JP2006063255A - Piping member for fluid comprising polyarylene sulfide resin composition - Google Patents

Piping member for fluid comprising polyarylene sulfide resin composition Download PDF

Info

Publication number
JP2006063255A
JP2006063255A JP2004249966A JP2004249966A JP2006063255A JP 2006063255 A JP2006063255 A JP 2006063255A JP 2004249966 A JP2004249966 A JP 2004249966A JP 2004249966 A JP2004249966 A JP 2004249966A JP 2006063255 A JP2006063255 A JP 2006063255A
Authority
JP
Japan
Prior art keywords
group
fluid piping
groups
resin
thermoplastic elastomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004249966A
Other languages
Japanese (ja)
Other versions
JP5132031B2 (en
Inventor
Hirokiyo Nakase
広清 中瀬
Yasuyuki Yoshino
泰之 芳野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP2004249966A priority Critical patent/JP5132031B2/en
Publication of JP2006063255A publication Critical patent/JP2006063255A/en
Application granted granted Critical
Publication of JP5132031B2 publication Critical patent/JP5132031B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a piping member for a fluid, especially a member for a joint, hardly causing breakage, burst or the like by freezing even when the piping is exposed to open air at very low temperature, e.g. -40°C, and having good collision resistance at low temperature, breakage resistance at low temperature and the like. <P>SOLUTION: The piping member for the fluid, e.g. an elbow, a header, a cheese, a reducer, the joint and a coupler comprises a resin composition containing (A) a polyarylene sulfide resin and (B) a thermoplastic elastomer, and having ≥20 kJ/m<SP>2</SP>Charpy notched impact strength at -40°C. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は各種の有機物/無機物の流体、各種の溶剤、燃料、各種の気体、液化ガス、その他各種のポリマー生産の際の原料、中間体、製品などの流動性を有する流体、或いは飲料水、給湯器を経由した温水、更には温水に依る床暖房システム、工場栽培野菜等への肥料配合水供給システムなど主として水を含んだ流体等の搬送に有用な流体の配管用部材、特に管継ぎ手類に関する。   The present invention includes various organic / inorganic fluids, various solvents, fuels, various gases, liquefied gases, fluids having fluidity such as raw materials, intermediates and products in production of various polymers, drinking water, Hot water via hot water heaters, floor heating systems that rely on hot water, fertilizer-mixed water supply systems for cultivated vegetables, etc. Mainly used for transporting fluids containing water, especially pipe fittings About.

最近、配管用部材には金属材料に変わりプラスチック化が進められてきた。該プラスチック材料には、例えば、パイプ等の配管部材として高密度ポリエチレン、架橋ポリエチレン等が使用されているがこれらのプラスチックは耐熱性が不足しており、流体の熱により特に接合部を有する構造では接合部のゆるみが起きたり、氷結により配管が破損、破裂したりする問題点があった。これを改善するため、ポリフェニレンスルフィド樹脂組成物を用いる技術が提案されている(例えば、特許文献1参照。)。しかし、この方法でも、上記の氷結による破損、破裂等の改善効果は不十分であった。   Recently, plastic members have been promoted instead of metal materials for piping members. In the plastic material, for example, high-density polyethylene, cross-linked polyethylene, or the like is used as a piping member such as a pipe. However, these plastics are insufficient in heat resistance, and particularly in a structure having a joint due to heat of fluid. There were problems such as loosening of the joints and damage or rupture of the piping due to icing. In order to improve this, the technique using a polyphenylene sulfide resin composition is proposed (for example, refer patent document 1). However, even with this method, the effect of improving the damage and rupture due to the above-mentioned freezing was insufficient.

特開2001−115020号公報JP 2001-1115020 A

また、ポリフェニレンスルフィド樹脂組成物を用いて、氷結による破損、破裂等を改善しようとする技術も提案されている(例えば、特許文献2参照)。しかし、これら方法を用いても、例えば−40℃での低温特性が不十分な場合があり、−40℃の温度での氷結による破損、破裂等の改善効果は不十分であった。   In addition, a technique for improving damage, rupture, and the like due to freezing using a polyphenylene sulfide resin composition has also been proposed (see, for example, Patent Document 2). However, even if these methods are used, for example, the low temperature characteristics at −40 ° C. may be insufficient, and the improvement effect such as breakage and rupture due to freezing at a temperature of −40 ° C. is insufficient.

特開2004−143372号公報JP 2004-143372 A

従って、本発明の課題は、配管が極低温、例えば−40℃の外気に晒される際においても、氷結による破損や破裂等を起こさない、耐低温衝突性、耐低温破断性等が良好な流体配管用部材、特にジョイント用部材を提供することである。   Accordingly, an object of the present invention is to provide a fluid having good low temperature collision resistance, low temperature rupture resistance, etc. that does not cause breakage or rupture due to freezing even when the piping is exposed to the outside air at an extremely low temperature, for example, −40 ° C. It is to provide a piping member, particularly a joint member.

本発明者等は、前記の課題を解決すべく鋭意検討を重ねた結果、−40℃におけるノッチ付のシャルピー衝撃値が20kJ/m以上である、PAS樹脂(A)と熱可塑性エラストマー(B)を含有する樹脂組成物を成形してなる流体配管用部材が、耐氷結性(内部に充満した媒体が氷結しても割れないといった特性)が良好であるという知見を得た。 As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention have a PAS resin (A) and a thermoplastic elastomer (B) having a notched Charpy impact value at −40 ° C. of 20 kJ / m 2 or more. It has been found that a fluid piping member formed by molding a resin composition containing) has good icing resistance (characteristic that the medium filled inside does not crack even if it freezes).

本発明は、このような知見に基づくものである。即ち、本発明は、ポリアリーレンスルフィド樹脂(A)及び熱可塑性エラストマー(B)を含有する、−40℃におけるノッチ付のシャルピー衝撃値が20kJ/m以上である樹脂組成物からなることを特徴とする流体配管用部材を提供する。 The present invention is based on such knowledge. That is, the present invention comprises a resin composition containing a polyarylene sulfide resin (A) and a thermoplastic elastomer (B) and having a notched Charpy impact value at −40 ° C. of 20 kJ / m 2 or more. A fluid piping member is provided.

本発明によると、耐氷結性に優れた流体配管用部材を提供することが可能である。特に、本発明は、管継ぎ手類に好ましく適用される。
ADVANTAGE OF THE INVENTION According to this invention, it is possible to provide the member for fluid piping excellent in freezing resistance. In particular, the present invention is preferably applied to pipe fittings.

前記樹脂組成物は、−40℃におけるノッチ付のシャルピー衝撃値が20kJ/m以上であることが必須である。前記シャルピー衝撃値は、高い程好ましいが、実用的には20〜120kJ/mの範囲であればよい。また、前記シャルピー衝撃値が20kJ/m未満の場合、流体配管用部材での耐氷結性が劣ることになり、好ましくない。なお、シャルピー衝撃値は、例えば後述の方法により測定できる。 The resin composition must have a notched Charpy impact value at −40 ° C. of 20 kJ / m 2 or more. The Charpy impact value is preferably as high as possible, but may be practically in the range of 20 to 120 kJ / m 2 . On the other hand, when the Charpy impact value is less than 20 kJ / m 2 , the ice resistance in the fluid piping member is inferior, which is not preferable. The Charpy impact value can be measured, for example, by the method described later.

本発明で使用するポリアリーレンスルフィド樹脂(以下PAS樹脂と略記する。)は下記一般式(1)で示される繰り返し単位を有するポリフェニレンサルファイド樹脂(以下PPS樹脂と略記する。)が、機械的特性、耐薬品性等の点で望ましい。   The polyarylene sulfide resin (hereinafter abbreviated as PAS resin) used in the present invention is a polyphenylene sulfide resin (hereinafter abbreviated as PPS resin) having a repeating unit represented by the following general formula (1). It is desirable in terms of chemical resistance.

Figure 2006063255
Figure 2006063255

また、前記PAS樹脂(A)には、他の共重合体構成単位を含有させることができる。この含有可能な他の共重合体構成単位の具体例としては、特に制限されるものではないが、例えば、下記構造式(2)で表されるメタ結合、下記構造式(3)で表されるエ−テル結合、下記構造式(4)で表されるスルホン結合、下記構造式(5)で表されるスルフィドケトン結合、下記構造式(6)で表されるビフェニル結合、下記構造式(7)で表される置換フェニルスルフィド結合、下記構造式(8)で表される3官能フェニルスルフィド結合及びナフチル結合等が挙げられる。   Further, the PAS resin (A) can contain other copolymer structural units. Specific examples of the other copolymer structural units that can be contained are not particularly limited, and examples thereof include a meta bond represented by the following structural formula (2) and a structural formula represented by the following structural formula (3). Ether bond, sulfone bond represented by the following structural formula (4), sulfide ketone bond represented by the following structural formula (5), biphenyl bond represented by the following structural formula (6), the following structural formula ( Examples thereof include a substituted phenyl sulfide bond represented by 7), a trifunctional phenyl sulfide bond represented by the following structural formula (8), and a naphthyl bond.

