JP2006061748A - Method for making thin film of fine metallic particle - Google Patents

Method for making thin film of fine metallic particle Download PDF

Info

Publication number
JP2006061748A
JP2006061748A JP2004243593A JP2004243593A JP2006061748A JP 2006061748 A JP2006061748 A JP 2006061748A JP 2004243593 A JP2004243593 A JP 2004243593A JP 2004243593 A JP2004243593 A JP 2004243593A JP 2006061748 A JP2006061748 A JP 2006061748A
Authority
JP
Japan
Prior art keywords
thin film
metal fine
fine particle
electromagnetic wave
particle thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004243593A
Other languages
Japanese (ja)
Other versions
JP4510550B2 (en
Inventor
Katsuhiro Ajito
克裕 味戸
Kazuaki Furukawa
一暁 古川
Hiroshi Nakajima
寛 中島
Keiichi Torimitsu
慶一 鳥光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2004243593A priority Critical patent/JP4510550B2/en
Publication of JP2006061748A publication Critical patent/JP2006061748A/en
Application granted granted Critical
Publication of JP4510550B2 publication Critical patent/JP4510550B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for making a thin film of a fine metallic particle by which structure such as particle size, a shape and array of the fine metallic particle 1 in the deposited thin film can be controlled in nanometer size and a patterning can be performed on the thin film of the fine metallic particle on the basis of the structure control of the fine metallic particle 1. <P>SOLUTION: The thin film of the fine metallic particle is made by irradiating the fine metallic particle 1-containing thin film on a substrate with an electromagnetic wave 3 resonant with a local surface plasmon 2 of the fine metallic particle 1. Concretely, the thin film is made by adjusting an irradiation diameter and polarization of the electromagnetic wave and moving a beam of the electromagnetic wave and/or the substrate. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、金属微粒子薄膜の製法に関するものであり、特に局所表面プラズモンを利用した金属微粒子薄膜中の金属微粒子の粒径、形状、配列などの構造を制御できるようにしたものである。   The present invention relates to a method for producing a metal fine particle thin film, and in particular, the structure of the particle size, shape, arrangement, etc. of the metal fine particles in the metal fine particle thin film utilizing local surface plasmons can be controlled.

近年、金などの金属微粒子から構成される金属微粒子薄膜が、有用な機能性材料として注目されている。この金属微粒子薄膜は、光学特性、電気特性、触媒特性に関し有用な物性を有しており、例えば、光の波長程度の粒径を持つ金属微粒子を3次元的に規則正しく配列することにより、光の伝播や発生を制御出来るフォトニック結晶が形成されることが知られている。また、配列化したナノメーターサイズの金属微粒子において導電性が変化する現象などが報告されている。   In recent years, a metal fine particle thin film composed of metal fine particles such as gold attracts attention as a useful functional material. This metal fine particle thin film has useful physical properties in terms of optical properties, electrical properties, and catalytic properties. For example, by arranging regularly and three-dimensionally metal fine particles having a particle size of about the wavelength of light, It is known that a photonic crystal capable of controlling propagation and generation is formed. In addition, a phenomenon in which conductivity is changed in an arrayed nanometer-sized metal fine particle has been reported.

上述した金属微粒子薄膜の物性は、一般に、薄膜中の金属微粒子の粒径、形状、配列などの構造に依存している。そのため、金属微粒子薄膜における金属微粒子の構造を精密に制御することが求められている。表1に、従来の微粒子の構造制御法を列挙する(例えば、非特許文献1参照。)。表1に示すように、薄膜化する過程で金属微粒子を自己組織的に配列させるキャスト法、噴出ノズルを用いて金属微粒子を基板上に噴出して配列させるインクジェット法などが従来技術として知られている。   The physical properties of the metal fine particle thin film described above generally depend on the structure such as the particle size, shape, and arrangement of the metal fine particles in the thin film. Therefore, it is required to precisely control the structure of the metal fine particles in the metal fine particle thin film. Table 1 lists conventional fine particle structure control methods (see, for example, Non-Patent Document 1). As shown in Table 1, a casting method in which metal fine particles are arranged in a self-organized manner in the process of thinning, an ink jet method in which metal fine particles are ejected onto a substrate using an ejection nozzle, and the like are known as conventional techniques. Yes.

Figure 2006061748
Figure 2006061748

また、その他の従来技術としては、金微粒子にポリスチレンビーズを混合して薄膜化することにより、金微粒子の規則的な微細周期構造を作製する方法(例えば、非特許文献2参照。)、基板上に塗布された金微粒子を含む溶液にマスクパターンを通して電磁波を照射することにより、金微粒子を凝集させてパターン状に固定する方法が提案されている(例えば、非特許文献3参照。)。
増田等,「マテリアルインテグレーション」,2001年,第14巻,第8号,p.37−44 「Applied Spectroscopy」,2002年,第56巻,p.1524−1530 「Nano Letters」,2001年,第1巻,p.365−369
In addition, as another conventional technique, a method of producing a regular fine periodic structure of gold fine particles by mixing polystyrene beads with gold fine particles to form a thin film (see, for example, Non-Patent Document 2), on a substrate. There has been proposed a method in which gold fine particles are aggregated and fixed in a pattern by irradiating a solution containing gold fine particles applied to the film with electromagnetic waves through a mask pattern (see, for example, Non-Patent Document 3).
Masuda et al., “Material Integration”, 2001, Vol. 14, No. 8, p. 37-44 “Applied Spectroscopy”, 2002, Vol. 56, p. 1524-1530 “Nano Letters”, 2001, Volume 1, p. 365-369

しかしながら、上記従来技術は、金属微粒子薄膜の形成時に、金属微粒子の構造制御を行うものであるため、金属微粒子薄膜の形成後には、この構造制御を行うことができないという問題があった。また、従来技術にあっては、金属微粒子薄膜における金属微粒子の間隔をナノメーターサイズで制御することが困難であるという問題があった。   However, the above-described prior art performs the structure control of the metal fine particles at the time of forming the metal fine particle thin film, so that there is a problem that the structure control cannot be performed after the metal fine particle thin film is formed. Further, in the prior art, there is a problem that it is difficult to control the interval between the metal fine particles in the metal fine particle thin film with a nanometer size.

