて緻密な、硬さの大きい膜を得ることができる。   As described above, according to the present invention, while introducing nitrogen gas or ammonia gas into the processing chamber, the raw material carbons are heated and sublimated using a hollow cathode discharge, and at the same time, microscopic material is placed near the surface of the material to be processed. By depositing a hard carbon nitride film on the surface of the material to be processed while generating a wave plasma discharge, a dense and hard film having a larger N / C chemical composition ratio than when no microwave plasma discharge is applied Can be obtained.

本発明の硬質窒化炭素膜の作製方法は、緻密なダイヤモンド状炭素(DLC)膜より硬い硬質窒化炭素膜の作製に際しそのN/C組成比を高くし、且つ緻密になるようにしたものであり、ガラス、金属、セラミックス、半導体等からなる任意の被処理材の表面に良質な硬質窒化炭素膜を作製出来るようにしたものである。
本発明では、成膜速度を上げるため、大電流の電子ビームで原料の固体黒鉛などの炭素類を加熱、昇華させ、導入窒素ガス又はアンモニアガスとともに被処理材の表面に蒸着させるために、ホローカソード放電を利用するようにしたものであり、且つ被処理材の表面への入射直前の窒素及び炭素をマイクロ波プラズマ放電により活性化するようにしたものである。
ホローカソード放電では、真空排気系内に窒素ガス又はアンモニアガスを導入しながらホローカソード放電ガンより、銅製水冷ハース内の原料固体黒鉛に対してアルゴンガスを流し込み、このアルゴンガスを前記ホローカソード放電ガンと前記水冷ハース間にかけた直流電圧によりイオン化することで大電流を得、原料固体黒鉛を加熱、昇華させるようにしたものである。このホローカソード放電の大電流により導入窒素ガス又はアンモニアガスや炭素のイオン化が促進され、硬質窒化炭素膜の高い成膜速度が実現できる。
前記ホローカソード放電では、30〜40Vの低電圧で、100〜1000Aの大電流の電子ビームが得られるが、原子のイオン化が最大をとる電離電圧(100V近傍)の電圧に近く、また、大電流であるため、原子と電子の衝突確率が極めて大きく、そのため、蒸発材料のイオン化が極めて大きい。従って、ホローカソード電流が大きいほど、成膜速度は大きくなるが、あまり大きすぎると、得られる硬質窒化炭素膜の表面が粗くなるため、ホローカソード放電を利用した蒸着で硬質窒化炭素膜を成膜するには、ホローカソード電流は150〜300Aが適切である。
尚、イオン化されたアルゴンガスを被処理材に印加した電場で加速衝突させることで、被処理材表面のクリーニング効果を高めることができる。
前記窒素ガス又はアルゴンガスはホローカソード放電ガンに併設されたガス導入ノズルから、或いは、前記ホローカソード放電ガンから導入され、ガス導入ノズルから導入する場合は、ガス導入ノズルに直流電位を印加して、窒素ガス又はアンモニアガスのイオン化を促進することが好ましい。この場合、前記アンモニアガスを導入するガス導入ノズルヘの直流印加電圧を0〜200Vとするのが好ましい。
また、良質な膜質とするためには前記窒素ガス使用の場合は、その導入量は50〜500sccm程度、その時の処理室内の圧力は0.04〜0.6Pa程度とすることが好ましい。また、前記アンモニアガス使用の場合は、その導入量は30〜400sccm程度、その時の処理室内の圧力は0.05〜0.7Pa程度とすることが好ましい。
また、ホローカソード放電に際してのコイル磁場の形成により、このコイル磁場によって、生成プラズマが収束され、窒素、炭素、アルゴンのイオン化が促進され、形成された硬質窒化炭素膜は密着性に優れ、硬度も増大することとなり、膜の硬度を向上させた上に、成膜速度を速くすることができる。
前記コイル磁場は、原料炭素類を収容するハースの周辺に配置されるコイルによって生成されるようにすることが好ましく、この場合、前記コイルに通電するコイル電流を120〜240Aとすることにより、HV3100〜3600の硬さの膜が形成される。
このコイル電流の増加に略直線的に比例して硬質窒化炭素膜の硬度が増加することになる。
尚、硬質炭素膜の場合と異なり、硬質窒化炭素膜の場合は、被処理物にバイアス電圧をかけなくとも、コイル電流の増加に略直線的に比例して硬質窒化炭素膜の硬度が増加することになる。
尚、被処理物は、浮遊電位、接地電位、或いは、外部からの電位を印加した状態においてもよい。
また、前記外部印加電位は直流、高周波、或いは、低周波の任意の電位を用いることができる。
この場合、直流では、−200V、1〜2A、商用周波数の交流では200V、2〜3A、高周波電位の場合の電力は100〜500Wである。
更に、本発明の特徴とする前記マイクロ波プラズマ放電のためのマイクロ波は、マイクロ波発振器により発振した2.45GHzのマイクロ波を導波管により導き、石英ガラスを通して真空槽内に導入する。
被処理材表面近傍でマイクロ波プラズマ放電が持続し、被処理材表面への入射直前の窒素及び炭素を活性化してその化学結合を強固なものにするためには、前記マイクロ波プラズマ放電の投入電力を300〜3000Wとする。これにより硬質窒化炭素膜のN/C組成比及び緻密さが増加し、マイクロ波を付加しない場合よりも硬度が増加してHV4000以上の膜が作製される。
図1は本発明の硬質窒化炭素膜の作製方法を実施するための装置の一例を示すもので、図中1はステンレス製の処理室を示し、この処理室1は図略の真空排気系に連通され、処理室1内の圧力に調整自在とされている。
処理室1内の底部には、銅製水冷ハース2が設けられ、該ハース2内に原料の固体黒鉛Cなどを収容できるようになっている。
この水冷ハース2の直上にはアルゴン供給管3に連通されるタンタル製のホローカソード放電ガン(以下、「HCDガン」という。)4が配置されている。これら水冷ハース2とHCDガン4とはHCDガン電源5に連通されている。
図中6はガス供給通路7に連通される窒素ガス又はアンモニアガス導入ノズルを示し、前記水冷ハース2の側方に隣接配置され、処理室1内に窒素ガス又はアンモニアガスを導入できるようになっている。このガス導入ノズル6はノズルバイアス電源8に連通され、バイアス電圧を印加できるようになっている。
かくして、HCDガン4より、水冷ハース2内の原料固体黒鉛Cに対しアルゴンガスを流し込み、ガス導入ノズル6から処理窒1内に窒素ガス又はアンモニアガスを導入しながらHCDガン電源5からの通電により、このアルゴンガスと窒素ガス又はアンモニアガスを、前記HCDガン4と前記水冷ハース2間にかけた直流電圧によりイオン化することで大電流を得、原料固体炭素を加熱、昇華させ、窒化炭素膜を作製させることができるようになっている。
また、前記水冷ハース2の周囲にコイル用電源9に連通されるコイル10が配置され、前記イオン化されたアルゴンガスのプラズマを収束できるようになっている。
また、処理室1内の天井部には被処理材ホルダー11が設けられ、被処理材Aを支持自在とされ、この被処理材ホルダー11の背面に設けられたヒータ12で被処理材Aを所定温度に加熱自在とされている。
前記基板は加熱しても、或いは、加熱せずに室温状態で硬質窒化炭素膜が得られるが、硬質窒化炭素膜と被処理物の密着性を向上させるためには、加熱することが好ましく、この場合、400℃以下に加熱するのが好ましい。
また、被処理材ホルダー11には被処理材バイアス電源13が連通され、必要に応じ、直流、高周波、低周波などの任意のバイアスをかけることができるようになっている。
更に、マイクロ波発振器14によって発振させられた2.45GHzのマイクロ波は導波管15により導かれ、石英ガラス16を通して真空槽1内に入り、被処理材A近傍でマイクロ波プラズマ放電が発生して、被処理材表面への入射直前の窒素及び炭素を活性化してその化学結合が強固なものになるようにし、良質な硬質窒化炭素膜が作製できるようになっている。尚、図中17で示されるものは、プランジャである。
The method for producing a hard carbon nitride film of the present invention is such that the N / C composition ratio is made higher and dense when producing a hard carbon nitride film harder than a dense diamond-like carbon (DLC) film. A high-quality hard carbon nitride film can be produced on the surface of any material to be processed made of glass, metal, ceramics, semiconductor, or the like.