Figure 2006063255
Figure 2006063255

前記構造式(7)、(8)中のRは、それぞれ独立に、アルキル基、ニトロ基、アミノ基、フェニル基、またはアルコキシ基を示す。)   R in the structural formulas (7) and (8) each independently represents an alkyl group, a nitro group, an amino group, a phenyl group, or an alkoxy group. )

本発明で用いるPAS樹脂(A)は、前記一般式(1)で表される繰り返し単位を70モル%以上含有するPPS樹脂であることが、耐熱性、耐薬品性、及び機械特性に優れたポリマーとしての特徴が発揮されやすいため好ましい。又、下記構造式(8)の様な3官能性以上の結合が含有される場合は、溶融成形時の粘度が高くならないよう通常5モル%以下が好ましく、3モル%以下が更に好ましい。   The PAS resin (A) used in the present invention is a PPS resin containing 70 mol% or more of the repeating unit represented by the general formula (1), and is excellent in heat resistance, chemical resistance, and mechanical properties. Since the characteristics as a polymer are easily exhibited, it is preferable. In addition, when a bond having three or more functionalities such as the following structural formula (8) is contained, it is usually preferably 5 mol% or less, and more preferably 3 mol% or less so as not to increase the viscosity during melt molding.

前記PAS樹脂(A)を得る方法としては、特に限定されないが、PPS樹脂を例にとると、(1)ジハロゲン芳香族化合物類を硫黄と炭酸ソーダの存在下に重合させる方法、(2)ジハロゲン芳香族化合物類を極性溶媒中でスルフィド化剤の存在下に重合させる方法、(3)p−クロルチオフェノールを自己縮合させる方法、(4)有機極性溶媒とジハロゲノ芳香族化合物を混合し加熱しておき、その中に含水スルフィド化剤を加えてジハロゲノ芳香族化合物とスルフィド化剤とを反応させ、この時、含水スルフィド化剤を反応混合物中の水分量が有機極性溶媒の2〜50モル%の範囲内になる様な速度で加える製造方法などがある。   The method for obtaining the PAS resin (A) is not particularly limited, but taking a PPS resin as an example, (1) a method of polymerizing a dihalogen aromatic compound in the presence of sulfur and sodium carbonate, (2) a dihalogen A method of polymerizing aromatic compounds in the presence of a sulfidizing agent in a polar solvent, (3) a method of self-condensing p-chlorothiophenol, and (4) mixing and heating an organic polar solvent and a dihalogeno aromatic compound. In addition, a hydrous sulfiding agent is added thereto to react the dihalogenoaromatic compound and the sulfiding agent. At this time, the water content of the hydrous sulfiding agent is 2 to 50 mol% of the organic polar solvent. There is a manufacturing method that adds at a speed that falls within the range of

これらの中でも前記(4)の製造方法が、分子量の大きなPPS樹脂を得るのに容易である。また、このPPS樹脂は、樹脂組成物の−40℃におけるノッチ付のシャルピー衝撃値が20kJ/m以上になりやすい点からも好ましい。 Among these, the production method (4) is easy to obtain a PPS resin having a large molecular weight. Moreover, this PPS resin is also preferable from the point that the Charpy impact value with a notch at −40 ° C. of the resin composition tends to be 20 kJ / m 2 or more.

本発明に用いるPAS樹脂(A)の分子量は、1−クロロナフタレンを溶媒として、ゲル浸透クロマトグラフィーにより求めることが出来る。前記PAS樹脂(A)は、低温での耐衝撃性、強靭性の必要から、そのピーク分子量が、35000以上が好ましく、成形時の流動性が良好であることから200000以下が好ましい。中でも、40000〜100000が特に好ましい。   The molecular weight of the PAS resin (A) used in the present invention can be determined by gel permeation chromatography using 1-chloronaphthalene as a solvent. The PAS resin (A) has a peak molecular weight of preferably 35,000 or more because of the need for impact resistance and toughness at low temperatures, and preferably 200000 or less because of good flowability during molding. Among these, 40,000 to 100,000 is particularly preferable.

前記PAS樹脂(A)の分子量は、一般に分子量分布が非常に大きく、さらにピーク分子量の左右のテーリングが製造条件で大きく振れる傾向がある。その為、数平均分子量と重量平均分子量の差が大きくどちらを用いても実情を表さない場合があり、分子量分布の中で最も多数の分子が集まった分子量を示すピーク分子量が、比較的性能に直接反映される事を知り、ピーク分子量で評価する事にした。このピーク分子量の測定法は実施例で詳述する。PAS樹脂のピーク分子量が前記範囲にある場合に、特にPAS樹脂(A)と熱可塑性エラストマー(B)との相溶性が向上し、本発明の流体配管用部材の耐低温衝突性が向上する。   The molecular weight of the PAS resin (A) generally has a very large molecular weight distribution, and the tailing on the left and right of the peak molecular weight tends to fluctuate greatly under production conditions. Therefore, there is a case where the difference between the number average molecular weight and the weight average molecular weight is large and does not represent the actual situation, and the peak molecular weight indicating the molecular weight of the largest number of molecules gathered in the molecular weight distribution is relatively high performance. It was decided to evaluate by the peak molecular weight. The method for measuring the peak molecular weight will be described in detail in Examples. When the peak molecular weight of the PAS resin is in the above range, the compatibility between the PAS resin (A) and the thermoplastic elastomer (B) is improved, and the low-temperature collision resistance of the fluid piping member of the present invention is improved.

さらに、本発明に使用するPAS樹脂として、カルボキシル基で変性されたカルボキシル基含有ポリアリ−レンサルファイド系樹脂(以下、CPAS系樹脂と記す。)を用いることができる。   Further, as the PAS resin used in the present invention, a carboxyl group-containing polyarylene sulfide-based resin modified with a carboxyl group (hereinafter referred to as a CPAS-based resin) can be used.

前記CPAS系樹脂としては、例えば、下記一般式(9)〜(11)で示される繰り返し構造単位を有するCPAS樹脂と繰り返し単位が前記構造式(1)表される繰り返し単位を有するPASとの共重合体等が挙げられる(一般式(10)中のYは−O−、−SO−、−CH−、−C(CH−、−CO−、又は、−C(CF−を示す。)。上記CPAS樹脂中の繰り返し構造単位の含有率は、使用する目的等々によって異なるため一概に規定できないが、CPAS系樹脂中の0.5〜30モル%、好ましくは、0.8〜20モル%である。このような共重合によるCPAS系樹脂は、ランダムタイプでも、ブロックタイプでも、グラフトタイプでも構わない。最も代表的なものとして、PAS樹脂骨格部分がPPS樹脂骨格でCPAS樹脂骨格部分が上記一般式(9)で示されるカルボキシル基含有ポリフェニレンサルファイド樹脂(CPPS)である共重合体が挙げられる。この場合、PPS樹脂/CPPS樹脂は99.5/0.5〜70/30(重量比)が好ましい。 Examples of the CPAS-based resin include a CPAS resin having a repeating structural unit represented by the following general formulas (9) to (11) and a PAS having a repeating unit represented by the structural formula (1). (Y in general formula (10) is —O—, —SO 2 —, —CH 2 —, —C (CH 3 ) 2 —, —CO—, or —C (CF 3). ) 2- )). Although the content of the repeating structural unit in the CPAS resin varies depending on the purpose of use and the like, it cannot be defined unconditionally, but it is 0.5 to 30 mol% in the CPAS resin, preferably 0.8 to 20 mol%. is there. The CPAS resin by such copolymerization may be a random type, a block type, or a graft type. The most typical example is a copolymer in which the PAS resin skeleton is a PPS resin skeleton and the CPAS resin skeleton is a carboxyl group-containing polyphenylene sulfide resin (CPPS) represented by the general formula (9). In this case, the PPS resin / CPPS resin is preferably 99.5 / 0.5 to 70/30 (weight ratio).

Figure 2006063255
Figure 2006063255

共重合によるCPAS樹脂の製造方法としては、次のような方法が挙げられる。例えば、ランダムタイプの場合には、ジハロゲノ芳香族化合物とアルカリ金属硫化物とジハロゲノ芳香族カルボン酸及び(または)そのアルカリ金属塩とを用いる方法や該製造方法において用いたアルカリ硫化物に代えて水硫化アルカリ金属化合物と水酸化アルカリ金属を用いる方法などが挙げられる。   Examples of the method for producing a CPAS resin by copolymerization include the following methods. For example, in the case of a random type, water is used in place of the alkali sulfide used in the method using the dihalogenoaromatic compound, the alkali metal sulfide, the dihalogenoaromatic carboxylic acid and / or the alkali metal salt thereof, or the production method thereof. Examples thereof include a method using an alkali metal sulfide compound and an alkali metal hydroxide.