本発明は、上記従来技術の問題点に鑑み、金属微粒子薄膜の形成後に、金属微粒子の粒径、形状、配列などの構造をナノメーターサイズで制御することができる金属微粒子薄膜の製法を提供することを目的とする。
また、金属微粒子の構造制御により、金属微粒子薄膜にパターニングを行うことができる金属微粒子薄膜の製法を提供することを目的とする。
The present invention provides a method for producing a metal fine particle thin film capable of controlling the structure such as the particle size, shape, and arrangement of the metal fine particles with a nanometer size after the formation of the metal fine particle thin film, in view of the above-mentioned problems of the prior art. For the purpose.
Another object of the present invention is to provide a method for producing a metal fine particle thin film that can be patterned into the metal fine particle thin film by controlling the structure of the metal fine particle.

かかる課題を解決するため、
請求項1にかかる発明は、基板上の金属微粒子を含む薄膜に対して、この金属微粒子の局所表面プラズモンと共鳴可能な電磁波を照射することを特徴とする金属微粒子薄膜の製法である。
To solve this problem,
The invention according to claim 1 is a method for producing a metal fine particle thin film characterized by irradiating a thin film containing metal fine particles on a substrate with an electromagnetic wave capable of resonating with local surface plasmons of the metal fine particles.

請求項2にかかる発明は、電磁波をビームとして照射することを特徴とする請求項1記載の金属微粒子薄膜の製法である。   The invention according to claim 2 is the method for producing a metal fine particle thin film according to claim 1, wherein the electromagnetic wave is irradiated as a beam.

請求項3にかかる発明は、電磁波を偏光させることを特徴とする請求項1または2記載の金属微粒子薄膜の製法である。   The invention according to claim 3 is the method for producing a metal fine particle thin film according to claim 1 or 2, wherein electromagnetic waves are polarized.

請求項4にかかる発明は、電磁波のビームおよび基板のいずれか一方もしくは両方を移動させることを特徴とする請求項1ないし3のいずれかに記載の金属微粒子薄膜の製法である。   The invention according to claim 4 is the method for producing a metal fine particle thin film according to any one of claims 1 to 3, wherein either or both of the electromagnetic wave beam and the substrate are moved.

本発明の金属微粒子薄膜の製法によれば、金属微粒子の表面に発生する局所表面プラズモンが、照射された電磁波と共鳴することにより励起され、ついで、そのエネルギーが金属原子の格子振動エネルギーに変換されて緩和する。また、荷電した状態にある金属原子は、照射された電磁波の電場とクーロン相互作用することによりクーロン力を受ける。従って、金属微粒子薄膜の形成後に、金属原子の運動を活発化し、金属微粒子の粒径、形状、配列などの構造を制御することができる。   According to the method for producing a metal fine particle thin film of the present invention, local surface plasmons generated on the surface of the metal fine particles are excited by resonating with the irradiated electromagnetic wave, and then the energy is converted into lattice vibration energy of metal atoms. Relax. In addition, a metal atom in a charged state receives a Coulomb force by interacting with an electric field of an irradiated electromagnetic wave. Therefore, after the formation of the metal fine particle thin film, the movement of metal atoms can be activated and the structure of the metal fine particles such as the particle size, shape, and arrangement can be controlled.

また、本発明の金属微粒子薄膜の製法によれば、電磁波の照射径、偏光を調整することにより、金属微粒子薄膜における金属微粒子の構造を局所的、選択的に制御することができる。従って、このような電磁波を金属微粒子薄膜上を走査させることにより、金属微粒子の構造制御によるパターニングを行うことができる。   Further, according to the method for producing a metal fine particle thin film of the present invention, the structure of the metal fine particle in the metal fine particle thin film can be locally and selectively controlled by adjusting the irradiation diameter and polarization of the electromagnetic wave. Therefore, patterning by controlling the structure of the metal fine particles can be performed by scanning such an electromagnetic wave on the metal fine particle thin film.

本発明にかかる金属微粒子薄膜の製法の一実施形態を、以下に説明する。
先ず、均一な金属微粒子薄膜を作製する。
金属微粒子薄膜とは、基板上に金属原子が凝集してなる金属微粒子が散在したものである。その膜厚は0.3nm〜10μmであり、金属微粒子の粒径は0.3nm〜1μmである。なお、金属の種類としては、Li,K,Rb,Ba,Sr,Ca,Na,Mg,Be,Al,U,Ti,Zr,Mn,Zn,Cr,Fe,C,Co,Ni,Mo,Sn,Pb,Cu,Cu,Hg,Ag,Hg,Pd,Pt,Auが用いられる。これら金属は、次の段落で説明するプラズモンを発生するものである。
均一な金属微粒子薄膜の製法に関しては、特に限定されず、公知の製法が適用可能である。例えば、スピンコート法、ディップコート法などが用いられる。また、市販の金属微粒子薄膜を用いてもよい。
One embodiment of a method for producing a metal fine particle thin film according to the present invention will be described below.
First, a uniform metal fine particle thin film is produced.
The metal fine particle thin film is a metal fine particle formed by aggregation of metal atoms on a substrate. The film thickness is 0.3 nm to 10 μm, and the particle diameter of the metal fine particles is 0.3 nm to 1 μm. In addition, as a kind of metal, Li, K, Rb, Ba, Sr, Ca, Na, Mg, Be, Al, U, Ti, Zr, Mn, Zn, Cr, Fe, C + , Co, Ni, Mo Sn, Pb, Cu, Cu + , Hg 2 , Ag, Hg, Pd, Pt, and Au are used. These metals generate plasmons as described in the next paragraph.
A method for producing a uniform metal fine particle thin film is not particularly limited, and a known production method can be applied. For example, a spin coat method, a dip coat method, or the like is used. A commercially available metal fine particle thin film may also be used.