In the present invention, in order to increase the film formation rate, carbon such as solid graphite as a raw material is heated and sublimated with a high-current electron beam, and is deposited on the surface of the material to be treated together with introduced nitrogen gas or ammonia gas. Cathode discharge is used, and nitrogen and carbon immediately before being incident on the surface of the material to be processed are activated by microwave plasma discharge.
In hollow cathode discharge, while introducing nitrogen gas or ammonia gas into the vacuum exhaust system, argon gas is flowed from the hollow cathode discharge gun to the raw solid graphite in the copper water-cooled hearth, and this argon gas is supplied to the hollow cathode discharge gun. And the water-cooled hearth are ionized by a DC voltage applied to obtain a large current, and the raw solid graphite is heated and sublimated. The large current of the hollow cathode discharge promotes ionization of the introduced nitrogen gas or ammonia gas and carbon, and a high deposition rate of the hard carbon nitride film can be realized.
In the hollow cathode discharge, an electron beam with a large current of 100 to 1000 A can be obtained at a low voltage of 30 to 40 V, but it is close to a voltage of an ionization voltage (near 100 V) at which the ionization of atoms is maximized. Therefore, the probability of collision between atoms and electrons is extremely high, so that the ionization of the evaporation material is extremely large. Therefore, the larger the hollow cathode current, the higher the deposition rate, but if it is too large, the surface of the resulting hard carbon nitride film becomes rough, so a hard carbon nitride film is formed by vapor deposition utilizing hollow cathode discharge. For this purpose, the hollow cathode current is suitably 150 to 300A.
In addition, the cleaning effect of the to-be-processed material surface can be heightened by carrying out the acceleration collision by the electric field which applied the ionized argon gas to the to-be-processed material.
When the nitrogen gas or the argon gas is introduced from the gas introduction nozzle provided in the hollow cathode discharge gun or from the hollow cathode discharge gun and introduced from the gas introduction nozzle, a DC potential is applied to the gas introduction nozzle. It is preferable to promote ionization of nitrogen gas or ammonia gas. In this case, it is preferable that the DC applied voltage to the gas introduction nozzle for introducing the ammonia gas is 0 to 200V.
Further, in order to obtain a good film quality, when the nitrogen gas is used, the amount introduced is preferably about 50 to 500 sccm, and the pressure in the processing chamber at that time is preferably about 0.04 to 0.6 Pa. In the case of using the ammonia gas, the introduction amount is preferably about 30 to 400 sccm, and the pressure in the processing chamber at that time is preferably about 0.05 to 0.7 Pa.
In addition, by forming a coil magnetic field during hollow cathode discharge, the generated plasma is converged by this coil magnetic field, and ionization of nitrogen, carbon, and argon is promoted, and the formed hard carbon nitride film has excellent adhesion and hardness. As a result, the hardness of the film is improved and the film formation rate can be increased.
The coil magnetic field is preferably generated by a coil disposed around a hearth containing raw material carbons. In this case, by setting a coil current to be supplied to the coil to 120 to 240 A, HV3100 A film with a hardness of ˜3600 is formed.
The hardness of the hard carbon nitride film increases approximately linearly with the increase in the coil current.
Unlike the case of the hard carbon film, the hardness of the hard carbon nitride film increases substantially linearly in proportion to the increase of the coil current without applying a bias voltage to the object to be processed. It will be.
Note that the object to be processed may be in a state in which a floating potential, a ground potential, or an external potential is applied.
The externally applied potential can be any potential of direct current, high frequency, or low frequency.