またブロックタイプの場合には(1)PASプレポリマーの存在する極性溶媒中で、ジハロゲノ芳香族カルボン酸及び/またはそのアルカリ金属塩とスルフィド化剤(アルカリ硫化物;水硫化アルカリ金属化合物と水酸化アルカリ金属との併用)を反応させる方法、(2)CPASプレポリマーの存在する極性溶媒中で、ジハロゲノ芳香族化合物とスルフィド化剤を反応させる方法、(3)極性溶媒中で、PASプレポリマーとCPASプレポリマーを反応させる方法などがある。   In the case of the block type, (1) a dihalogenoaromatic carboxylic acid and / or an alkali metal salt thereof and a sulfidizing agent (an alkali sulfide; an alkali metal hydrosulfide compound and a hydroxide) in a polar solvent in which a PAS prepolymer exists. (In combination with an alkali metal), (2) a method in which a dihalogenoaromatic compound and a sulfidizing agent are reacted in a polar solvent in which a CPAS prepolymer is present, and (3) a PAS prepolymer in a polar solvent. There is a method of reacting a CPAS prepolymer.

また、本発明に用いるPAS樹脂として、アミノ基で変性されたアミノ基含有ポリアリ−レンスルフィド系樹脂(以下、APAS系樹脂と記す。)を用いることができる。APAS系樹脂中のアミノ基含有量は、樹脂組成物全体の0.1〜30モル%が好ましい。   As the PAS resin used in the present invention, an amino group-containing polyarylene sulfide resin (hereinafter referred to as APAS resin) modified with an amino group can be used. The amino group content in the APAS-based resin is preferably 0.1 to 30 mol% of the entire resin composition.

このAPAS系樹脂は、例えば、N−メチルピロリドン等のアミド系溶媒中でアルカリ金属硫化物とジハロベンゼンとを反応させる際に、アミノ基含有芳香族ハロゲン化物を共存させて重合することにより得ることができる。   This APAS resin can be obtained, for example, by polymerization in the presence of an amino group-containing aromatic halide when an alkali metal sulfide and dihalobenzene are reacted in an amide solvent such as N-methylpyrrolidone. it can.

このAPAS系樹脂の共重合に際して用いることができるアミノ基含有芳香族ハロゲン化物としては、下記一般式(12)   Examples of the amino group-containing aromatic halide that can be used for copolymerization of this APAS resin include the following general formula (12):

Figure 2006063255
Figure 2006063255

(式中、Xはハロゲン原子を表し、Zは水素原子、アミノ基又はハロゲン原子を表し、Rは炭素数1〜12の炭化水素基を表し、mは0〜3の整数である。)で表される化合物を挙げることができる。 (In the formula, X represents a halogen atom, Z represents a hydrogen atom, an amino group or a halogen atom, R 1 represents a hydrocarbon group having 1 to 12 carbon atoms, and m is an integer of 0 to 3). The compound represented by these can be mentioned.

その具体的化合物としては、例えば、フルオロアニリン、クロルアニリン、ジクロルアニリン、アミノ−クロルトルエン、クロル−フェニレンジアミン、ブロムアニリン、ジブロムアニリン、ヨ−ドアニリン等が挙げられ、これらの1種以上の混合物を使用することができる。   Specific examples of the compound include fluoroaniline, chloraniline, dichloroaniline, amino-chlorotoluene, chloro-phenylenediamine, bromoaniline, dibromoaniline, and iodoaniline. Mixtures can be used.

本発明に使用される熱可塑性エラストマー(B)は、PAS樹脂(A)を混練する温度で、溶融し、混合分散可能であることが好ましい。その点から、融点が300℃以下であり、室温でゴム弾性を有するエラストマーが好ましい。中でも、耐熱性、混合の容易さ、耐氷結性向上の点で、熱可塑性エラストマー(B)の中でもガラス転移点が−40℃以下のものが低温でもゴム弾性を有するため好ましい。前記ガラス転移点は、低いほど好ましいが、通常−180〜−40℃の範囲のものが好ましく、−150〜−40℃の範囲のものが特に好ましい。   The thermoplastic elastomer (B) used in the present invention is preferably meltable, mixed and dispersed at the temperature at which the PAS resin (A) is kneaded. From this point, an elastomer having a melting point of 300 ° C. or less and having rubber elasticity at room temperature is preferable. Among them, in terms of heat resistance, ease of mixing, and improvement in freezing resistance, among the thermoplastic elastomers (B), those having a glass transition point of −40 ° C. or less are preferable because they have rubber elasticity even at low temperatures. The glass transition point is preferably as low as possible, but is usually preferably in the range of -180 to -40 ° C, particularly preferably in the range of -150 to -40 ° C.

前記熱可塑性エラストマー(B)は、エポキシ基、アミノ基、水酸基、カルボキシル基、メルカプト基、イソシアネート基、ビニル基、酸無水基及びエステル基からなる群から選ばれる少なくとも1種の官能基を有する熱可塑性エラストマー(B)であることが耐低温衝突性向上の点で好ましく、更にこれらの中でも、エポキシ基或いは酸無水物、酸、エステル等のカルボン酸に起因する官能基がPAS樹脂(A)との親和性が大きくなるため特に好ましい。   The thermoplastic elastomer (B) is a heat having at least one functional group selected from the group consisting of epoxy groups, amino groups, hydroxyl groups, carboxyl groups, mercapto groups, isocyanate groups, vinyl groups, acid anhydride groups and ester groups. A plastic elastomer (B) is preferred from the viewpoint of improving low-temperature impact resistance, and among these, a functional group derived from a carboxylic acid such as an epoxy group or an acid anhydride, an acid, or an ester has a PAS resin (A). This is particularly preferable because the affinity of is increased.

前記熱可塑性エラストマー(B)としては、例えば、α−オレフィン類と前記官能基を有するビニル重合性化合物類との共重合で得ることが出来る。前記α−オレフィン類としては、例えば、エチレン、プロピレン、ブテン−1、等の炭素数2〜8のα−オレフィン類等が挙げられる。前記官能基を有するビニル重合性化合物類としては、例えば、(メタ)アクリル酸、(メタ)アクリル酸エステル等のα、β―不飽和カルボン酸類及びそのアルキルエステル類、マレイン酸、フマル酸、イタコン酸、その他の炭素数4〜10の不飽和ジカルボン酸類とそのモノ及びジエステル類、その酸無水物等のα、β―不飽和ジカルボン酸及びその誘導体、或いはグリシジル(メタ)アクリレート等が挙げられる。   The thermoplastic elastomer (B) can be obtained, for example, by copolymerization of α-olefins and vinyl polymerizable compounds having the functional group. Examples of the α-olefins include α-olefins having 2 to 8 carbon atoms such as ethylene, propylene, and butene-1. Examples of the vinyl polymerizable compounds having the functional group include α, β-unsaturated carboxylic acids such as (meth) acrylic acid and (meth) acrylic acid esters and alkyl esters thereof, maleic acid, fumaric acid, and itacon. Examples include acids, other unsaturated dicarboxylic acids having 4 to 10 carbon atoms and mono- and diesters thereof, α, β-unsaturated dicarboxylic acids such as acid anhydrides and derivatives thereof, glycidyl (meth) acrylate, and the like.

これらの中でも、その分子内にエポキシ基、アミノ基、水酸基、カルボキシル基、メルカプト基、イソシアネート基、ビニル基、或いは酸無水基、及びエステル基からなる群から選ばれる少なくとも1種の官能基を有するエチレン−プロピレン共重合体或いはエチレン−ブテン共重合体が好ましく用いられ、さらに好ましくはカルボキシル基を有するエチレン−プロピレン共重合体或いはエチレン−ブテン共重合体である。   Among these, the molecule has at least one functional group selected from the group consisting of an epoxy group, an amino group, a hydroxyl group, a carboxyl group, a mercapto group, an isocyanate group, a vinyl group, an acid anhydride group, and an ester group. An ethylene-propylene copolymer or an ethylene-butene copolymer is preferably used, and an ethylene-propylene copolymer or an ethylene-butene copolymer having a carboxyl group is more preferable.