次に、金属微粒子薄膜における金属微粒子の構造制御を行う。
図1に示すように、金属微粒子薄膜における金属微粒子1には、局所表面プラズモン2が発生する。プラズモンとは、上記金属中において振動している自由電子(プラズマ振動)を量子論的に扱ったものであり、金属表面に発生するものは表面プラズモン、金属微粒子1などの局所的な表面に発生するものは、局所表面プラズモン2と呼ばれている。
Next, the structure control of the metal fine particles in the metal fine particle thin film is performed.
As shown in FIG. 1, local surface plasmons 2 are generated in the metal fine particles 1 in the metal fine particle thin film. Plasmon is a quantum theory of free electrons (plasma oscillation) that vibrates in the metal. What is generated on the metal surface is generated on a local surface such as surface plasmon or metal fine particles 1. What it does is called local surface plasmon 2.

局所表面プラズモン2は、特定の周波数を有する電磁波3と共鳴して、その光エネルギーを吸収することができる。この現象は、ローカルプラズモン共鳴と呼ばれている。局所表面プラズモン2の吸収周波数は、一般に、金属微粒子1の粒径、形状、配列などの構造によって異なることが知られている。従って、金属微粒子1が図1(a)に示すように孤立している場合と、図1(b)に示すように互いに接近している場合とでは、吸収周波数が異なる。   The local surface plasmon 2 can resonate with the electromagnetic wave 3 having a specific frequency and absorb the light energy. This phenomenon is called local plasmon resonance. It is known that the absorption frequency of the local surface plasmon 2 generally varies depending on the structure such as the particle size, shape, and arrangement of the metal fine particles 1. Accordingly, the absorption frequency differs between the case where the metal fine particles 1 are isolated as shown in FIG. 1A and the case where they are close to each other as shown in FIG.

ローカルプラズモン共鳴が発生すると、局所表面プラズモン2は励起され、続いてエネルギーを放出して緩和する。この際、放出されたエネルギーは、格子振動(フォノン)エネルギーとして金属原子に渡され、その振動運動を活発化する。また、プラズマ状態にある金属原子は、照射された電磁波の電場とクーロン相互作用することにより、クーロン力を受ける。従って、金属微粒子1の粒径、形状、配列などの構造が変化する。例えば、図2(a)に示すように、略球状の金属微粒子1に電磁波3を照射すると、図2(b)に示すように、金属微粒子1の形状が扁平形状となり、各金属微粒子1間の間隔が狭くなることがある。   When local plasmon resonance occurs, the local surface plasmon 2 is excited and subsequently releases energy and relaxes. At this time, the released energy is transferred to the metal atom as lattice vibration (phonon) energy, and the vibration motion is activated. In addition, the metal atoms in the plasma state receive a Coulomb force by interacting with the electric field of the irradiated electromagnetic wave. Therefore, the structure of the metal fine particles 1 such as the particle size, shape, and arrangement changes. For example, as shown in FIG. 2A, when the electromagnetic wave 3 is irradiated to the substantially spherical metal fine particles 1, the shape of the metal fine particles 1 becomes flat as shown in FIG. May be narrowed.

金属微粒子1に、局所表面プラズモン2の吸収周波数と異なる周波数を有する電磁波3を照射した場合には、ローカルプラズモン共鳴よりも、クーロン相互作用が主に誘起される。また、電磁波3の放射圧も発生する。従って、図3(a)に示すように、このような電磁波3を金属微粒子1に照射すると、図3(b)に示すように、金属微粒子1の粒径、形状をあまり変化させずに、主に配列を変化させることができる。
なお、電磁波3の照射によって金属微粒子1の構造が変化すると、局所表面プラズモン2の吸収周波数もまた変化する。従って、特定の周波数を持つ電磁波3を照射し続けると、ローカルプラズモン共鳴は、所定時間の後に誘起されなくなる。
When the metal fine particle 1 is irradiated with the electromagnetic wave 3 having a frequency different from the absorption frequency of the local surface plasmon 2, the Coulomb interaction is mainly induced rather than the local plasmon resonance. Moreover, the radiation pressure of the electromagnetic wave 3 is also generated. Therefore, as shown in FIG. 3A, when such an electromagnetic wave 3 is irradiated to the metal fine particles 1, as shown in FIG. 3B, the particle diameter and shape of the metal fine particles 1 are not changed so much. The sequence can be changed mainly.
Note that when the structure of the metal fine particles 1 is changed by the irradiation of the electromagnetic wave 3, the absorption frequency of the local surface plasmon 2 is also changed. Therefore, if the electromagnetic wave 3 having a specific frequency is continuously irradiated, the local plasmon resonance is not induced after a predetermined time.