In this case, -200 V, 1-2 A for direct current, 200 V, 2-3 A for commercial frequency alternating current, and 100-500 W for high-frequency potential.
Further, the microwave for microwave plasma discharge, which is a feature of the present invention, guides a 2.45 GHz microwave oscillated by a microwave oscillator through a waveguide and introduces it into the vacuum chamber through quartz glass.
In order to sustain the microwave plasma discharge in the vicinity of the surface of the material to be processed and to activate the nitrogen and carbon immediately before being incident on the surface of the material to be strengthened, the above-mentioned microwave plasma discharge is applied. The power is set to 300 to 3000W. As a result, the N / C composition ratio and the density of the hard carbon nitride film are increased, and the hardness is increased as compared with the case where no microwave is added, so that a film of HV4000 or more is manufactured.
FIG. 1 shows an example of an apparatus for carrying out the method for producing a hard carbon nitride film of the present invention. In the figure, 1 shows a stainless steel processing chamber, and this processing chamber 1 has a vacuum exhaust system (not shown). It is connected and can be adjusted to the pressure in the processing chamber 1.
A copper water-cooled hearth 2 is provided at the bottom of the processing chamber 1 so that the raw graphite C or the like can be accommodated in the hearth 2.
A tantalum hollow cathode discharge gun (hereinafter referred to as “HCD gun”) 4 communicated with an argon supply pipe 3 is disposed immediately above the water-cooled hearth 2. The water-cooled hearth 2 and the HCD gun 4 are communicated with an HCD gun power source 5.
In the figure, reference numeral 6 denotes a nitrogen gas or ammonia gas introduction nozzle communicated with the gas supply passage 7, which is arranged adjacent to the side of the water-cooled hearth 2 so that nitrogen gas or ammonia gas can be introduced into the processing chamber 1. ing. The gas introduction nozzle 6 is connected to a nozzle bias power source 8 so that a bias voltage can be applied.
Thus, argon gas is flowed from the HCD gun 4 into the raw solid graphite C in the water-cooled hearth 2, and energized from the HCD gun power source 5 while introducing nitrogen gas or ammonia gas into the treatment nitrogen 1 from the gas introduction nozzle 6. The argon gas and nitrogen gas or ammonia gas are ionized by a DC voltage applied between the HCD gun 4 and the water-cooled hearth 2 to obtain a large current, and the raw material solid carbon is heated and sublimated to produce a carbon nitride film. It can be made to.
Further, a coil 10 communicated with a coil power source 9 is disposed around the water-cooled hearth 2 so that the ionized argon gas plasma can be converged.
In addition, a processing material holder 11 is provided on the ceiling portion in the processing chamber 1 so that the processing material A can be supported, and the processing material A is attached by a heater 12 provided on the back surface of the processing material holder 11. It can be heated to a predetermined temperature.
The substrate can be heated or heated to obtain a hard carbon nitride film at room temperature, but in order to improve the adhesion between the hard carbon nitride film and the object to be processed, it is preferable to heat it. In this case, it is preferable to heat to 400 ° C. or lower.
Further, a workpiece bias power source 13 is communicated with the workpiece holder 11 so that an arbitrary bias such as direct current, high frequency, and low frequency can be applied as necessary.
Further, the 2.45 GHz microwave oscillated by the microwave oscillator 14 is guided by the waveguide 15, enters the vacuum chamber 1 through the quartz glass 16, and generates a microwave plasma discharge in the vicinity of the material A to be processed. Thus, nitrogen and carbon immediately before being incident on the surface of the material to be processed are activated so that their chemical bonds become strong, and a high-quality hard carbon nitride film can be produced. In addition, what is shown by 17 in a figure is a plunger.

次に本発明硬質窒化炭素膜の作製方法の具体的実施例について説明する。   Next, specific examples of the method for producing the hard carbon nitride film of the present invention will be described.

(実施例1)
被処理材としてSiウエハを設置し、図1の処理室を10-3Pa程度に排気した後、タンタル製HCDガンからアルゴンガスを導入し、20Paの圧力に調整した。
その後、HCDガン−ハース間に50Vの電圧と、それに重畳し、高周波電圧を印加し、アルゴンガスのグロー放電を起こさせた。アルゴンガスのプラズマを収束させるためにコイルに約100Aの電流を流し、ガンとハース間の放電を促進するためにガンに併設した補助電極とガンの間に最大350Vの電圧をかけた。ガン−ハース間のアーク放電が点火した後、アルゴンガスの流量を変えずに、処理室を油拡散で排気し、0.1Pa程度の圧力にした。
第一段階として、被処理材のクリーニングを以下の条件で行った。即ち、HCDガン電流100A、窒素ガス又はアンモニアガス流量0sccm、コイル電流180A、被処理材−設置電圧−800V、クリーニング時間5分間とした。
次に、第二段階で、窒化炭素膜の蒸着を行った。即ち、クリーニングの条件から1分間で以下のように装置の条件を変えていった。
HCDガン電流150A、HCDガンからのアルゴンガス流量10sccm、ガス導入ノズルからの窒素ガス流量200sccm、コイル電流200A、被処理材への電位印加なし、ノズル−接地間電圧50Vとした。
マイクロ波プラズマ放電のための出力電力は500Wにし、60分間で厚さ5.8μmの窒化炭素膜が得られた。この時の成膜中の圧力は0.32Paであった。
成膜速度は97nm/minで、得られた膜の化学組成比N/Cは、EPMA(電子プローブマイクロアナライザー)によれば0.99で、硬さはHV4100であった。
Example 1
A Si wafer was installed as a material to be processed, and after the processing chamber of FIG. 1 was evacuated to about 10 −3 Pa, argon gas was introduced from a tantalum HCD gun and adjusted to a pressure of 20 Pa.
Thereafter, a 50 V voltage was superimposed between the HCD gun and Haas, and a high frequency voltage was applied thereto to cause glow discharge of argon gas. In order to converge the plasma of argon gas, a current of about 100 A was passed through the coil, and a voltage of 350 V at maximum was applied between the auxiliary electrode provided in the gun and the gun in order to promote the discharge between the gun and the hearth. After the arc discharge between Gunn and Haas ignited, the processing chamber was evacuated by oil diffusion without changing the flow rate of argon gas, and the pressure was set to about 0.1 Pa.
As a first step, the material to be treated was cleaned under the following conditions. That is, the HCD gun current was 100 A, the flow rate of nitrogen gas or ammonia gas was 0 sccm, the coil current was 180 A, the material to be treated—the installation voltage—800 V, and the cleaning time was 5 minutes.
Next, a carbon nitride film was deposited in the second stage. That is, the apparatus conditions were changed as follows in one minute from the cleaning conditions.
The HCD gun current was 150 A, the argon gas flow rate from the HCD gun was 10 sccm, the nitrogen gas flow rate from the gas introduction nozzle was 200 sccm, the coil current was 200 A, no potential was applied to the material to be processed, and the nozzle-ground voltage was 50 V.
The output power for the microwave plasma discharge was 500 W, and a carbon nitride film having a thickness of 5.8 μm was obtained in 60 minutes. The pressure during film formation at this time was 0.32 Pa.
The film formation rate was 97 nm / min, the chemical composition ratio N / C of the obtained film was 0.99 according to EPMA (Electron Probe Microanalyzer), and the hardness was HV4100.

(比較例1)
マイクロ波プラズマ放電のための出力電力を付加せず0Wとした以外は実施例1と同様にして窒化炭素膜を作製した。尚、成膜中の圧力は、0.34Paであった。
成膜速度は100nm/minで、得られた化学組成比N/Cは0.75で、硬さはHV3300であった。
(Comparative Example 1)
A carbon nitride film was produced in the same manner as in Example 1 except that the output power for microwave plasma discharge was not added and was set to 0 W. The pressure during film formation was 0.34 Pa.
The film formation rate was 100 nm / min, the obtained chemical composition ratio N / C was 0.75, and the hardness was HV3300.

(実施例2)
実施例1と同様に被処理材としてSiウエハを使用し、実施例1と同様の第一段階のクリーニングを行い、第二段階での硬質窒化炭素膜の蒸着を、HCDガン電流150A、HCDガンからのアルゴンガス流量0sccm、HCDガンからのアンモニアガス流量100sccm、ガス導入ノズルからのアンモニアガス流量0sccm、コイル電流200A、被処理材への電位印加なしとした。
マイクロ波プラズマ放電のための出力電力は500Wにし、100分間で厚さ6.5μmの窒化炭素膜が得られた。この時の成膜中の圧力は0.20Paであった。
成膜速度は65nm/minで、得られた膜の化学組成比N/Cは1.30で、硬さはHV4400であった。
(Example 2)
As in Example 1, a Si wafer is used as the material to be processed, the first stage cleaning is performed as in Example 1, and the hard carbon nitride film is deposited in the second stage using an HCD gun current 150A and an HCD gun. The argon gas flow rate from the scooter was 0 sccm, the ammonia gas flow rate from the HCD gun was 100 sccm, the ammonia gas flow rate from the gas introduction nozzle was 0 sccm, the coil current was 200 A, and no potential was applied to the workpiece.
The output power for the microwave plasma discharge was 500 W, and a 6.5 μm thick carbon nitride film was obtained in 100 minutes. The pressure during film formation at this time was 0.20 Pa.
The film formation rate was 65 nm / min, the chemical composition ratio N / C of the obtained film was 1.30, and the hardness was HV4400.

(比較例2)
マイクロ波プラズマ放電のための出力電力を付加せず0Wとした以外は実施例2と同様にして窒化炭素膜を作製した。尚、成膜中の圧力は、0.19Paであった。
成膜速度は66nm/minで、得られた化学組成比N/Cは1.07で、硬さはHV3600であった。
以上の結果を表1にまとめた。
(Comparative Example 2)
A carbon nitride film was produced in the same manner as in Example 2 except that the output power for microwave plasma discharge was not added and the power was set to 0 W. The pressure during film formation was 0.19 Pa.
The film formation rate was 66 nm / min, the obtained chemical composition ratio N / C was 1.07, and the hardness was HV3600.
The above results are summarized in Table 1.

Figure 2006063369
Figure 2006063369

上記表1から、実施例1及び2では、比較例1及び2に比べて、N/C組成比の高い、硬さの大きい硬質窒化炭素膜が得られることが判った。
また、実施例1の窒素ガスより反応性の高いアンモニアガスを使用した実施例2の方が、実施例1に比べて、よりN/C組成比が高く、硬さの大きい硬質窒化炭素膜が得られることが判った。
From Table 1 above, it was found that in Examples 1 and 2, a hard carbon nitride film having a high N / C composition ratio and high hardness was obtained as compared with Comparative Examples 1 and 2.
Further, in Example 2 using ammonia gas having higher reactivity than nitrogen gas in Example 1, a hard carbon nitride film having a higher N / C composition ratio and higher hardness than that in Example 1 is obtained. It turns out that it is obtained.

本発明硬質窒化炭素膜の作製装置の一実施の形態の説明図Explanatory drawing of one Embodiment of the manufacturing apparatus of the hard carbon nitride film of this invention

符号の説明Explanation of symbols

1 処理室
2 銅製水冷ハ−ス
3 アルゴン(窒素又はアンモニア)供給管
4 ホローカソード放電ガン
5 HCDガン電源
6 窒素ガス又はアンモニアガス導入ノズル
7 ガス供給経路
8 ノズルバイアス電源
9 コイル用電源
10 コイル
11 被処理材ホルダー
12 ヒータ
13 被処理材バイアス電源
14 マイクロ波発振器
15 導波管
16 石英ガラス
17 プランジャ
A 被処理材
C 黒鉛
DESCRIPTION OF SYMBOLS 1 Processing chamber 2 Copper water-cooled hearth 3 Argon (nitrogen or ammonia) supply pipe 4 Hollow cathode discharge gun 5 HCD gun power supply 6 Nitrogen gas or ammonia gas introduction nozzle 7 Gas supply path 8 Nozzle bias power supply 9 Coil power supply 10 Coil 11 Material Holder 12 Heater 13 Material Bias Power Supply 14 Microwave Oscillator 15 Waveguide 16 Quartz Glass 17 Plunger A Material A C Graphite

Claims (9)

被処理材の表面に硬質窒化炭素膜を形成するための方法であって、処理室内において、窒素ガス又はアンモニアガスを導入しながら、原料炭素類をホローカソード放電を利用して過熱、昇華させ、それと同時に被処理材の表面近傍にマイクロ波プラズマ放電を誘起して窒素及び炭素を活性化し、前記被処理材の表面に硬質窒化炭素膜を蒸着形成することを特徴とする硬質窒化炭素膜の作製方法。   A method for forming a hard carbon nitride film on the surface of a material to be processed, in which a raw material carbon is superheated and sublimated using a hollow cathode discharge while introducing nitrogen gas or ammonia gas in a processing chamber, At the same time, a microwave plasma discharge is induced near the surface of the material to be processed to activate nitrogen and carbon, and a hard carbon nitride film is formed on the surface of the material to be processed by vapor deposition. Method. 前記ホローカソード放電のホローカソード電流を150〜300Aとしたことを特徴とする請求項1記載の硬質窒化炭素膜の作製方法。   2. The method for producing a hard carbon nitride film according to claim 1, wherein a hollow cathode current of the hollow cathode discharge is set to 150 to 300A. 前記窒素ガスの導入量を50〜500sccmとし、その時の圧力を0.04〜0.6Paとしたことを特徴とする請求項1又は請求項2記載の硬質窒化炭素膜の作製方法。   3. The method for producing a hard carbon nitride film according to claim 1, wherein the amount of nitrogen gas introduced is 50 to 500 sccm, and the pressure at that time is 0.04 to 0.6 Pa. 前記アンモニアガスの導入量を30〜400sccmとし、その時の圧力を0.05〜0.7Paとしたことを特徴とする請求項1又は請求項2記載の硬質窒化炭素膜の作製方法。   The method for producing a hard carbon nitride film according to claim 1 or 2, wherein the ammonia gas is introduced in an amount of 30 to 400 sccm, and the pressure at that time is 0.05 to 0.7 Pa. 前記窒素ガス又はアンモニアガスを導入するガス導入ノズルの直流印加電圧を0〜200Vとしたことを特徴とする請求項3又は請求項4記載の硬質窒化炭素膜の作製方法。   The method for producing a hard carbon nitride film according to claim 3 or 4, wherein a direct-current applied voltage of a gas introduction nozzle for introducing the nitrogen gas or ammonia gas is set to 0 to 200V. 前記ホローカソード放電時の生成プラズマをコイル磁場で収束することを特徴とする請求項1乃至5の何れかに記載の硬質窒化炭素膜の作製方法。   6. The method for producing a hard carbon nitride film according to claim 1, wherein the plasma generated during the hollow cathode discharge is converged by a coil magnetic field. 前記コイル磁場は、原料炭素類を収容するハースの周囲に配置されるコイルによって生成されるものであることを特徴とする請求項6に記載の硬質窒化炭素膜の作製方法。   The method for producing a hard carbon nitride film according to claim 6, wherein the coil magnetic field is generated by a coil disposed around a hearth containing raw material carbons. 前記コイルに通電するコイル電流を120〜240Aとしたことを特徴とする請求項6又は7記載の硬質窒化炭素膜の作製方法。   The method for producing a hard carbon nitride film according to claim 6 or 7, wherein a coil current applied to the coil is 120 to 240A. 前記マイクロ波プラズマ放電の投入電力を300〜3000Wとしたことを特徴とする請求項1乃至8の何れかに記載の硬質窒化炭素膜の作製方法。   The method for producing a hard carbon nitride film according to claim 1, wherein an input power of the microwave plasma discharge is set to 300 to 3000 W.
JP2004245494A 2004-08-25 2004-08-25 Method for producing hard carbon nitride film Active JP4497466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004245494A JP4497466B2 (en) 2004-08-25 2004-08-25 Method for producing hard carbon nitride film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004245494A JP4497466B2 (en) 2004-08-25 2004-08-25 Method for producing hard carbon nitride film

Publications (2)

Publication Number Publication Date
JP2006063369A true JP2006063369A (en) 2006-03-09
JP4497466B2 JP4497466B2 (en) 2010-07-07

Family

ID=36110114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004245494A Active JP4497466B2 (en) 2004-08-25 2004-08-25 Method for producing hard carbon nitride film

Country Status (1)

Country Link
JP (1) JP4497466B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8133793B2 (en) 2008-05-16 2012-03-13 Sandisk 3D Llc Carbon nano-film reversible resistance-switchable elements and methods of forming the same
US8183121B2 (en) 2009-03-31 2012-05-22 Sandisk 3D Llc Carbon-based films, and methods of forming the same, having dielectric filler material and exhibiting reduced thermal resistance
US8421050B2 (en) 2008-10-30 2013-04-16 Sandisk 3D Llc Electronic devices including carbon nano-tube films having carbon-based liners, and methods of forming the same
US8569730B2 (en) 2008-07-08 2013-10-29 Sandisk 3D Llc Carbon-based interface layer for a memory device and methods of forming the same
US8835892B2 (en) 2008-10-30 2014-09-16 Sandisk 3D Llc Electronic devices including carbon nano-tube films having boron nitride-based liners, and methods of forming the same
CN109607498A (en) * 2018-12-17 2019-04-12 山东大学 A kind of g-C3N4Cubic nano pipe light catalyst and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06220620A (en) * 1993-01-21 1994-08-09 Showa Shinku:Kk Reactive ion plating device
JPH09227298A (en) * 1996-02-23 1997-09-02 Sumitomo Electric Ind Ltd Carbon nitride single crystal film
JPH1121663A (en) * 1997-07-03 1999-01-26 Mitsubishi Heavy Ind Ltd Wear resistant member and its production
JP2000072415A (en) * 1998-08-20 2000-03-07 Riyuukoku Univ Forming method of crystalline carbon nitride film
JP2004084005A (en) * 2002-08-27 2004-03-18 Ulvac Japan Ltd Method for forming hard carbon nitride film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06220620A (en) * 1993-01-21 1994-08-09 Showa Shinku:Kk Reactive ion plating device
JPH09227298A (en) * 1996-02-23 1997-09-02 Sumitomo Electric Ind Ltd Carbon nitride single crystal film
JPH1121663A (en) * 1997-07-03 1999-01-26 Mitsubishi Heavy Ind Ltd Wear resistant member and its production
JP2000072415A (en) * 1998-08-20 2000-03-07 Riyuukoku Univ Forming method of crystalline carbon nitride film
JP2004084005A (en) * 2002-08-27 2004-03-18 Ulvac Japan Ltd Method for forming hard carbon nitride film

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8133793B2 (en) 2008-05-16 2012-03-13 Sandisk 3D Llc Carbon nano-film reversible resistance-switchable elements and methods of forming the same
US8680503B2 (en) 2008-05-16 2014-03-25 Sandisk 3D Llc Carbon nano-film reversible resistance-switchable elements and methods of forming the same
US8569730B2 (en) 2008-07-08 2013-10-29 Sandisk 3D Llc Carbon-based interface layer for a memory device and methods of forming the same
US8421050B2 (en) 2008-10-30 2013-04-16 Sandisk 3D Llc Electronic devices including carbon nano-tube films having carbon-based liners, and methods of forming the same
US8835892B2 (en) 2008-10-30 2014-09-16 Sandisk 3D Llc Electronic devices including carbon nano-tube films having boron nitride-based liners, and methods of forming the same
US8183121B2 (en) 2009-03-31 2012-05-22 Sandisk 3D Llc Carbon-based films, and methods of forming the same, having dielectric filler material and exhibiting reduced thermal resistance
CN109607498A (en) * 2018-12-17 2019-04-12 山东大学 A kind of g-C3N4Cubic nano pipe light catalyst and preparation method thereof
CN109607498B (en) * 2018-12-17 2020-06-02 山东大学 g-C3N4Tetragonal nanotube photocatalyst and preparation method thereof

Also Published As

Publication number Publication date
JP4497466B2 (en) 2010-07-07

Similar Documents

Publication Publication Date Title
KR101235393B1 (en) Method for operating a pulsed arc evaporation source and vacuum process system comprising said pulsed arc evaporation source
JP4849759B2 (en) DLC layer system with improved sliding properties and process for producing such a layer system
JP5694642B2 (en) How to operate a pulsed arc source
JP4145361B2 (en) How to coat edges with diamond-like carbon
RU2543575C2 (en) Application of coating on metal billets at vacuumising plant (versions)
EP0304201A1 (en) Process for making diamond doped diamond and diamond-cubic boron nitride composite films
JPH02285072A (en) Coating of surface of workpiece and workpiece thereof
CN103717788B (en) The delamination process of hard carbon layer
JP4497466B2 (en) Method for producing hard carbon nitride film
KR101258308B1 (en) Plasma amplifier for plasma treatment plant
Matsumoto Development of diamond synthesis techniques at low pressures
JP4210141B2 (en) Method for forming hard carbon nitride film
JPH03260054A (en) Cubic bn coated member having superior exfoliation resistance and its production
JPS60251269A (en) Method and apparatus for ionic plating
JP2004084005A (en) Method for forming hard carbon nitride film
JP2939251B1 (en) Boron nitride film forming equipment
JP3263499B2 (en) Method and apparatus for forming diamond-like film
RU2146724C1 (en) Method for depositing composite coatings
JPH07300665A (en) Method for forming boron cementation layer and boron film on metallic base material
Rother Calculations on ion-assisted deposition techniques examined in relation to the deposition of diamond-like carbon coatings
RU1812239C (en) Method for vacuum machining of metal articles
JP2004084004A (en) Method for forming hard carbon film
JP2995339B2 (en) How to make a thin film
JP3291274B2 (en) Carbon coating method
JPH0645871B2 (en) Reactive ion plating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100409

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4497466

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160423

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250