PAS樹脂(A)と熱可塑性エラストマー(B)との混合比は、PAS樹脂(A)99〜50重量部に対し、熱可塑性エラストマー(B)1〜50重量部であることが好ましい。これらの中でも、PAS樹脂(A)99〜50重量部に対し、熱可塑性エラストマー(B)5〜50重量部であることが、特に好ましい。熱可塑性エラストマー(B)の配合量がこの範囲であれば、本発明の流体配管用部材の耐氷結性が良好で、熱による変形しにくさが特に良好となる。   The mixing ratio of the PAS resin (A) and the thermoplastic elastomer (B) is preferably 1 to 50 parts by weight of the thermoplastic elastomer (B) with respect to 99 to 50 parts by weight of the PAS resin (A). Among these, it is particularly preferable that the thermoplastic elastomer (B) is 5 to 50 parts by weight with respect to 99 to 50 parts by weight of the PAS resin (A). If the blending amount of the thermoplastic elastomer (B) is within this range, the freezing resistance of the fluid piping member of the present invention is good, and the resistance to deformation due to heat is particularly good.

また、本発明ではPAS樹脂(A)と熱可塑性エラストマー(B)に加えて、エポキシ基、アミノ基、水酸基、カルボキシル基、メルカプト基、イソシアネート基、ビニル基、酸無水基及びエステル基からなる群から選ばれる少なくとも1種の官能基を有する反応性化合物(C)を併用することにより、樹脂組成物の相溶性、耐氷結性がさらに向上する。   In the present invention, in addition to the PAS resin (A) and the thermoplastic elastomer (B), a group consisting of an epoxy group, an amino group, a hydroxyl group, a carboxyl group, a mercapto group, an isocyanate group, a vinyl group, an acid anhydride group and an ester group. By using together the reactive compound (C) having at least one functional group selected from the above, compatibility and freezing resistance of the resin composition are further improved.

前記反応性化合物(C)としては、例えば、ビスフェノールA、レゾルシノ−ル、ハイドロキノン、ピロカテコール、ビスフェノールF、サリゲニン、1,3,5−トリヒドロキシベンゼン、ビスフェノールS、トリヒドロキシ−ジフェニルジメチルメタン、4,4’−ジヒドロキシビフェニル、1,5−ジヒドロキシナフタレン、カシューフェノール、2,2,5,5−テトラキス(4−ヒドロキシフェニル)ヘキサンなどのビスフェノールのグリシジルエーテル、ビスフェノールの代わりにハロゲン化ビスフェノール、ブタンジオールのジグリシジルエーテル等のグリシジルエーテル類、フタル酸グリシジルエステル等のグリシジルエステル類、N−グリシジルアニリン等のグリシジルアミン類等のエポキシ樹脂類、エポキシ化ポリオレフィン、エポキシ化大豆油等の線状系及びビニルシクロヘキセンジオキサイド、ジシクロペンタジエンジオキサイド等の環状系の非グリシジルエポキシ樹脂、マレイン酸、フマル酸、イタコン酸、その他炭素数4〜10の不飽和ジカルボン酸とそのモノ及びジエステル類が例示される。   Examples of the reactive compound (C) include bisphenol A, resorcinol, hydroquinone, pyrocatechol, bisphenol F, saligenin, 1,3,5-trihydroxybenzene, bisphenol S, trihydroxy-diphenyldimethylmethane, 4 , 4'-dihydroxybiphenyl, 1,5-dihydroxynaphthalene, cashew phenol, glycidyl ether of bisphenol such as 2,2,5,5-tetrakis (4-hydroxyphenyl) hexane, halogenated bisphenol instead of bisphenol, butanediol Epoxy resins such as glycidyl ethers such as diglycidyl ether, glycidyl esters such as glycidyl phthalate, glycidyl amines such as N-glycidyl aniline, epoxidized polyolefin Non-glycidyl epoxy resins such as vinyl, epoxidized soybean oil and the like, and cyclic non-glycidyl epoxy resins such as vinylcyclohexenedioxide and dicyclopentadiene dioxide, maleic acid, fumaric acid, itaconic acid, and other non-carbon containing 4 to 10 carbon atoms. Saturated dicarboxylic acids and their mono and diesters are exemplified.

これらの中でも、同一分子内に3個以上のエポキシ樹脂を有するエポキシ化合物が特に好ましい。該化合物の代表例として、ノボラック型エポキシ樹脂が使用できる。ノボラック型エポキシ樹脂は、例えば、ノボラック型フェノール樹脂とエピクロルヒドリンとから誘導されるものである。前記ノボラック型フェノール樹脂としては、例えば、フェノール類とホルムアルデヒドとの縮合反応により得られる。前記フェノール類としては特に制限はないが、例えば、フェノール、o−クレゾール、m−クレゾール、p−クレゾール、ビスフェノールA、レゾルシノール、p−ターシャリーブチルフェノール、ビスフェノールF、ビスフェノールS及びこれらの混合物が特に好適に用いられる。更に、ポリ−p−ビニルフェノールのエポキシ化物もエポキシ樹脂として用いることができる。なお、反応性化合物(C)はハロゲン基或いは水酸基等を有していてもよく、単独又は二種以上の混合物として使用してもよい。   Among these, an epoxy compound having three or more epoxy resins in the same molecule is particularly preferable. As a representative example of the compound, a novolac type epoxy resin can be used. The novolac-type epoxy resin is derived from, for example, a novolac-type phenol resin and epichlorohydrin. The novolac type phenol resin can be obtained, for example, by a condensation reaction of phenols and formaldehyde. The phenols are not particularly limited, but for example, phenol, o-cresol, m-cresol, p-cresol, bisphenol A, resorcinol, p-tertiary butylphenol, bisphenol F, bisphenol S and a mixture thereof are particularly preferable. Used for. Furthermore, an epoxidized product of poly-p-vinylphenol can also be used as an epoxy resin. The reactive compound (C) may have a halogen group or a hydroxyl group, and may be used alone or as a mixture of two or more.

特に、熱可塑性エラストマー(B)として、エポキシ基と反応する官能基を有するものと、反応性化合物(C)が3個以上のエポキシ基を有する化合物を用いた場合に、−40℃での耐衝撃性が著しく向上する。PAS樹脂(A)と、熱可塑性エラストマー(B)との界面が衝撃エネルギーの吸収に適した構造になっていると推定される。   In particular, when a thermoplastic elastomer (B) having a functional group that reacts with an epoxy group and a compound having a reactive compound (C) having three or more epoxy groups are used, the resistance at −40 ° C. Impact properties are significantly improved. It is estimated that the interface between the PAS resin (A) and the thermoplastic elastomer (B) has a structure suitable for absorbing impact energy.

本発明に使用するエポキシ樹脂(C)の配合量は、前記したPAS樹脂(A)、熱可塑性エラストマー(B)の合計量100重量部に対し、0.01〜5重量部であることが好ましく、0.1〜2重量部であることが特に好ましい。   The amount of the epoxy resin (C) used in the present invention is preferably 0.01 to 5 parts by weight with respect to 100 parts by weight of the total amount of the PAS resin (A) and the thermoplastic elastomer (B). 0.1 to 2 parts by weight is particularly preferable.

また、本発明の流体配管用部材に用いられるPAS樹脂組成物には、本発明の目的を損なわない範囲で、機械的特性の向上や成形加工性の向上を図る等の目的で、各種の強化材及び/又は充填剤を添加しても良い。   In addition, the PAS resin composition used for the fluid piping member of the present invention has various reinforcements for the purpose of improving mechanical properties and molding processability within a range not impairing the object of the present invention. Materials and / or fillers may be added.

本発明に使用することができる強化材及び充填材としては、例えばガラス繊維、炭素繊維、チタン酸カルシウム、チタン酸カリウム、炭化珪素、アラミド繊維、セラミック繊維、金属繊維、窒化珪素、硫酸バリウム、硫酸カルシウム、カオリン、クレー、ベントナイト、セリサイト、ゼオライト、マイカ、雲母、タルク、ウオラストナイト、フェライト、珪酸アルミニウム、珪酸カルシウム、炭酸カルシウム、ドロマイト、酸化マグネシウム、水酸化マグネシウム、三酸化アンチモン、酸化チタン、酸化鉄、ミルドガラス、ガラスビーズ、及びガラスバルーン等がある。   Examples of the reinforcing material and filler that can be used in the present invention include glass fiber, carbon fiber, calcium titanate, potassium titanate, silicon carbide, aramid fiber, ceramic fiber, metal fiber, silicon nitride, barium sulfate, and sulfuric acid. Calcium, kaolin, clay, bentonite, sericite, zeolite, mica, mica, talc, wollastonite, ferrite, aluminum silicate, calcium silicate, calcium carbonate, dolomite, magnesium oxide, magnesium hydroxide, antimony trioxide, titanium oxide, Examples include iron oxide, milled glass, glass beads, and glass balloons.