このような現象を利用することにより、金属微粒子薄膜の形成後において、この金属微粒子薄膜における金属微粒子の粒径、形状、配列などの構造をナノメーターサイズで制御することができる。従って、金属微粒子薄膜の光学特性、電気特性、触媒特性などの物性を制御することができる。   By utilizing such a phenomenon, after the formation of the metal fine particle thin film, the structure of the metal fine particles in the metal fine particle thin film, such as the particle size, shape, and arrangement, can be controlled with nanometer size. Therefore, physical properties such as optical characteristics, electrical characteristics, and catalytic characteristics of the metal fine particle thin film can be controlled.

図4に、本発明の金属微粒子薄膜の製法に好適な微粒子薄膜構造制御装置の一例を示す。この例の微粒子薄膜構造制御装置は、電磁波発生装置10、載置装置20、観測装置30とから概略構成されている。   FIG. 4 shows an example of a fine particle thin film structure control apparatus suitable for the metal fine particle thin film manufacturing method of the present invention. The fine particle thin film structure control apparatus of this example is generally configured by an electromagnetic wave generation apparatus 10, a mounting apparatus 20, and an observation apparatus 30.

電磁波発生装置10は、金属微粒子薄膜に照射するための電磁波3を発生させる装置である。この電磁波発生装置10には、電磁波発生源11が最上部に設けられている。この電磁波発生源11から、照射エネルギーが1mW以上、周波数が1011〜1018Hzである電磁波3が発生し、下方に向けて照射される。 The electromagnetic wave generator 10 is an apparatus that generates an electromagnetic wave 3 for irradiating a metal fine particle thin film. The electromagnetic wave generator 10 is provided with an electromagnetic wave source 11 at the top. From this electromagnetic wave generation source 11, an electromagnetic wave 3 having an irradiation energy of 1 mW or more and a frequency of 10 11 to 10 18 Hz is generated and irradiated downward.

電磁波発生源11の下方には偏光板12が設けられている。電磁波3はこの偏光板12により所定の角度を有する直線偏光となる。この直線偏光は、電磁波3の偏光方向と平行に並んでいる金属微粒子1に対して、ローカルプラズモン共鳴を誘起し易いという性質を有する。この性質は、金属微粒子1が直線状に並ぶことにより、局所表面プラズモン2の分布が変化して、ローカルプラズモン共鳴に偏光特性が誘起されるために生じるものである。従って、図5(a)に示すように、偏光板12を用いて電磁波3の偏光方向を調節して金属微粒子1に照射すると、図5(b)に示すように、金属微粒子1の構造制御を選択的に行うことができる。
なお、金属微粒子薄膜における金属微粒子1の構造制御を非選択的に行う場合には、円偏光または非偏光の電磁波3が用いられる。
A polarizing plate 12 is provided below the electromagnetic wave generation source 11. The electromagnetic wave 3 becomes linearly polarized light having a predetermined angle by the polarizing plate 12. This linearly polarized light has a property that local plasmon resonance is easily induced in the metal fine particles 1 arranged in parallel with the polarization direction of the electromagnetic wave 3. This property occurs because the distribution of the local surface plasmons 2 changes due to the alignment of the metal fine particles 1 in a straight line, and polarization characteristics are induced in the local plasmon resonance. Therefore, as shown in FIG. 5A, when the polarization direction of the electromagnetic wave 3 is adjusted using the polarizing plate 12 to irradiate the metal fine particles 1, the structure control of the metal fine particles 1 is performed as shown in FIG. 5B. Can be selectively performed.
In addition, when the structure control of the metal fine particles 1 in the metal fine particle thin film is performed non-selectively, a circularly polarized or non-polarized electromagnetic wave 3 is used.

偏光板13の下方には収束レンズ14が設けられている。電磁波3は、収束レンズ14により収束されて、その照射径が照射した電磁波3の波長の半分程度(回折限界)まで小さくなったビームとなる。従って、金属微粒子薄膜における金属微粒子1の構造制御を局所的に行うことができる。   A converging lens 14 is provided below the polarizing plate 13. The electromagnetic wave 3 is converged by the converging lens 14 and becomes a beam whose irradiation diameter is reduced to about half of the wavelength of the irradiated electromagnetic wave 3 (diffraction limit). Therefore, the structure control of the metal fine particles 1 in the metal fine particle thin film can be locally performed.

載置装置20は、金属微粒子薄膜を載置する場所であり、ホットプレート21と、その下部に当接された可動ステージ22とから構成されている。ホットプレート21は、温度制御が可能であり、かつ金属微粒子薄膜が直接載置されるものである。可動ステージ22は、ホットプレート21を水平移動させるためのものである。このような構成の載置装置20を用いることにより、電磁波発生装置10から発生された電磁波3を、金属微粒子薄膜の任意の場所に、かつ任意の温度で照射することができる。従って、金属微粒子1の構造制御により、金属微粒子薄膜にパターニングを行うことができる。   The placement device 20 is a place for placing a metal fine particle thin film, and includes a hot plate 21 and a movable stage 22 in contact with the lower portion thereof. The hot plate 21 is temperature-controllable, and the metal fine particle thin film is directly placed thereon. The movable stage 22 is for moving the hot plate 21 horizontally. By using the mounting device 20 having such a configuration, it is possible to irradiate the electromagnetic wave 3 generated from the electromagnetic wave generator 10 to an arbitrary place of the metal fine particle thin film at an arbitrary temperature. Therefore, the metal fine particle thin film can be patterned by controlling the structure of the metal fine particle 1.