更に本発明に使用する樹脂組成物には、本発明の目的を損わない範囲で下記の重合体を混合して使用できる。前記重合体としては、例えば、シリコーン樹脂、ポリイミド、ポリエチレン、ポリプロピレン、ポリスチレン、スチレン−ブタジエン共重合体、ポリアミド、ポリカーボネート、ポリサルフォン、ポリエーテルサルフォン、ポリアリレート、ポリアセタール、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリブチレンテレフタレート、ポリエチレンテレフタレート、液晶ポリマー、ポリアミドイミド、ポリエーテルイミドなどを挙げることができる。   Furthermore, the following polymer can be mixed and used for the resin composition used for this invention in the range which does not impair the objective of this invention. Examples of the polymer include silicone resin, polyimide, polyethylene, polypropylene, polystyrene, styrene-butadiene copolymer, polyamide, polycarbonate, polysulfone, polyethersulfone, polyarylate, polyacetal, polyetherketone, polyetheretherketone. , Polybutylene terephthalate, polyethylene terephthalate, liquid crystal polymer, polyamideimide, polyetherimide and the like.

加えて、本発明の流体配管用部材に用いられるPAS樹脂組成物には、本発明の目的を損なわない範囲で、酸化防止剤、熱安定剤、紫外線吸収剤、離型剤、防錆剤、滑剤、結晶核剤、着色剤等を添加することができる。   In addition, the PAS resin composition used for the fluid piping member of the present invention has an antioxidant, a heat stabilizer, an ultraviolet absorber, a mold release agent, a rust preventive agent, as long as the object of the present invention is not impaired. A lubricant, a crystal nucleating agent, a coloring agent, and the like can be added.

また、本発明の燃料用配管部材に用いられるPAS樹脂組成物は、種々の方法で調製することができる。   Moreover, the PAS resin composition used for the fuel piping member of the present invention can be prepared by various methods.

調製方法としては、例えばPAS樹脂(A)、熱可塑性エラストマー(B)、必要に応じて添加される反応性化合物(C)をあらかじめヘンシェルミキサー又はタンブラー等で混合した後、1軸押出混練機又は2軸押出混練機などに供給して200〜360℃で混練した後、ペレット化することにより得る方法が挙げられる。特に、混練用のニーディングディスクを備えた同方向回転の2軸押出混練機を用いることが好ましい。   As a preparation method, for example, a PAS resin (A), a thermoplastic elastomer (B), and a reactive compound (C) to be added as necessary are mixed in advance with a Henschel mixer or a tumbler, etc. Examples thereof include a method obtained by feeding to a biaxial extrusion kneader or the like and kneading at 200 to 360 ° C. and then pelletizing. In particular, it is preferable to use a twin-screw extrusion kneader that rotates in the same direction and includes a kneading disk for kneading.

また、ペレット化後に、アニーリング処理や、UV照射、プラズマ照射等の加工処理を施すこともできる。   In addition, after the pelletization, an annealing process, a processing process such as UV irradiation or plasma irradiation can be performed.

本発明の流体配管用部材は、前記樹脂組成物を成形して得る。前記流体とは、気体、液体、超臨界流体等であり、例えば、都市ガス、プロパンガス、窒素、酸素、水素、二酸化炭素、ヘリウム、ネオン、アルゴン、ハロゲンガス、水蒸気、冷水、温水、沸騰水、温泉、各種有機溶剤、冷媒、熱媒、硫酸等の酸類、水酸化ナトリウム水溶液のようなアルカリ液、溶融ポリマーやポリマー溶液等が挙げられる。また、流体配管部材としては、例えばパイプ、ライニング管、袋ナット類、管継ぎ手類(エルボー、ヘッダー、チーズ、レデューサ、ジョイント、カプラー、等)、各種バルブ、各種弁類、流量計、ガスケット(シール、パッキン類)など流体を搬送する為の配管及び配管に付属する各種の部品が挙げられる。   The member for fluid piping of the present invention is obtained by molding the resin composition. The fluid is gas, liquid, supercritical fluid, etc., for example, city gas, propane gas, nitrogen, oxygen, hydrogen, carbon dioxide, helium, neon, argon, halogen gas, water vapor, cold water, hot water, boiling water , Hot springs, various organic solvents, refrigerants, heating media, acids such as sulfuric acid, alkaline solutions such as aqueous sodium hydroxide, molten polymers and polymer solutions, and the like. Examples of fluid piping members include pipes, lining pipes, cap nuts, pipe joints (elbow, header, cheese, reducer, joint, coupler, etc.), various valves, valves, flow meters, gaskets (seal And various parts attached to the piping for conveying the fluid, such as packing).

本発明の流体配管用部材の成形方法としては、射出成形、押出成形、ブロー成形、プレス成形等が挙げられる。特に、射出成形、押出成形が好ましく適用される。本発明の流体配管用部材は、PAS樹脂(A)と熱可塑性エラストマー(B)、必要に応じて添加する反応性化合物(C)を用いて形成されることを特徴とするが、該組成物は単独で使用しても良いし、多層構造とする際の少なくとも一層に使用しても良い。   Examples of the molding method for the fluid piping member of the present invention include injection molding, extrusion molding, blow molding, and press molding. In particular, injection molding and extrusion molding are preferably applied. The fluid piping member of the present invention is characterized in that it is formed using a PAS resin (A), a thermoplastic elastomer (B), and a reactive compound (C) to be added as necessary. May be used alone or in at least one layer when a multilayer structure is formed.

射出成形の場合は、金型の設計上、流体の流路となる部分に入れ子を用い、金型を解放する際に入れ子を抜き取る方法が好ましく適用される。入れ子が使用しにくい場合、例えば、U字型のパイプ等を成形する場合は、構成する2個以上の分割体を、前記PAS樹脂組成物を用いて射出成形により各々成形する射出成形工程と、前記射出成形工程で成形された分割体を相互に接合させてU字型のパイプ等を形成させる接合工程とを含む方法を採用しても良い。このような方法の例として、例えば、ダイスライド成形法を採用しても良い。また、多層構造とする場合は、二色成形法を採用しても良い。   In the case of injection molding, a method of using a nest in a portion that becomes a fluid flow path and extracting the nest when the mold is released is preferably applied. When nesting is difficult to use, for example, when molding a U-shaped pipe or the like, an injection molding step of molding each of two or more constituent parts by injection molding using the PAS resin composition; A method including a joining step of joining the divided parts formed in the injection molding step to each other to form a U-shaped pipe or the like may be adopted. As an example of such a method, for example, a die slide molding method may be adopted. In the case of a multilayer structure, a two-color molding method may be adopted.

押出成形の場合は、チューブ用ダイスを用いて成形される。多層構造とする場合は、層の数もしくは材料の数の押出機より押し出された溶融樹脂を、一つの多層チューブ用ダイスに導入し、ダイス内もしくはダイスを出した直後に接着せしめることにより、多層チューブを製造することができる。また、一旦単層チューブを製造し、その内側あるいは外側に他の層を積層し、多層チューブを製造する方法によってもよい。なお、三層以上の多層構成からなる多層チューブを製造する場合には、押出機を適宜に増設してそれぞれの押出機を共押出ダイに接続し、多層状のパリソンを押し出すことにより得られる。   In the case of extrusion molding, molding is performed using a tube die. In the case of a multi-layer structure, the molten resin extruded from the extruder of the number of layers or the number of materials is introduced into one multi-layer tube die, and the multi-layer structure is adhered by bonding within the die or immediately after taking out the die. Tubes can be manufactured. Alternatively, a method may be used in which a single-layer tube is once manufactured and another layer is laminated on the inside or outside thereof to manufacture a multilayer tube. In addition, when manufacturing the multilayer tube which consists of a multilayer structure of three or more layers, it is obtained by adding an extruder suitably, connecting each extruder to a coextrusion die, and extruding a multilayered parison.

本発明の流体配管用部材は、耐薬品性や変形しにくさに優れると共に、耐氷結性にも優れており、管継ぎ手類に好ましく適用され、特にジョイント用部材に好ましい。   The fluid piping member of the present invention is excellent in chemical resistance and resistance to deformation, and is also excellent in icing resistance, and is preferably applied to pipe joints, and particularly preferable for a joint member.

以下に実施例を挙げて本発明を更に説明する。例中の部は、重量部を示す。尚、本発明はこれらの実施例の範囲に限定されるものではない。   The following examples further illustrate the present invention. The part in an example shows a weight part. The present invention is not limited to the scope of these examples.

後述する測定値及び評価基準は以下のとおり測定・評価した。   The measurement values and evaluation criteria described below were measured and evaluated as follows.

(1)耐低温衝撃性;シャルピー衝撃試験(−40℃下、ノッチ付)
[試験片の作製]
後述の方法により得られた該組成物のペレットを用いて、射出成形機により、ISO 3167タイプAの多目的試験片を成形した。次にISO 2818に従って、この多目的試験片を長さ80mm×幅10.0mm×厚さ4.0mmに切削加工を行った後、ISO 2818に従いノッチを切削した。
[測定方法]
ISO 179に従い、試験片を液槽中で完全に−40℃になるまで放置した後、液槽中から取り出して5秒以内に衝撃試験を行った。
(1) Low temperature impact resistance; Charpy impact test (under -40 ° C, with notch)
[Preparation of test piece]
A multi-purpose test piece of ISO 3167 type A was molded by an injection molding machine using pellets of the composition obtained by the method described below. Next, this multi-purpose test piece was cut into a length of 80 mm × width of 10.0 mm × thickness of 4.0 mm according to ISO 2818, and then a notch was cut according to ISO 2818.
[Measuring method]
In accordance with ISO 179, the test piece was allowed to stand completely in the liquid bath until it reached −40 ° C., then taken out from the liquid bath and subjected to an impact test within 5 seconds.

(2)ピーク分子量;ゲル浸透クロマトグラフ測定にて求めた。
装置:超高温ポリマー分子量分布測定装置SSC−7000(センシュウ科学社製)、カラム:UT−805L(昭和電工社製)、溶媒:1−クロロナフタレン、カラム温度:210℃、検出器:UV検出器(360nm)を用い、6種類の単分散ポリスチレンを校正に用いて分子量分布を測定し、縦軸がd(重量)/dLog(分子量)、横軸がLog(分子量)の微分重量分子量分布を得、そのピーク分子量を横軸から読み取った。
(2) Peak molecular weight: determined by gel permeation chromatography.
Apparatus: Ultra-high temperature polymer molecular weight distribution measuring apparatus SSC-7000 (manufactured by Senshu Kagaku), column: UT-805L (manufactured by Showa Denko), solvent: 1-chloronaphthalene, column temperature: 210 ° C., detector: UV detector (360 nm), molecular weight distribution was measured using six types of monodisperse polystyrene for calibration, and a differential weight molecular weight distribution in which the vertical axis was d (weight) / dLog (molecular weight) and the horizontal axis was Log (molecular weight) was obtained. The peak molecular weight was read from the horizontal axis.

(3)ガラス転移点(Tg)
示差走査熱量計(パーキンエルマー社製「PYRIS Diamond DSC」)を用い、JIS K 7121に準拠して測定した。
(3) Glass transition point (Tg)
It measured based on JISK7121 using the differential scanning calorimeter ("PYRIS Diamond DSC" by Perkin Elmer).

(4)耐充満水凍結試験−耐低温破断性の測定
評価対象樹脂配合物から、両端部がフランジ及びネジ構造で密閉出来る内径22mm、外径28mm、の円筒形状の管継ぎ手を射出成形で作成した。この中に空気層を含まない様、水中にて水を充填し、両端を密閉した後、水から出して、−40℃の冷凍庫に入れ、2時間放置し、内部の水を完全に凍らせた。その後冷凍庫より取り出して、管継ぎ手の割れを調べて耐低温破断性の評価を行った。
(4) Filled water freezing test-measurement of low-temperature rupture resistance A cylindrical pipe joint with an inner diameter of 22 mm and an outer diameter of 28 mm, which can be sealed with a flange and screw structure at both ends, is prepared by injection molding from the resin composition to be evaluated. did. Fill with water in water so that it does not contain an air layer, seal both ends, remove from the water, place in a freezer at -40 ° C and leave for 2 hours to completely freeze the water inside. It was. Thereafter, the tube joint was taken out from the freezer, and cracks in the pipe joint were examined to evaluate low-temperature fracture resistance.

実施例および比較例中に用いた、成分は次の通りである。
PPS―1:以下の合成法により合成した。
温度センサー、冷却塔、滴下槽、滴下ポンプ、留出物分離槽を連結した攪拌翼付チタン製反応釜にp−DCB1.838kg(12.5モル)、NMP4.958kg(50モル)、水0.090kg(5.0モル)を室温で仕込み、攪拌しながら窒素雰囲気下で100℃まで20分かけて昇温した。系を閉じ、更に220℃まで40分かけて昇温した後、その温度で内圧を0.22MPaにコントロールして、NaS・xHO1.5kg、NaSH・yHO 0.225kg、水0.425kgの混合液(NaS:11.4モル、NaSH:3.2モル、水分50.3重量%)を3時間かけて滴下した。滴下中は同時に脱水操作を行い、水は系外に除去し、水と共に留出するp−DCBは連続的にオートクレーブに戻した。なお、脱水操作とp−DCBを戻す操作は240℃昇温完了まで行い、昇温完了時に系を密閉した。その後、そのままの温度圧力で1時間保持した後、1時間かけて、内圧を0.17MPaに下げながら、内温を240℃まで昇温、その温度で1時間保持して反応を終了し、室温まで冷却した。得られた反応スラリーを減圧下(−0.08MPa)、120℃に加熱することにより反応溶媒を留去、残査に水を注いで80℃で1時間攪拌した後、濾過した。このケーキを再び温水で1時間攪拌、洗浄した後、濾過した。この操作を3回繰り返し、更に水を加え、200℃で1時間攪拌後、濾過し、熱風乾燥機で120℃−10時間乾燥して白色粉末状のポリマーを得た。このポリマーを以後PPS−1という。このPPS−1のピーク分子量は、40,700であった。
The components used in Examples and Comparative Examples are as follows.
PPS-1: Synthesized by the following synthesis method.
In a titanium reaction kettle with a stirring blade connected to a temperature sensor, cooling tower, dropping tank, dropping pump, distillate separation tank, p-DCB 1.838 kg (12.5 mol), NMP 4.958 kg (50 mol), water 0 0.090 kg (5.0 mol) was charged at room temperature, and the temperature was raised to 100 ° C. over 20 minutes under stirring in a nitrogen atmosphere. Close the system, after heating over a period of 40 minutes to 220 ° C., to control the internal pressure at that temperature to 0.22MPa, Na 2 S · xH 2 O1.5kg, NaSH · yH 2 O 0.225kg, water 0.425 kg of a mixed solution (Na 2 S: 11.4 mol, NaSH: 3.2 mol, moisture: 50.3% by weight) was added dropwise over 3 hours. During the dropping, dehydration was performed simultaneously, water was removed from the system, and p-DCB distilled together with water was continuously returned to the autoclave. The dehydration operation and the operation for returning the p-DCB were performed until the temperature increase at 240 ° C. was completed, and the system was sealed when the temperature increase was completed. Then, after maintaining for 1 hour at the same temperature and pressure, the internal temperature was raised to 240 ° C. while reducing the internal pressure to 0.17 MPa over 1 hour, and the reaction was terminated by holding at that temperature for 1 hour. Until cooled. The obtained reaction slurry was heated to 120 ° C. under reduced pressure (−0.08 MPa), the reaction solvent was distilled off, water was poured into the residue, and the mixture was stirred at 80 ° C. for 1 hour, followed by filtration. The cake was stirred again with warm water for 1 hour, washed, and then filtered. This operation was repeated three times, water was further added, the mixture was stirred at 200 ° C. for 1 hour, filtered, and dried with a hot air dryer at 120 ° C. for 10 hours to obtain a white powdery polymer. This polymer is hereinafter referred to as PPS-1. The peak molecular weight of PPS-1 was 40,700.

実施例1〜6及び比較例1〜2
各種原料及びその他の原料を、下記表1に示す割合で均一に混合した後、35mmφの2軸押出機にて290〜330℃で混練してPAS樹脂組成物のペレットを得た。このペレットを用い、上述の方法に従い、耐低温破断性を評価した。その結果を表1に示す。
Examples 1-6 and Comparative Examples 1-2
Various raw materials and other raw materials were uniformly mixed at a ratio shown in Table 1 below, and then kneaded at 290 to 330 ° C. with a 35 mmφ twin-screw extruder to obtain pellets of a PAS resin composition. Using this pellet, the low temperature fracture resistance was evaluated according to the above-mentioned method. The results are shown in Table 1.