観測装置30は、金属微粒子薄膜の形状を観測するための装置である。この観測装置30には、光源31が電磁波照射装置10の側方に設けられており、この光源31から、ラマン分光法、赤外分光法、蛍光分光法のいずれかに用いられる10mW以下の検出光32が載置装置20に向けて照射される。検出光32は、収束レンズ33により収束され、載置装置20における電磁波3の照射部位に照射される。その後、載置装置20の下方に進行する検出光32が、集光レンズ34により集光され、ついで、分光器35により周波数ごとに分光された後、検出器36により検出される。
従って、観測装置30を用いることにより、金属微粒子薄膜の構造を微細に観測することができる。
The observation apparatus 30 is an apparatus for observing the shape of the metal fine particle thin film. In this observation device 30, a light source 31 is provided on the side of the electromagnetic wave irradiation device 10, and detection from the light source 31 of 10 mW or less used for any of Raman spectroscopy, infrared spectroscopy, and fluorescence spectroscopy. Light 32 is emitted toward the mounting device 20. The detection light 32 is converged by the converging lens 33 and is irradiated to the irradiation part of the electromagnetic wave 3 in the mounting device 20. Thereafter, the detection light 32 traveling below the mounting device 20 is collected by the condenser lens 34, and then separated by the spectroscope 35 for each frequency and then detected by the detector 36.
Therefore, by using the observation device 30, the structure of the metal fine particle thin film can be finely observed.

本発明の金属微粒子薄膜の製法により作製された金属微粒子薄膜の応用例としては、ラマン分光法による化合物の高感度検出方法がある。
ラマン分光法は、測定する化合物に励起光を入射させ、散乱する光(ラマン散乱光)を検出することにより、化合物の分子の振動モードを調べる分析方法である。このラマン散乱光は、励起光の光子とラマン散乱光の光子が関与する2光子過程を経るため、一般に、その光強度が非常に小さい。
As an application example of the metal fine particle thin film produced by the method for producing a metal fine particle thin film of the present invention, there is a highly sensitive detection method of a compound by Raman spectroscopy.
Raman spectroscopy is an analysis method in which excitation light is incident on a compound to be measured and the vibration mode of the molecules of the compound is detected by detecting scattered light (Raman scattered light). Since this Raman scattered light undergoes a two-photon process involving the photon of the excitation light and the photon of the Raman scattered light, the light intensity is generally very small.

しかしながら、測定する化合物を金属微粒子薄膜に固着させ、化合物からラマン散乱光を発生させるとともに、ローカルプラズモン共鳴を誘起することにより、ラマン散乱光の光強度を最大で1015倍(光子/秒)まで増強できることが知られている。この現象は表面増強ラマン散乱と呼ばれている。従って、本発明の金属微粒子薄膜の製法により、金属微粒子薄膜における金属微粒子1の構造を制御して、局所表面プラズモンの吸収周波数を、ラマン分光法に用いられる励起光の周波数と重なるように調節することにより、表面増強ラマン効果を最適化することができる。 However, by fixing the compound to be measured to the metal fine particle thin film to generate Raman scattered light from the compound and inducing local plasmon resonance, the light intensity of the Raman scattered light can be increased up to 10 15 times (photon / second). It is known that it can be enhanced. This phenomenon is called surface enhanced Raman scattering. Therefore, the structure of the metal fine particles 1 in the metal fine particle thin film is controlled by the method for producing the metal fine particle thin film of the present invention, and the absorption frequency of the local surface plasmon is adjusted so as to overlap with the frequency of the excitation light used for Raman spectroscopy. As a result, the surface-enhanced Raman effect can be optimized.

以下、実施例により、本発明をさらに詳しく説明する。本発明は、下記実施例に何ら制限されるものではない。   Hereinafter, the present invention will be described in more detail by way of examples. The present invention is not limited to the following examples.

[実施例1]
実施例1では、本発明の金属微粒子薄膜の製法を用いて、構造制御された金属微粒子薄膜を作製した。以下に具体的な手順を示す。なお、金属微粒子薄膜の作製にあたっては、上記微粒子薄膜構造制御装置を用いた。
[Example 1]
In Example 1, a structure-controlled metal fine particle thin film was produced using the method for producing a metal fine particle thin film of the present invention. The specific procedure is shown below. In the production of the metal fine particle thin film, the fine particle thin film structure control apparatus was used.

先ず、均一な金属微粒子薄膜を作製した。
金属微粒子1としては、粒径が20nmである金微粒子を用い、この金微粒子を含む0.01重量%のコロイド水溶液を調製した。このコロイド水溶液をガラス基板上に塗布し、4℃で乾燥させることにより、金属微粒子薄膜を作製した。なお、膜厚は、20nm(1層)であった。この金属微粒子薄膜を紫外可視吸光光度計で調べたところ、650〜750nm付近に大きなピークが現れた。このピークは、金微粒子のローカルプラズモン共鳴によるものである。
First, a uniform metal fine particle thin film was produced.
As the metal fine particles 1, gold fine particles having a particle diameter of 20 nm were used, and a 0.01% by weight colloidal aqueous solution containing the gold fine particles was prepared. The colloidal aqueous solution was applied onto a glass substrate and dried at 4 ° C. to prepare a metal fine particle thin film. The film thickness was 20 nm (one layer). When this metal fine particle thin film was examined with an ultraviolet visible absorptiometer, a large peak appeared in the vicinity of 650 to 750 nm. This peak is due to local plasmon resonance of the gold fine particles.

次に、ローカルプラズモン共鳴を利用した金属微粒子薄膜の構造制御を行った。
上記金属微粒子薄膜を微粒子薄膜構造制御装置の載置装置20上に載置して固定した。ついで、電磁波照射装置10を用いて、局所表面プラズモンと共鳴可能な電磁波3を金属微粒子薄膜に照射した。この電磁波3としては、波長730nm、出力50mWのレーザー光を用いた。照射時間は1秒であった。また、照射時におけるホットプレート21の温度は24℃であった。なお、収束レンズ13としては50倍の対物レンズを用いた。また、偏光板12により、レーザー光の偏光方向をガラス基板と平行となるように調整した。
図6に、レーザー光の照射前と照射後における金属微粒子薄膜の原子間力顕微鏡写真を示す。これらの写真から明らかなように、照射前と比較すると、照射後の金属微粒子薄膜における金微粒子の形状が、球状から扁平形状に変化している。
Next, the structure of the metal fine particle thin film was controlled using local plasmon resonance.
The metal fine particle thin film was placed and fixed on the placement device 20 of the fine particle thin film structure control device. Subsequently, the electromagnetic wave irradiation device 10 was used to irradiate the metal fine particle thin film with the electromagnetic wave 3 capable of resonating with local surface plasmons. As the electromagnetic wave 3, a laser beam having a wavelength of 730 nm and an output of 50 mW was used. The irradiation time was 1 second. Moreover, the temperature of the hot plate 21 at the time of irradiation was 24 ° C. As the converging lens 13, a 50 × objective lens was used. Further, the polarization direction of the laser light was adjusted by the polarizing plate 12 so as to be parallel to the glass substrate.
FIG. 6 shows atomic force micrographs of the metal fine particle thin film before and after laser light irradiation. As is apparent from these photographs, the shape of the gold fine particles in the metal fine particle thin film after the irradiation is changed from a spherical shape to a flat shape as compared with before the irradiation.

また、レーザー光の照射時間をさらに数秒間延長したところ、金微粒子の構造は変化しないことが確認された。これは、金微粒子間の形状が変化したことにより、局所表面プラズモンの吸収波長が変化したためである。
さらに、レーザー光を照射しながら、載置装置20の可動ステージ22を移動させたところ、図7に示すように、金属微粒子薄膜における金微粒子の構造変化が局所的に誘起された。従って、金微粒子の構造制御によるパターニングを行うことができることが明らかとなった。また、レーザー光を照射出力を変化させながら、金属微粒子薄膜に照射してパターニングした。結果、パターニングによる線が、10mWではかすれ、20mWでは太くぼやけているが、30mW以上では良好に描画されることが確認された。
Further, it was confirmed that the structure of the gold fine particles did not change when the irradiation time of the laser beam was further extended for several seconds. This is because the absorption wavelength of the local surface plasmon is changed by changing the shape between the gold fine particles.
Furthermore, when the movable stage 22 of the mounting apparatus 20 was moved while irradiating the laser beam, as shown in FIG. 7, the structural change of the gold fine particles in the metal fine particle thin film was locally induced. Therefore, it became clear that the patterning by the structure control of the gold fine particles can be performed. Further, patterning was performed by irradiating the metal fine particle thin film while changing the irradiation output of the laser beam. As a result, it was confirmed that the line formed by patterning was faint at 10 mW and thick and blurred at 20 mW, but was satisfactorily drawn at 30 mW or more.

[実施例2]
実施例2では、本発明の金属微粒子薄膜の製法により作製された金属微粒子薄膜を用いて、表面増強ラマン効果を測定した。以下に、具体的な手順を示す。
[Example 2]
In Example 2, the surface-enhanced Raman effect was measured using the metal fine particle thin film produced by the method for producing a metal fine particle thin film of the present invention. The specific procedure is shown below.

測定する化合物としては、グルタミン酸ナトリウムを用いた。このグルタミン酸ナトリウムを用いて、1μMの濃度の水溶液を調製し、この水溶液を、実施例1と同様の製法で作製された金微粒子薄膜に塗布して乾燥することにより、測定用サンプルを得た。なお、この金微粒子薄膜としては、波長730nmのレーザーを照射したもの、波長530nmのレーザーを照射したもの、未照射のものの3種類を用いた。波長730nmのレーザーおよび波長530nmのレーザーの照射時における出力はそれぞれ50mW、照射時間は1秒であった。この測定用サンプルを用いて、ラマン分光測定を行った。なお、ラマン分光測定における励起光の波長は730nm、出力は1mWであった。   As a compound to be measured, sodium glutamate was used. Using this sodium glutamate, an aqueous solution having a concentration of 1 μM was prepared, and this aqueous solution was applied to a gold fine particle thin film produced by the same production method as in Example 1 and dried to obtain a measurement sample. As the gold fine particle thin film, three types were used: one irradiated with a laser having a wavelength of 730 nm, one irradiated with a laser having a wavelength of 530 nm, and one not irradiated. The output at the time of irradiation with a laser with a wavelength of 730 nm and a laser with a wavelength of 530 nm was 50 mW, and the irradiation time was 1 second. Using this measurement sample, Raman spectroscopic measurement was performed. In addition, the wavelength of the excitation light in the Raman spectroscopic measurement was 730 nm, and the output was 1 mW.