Figure 2006063255
Figure 2006063255

表1中の前記PPS−1以外の材料は、下記のものを用いた。
PPS−2;PPS樹脂[ピーク分子量34,200(大日本インキ化学工業社製 「LR−2G」)]
PPS−3;PPS樹脂[ピーク分子量16,000(大日本インキ化学工業社製 「B−100−C」)]
ELA−1;酸変性エチレン−ブテン共重合体、Tg=−65℃(三井化学社製 「タフマー MH7020」)
ELA−2;酸変性エチレン−プロピレン共重合体、Tg=−50℃(三井化学社製 「タフマー MP0430」)
ELA−3;エチレン−グリシジルメタアクリル酸−アクリル酸メチル共重合体、Tg=−33℃(住友化学工業社製 「ボンドファースト7L」)
ELA−4;エチレン−無水マレイン酸−アクリル酸エチル共重合体、Tg=−35℃(アトフィナ・ジャパン社製 「ボンダインAX8390」)
ADD;クレゾール−ノボラック型エポキシ樹脂(大日本インキ化学工業社製 「EPICLON N−695」)
As materials other than the PPS-1 in Table 1, the following materials were used.
PPS-2; PPS resin [peak molecular weight 34,200 (“LR-2G” manufactured by Dainippon Ink & Chemicals, Inc.)]
PPS-3; PPS resin [peak molecular weight 16,000 (“B-100-C” manufactured by Dainippon Ink & Chemicals, Inc.)]
ELA-1; acid-modified ethylene-butene copolymer, Tg = −65 ° C. (“Tuffmer MH7020” manufactured by Mitsui Chemicals, Inc.)
ELA-2; acid-modified ethylene-propylene copolymer, Tg = −50 ° C. (“Tuffmer MP0430” manufactured by Mitsui Chemicals, Inc.)
ELA-3; ethylene-glycidylmethacrylic acid-methyl acrylate copolymer, Tg = −33 ° C. (“Bond First 7L” manufactured by Sumitomo Chemical Co., Ltd.)
ELA-4; ethylene-maleic anhydride-ethyl acrylate copolymer, Tg = −35 ° C. (“Bondyne AX8390” manufactured by Atofina Japan)
ADD: Cresol-Novolac type epoxy resin ("EPICLON N-695" manufactured by Dainippon Ink & Chemicals, Inc.)

Claims (10)

ポリアリーレンスルフィド樹脂(A)及び熱可塑性エラストマー(B)を含有する、−40℃におけるノッチ付のシャルピー衝撃値が20kJ/m以上である樹脂組成物からなることを特徴とする流体配管用部材。 A fluid piping member comprising a resin composition containing a polyarylene sulfide resin (A) and a thermoplastic elastomer (B) and having a notched Charpy impact value at -40 ° C. of 20 kJ / m 2 or more. . 前記熱可塑性エラストマー(B)のガラス転移点が−40℃以下である請求項1記載の流体配管用部材。 The member for fluid piping according to claim 1, wherein a glass transition point of the thermoplastic elastomer (B) is -40 ° C or lower. 熱可塑性エラストマー(B)が、エチレン−プロピレン共重合体或いはエチレン−ブテン共重合体である請求項1記載の流体配管用部材。 The member for fluid piping according to claim 1, wherein the thermoplastic elastomer (B) is an ethylene-propylene copolymer or an ethylene-butene copolymer. 熱可塑性エラストマー(B)が、エポキシ基、アミノ基、水酸基、カルボキシル基、メルカプト基、イソシアネート基、ビニル基、或いは酸無水基及びエステル基からなる群から選ばれる少なくとも1種の官能基を有するものである請求項1記載の流体配管用部材。 The thermoplastic elastomer (B) has at least one functional group selected from the group consisting of epoxy groups, amino groups, hydroxyl groups, carboxyl groups, mercapto groups, isocyanate groups, vinyl groups, acid anhydride groups and ester groups. The member for fluid piping according to claim 1. 熱可塑性エラストマー(B)が、その分子内にカルボキシル基を有するものである請求項4記載の流体配管用部材。 The member for fluid piping according to claim 4, wherein the thermoplastic elastomer (B) has a carboxyl group in its molecule. 更に、エポキシ基、アミノ基、水酸基、カルボキシル基、メルカプト基、イソシアネート基、ビニル基、酸無水基、及びエステル基からなる群から選ばれる少なくとも1種の官能基を有する反応性化合物(C)を含有する請求項1〜5の何れか1つに記載の流体配管用部材。 And a reactive compound (C) having at least one functional group selected from the group consisting of an epoxy group, an amino group, a hydroxyl group, a carboxyl group, a mercapto group, an isocyanate group, a vinyl group, an acid anhydride group, and an ester group. The member for fluid piping as described in any one of Claims 1-5 to contain. 反応性化合物(C)が、3個以上のエポキシ基を有するエポキシ化合物である請求項6記載の流体配管用部材。 The member for fluid piping according to claim 6, wherein the reactive compound (C) is an epoxy compound having three or more epoxy groups. ポリアリーレンスルフィド樹脂(A)が、ゲル浸透クロマトグラフィーにより求められる分子量分布のピーク分子量で35,000〜200,000である請求項1〜7の何れか1つに記載の流体配管用部材。 The member for fluid piping according to any one of claims 1 to 7, wherein the polyarylene sulfide resin (A) has a peak molecular weight of 35,000 to 200,000 as determined by gel permeation chromatography. ポリアリーレンスルフィド樹脂(A)が、有機極性溶媒とジハロゲン芳香族化合物とを含む混合物を加熱し、反応系内の水分量を該有機極性溶媒1モルに対して0.02〜0.5モルの範囲に制御しながら、含水スルフィド化剤を供給して行き、該有機極性溶媒中で該ジハロゲン芳香族化合物と該スルフィド化剤とを反応させることにより得られることを特徴とする請求項8記載の流体配管用部材。 The polyarylene sulfide resin (A) heats a mixture containing an organic polar solvent and a dihalogen aromatic compound, and the amount of water in the reaction system is 0.02 to 0.5 mol with respect to 1 mol of the organic polar solvent. The water-containing sulfidizing agent is supplied while being controlled within a range, and the dihalogen aromatic compound and the sulfidizing agent are reacted in the organic polar solvent. Fluid piping member. 流体配管用部材が管継ぎ手類である請求項1〜10の何れか一つに記載の流体配管用部材。 The fluid piping member according to any one of claims 1 to 10, wherein the fluid piping member is a pipe joint.
JP2004249966A 2004-08-30 2004-08-30 Fluid piping member comprising polyarylene sulfide resin composition Active JP5132031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004249966A JP5132031B2 (en) 2004-08-30 2004-08-30 Fluid piping member comprising polyarylene sulfide resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004249966A JP5132031B2 (en) 2004-08-30 2004-08-30 Fluid piping member comprising polyarylene sulfide resin composition

Publications (2)

Publication Number Publication Date
JP2006063255A true JP2006063255A (en) 2006-03-09
JP5132031B2 JP5132031B2 (en) 2013-01-30

Family

ID=36110014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004249966A Active JP5132031B2 (en) 2004-08-30 2004-08-30 Fluid piping member comprising polyarylene sulfide resin composition

Country Status (1)

Country Link
JP (1) JP5132031B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008075003A (en) * 2006-09-22 2008-04-03 Dainippon Ink & Chem Inc Polyarylene sulfide resin composition and pipe for fluid
JP2008110561A (en) * 2006-10-31 2008-05-15 Dainippon Ink & Chem Inc Multi-layer molded article
JP2008144003A (en) * 2006-12-08 2008-06-26 Tosoh Corp Polyarylene sulfide composition
JP2009126883A (en) * 2007-11-20 2009-06-11 Tosoh Corp Polyarylene sulfide composition
JP2009126884A (en) * 2007-11-20 2009-06-11 Tosoh Corp Polyarylene sulfide composition
JP2010006858A (en) * 2008-06-24 2010-01-14 Toray Ind Inc Polyphenylene sulfide resin composition
WO2010058748A1 (en) 2008-11-21 2010-05-27 Dic株式会社 Polyarylene sulfide resin composition and fluid pipe material
JP2010150320A (en) * 2008-12-24 2010-07-08 Dic Corp Polyarylene sulfide resin composition and resin molded article thereof
JP2011038607A (en) * 2009-08-12 2011-02-24 Yokohama Rubber Co Ltd:The Hose for transferring refrigerant
KR20140145202A (en) * 2012-04-13 2014-12-22 티코나 엘엘씨 Dynamically vulcanized polyarylene sulfide composition
WO2015030136A1 (en) * 2013-08-30 2015-03-05 Dic株式会社 Resin composition for water-related component, and pipeline for fluid
JP2015520254A (en) * 2012-04-13 2015-07-16 ティコナ・エルエルシー Blow molded thermoplastic composition
JP2016147958A (en) * 2015-02-12 2016-08-18 Dic株式会社 Resin composition for plumbing component and piping for fluid
JP2017500404A (en) * 2013-08-27 2017-01-05 ティコナ・エルエルシー Heat resistant reinforced thermoplastic composition for injection molding
JP2017003117A (en) * 2012-04-13 2017-01-05 ティコナ・エルエルシー Polyarylene sulfide for oil and gas flowlines
JP2017503045A (en) * 2013-12-18 2017-01-26 ティコナ・エルエルシー Conductive thermoplastic composition for use in tubular applications
JPWO2015033855A1 (en) * 2013-09-05 2017-03-02 Dic株式会社 Polyarylene sulfide fiber and method for producing the same
US10359129B2 (en) 2012-04-13 2019-07-23 Ticona Llc Automotive fuel lines including a polyarylene sulfide
WO2019203062A1 (en) 2018-04-17 2019-10-24 ポリプラスチックス株式会社 Polyarylene sulfide resin composition, extrusion-molded article, method for manufacturing extrusion-molded article, and transportation machine or generator
WO2022004327A1 (en) 2020-06-29 2022-01-06 ポリプラスチックス株式会社 Polyarylene sulfide resin composition for extrusion molding or blow molding
WO2023053916A1 (en) 2021-09-28 2023-04-06 東レ株式会社 Polyarylene sulfide resin composition and molded product

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59207921A (en) * 1983-05-13 1984-11-26 Dainippon Ink & Chem Inc Thermoplastic resin composition
JPS61207462A (en) * 1985-03-11 1986-09-13 Dainippon Ink & Chem Inc Polyarylene sulfide resin composition
JPH02200415A (en) * 1989-01-30 1990-08-08 Toray Ind Inc Plastic tubular body
JPH07228699A (en) * 1993-12-22 1995-08-29 Dainippon Ink & Chem Inc Production of polyarylene sulfide polymer
JP2000063669A (en) * 1998-06-12 2000-02-29 Toray Ind Inc Polyphenylene sulfide resin composition
JP2002226707A (en) * 2001-01-31 2002-08-14 Toyoda Gosei Co Ltd Fuel system component
JP2004143372A (en) * 2002-10-28 2004-05-20 Dainippon Ink & Chem Inc Polyarylene sulfide resin composition and molded article
JP2004210851A (en) * 2002-12-27 2004-07-29 Mitsui Chemicals Inc GRAFT MODIFIED ETHYLENE-alpha-OLEFIN COPOLYMER COMPOSITION
JP4235893B2 (en) * 2003-03-31 2009-03-11 Dic株式会社 Fuel system parts

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59207921A (en) * 1983-05-13 1984-11-26 Dainippon Ink & Chem Inc Thermoplastic resin composition
JPS61207462A (en) * 1985-03-11 1986-09-13 Dainippon Ink & Chem Inc Polyarylene sulfide resin composition
JPH02200415A (en) * 1989-01-30 1990-08-08 Toray Ind Inc Plastic tubular body
JPH07228699A (en) * 1993-12-22 1995-08-29 Dainippon Ink & Chem Inc Production of polyarylene sulfide polymer
JP2000063669A (en) * 1998-06-12 2000-02-29 Toray Ind Inc Polyphenylene sulfide resin composition
JP2002226707A (en) * 2001-01-31 2002-08-14 Toyoda Gosei Co Ltd Fuel system component
JP2004143372A (en) * 2002-10-28 2004-05-20 Dainippon Ink & Chem Inc Polyarylene sulfide resin composition and molded article
JP2004210851A (en) * 2002-12-27 2004-07-29 Mitsui Chemicals Inc GRAFT MODIFIED ETHYLENE-alpha-OLEFIN COPOLYMER COMPOSITION
JP4235893B2 (en) * 2003-03-31 2009-03-11 Dic株式会社 Fuel system parts

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008075003A (en) * 2006-09-22 2008-04-03 Dainippon Ink & Chem Inc Polyarylene sulfide resin composition and pipe for fluid
JP2008110561A (en) * 2006-10-31 2008-05-15 Dainippon Ink & Chem Inc Multi-layer molded article
JP2008144003A (en) * 2006-12-08 2008-06-26 Tosoh Corp Polyarylene sulfide composition
JP2009126883A (en) * 2007-11-20 2009-06-11 Tosoh Corp Polyarylene sulfide composition
JP2009126884A (en) * 2007-11-20 2009-06-11 Tosoh Corp Polyarylene sulfide composition
JP2010006858A (en) * 2008-06-24 2010-01-14 Toray Ind Inc Polyphenylene sulfide resin composition
WO2010058748A1 (en) 2008-11-21 2010-05-27 Dic株式会社 Polyarylene sulfide resin composition and fluid pipe material
JP2010150320A (en) * 2008-12-24 2010-07-08 Dic Corp Polyarylene sulfide resin composition and resin molded article thereof
JP2011038607A (en) * 2009-08-12 2011-02-24 Yokohama Rubber Co Ltd:The Hose for transferring refrigerant
US10358556B2 (en) 2012-04-13 2019-07-23 Ticona Llc Blow molded thermoplastic composition
JP2018040005A (en) * 2012-04-13 2018-03-15 ティコナ・エルエルシー Blow molded thermoplastic composition
JP2015514156A (en) * 2012-04-13 2015-05-18 ティコナ・エルエルシー Dynamically vulcanized polyarylene sulfide composition
JP2015520254A (en) * 2012-04-13 2015-07-16 ティコナ・エルエルシー Blow molded thermoplastic composition
KR102131465B1 (en) * 2012-04-13 2020-07-07 티코나 엘엘씨 Dynamically vulcanized polyarylene sulfide composition
US10563062B2 (en) 2012-04-13 2020-02-18 Avx Corporation Polyarylene sulfide for oil and gas flowlines
JP2017003117A (en) * 2012-04-13 2017-01-05 ティコナ・エルエルシー Polyarylene sulfide for oil and gas flowlines
US10501626B2 (en) 2012-04-13 2019-12-10 Ticona Llc Dynamically vulcanized polyarylene sulfide composition
US10359129B2 (en) 2012-04-13 2019-07-23 Ticona Llc Automotive fuel lines including a polyarylene sulfide
KR20140145202A (en) * 2012-04-13 2014-12-22 티코나 엘엘씨 Dynamically vulcanized polyarylene sulfide composition
JP2018035360A (en) * 2012-04-13 2018-03-08 ティコナ・エルエルシー Physically vulcanized polyarylene sulfide composition
JP2017500404A (en) * 2013-08-27 2017-01-05 ティコナ・エルエルシー Heat resistant reinforced thermoplastic composition for injection molding
WO2015030136A1 (en) * 2013-08-30 2015-03-05 Dic株式会社 Resin composition for water-related component, and pipeline for fluid
JPWO2015030136A1 (en) * 2013-08-30 2017-03-02 Dic株式会社 Resin composition for water parts and piping for fluid
JPWO2015033855A1 (en) * 2013-09-05 2017-03-02 Dic株式会社 Polyarylene sulfide fiber and method for producing the same
JP2017503045A (en) * 2013-12-18 2017-01-26 ティコナ・エルエルシー Conductive thermoplastic composition for use in tubular applications
JP2016147958A (en) * 2015-02-12 2016-08-18 Dic株式会社 Resin composition for plumbing component and piping for fluid
WO2019203062A1 (en) 2018-04-17 2019-10-24 ポリプラスチックス株式会社 Polyarylene sulfide resin composition, extrusion-molded article, method for manufacturing extrusion-molded article, and transportation machine or generator
JP2019183077A (en) * 2018-04-17 2019-10-24 ポリプラスチックス株式会社 Polyarylene sulfide resin composition, extrusion molded article, manufacturing method of extrusion molded article, transport airplane, or power generator
WO2022004327A1 (en) 2020-06-29 2022-01-06 ポリプラスチックス株式会社 Polyarylene sulfide resin composition for extrusion molding or blow molding
WO2023053916A1 (en) 2021-09-28 2023-04-06 東レ株式会社 Polyarylene sulfide resin composition and molded product

Also Published As

Publication number Publication date
JP5132031B2 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
JP5132031B2 (en) Fluid piping member comprising polyarylene sulfide resin composition
JP4730633B2 (en) Polyarylene sulfide resin composition and fluid piping member
JP4235893B2 (en) Fuel system parts
US9758674B2 (en) Polyarylene sulfide for oil and gas flowlines
CN104321383B (en) Blow molding thermoplastic composition
JP5051428B2 (en) Multilayer molded body
JP5454877B2 (en) Multilayer molded body and fuel parts using the same
JP4961927B2 (en) Polyarylene sulfide resin composition and fluid piping
JP2010195962A (en) Member for fluid piping comprising polyphenylene sulfide resin composition
CN105492538B (en) With wet part resin combination and fluid piping
KR100635895B1 (en) Pipings made of poly (aryl ether sulfones)
JP5862944B2 (en) Resin composition, method for producing the same, molded product, and method for producing the same
CN105517797A (en) Multilayer moulded body, and component for fuel using same
JP2004300270A (en) Member for fluid piping
JP2005178183A (en) Multi-layer molding
JP2004002560A (en) Polyarylene sulfide resin composition
JP2007204675A (en) Polyamide resin composition for blow molding
JP2004143372A (en) Polyarylene sulfide resin composition and molded article
JP2004300271A (en) Member for fluid piping
JP5970793B2 (en) Resin composition, method for producing the same, molded product, and method for producing the same
JP6614428B2 (en) Resin composition for water parts and piping for fluid
JP6590181B2 (en) Resin composition for water parts and piping for fluid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5132031

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250