図8に、測定用サンプルをラマン分光測定により得られたラマンスペクトルを示す。(a)はレーザー未照射部位、(b)は波長730nmのレーザー照射部位、(c)は波長530nmのレーザー照射部位におけるラマンスペクトルである。
結果、(b)のラマンスペクトルにおいて、グルタミン酸ナトリウムの炭素間単結合の伸縮振動モードとカルボキシル基の伸縮振動モードに由来するピークが検出された。従って、波長730nmのレーザーによって金属微粒子薄膜における金属微粒子1の構造を制御することにより、表面増強ラマン効果を効果的に誘起できることが明らかとなった。
FIG. 8 shows a Raman spectrum obtained by measuring the measurement sample by Raman spectroscopy. (A) is a laser non-irradiation site | part, (b) is a laser irradiation site | part with a wavelength of 730 nm, (c) is a Raman spectrum in a laser irradiation site | part with a wavelength of 530 nm.
As a result, in the Raman spectrum of (b), peaks derived from the stretching vibration mode of the single bond between carbon atoms of sodium glutamate and the stretching vibration mode of the carboxyl group were detected. Therefore, it has been clarified that the surface-enhanced Raman effect can be effectively induced by controlling the structure of the metal fine particles 1 in the metal fine particle thin film with a laser having a wavelength of 730 nm.

本発明の金属微粒子薄膜の製法は、金属微粒子薄膜の物性の制御方法として有用であるほか、これ以外の化合物の高感度検出方法や情報記録媒体として使用できる。   The method for producing a metal fine particle thin film of the present invention is useful as a method for controlling physical properties of a metal fine particle thin film, and can also be used as a highly sensitive detection method and information recording medium for other compounds.

本発明の実施形態にかかる金属微粒子薄膜における金属微粒子と局所表面プラズモンの例を示す側面図である。It is a side view which shows the example of the metal microparticle and local surface plasmon in the metal microparticle thin film concerning embodiment of this invention. 本発明の実施形態にかかる金属微粒子薄膜における金属微粒子のローカルプラズモン共鳴前後における構造の一例を示す側面図である。It is a side view which shows an example of the structure before and behind the local plasmon resonance of the metal microparticle in the metal microparticle thin film concerning embodiment of this invention. 本発明の実施形態にかかる金属微粒子薄膜における金属微粒子のローカルプラズモン共鳴前後における構造の他例を示す側面図である。It is a side view which shows the other example of the structure before and behind the local plasmon resonance of the metal microparticle in the metal microparticle thin film concerning embodiment of this invention. 本発明の実施形態にかかる直線偏光の電磁波による金属微粒子のローカルプラズモン共鳴前後における構造の一例を示す上面図である。It is a top view which shows an example of the structure before and behind the local plasmon resonance of the metal microparticle by the linearly polarized electromagnetic wave concerning embodiment of this invention. 本発明の実施形態にかかる金属微粒子薄膜の製法に用いられる微粒子構造制御装置の一例を示す図である。It is a figure which shows an example of the fine particle structure control apparatus used for the manufacturing method of the metal fine particle thin film concerning embodiment of this invention. 実施例1における金属微粒子薄膜の原子間力顕微鏡写真を示す図である。3 is an atomic force micrograph of a metal fine particle thin film in Example 1. FIG. 実施例1におけるパターニングされた金属微粒子薄膜の原子間力顕微鏡写真を示す図である。1 is an atomic force micrograph of a patterned metal fine particle thin film in Example 1. FIG. 実施例2における測定用サンプルのラマンスペクトルを示す図である。6 is a diagram showing a Raman spectrum of a measurement sample in Example 2. FIG.

符号の説明Explanation of symbols

1・・・金属微粒子、2・・・局所表面プラズモン、3・・・電磁波

DESCRIPTION OF SYMBOLS 1 ... Metal fine particle, 2 ... Local surface plasmon, 3 ... Electromagnetic wave

Claims (4)

基板上の金属微粒子を含む薄膜に対して、この金属微粒子の局所表面プラズモンと共鳴可能な電磁波を照射することを特徴とする金属微粒子薄膜の製法。   A method for producing a metal fine particle thin film, comprising irradiating a thin film containing metal fine particles on a substrate with an electromagnetic wave capable of resonating with local surface plasmons of the metal fine particles. 電磁波をビームとして照射することを特徴とする請求項1記載の金属微粒子薄膜の製法。   2. The method for producing a metal fine particle thin film according to claim 1, wherein the electromagnetic wave is irradiated as a beam. 電磁波を偏光させることを特徴とする請求項1または2記載の金属微粒子薄膜の製法。   3. The method for producing a metal fine particle thin film according to claim 1, wherein the electromagnetic wave is polarized. 電磁波のビームおよび基板のいずれか一方もしくは両方を移動させることを特徴とする請求項1ないし3のいずれかに記載の金属微粒子薄膜の製法。

4. The method for producing a metal fine particle thin film according to claim 1, wherein either or both of the electromagnetic wave beam and the substrate are moved.

JP2004243593A 2004-08-24 2004-08-24 Method for controlling metal fine particle structure in metal fine particle thin film Expired - Fee Related JP4510550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004243593A JP4510550B2 (en) 2004-08-24 2004-08-24 Method for controlling metal fine particle structure in metal fine particle thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004243593A JP4510550B2 (en) 2004-08-24 2004-08-24 Method for controlling metal fine particle structure in metal fine particle thin film

Publications (2)

Publication Number Publication Date
JP2006061748A true JP2006061748A (en) 2006-03-09
JP4510550B2 JP4510550B2 (en) 2010-07-28

Family

ID=36108673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004243593A Expired - Fee Related JP4510550B2 (en) 2004-08-24 2004-08-24 Method for controlling metal fine particle structure in metal fine particle thin film

Country Status (1)

Country Link
JP (1) JP4510550B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008006575A (en) * 2006-06-30 2008-01-17 Hokkaido Univ Metal structure
JP2011111355A (en) * 2009-11-25 2011-06-09 Ricoh Co Ltd Method for manufacturing thin film, and thin film element
JP2011192832A (en) * 2010-03-15 2011-09-29 Fujikura Ltd Method of manufacturing circuit board, and the circuit board
JP2011198923A (en) * 2010-03-18 2011-10-06 Fujikura Ltd Method of manufacturing circuit board, the circuit board, and method of manufacturing the circuit board
JP2016184580A (en) * 2016-03-23 2016-10-20 住友化学株式会社 Method for manufacturing metallic particle aggregate
US9714461B2 (en) 2012-09-19 2017-07-25 Sumitomo Chemical Company, Limited Method for producing metal-based particle assembly

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06123886A (en) * 1992-10-12 1994-05-06 Nippon Telegr & Teleph Corp <Ntt> Array control method for particulate
JP2000356587A (en) * 1999-06-14 2000-12-26 Inst Of Physical & Chemical Res Localized plasmon resonance sensor
JP2003225899A (en) * 2002-01-31 2003-08-12 Sangaku Renkei Kiko Kyushu:Kk Functional element using spectral characteristic of metal nano-rod
JP2004020822A (en) * 2002-06-14 2004-01-22 National Institute Of Advanced Industrial & Technology Surface plasmon exciting noble metal particulate thin film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06123886A (en) * 1992-10-12 1994-05-06 Nippon Telegr & Teleph Corp <Ntt> Array control method for particulate
JP2000356587A (en) * 1999-06-14 2000-12-26 Inst Of Physical & Chemical Res Localized plasmon resonance sensor
JP2003225899A (en) * 2002-01-31 2003-08-12 Sangaku Renkei Kiko Kyushu:Kk Functional element using spectral characteristic of metal nano-rod
JP2004020822A (en) * 2002-06-14 2004-01-22 National Institute Of Advanced Industrial & Technology Surface plasmon exciting noble metal particulate thin film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008006575A (en) * 2006-06-30 2008-01-17 Hokkaido Univ Metal structure
JP2011111355A (en) * 2009-11-25 2011-06-09 Ricoh Co Ltd Method for manufacturing thin film, and thin film element
JP2011192832A (en) * 2010-03-15 2011-09-29 Fujikura Ltd Method of manufacturing circuit board, and the circuit board
JP2011198923A (en) * 2010-03-18 2011-10-06 Fujikura Ltd Method of manufacturing circuit board, the circuit board, and method of manufacturing the circuit board
US9714461B2 (en) 2012-09-19 2017-07-25 Sumitomo Chemical Company, Limited Method for producing metal-based particle assembly
JP2016184580A (en) * 2016-03-23 2016-10-20 住友化学株式会社 Method for manufacturing metallic particle aggregate

Also Published As

Publication number Publication date
JP4510550B2 (en) 2010-07-28

Similar Documents

Publication Publication Date Title
Jones et al. Raman techniques: fundamentals and frontiers
Ren et al. Raman spectroscopy on transition metals
Makarov Laser applications in nanotechnology: nanofabrication using laser ablation and laser nanolithography
Lin et al. Surface-enhanced Raman spectroscopy: substrate-related issues
Kuchmizhak et al. On-fly femtosecond-laser fabrication of self-organized plasmonic nanotextures for chemo-and biosensing applications
Kuchmizhak et al. Ion-beam assisted laser fabrication of sensing plasmonic nanostructures
Song et al. Surface enhanced Raman scattering based on silver dendrites substrate
Okamoto et al. Near-field imaging of optical field and plasmon wavefunctions in metal nanoparticles
Qiu et al. Hot spots in highly Raman-enhancing silver nano-dendrites
Gómez et al. Surface enhanced Raman scattering (SERS) in the visible range on scalable aluminum-coated platforms
Sheremet et al. Surface-enhanced Raman scattering and gap-mode tip-enhanced Raman scattering investigations of phthalocyanine molecules on gold nanostructured substrates
Awasthi et al. Optical nanoantenna for beamed and surface‐enhanced Raman spectroscopy
JP4510550B2 (en) Method for controlling metal fine particle structure in metal fine particle thin film
Imura et al. Development of novel near-field microspectroscopy and imaging of local excitations and wave functions of nanomaterials
Gonçalves et al. Surface-enhanced Raman spectroscopy of dye and thiol molecules adsorbed on triangular silver nanostructures: a study of near-field enhancement, localization of hot-spots, and passivation of adsorbed carbonaceous species
Hossain et al. Anisotropic gold nanoassembly: a study on polarization-dependent and polarization-selective surface-enhanced Raman scattering
Wang et al. Large-scale Ag-nanoparticles/Al2O3/Au-nanograting hybrid nanostructure for surface-enhanced Raman scattering
Mondes et al. Plasmonic electric near-field enhancement in self-organized gold nanoparticles in macroscopic arrays
CN110849864A (en) Patterned core-shell structured nanoparticle SERS active substrate and preparation method thereof
Nicklaus Tip-Enhanced Raman spectroscopy for nanoelectronics
Ovchinnikov et al. Self-organization-based fabrication of stable noble-metal nanostructures on large-area dielectric substrates
Fukumura et al. Molecular Nano Dynamics: Vol. I: Spectroscopic Methods and Nanostructures/Vol. II: Active Surfaces, Single Crystals and Single Biocells
Kolloch et al. Structural study of near-field ablation close to plasmon-resonant nanotriangles
Zhu et al. Fabrication and characterization of nanostructured metallic arrays with multi-shapes in monolayer and bilayer
Singh Experimental investigations of plasmon induced catalytic reactions using TERS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100423

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100430

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees