JP2006061084A - Method for producing food by electric conductive processing - Google Patents

Method for producing food by electric conductive processing Download PDF

Info

Publication number
JP2006061084A
JP2006061084A JP2004248069A JP2004248069A JP2006061084A JP 2006061084 A JP2006061084 A JP 2006061084A JP 2004248069 A JP2004248069 A JP 2004248069A JP 2004248069 A JP2004248069 A JP 2004248069A JP 2006061084 A JP2006061084 A JP 2006061084A
Authority
JP
Japan
Prior art keywords
food material
solution
temperature
food
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004248069A
Other languages
Japanese (ja)
Inventor
Seiichiro Isobe
誠一郎 五十部
Kunihiko Uemura
邦彦 植村
Yoshiro Kodama
芳郎 小玉
Hidetaka Fuchu
英孝 府中
Masato Nakane
正人 中根
Tatsuya Sakikubo
達也 崎久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Food Research Institute
Marudai Food Co Ltd
Original Assignee
National Food Research Institute
Marudai Food Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Food Research Institute, Marudai Food Co Ltd filed Critical National Food Research Institute
Priority to JP2004248069A priority Critical patent/JP2006061084A/en
Publication of JP2006061084A publication Critical patent/JP2006061084A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Fish Paste Products (AREA)
  • Meat, Egg Or Seafood Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an easy low-cost method for producing a food by electric conductive processing, capable of evenly and sufficiently raising the temperature of the surface part and the central part of a food material soaked in water or a dilute solution. <P>SOLUTION: This method for producing the food by electric conductive processing comprises holding an electrolyte-containing food material (A) together with water or the dilute electrolyte solution B in a container 3 oppositely set with a pair of electrodes 1 and 2 in the inside in a condition of being soaked in the water or the dilute electrolyte solution without contacting with the electrodes, and sterilizing the food material (A) through giving electric conductive action after an electrically conductive state becomes possible by the electrolyte eluted from the food material (A) in the water or the dilute electrolyte solution B. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、食品材料を水または希薄な電解質溶液中に浸漬した状態で通電加熱することによる通電加工食品の製造方法に関する。   The present invention relates to a method for producing an electrically processed food by heating and heating a food material immersed in water or a dilute electrolyte solution.

従来、ハム、ソーセージ等の食品の加熱殺菌において、これらの食品材料の湯煮または蒸煮が行われている。これらの加熱殺菌方法では、まず食品材料の表層部が昇温し、熱伝導により食品材料の表層部から中央部へと昇温していく。従って、食品材料の中央部を十分に加熱殺菌するためには、表層部は過加熱状態となり、食品の色調などの品質を劣化させる可能性がある。   Conventionally, in the heat sterilization of foods such as ham and sausage, these food materials are boiled or steamed. In these heat sterilization methods, first, the temperature of the surface portion of the food material is raised, and the temperature is raised from the surface layer portion of the food material to the central portion by heat conduction. Therefore, in order to sufficiently heat sterilize the central portion of the food material, the surface layer portion is overheated, which may deteriorate the quality of the food such as color tone.

湯煮または蒸煮による加熱に代わるものとして、食品材料の有する固有の電気抵抗を利用し、食品材料に電流を流してジュール加熱(通電加熱)する方法が開発されており、この方法によれば、食品材料をその内部から短時間に加熱することができるため、各種食品の加熱への応用が進められてきた。このような通電加熱による食品材料の加熱の態様としては、食品材料を、電解質を含む外溶液(例えば、食塩水)とともに絶縁性容器内に収容し、この容器内に配設された一対の電極間に電圧を印加することによって、外溶液を介して食肉材料に通電し、食品材料をジュール加熱により発熱させる方法が提案されている(特許文献1および特許文献2)。しかし、これらの方法により十分な殺菌価が得られるまで食肉材料を加熱すると、食品材料の表層部または中央部の一方が過加熱となり、製品である食品の色調などの品質が落ちる。   As an alternative to boiled or steamed heating, a method has been developed in which current is applied to the food material using Joule heating (electric heating) using the inherent electrical resistance of the food material. Since food materials can be heated from the inside in a short time, application to heating of various foods has been advanced. As an aspect of heating the food material by such energization heating, the food material is housed in an insulating container together with an outer solution containing an electrolyte (for example, saline solution), and a pair of electrodes disposed in the container A method has been proposed in which a meat material is energized via an external solution by applying a voltage between them and the food material is heated by Joule heating (Patent Document 1 and Patent Document 2). However, if the meat material is heated until a sufficient bactericidal value is obtained by these methods, one of the surface layer portion or the central portion of the food material is overheated, and the quality of the food, such as the color tone, is deteriorated.

具体的には、外溶液の電解質濃度が高過ぎると、外溶液の高い導電率に起因して外溶液に過剰な電流が流れ、食品材料には比較的小さい電流しか流れない。従って、通電加熱によって外溶液が優先的に加熱され、外溶液の温度は、食品材料より速く上昇する。従って、外溶液と食品材料との間の温度差が生じてしまう。温度が上昇することによって導電率はさらに上昇するので、外溶液に流れる電流はさらに増加し、従って、外溶液の昇温速度はさらに上がる。これに対して食品材料の昇温速度は、比較的変化が小さいままであるので、外溶液と食品材料との温度差はさらに広がってしまう。この結果、食品材料は、その表層部が過加熱となってしまう。   Specifically, if the electrolyte concentration of the outer solution is too high, an excessive current flows in the outer solution due to the high conductivity of the outer solution, and only a relatively small current flows in the food material. Accordingly, the external solution is preferentially heated by the electric heating, and the temperature of the external solution rises faster than the food material. Therefore, a temperature difference between the outer solution and the food material occurs. As the temperature rises, the conductivity further increases, so that the current flowing in the outer solution further increases, and thus the temperature rise rate of the outer solution further increases. On the other hand, since the temperature rise rate of the food material remains relatively small, the temperature difference between the outer solution and the food material is further widened. As a result, the surface of the food material is overheated.

一方、外溶液の電解質濃度が低過ぎると、食品材料および外溶液に流れる電流が小さくなるため、食品材料を十分に加熱出来ないか、または加熱出来ても非常に時間がかかってしまう。さらに、食品材料を十分に加熱出来る場合であっても、食品材料に比較的電流が流れやすいのに対して外溶液には比較的電流が流れにくいため、食品材料と外溶液とで通電加熱による昇温速度に差が生じてしまう。この場合、食品材料の温度と共に導電率が上昇するのに対し、外溶液の温度はあまり変化しないので導電率の変化も小さい。従って、通電加熱によって食品材料と外溶液との温度差はさらに広がる。この結果、食品材料は、その中央部が過加熱となってしまう。また、食肉材料の表層部を加熱するために、70℃〜80℃に加熱した熱水を用いた通電加熱方法も提案されている(特許文献3)。しかし、この方法は、熱水により食品材料の表層部を先に加熱してしまうので、食品材料を均一に加熱することが出来ず、食品の色調などの品質を劣化させてしまう。   On the other hand, if the electrolyte concentration of the outer solution is too low, the current flowing through the food material and the outer solution becomes small, so that the food material cannot be heated sufficiently or even if it can be heated, it takes a very long time. Furthermore, even when the food material can be sufficiently heated, the current is relatively easy to flow through the food material while the current is relatively difficult to flow through the external solution. There will be a difference in the heating rate. In this case, the conductivity increases with the temperature of the food material, whereas the temperature of the outer solution does not change so much, so the change in conductivity is small. Therefore, the temperature difference between the food material and the external solution is further widened by energization heating. As a result, the central portion of the food material is overheated. Moreover, in order to heat the surface layer part of meat material, the electricity heating method using the hot water heated at 70 to 80 degreeC is also proposed (patent document 3). However, since this method heats the surface layer portion of the food material first with hot water, the food material cannot be heated uniformly, and the quality such as the color tone of the food is deteriorated.

従って、いずれの場合においても、食品材料の表層部と中央部との間に温度差が生じてしまい、食品の色調などの品質を劣化させてしまう。
特開昭61−132137号 特開昭63−296672号 特開平10−229853号
Therefore, in any case, a temperature difference is generated between the surface layer portion and the central portion of the food material, and the quality such as the color tone of the food is deteriorated.
JP 61-132137 A JP 63-296672 A Japanese Patent Laid-Open No. 10-229853

本発明の課題は、水又は希薄溶液に浸漬した食品材料の表層部と中央部とを均一にかつ十分に昇温することが出来る、簡便かつ低コストの通電加熱食品の製造方法を提供することである。   An object of the present invention is to provide a simple and low-cost method for producing an electrically heated food that can uniformly and sufficiently raise the temperature of the surface layer portion and the central portion of the food material immersed in water or a dilute solution. It is.

本発明者は、食品材料から外溶液に微量の電解質が溶出することにより、外溶液として水または希薄な電解質溶液を用いて食品材料を十分に加熱することが出来ることを見出した。本発明者は、微量の電解質を含む外溶液に通電作用を施す際、電極と食品材料との距離によって食品材料の昇温速度が異なること、そして食品材料および外溶液の昇温速度を、通電作用を施す際の印加電圧によって調整出来ることを見出した。本発明は、これらの知見に基づき、食品材料と電極との距離および印加電圧を調整して通電加熱を施すことによって、水または希薄な電解質溶液に浸漬した食品材料の表層部および中央部を均一かつ十分に昇温出来ることを見出し、さらに上記課題を解決するために鋭意研究した結果、本発明を完成するに至った。   The present inventor has found that the food material can be sufficiently heated by using water or a dilute electrolyte solution as the outer solution by elution of a small amount of electrolyte from the food material into the outer solution. When applying an energizing action to an outer solution containing a small amount of electrolyte, the present inventor determines that the heating rate of the food material varies depending on the distance between the electrode and the food material, and the heating rate of the food material and the outer solution It has been found that it can be adjusted by the applied voltage when applying the action. Based on these findings, the present invention adjusts the distance between the food material and the electrode and the applied voltage to conduct heating, so that the surface layer portion and the central portion of the food material immersed in water or a dilute electrolyte solution are uniformly distributed. As a result of finding out that the temperature can be sufficiently increased and further eagerly researching to solve the above-mentioned problems, the present invention has been completed.

すなわち、本発明は、内部に一対の電極を対設する容器に、水または希薄な電解質溶液と共に、電解質を含む食品材料を、該電極に接触させることなく、かつ該水または希薄な電解質溶液中に浸漬した状態で収容し、食品材料から水または希薄な電解質溶液に溶出した電解質により通電可能な状態になった後、食品材料に通電作用を施して殺菌処理せしめることを特徴とする通電加工食品の製造法を提供する。   That is, the present invention provides a container in which a pair of electrodes are provided inside, together with water or a dilute electrolyte solution, and without bringing the food material containing the electrolyte into contact with the electrodes and in the water or the dilute electrolyte solution. The energized processed food is characterized in that the food material is stored in a state immersed in water and becomes energizable by the electrolyte eluted from the food material into water or a dilute electrolyte solution, and then the food material is sterilized by applying an energizing action. Provides a manufacturing method.

以下、本発明方法について、詳細に説明する。   Hereinafter, the method of the present invention will be described in detail.

図1に本発明の通電加熱装置の概略図を示す。ここで、1,2は、電極であり、3は、これらの電極を対設する容器である。Aは、電解質を含む食品材料であり、Bは、水または希薄な電解質溶液である。   FIG. 1 shows a schematic view of an electric heating apparatus of the present invention. Here, 1 and 2 are electrodes, and 3 is a container for facing these electrodes. A is a food material containing an electrolyte, and B is water or a dilute electrolyte solution.

本発明における電解質を含む食品材料は、動物性食品材料を含む。本発明における動物性食品材料としては、ハム、プレスハム、ソーセージ等の畜肉材料、魚肉ハム、魚肉ソーセージ、かまぼこ、はんぺん、つみれ等の魚肉練り製品材料が例示される。本発明において、ハム、ソーセージ、魚肉ハム、魚肉ソーセージ、かまぼこ等が好ましく、ハム、ソーセージが特に好ましい。食品材料の形状は、通常、ある程度の厚みがある塊状であり、好ましくは、中心軸のある筒状(円筒、角筒、楕円筒等)である。通電前の本発明の食品材料の電解質濃度は、通常0.5〜5重量%程度であり、好ましくは、1〜3重量%程度である。   The food material containing an electrolyte in the present invention includes an animal food material. Examples of the animal food material in the present invention include livestock meat materials such as ham, press ham, and sausage, and fish meat product materials such as fish ham, fish sausage, kamaboko, rice bran, and fish paste. In the present invention, ham, sausage, fish ham, fish sausage, kamaboko and the like are preferable, and ham and sausage are particularly preferable. The shape of the food material is usually a lump with a certain thickness, and is preferably a cylinder with a central axis (cylinder, square cylinder, elliptic cylinder, etc.). The electrolyte concentration of the food material of the present invention before energization is usually about 0.5 to 5% by weight, and preferably about 1 to 3% by weight.

本発明において、材料となる食品材料は、通気性もしくは透湿性の包装材料で包装されていても未包装でもよいが、通気性包装で包装されているのが好ましい。ここで、通気性または透湿性の包装材料は、電解質の透過が可能で、食品材料の形状が保たれるものであればよい。   In the present invention, the food material used as the material may be packaged in a breathable or moisture permeable packaging material or unpackaged, but is preferably packaged in a breathable package. Here, the air-permeable or moisture-permeable packaging material may be any material that can permeate the electrolyte and can maintain the shape of the food material.

本発明において用いられる溶液中の電解質としては、ナトリウム塩、カリウム塩、マグネシウム塩などの無機塩が挙げられるが、これらに限定されない。本発明における溶液中の電解質としては、塩化ナトリウム(食塩)が好ましい。   Examples of the electrolyte in the solution used in the present invention include, but are not limited to, inorganic salts such as sodium salt, potassium salt, and magnesium salt. As an electrolyte in the solution in the present invention, sodium chloride (salt) is preferable.

本発明において用いられる食品材料中の電解質としては、塩化ナトリウムが好ましい。   Sodium chloride is preferable as the electrolyte in the food material used in the present invention.

本明細書中において、希薄な電解質溶液とは、約0.02M以下の上記塩類の水溶液をいう。   In the present specification, the dilute electrolyte solution refers to an aqueous solution of the above-mentioned salts of about 0.02 M or less.

電解質溶液のpHは、食品材料が酸変性、アルカリ変性しない範囲であればよい。   The pH of the electrolyte solution may be in a range where the food material is not acid-denatured or alkali-denatured.

本明細書中において、水とは、水道水だけでなく蒸留水および超純水を含む。   In this specification, water includes not only tap water but also distilled water and ultrapure water.

本発明方法はまず、内部に一対の電極を対設する容器に、電解質を含む食品材料を、水または希薄な電解質溶液である外溶液と共に、かつ水または希薄な電解質溶液中に浸漬した状態で収容する。食品材料は、電極に接触しないよう、間隔を空けて収容する。また、食品材料の側面および下面は、容器の壁面および底部に接触しないよう、間隔を空けて収容する。食品材料の上面と水面の距離、ならびに食品材料の側面および下面と容器の壁面および底面との距離は、いずれも0.1cm〜10cm程度であることが好ましく、1cm〜2cm程度であることがより好ましい。   In the method of the present invention, first, a food material containing an electrolyte is immersed in water or a dilute electrolyte solution, together with an outer solution that is water or a dilute electrolyte solution, in a container having a pair of electrodes disposed inside. Accommodate. The food material is stored at an interval so as not to contact the electrode. Further, the side and lower surfaces of the food material are accommodated at intervals so as not to contact the wall surface and bottom of the container. The distance between the upper surface and the water surface of the food material and the distance between the side surface and the lower surface of the food material and the wall surface and the bottom surface of the container are all preferably about 0.1 cm to 10 cm, more preferably about 1 cm to 2 cm. preferable.

ここで、食品材料を均一に加熱するためには、通電前の外溶液の温度は、通常0〜50℃程度、好ましくは5〜20℃程度の温度のものを用い、通電前の食品材料の温度は、通常0〜40℃程度であり、好ましくは5〜20℃程度の温度のものを用いる。   Here, in order to uniformly heat the food material, the temperature of the outer solution before energization is usually about 0 to 50 ° C., preferably about 5 to 20 ° C. The temperature is usually about 0 to 40 ° C., preferably about 5 to 20 ° C.

また、食品材料の体積に対して0.5〜3倍程度の体積の外溶液を用いることによって、外溶液への食肉材料の電解質濃度の溶出による、食品材料の電解質濃度の損失は、ほとんどなくなる。   Further, by using the outer solution having a volume of about 0.5 to 3 times the volume of the food material, the loss of the electrolyte concentration of the food material due to the elution of the electrolyte concentration of the meat material into the outer solution is almost eliminated. .

次いで、対設する電極に電圧を印加し、食品材料を通電加熱する。電圧は、直流電源を用いても交流電源を用いて印加してもよいが、通常、交流電源を用いて印加する。その際、周波数は、商業周波数である50〜60Hz程度でも、20kHz程度の高周波数でもよい。ここで、電極と食肉材料との距離に対する印加電圧の比率が、通常20V/cm程度、好ましくは40V/cm程度となるように、印加電圧、および電極と食品材料との距離を設定する。   Next, a voltage is applied to the opposing electrode to heat and heat the food material. The voltage may be applied using a direct current power supply or an alternating current power supply, but is usually applied using an alternating current power supply. At that time, the frequency may be about 50 to 60 Hz, which is a commercial frequency, or a high frequency of about 20 kHz. Here, the applied voltage and the distance between the electrode and the food material are set so that the ratio of the applied voltage to the distance between the electrode and the meat material is usually about 20 V / cm, preferably about 40 V / cm.

本発明方法において、電極と食品材料との距離とは、2つの電極と食品材料の両端との間に夫々出来る距離(電極に面する食品材料の端部が曲面である場合または電極表面が曲面である場合には、その最も近接する位置での距離)の平均値を示す。   In the method of the present invention, the distance between the electrode and the food material is a distance that can be formed between the two electrodes and both ends of the food material (when the end of the food material facing the electrode is a curved surface or the electrode surface is a curved surface). Is the average value of the distance at the closest position.

印加電圧は、通常、50〜1000V程度、好ましくは、100〜500V程度である。   The applied voltage is usually about 50 to 1000V, preferably about 100 to 500V.

本発明の通電加熱における最終温度は、通常60℃〜100℃程度であり、好ましくは70℃〜90℃程度である。   The final temperature in the electric heating of the present invention is usually about 60 ° C to 100 ° C, preferably about 70 ° C to 90 ° C.

この工程によって、食品材料から外溶液に溶出した微量の電解質を介して食品材料が通電加熱されるので、希薄な電解質溶液または水の中に浸漬した食品材料を、その表層部と中央部を均一に昇温することが出来る。   This process heats the food material through a small amount of electrolyte eluted from the food material to the outer solution. Therefore, the surface layer and the center of the food material immersed in a dilute electrolyte solution or water are evenly distributed. The temperature can be increased.

また、通電加工中に、印加電圧を変化させることによって、食品材料および水または希薄な電解質溶液をより均一に加熱することが出来る。   In addition, the food material and water or a dilute electrolyte solution can be heated more uniformly by changing the applied voltage during the electrical processing.

本発明方法によって、通電加工の間、食品材料の表層部および中央部を均一に昇温することが出来る。従って、本発明方法は、通電加工中に食品材料の表層部と中央部とで温度差を生じる従来法で加工された食品に比べて、色調などの品質に優れた食品を製造することが出来る。また、本発明方法は、電解質溶液の調整に起因する余分な製造コスト、ランニングコストをかけることなく通電加熱により食品を加熱殺菌することが出来る。また、本発明方法の殺菌効力は、湯煮による加工と同等である。   According to the method of the present invention, the temperature of the surface layer portion and the central portion of the food material can be uniformly raised during the electric current processing. Therefore, the method of the present invention can produce a food excellent in quality such as color tone as compared with a food processed by a conventional method in which a temperature difference occurs between the surface layer portion and the central portion of the food material during the electric current processing. . In addition, the method of the present invention can heat sterilize food by energization heating without adding extra manufacturing cost and running cost due to adjustment of the electrolyte solution. Moreover, the bactericidal effect of the method of the present invention is equivalent to processing by boiling water.

また、本発明方法においては、食品材料(包装容器ではなく)を電極に接触させることなく外溶液に浸漬した状態で通電加熱するので、表面に凹凸のある食品材料を通電加熱処理することが出来る。   Further, in the method of the present invention, since the food material (not the packaging container) is energized and heated in the state of being immersed in the external solution without being brought into contact with the electrode, the food material having unevenness on the surface can be energized and heated. .

以下の実施例において、本発明の特定の実施形態を記載するが、これらの実施例は、本発明を限定することを意図するものではない。   The following examples describe specific embodiments of the present invention, but these examples are not intended to limit the invention.

外溶液の電解質濃度と昇温の関係
容器(幅80mm×長さ150mm×深さ80mm)を超純水、水道水あるいは1.7mM、8.6mM食塩水800mlで満たし、周波数可変電源(最大電流値:3A)を用いて電流周波数60Hzまたは20kHz、250Vで通電作用を施した。図2に水温の上昇パターンを示す。通電作用を施すことで水温は8.6mM食塩水では速やかに上昇するが、水道水や1.7mM食塩水では徐々に上昇し、超純水では上昇しない。次に、細切した塩漬肉350gを通気性非可食ケーシングに充填して食品材料(70mmφ×130mm)を作製した。容器(幅80mm×長さ150mm×深さ80mm)に、外溶液(超純水または1.7mM〜17mM食塩水450ml)とともに、食品材料を、電極に接触させることなく収容した後、20kHz高周波電源(最大電流値:5A)を用いて200Vで通電作用を施した。電極と食肉材料の距離は1cmとなる。温度センサを食肉材料の表層部(上部および下部)および中央部に埋め込み、経時的に温度測定をした。同時に、温度センサを用いて食肉材料の上部、下部の外溶液の温度を測定した。図3に夫々の電解質濃度の外溶液に浸漬した食肉材料および外溶液の昇温パターンを示す。外溶液に超純水を用いた場合(図3(a))においても外溶液に食塩水を用いた場合(図3(b)〜図3(d))と同様に通電作用を施すことによって食肉材料および外溶液が昇温する。
Relationship between electrolyte concentration of external solution and temperature rise Fill the container (width 80mm x length 150mm x depth 80mm) with ultrapure water, tap water or 800ml of 1.7mM, 8.6mM saline, variable frequency power supply (maximum current) Value: 3A) was used to conduct current at a current frequency of 60 Hz or 20 kHz, 250V. FIG. 2 shows the rising pattern of the water temperature. By applying an energizing action, the water temperature rapidly rises with 8.6 mM saline, but gradually rises with tap water or 1.7 mM saline, and does not rise with ultrapure water. Next, 350 g of minced salted meat was filled into a breathable non-edible casing to produce a food material (70 mmφ × 130 mm). After the food material is stored in a container (width 80 mm × length 150 mm × depth 80 mm) together with the external solution (ultra pure water or 1.7 mM to 17 mM saline 450 ml) without contacting the electrode, a 20 kHz high frequency power supply An energization action was applied at 200 V using (maximum current value: 5 A). The distance between the electrode and the meat material is 1 cm. A temperature sensor was embedded in the surface layer (upper and lower) and center of the meat material, and the temperature was measured over time. At the same time, the temperature of the outer solution at the top and bottom of the meat material was measured using a temperature sensor. FIG. 3 shows the temperature rise pattern of the meat material and the outer solution immersed in the outer solution of each electrolyte concentration. Even when ultrapure water is used as the outer solution (FIG. 3 (a)), the energizing action is applied in the same manner as when the saline is used as the outer solution (FIGS. 3 (b) to 3 (d)). The meat material and the outer solution are heated.

通電電流の周波数と昇温の関係
細切した塩漬肉350gを通気性非可食ケーシングに充填して食品材料(70mmφ×130mm)を作製した。容器(幅80mm×長さ150mm×深さ80mm)に、外溶液(1.7mM食塩水450m1)とともに、食品材料を、電極に接触させることなく収容した後、周波数可変電源(最大電流値:3A)を用いて電流周波数60Hzまたは20kHz、70Vで通電作用を施した。電極と食品材料の距離は1cmとなる。実施例1と同様に、食品材料および外溶液の温度を経時的に測定した。図4に夫々の周波数で通電処理を施した食品材料および外溶液の昇温パターンを示す。商業周波数60Hz(図4(a))と高周波数20kHz(図4(b))とで食品材料および外溶液の昇温パターンに違いはないことから、通電作用による昇温パターンは通電電流の周波数に影響を受けない。
Relationship between frequency of energization current and temperature rise 350 g of minced salted meat was filled into a breathable non-edible casing to produce a food material (70 mmφ × 130 mm). After the food material is housed in a container (width 80 mm × length 150 mm × depth 80 mm) together with the outer solution (1.7 mM saline 450 ml) without contacting the electrodes, the frequency variable power source (maximum current value: 3A) ) Was applied at a current frequency of 60 Hz or 20 kHz, 70 V. The distance between the electrode and the food material is 1 cm. Similarly to Example 1, the temperature of the food material and the external solution was measured over time. FIG. 4 shows the temperature rise pattern of the food material and the external solution subjected to the energization treatment at each frequency. There is no difference in the temperature rise pattern of the food material and the external solution between the commercial frequency of 60 Hz (FIG. 4 (a)) and the high frequency of 20kHz (FIG. 4 (b)). Not affected by.

通電電圧と昇温の関係
細切した塩漬肉350gを通気性非可食ケーシングに充填して食品材料(70mmφ×130mm)を作製した。容器(幅80mm×長さ150mm×深さ80mm)に、外溶液(超純水450ml)とともに、食品材料を、電極に接触させることなく収容した後、20kHz高周波電源(最大電流値:5A)を用いて100V、200V、および300Vで通電作用を施した。電極と食肉材料の距離は1cmとなる。実施例1と同様に、食品材料および外溶液の温度を経時的に測定した。図5に夫々の通電電圧(図5(a)、100V;図5(b)、200V;図5(c)、300V)での食品材料および外溶液の昇温パターンを示す。通電電圧が高くなるにしたがって昇温速度は速くなる。
Relationship between energizing voltage and temperature rise 350 g of minced salted meat was filled into a breathable non-edible casing to produce a food material (70 mmφ × 130 mm). A container (80 mm wide x 150 mm long x 80 mm deep), together with the outer solution (450 ml of ultrapure water) and the food material without being brought into contact with the electrode, a 20 kHz high frequency power supply (maximum current value: 5 A) was placed. The energizing action was applied at 100V, 200V, and 300V. The distance between the electrode and the meat material is 1 cm. Similarly to Example 1, the temperature of the food material and the external solution was measured over time. FIG. 5 shows the temperature rise pattern of the food material and the external solution at each energized voltage (FIGS. 5A and 100V; FIG. 5B and 200V; FIG. 5C and 300V). The heating rate increases as the energization voltage increases.

電極と食品材料の距離と昇温の関係
細切した塩漬肉を通気性非可食ケーシングに充填して様々な大きさの食品材料(食品材料 大:70mmφ×490mm、食品材料 中:70mmφ×400mm、食品材料 小:70mmφ×300mm)を作製した。容器(幅80mm×長さ500mm×深さ80mm)に、外溶液(超純水)とともに、食品材料を、電極に接触させることなく収容した後、周波数可変電源(最大電流値:3A)を用いて200Vで通電作用を施した。電極と食品材料の距離は食品材料 大、食品材料 中、食品材料 小でそれぞれ0.5cm、5cm、10cmとなる。実施例1と同様に、食品材料および外溶液の温度を経時的に測定した。図6に夫々の電極と食品材料の距離および印加電圧における食品材料および外溶液の昇温パターンを示す(図6(a)、0.5cm、200V;図6(b)、5cm、200V;図6(c)、10cm、200V;図6(d)、10cm、400V)。電極と食品材料の距離は昇温速度に影響し、距離が短いほど昇温速度は速い。また、昇温速度が遅い場合、通電電圧を高くすることで速やかに昇温できる。
Relationship between electrode and food material distance and temperature rise Filled non-edible casing with minced salted meat and various sizes of food material (Food material large: 70mmφ × 490mm, medium: 70mmφ × 400 mm, food material small: 70 mmφ × 300 mm). After the food material is accommodated in the container (width 80 mm × length 500 mm × depth 80 mm) together with the outer solution (ultra pure water) without contacting the electrode, a variable frequency power supply (maximum current value: 3 A) is used. The current was applied at 200V. The distance between the electrode and the food material is 0.5 cm, 5 cm, and 10 cm for the large food material, medium food material, and small food material, respectively. Similarly to Example 1, the temperature of the food material and the external solution was measured over time. FIG. 6 shows the temperature rise pattern of the food material and the external solution at the distance between each electrode and the food material and the applied voltage (FIG. 6 (a), 0.5 cm, 200 V; FIG. 6 (b), 5 cm, 200 V; FIG. 6 (c), 10 cm, 200 V; FIG. 6 (d), 10 cm, 400 V). The distance between the electrode and the food material affects the heating rate, and the shorter the distance, the faster the heating rate. Further, when the rate of temperature rise is slow, the temperature can be quickly raised by increasing the energization voltage.

均一な昇温のための通電電圧の調整
細切した塩漬肉350gを通気性非可食ケーシングに充填して食品材料(70mmφ×130mm)を作製した。容器(幅80mm×長さ150mm×深さ80mm)に、外溶液(超純水450m1)とともに、食品材料を、電極に接触させることなく収容した後、周波数可変電源(最大電流値:3A)を用いて電流周波数60Hzまたは20kHz、200Vで通電作用を施した。電極と食肉材料の距離は1cmとなる。電流値が最大電流値3Aに達した時点で電圧を100Vに下げ、さらに電流値が最大電流値に達した時点で電圧を50Vとして通電作用を施した。実施例1と同様に、食品材料および外溶液の温度を経時的に測定した。図7に通電電圧を変化させた場合の食品材料および外溶液の昇温パターンを示す(図7(a)、60Hz;図7(b)、20kHz)。通電電圧が一定であること以外図7(b)と同様の条件で通電加熱を施した図5(b)との比較から、通電作用を施す際に通電電圧を変化させることによって、食品材料および外溶液をより均一に昇温出来ることがわかる。
Adjustment of energization voltage for uniform temperature increase 350 g of minced salted meat was filled into a breathable non-edible casing to prepare a food material (70 mmφ × 130 mm). A container (width 80 mm x length 150 mm x depth 80 mm) and a food material together with an external solution (ultra pure water 450 ml) are accommodated without contacting the electrodes, and then a variable frequency power supply (maximum current value: 3 A) is installed. The current was applied at a current frequency of 60 Hz or 20 kHz and 200 V. The distance between the electrode and the meat material is 1 cm. When the current value reached the maximum current value of 3A, the voltage was lowered to 100V, and when the current value reached the maximum current value, the voltage was set to 50V and an energization operation was performed. Similarly to Example 1, the temperature of the food material and the external solution was measured over time. FIG. 7 shows the temperature rise pattern of the food material and the external solution when the energization voltage is changed (FIG. 7 (a), 60Hz; FIG. 7 (b), 20kHz). From the comparison with FIG. 5B in which the energization heating is performed under the same conditions as in FIG. 7B except that the energization voltage is constant, by changing the energization voltage when applying the energization action, the food material and It can be seen that the temperature of the outer solution can be increased more uniformly.

通電処理と湯煮処理による殺菌価と製品の品質
一定量の耐熱性乳酸菌(Enterococcus faecalis, IFO12968)を含む細切した塩漬肉350gを通気性非可食ケーシングに充填して食品材料(70mmφ×130mm)を作製した。容器(幅80mm×長さ150mm×深さ80mm)に、外溶液(超純水450m1)とともに、食品材料を、電極に接触させることなく収容した後、周波数可変電源(最大電流値:3A)を用いて電流周波数60Hzまたは20kHz、200Vで通電作用を施した。電極と食品材料の距離は1cmとなる。また、80℃で食肉材料を湯煮して対照区を作製した。試験区、対照区共に70℃に達した時点で加熱を止め、食品材料を氷冷した。各試験区および対照区の中央部の昇温パターンを示す(図8)。食品材料の中央部温度が70℃に達するのに要する時間は、対照区では43分、周波数60Hzで通電処理した試験区では15分、周波数20kHzでは12分であった。耐熱性乳酸菌のZ値を4.7とした場合の63℃に相当する加熱時間を算出すると、80℃湯煮では139.9分、60Hz通電処理では58.1分、20kHz通電処理では54.2分であった。試験区および対照区の両方で、63℃30分間相当以上の加熱殺菌がなされているが、対照区においては、63℃換算で食品材料が過剰に加熱されてしまっている。また、各試験区および対照区について、夫々、中央部の温度が30、50、70℃に到達した時点で食肉材料を氷冷して生残菌数を測定した。昇温中の各温度における耐熱性乳酸菌の生残率を図9に示す。耐熱性乳酸菌は50℃達温時で1オーダー、70℃達温時で約6オーダー減少し、通電周波数による殺菌価の違いは見られなかった。また、殺菌後の食品のナトリウム、食塩、亜硝酸根、ビタミンB1含有量を以下の表1に示す。
Bactericidal value and product quality by energization treatment and boiled treatment 350g of minced salted meat containing a certain amount of heat-resistant lactic acid bacteria (Enterococcus faecalis, IFO 12968) is filled in a breathable non-edible casing to produce a food material (70 mmφ × 130 mm). A container (width 80 mm x length 150 mm x depth 80 mm) and a food material together with an external solution (ultra pure water 450 ml) are accommodated without contacting the electrodes, and then a variable frequency power supply (maximum current value: 3 A) is installed. The current was applied at a current frequency of 60 Hz or 20 kHz and 200 V. The distance between the electrode and the food material is 1 cm. In addition, the meat material was boiled at 80 ° C. to prepare a control plot. When both the test group and the control group reached 70 ° C., the heating was stopped and the food material was ice-cooled. The temperature rising pattern at the center of each test group and control group is shown (FIG. 8). The time required for the central temperature of the food material to reach 70 ° C. was 43 minutes in the control group, 15 minutes in the test group subjected to current treatment at a frequency of 60 Hz, and 12 minutes at a frequency of 20 kHz. When the heating time corresponding to 63 ° C. when the Z value of the heat-resistant lactic acid bacteria is 4.7 is calculated, 139.9 minutes for boiled 80 ° C., 58.1 minutes for 60 Hz energization treatment, and 54. 2 minutes. In both the test group and the control group, heat sterilization at 63 ° C. for 30 minutes or more is performed, but in the control group, the food material is excessively heated in terms of 63 ° C. In each test group and control group, the meat material was ice-cooled when the temperature in the center reached 30, 50, and 70 ° C., and the number of surviving bacteria was measured. The survival rate of the heat-resistant lactic acid bacteria at each temperature during the temperature rise is shown in FIG. The heat-resistant lactic acid bacteria decreased by 1 order when the temperature reached 50 ° C. and decreased by about 6 orders when the temperature reached 70 ° C., and no difference in bactericidal value depending on the energization frequency was observed. Table 1 below shows the sodium, salt, nitrite, and vitamin B 1 content of the sterilized food.

Figure 2006061084
Figure 2006061084

通電加工食品と湯煮による加熱食品では、ナトリウム、食塩、亜硝酸根、ビタミンB1の含有量に大きな違いが見られない。この結果は、本願発明の通電加工食品が、湯煮による加熱食品より短時間で作製され、かつ同等の安全性と品質を維持した食品であることを示している。 There is no significant difference in the contents of sodium, salt, nitrite, and vitamin B 1 between the electric current processed food and the heated food by boiling. This result shows that the electrically processed food of the present invention is a food that is produced in a shorter time than the heated food by boiling and maintains the same safety and quality.

通電処理と湯煮処理による製品の色調
細切した塩漬肉350gを通気性非可食ケーシングに充填して食品材料(70mmφ×130mm)を作製した。試験区として、この食品材料を本発明の方法により通電加熱して75℃の達温温度に達するまで加熱した後、ただちに氷水で急冷した。その際、通電加熱は、印加電圧200V、60Hzの交流電流で行った。対照として、同じ食品材料を、中央部温度が65℃、70℃、75℃、80℃、85℃、90℃の達温温度に達するまで湯煮により加熱した後、ただちに氷水にて急冷した。さらに、同様に細切りし通気性非可食ケーシングに充填した塩漬肉を、中央部が75℃の達温温度に達するまで蒸煮により加熱した後、ただちに氷水にて急冷した。湯煮温度および蒸煮温度は達温温度より5℃高く設定した。各処理後の食品材料の色調(L、a、b)を色彩色差計で測定した。測定結果を以下の表2に示す。
Color of product by energization treatment and boiled treatment 350 g of minced salted meat was filled into a breathable non-edible casing to produce a food material (70 mmφ × 130 mm). As a test plot, the food material was heated by energization according to the method of the present invention until it reached a temperature of 75 ° C., and then immediately cooled with ice water. At that time, the energization heating was carried out with an applied voltage of 200 V and an alternating current of 60 Hz. As a control, the same food material was heated in boiling water until the center temperature reached 65 ° C., 70 ° C., 75 ° C., 80 ° C., 85 ° C., 90 ° C., and then immediately cooled in ice water. Further, the cured meat similarly cut into pieces and filled in a breathable non-edible casing was heated by steaming until the central part reached a temperature of 75 ° C., and immediately cooled rapidly with ice water. The boiling temperature and steaming temperature were set 5 ° C. higher than the reaching temperature. The color tone (L, a, b) of the food material after each treatment was measured with a color difference meter. The measurement results are shown in Table 2 below.

Figure 2006061084
Figure 2006061084

湯煮処理した塩漬肉においては、中心温度が上がるほどL値、b値が高くなった。通電処理の場合、処理時間が短いため、食品材料の損傷が小さく、b値の上昇が抑制される。この結果は、本発明の方法で通電処理した食品が、湯煮および蒸煮よりb値が低く、すなわち、黄色味が抑えられ、良好な色調を有することが示している。   In boiled salted meat, the L value and b value increased as the center temperature increased. In the case of energization processing, since the processing time is short, the food material is less damaged and the increase in the b value is suppressed. This result shows that the food processed by the method of the present invention has a lower b value than boiled and steamed, that is, yellow color is suppressed and has a good color tone.

図1は、本発明の通電加熱装置の概略図を示す。FIG. 1 shows a schematic view of an electric heating apparatus of the present invention. 図2は、各種溶液の通電加熱による昇温パターンを示す。ここで、図2において、◆は、超純水を20kHzの周波数で通電した系の昇温パターンを示す。■は、水道水を20kHzの周波数で通電した系の昇温パターンを示す。□は、水道水を60Hzの周波数で通電した系の昇温パターンを示す。●は、1.7mM食塩水を20kHzの周波数で通電した系の昇温パターンを示す。▲は、8.6mM食塩水を20kHzの周波数で通電した系の昇温パターンを示す。△は、8.6mM食塩水を60Hzの周波数で通電した系の昇温パターンを示す。FIG. 2 shows the temperature rising pattern by various heating of various solutions. Here, in FIG. 2, ♦ indicates a temperature rise pattern of a system in which ultrapure water is energized at a frequency of 20 kHz. (2) shows a temperature rise pattern of a system in which tap water is energized at a frequency of 20 kHz. □ indicates a temperature rise pattern of a system in which tap water is energized at a frequency of 60 Hz. ● indicates a temperature rise pattern of a system in which 1.7 mM saline is energized at a frequency of 20 kHz. A triangle indicates a temperature rising pattern of a system in which 8.6 mM saline is energized at a frequency of 20 kHz. Δ indicates a temperature rise pattern of a system in which 8.6 mM saline is energized at a frequency of 60 Hz. 図3は、種々の電解質濃度の外溶液に浸漬した食肉材料および外溶液の昇温パターンを示す。ここで、●は、食品材料上部の昇温パターンを示す。▲は、食品材料中央部の昇温パターンを示す。■は、食品材料下部の昇温パターンを示す。○は、外溶液上部の昇温パターンを示す。□は、外溶液下部の昇温パターンを示す。FIG. 3 shows the temperature rise pattern of the meat material and the outer solution immersed in the outer solution having various electrolyte concentrations. Here, ● indicates the temperature rising pattern on the upper part of the food material. ▲ indicates the temperature rise pattern at the center of the food material. (2) indicates the temperature rising pattern below the food material. A circle indicates a temperature rising pattern on the upper part of the outer solution. □ shows the temperature rising pattern at the bottom of the outer solution. 図4は、20kHz及び60Hzの周波数で通電処理を施した食肉材料および外溶液の昇温パターンを示す。ここで、●は、食品材料上部の昇温パターンを示す。▲は、食品材料中央部の昇温パターンを示す。■は、食品材料下部の昇温パターンを示す。○は、外溶液上部の昇温パターンを示す。□は、外溶液下部の昇温パターンを示す。FIG. 4 shows the temperature rise pattern of the meat material and the external solution subjected to the energization treatment at frequencies of 20 kHz and 60 Hz. Here, ● indicates the temperature rising pattern on the upper part of the food material. ▲ indicates the temperature rise pattern at the center of the food material. (2) indicates the temperature rising pattern below the food material. A circle indicates a temperature rising pattern on the upper part of the outer solution. □ shows the temperature rising pattern at the bottom of the outer solution. 図5は、種々の通電電圧での食肉材料および外溶液の昇温パターンを示す。ここで、●は、食品材料上部の昇温パターンを示す。▲は、食品材料中央部の昇温パターンを示す。■は、食品材料下部の昇温パターンを示す。○は、外溶液上部の昇温パターンを示す。□は、外溶液下部の昇温パターンを示す。FIG. 5 shows the temperature rise pattern of the meat material and the outer solution at various energization voltages. Here, ● indicates the temperature rising pattern on the upper part of the food material. ▲ indicates the temperature rise pattern at the center of the food material. (2) indicates the temperature rising pattern below the food material. A circle indicates a temperature rising pattern on the upper part of the outer solution. □ shows the temperature rising pattern at the bottom of the outer solution. 図6は、種々の電極と食肉材料の距離における食肉材料および外溶液の昇温パターンを示す。ここで、●は、食品材料上部の昇温パターンを示す。▲は、食品材料中央部の昇温パターンを示す。■は、食品材料下部の昇温パターンを示す。□は、外溶液下部の昇温パターンを示す。FIG. 6 shows temperature rising patterns of the meat material and the outer solution at various distances between the electrode and the meat material. Here, ● indicates the temperature rising pattern on the upper part of the food material. ▲ indicates the temperature rise pattern at the center of the food material. (2) indicates the temperature rising pattern below the food material. □ shows the temperature rising pattern at the bottom of the outer solution. 図7は、通電電圧を変化させた場合の食肉材料および外溶液の昇温パターンを示す。ここで、●は、食品材料上部の昇温パターンを示す。▲は、食品材料中央部の昇温パターンを示す。■は、食品材料下部の昇温パターンを示す。○は、外溶液上部の昇温パターンを示す。□は、外溶液下部の昇温パターンを示す。FIG. 7 shows the temperature rise pattern of the meat material and the outer solution when the energization voltage is changed. Here, ● indicates the temperature rising pattern on the upper part of the food material. ▲ indicates the temperature rise pattern at the center of the food material. (2) indicates the temperature rising pattern below the food material. A circle indicates a temperature rising pattern on the upper part of the outer solution. □ shows the temperature rising pattern at the bottom of the outer solution. 図8は、20kHz及び60Hzでの通電処理、ならびに湯煮処理における食肉材料中央部の昇温パターンを示す。FIG. 8 shows a temperature rising pattern at the center of the meat material in the energization process at 20 kHz and 60 Hz and the boil process. 図9は、20kHz及び60Hzでの通電処理、ならびに湯煮処理におけるE.Faecalisの生残曲線を示す。ここで、●は、20kHzでの通電処理におけるE.Faecalisの生残曲線を示す。○は、60Hzでの通電処理におけるE.Faecalisの生残曲線を示す。▲は、80℃湯煮処理におけるE.Faecalisの生残曲線を示す。FIG. 9 shows the E.D. in the energization process at 20 kHz and 60 Hz and the boiling process. The survival curve of Faecalis is shown. Here, ● represents E.D. in energization processing at 20 kHz. The survival curve of Faecalis is shown. ○ is E. in the energization process at 60 Hz. The survival curve of Faecalis is shown. ▲ indicates E. coli in 80 ° C. boiled treatment. The survival curve of Faecalis is shown.

符号の説明Explanation of symbols

1 電極
2 電極
3 容器
A 電解質を含む食品材料
B 水または希薄な電解質溶液
1 Electrode 2 Electrode 3 Container A Food material containing electrolyte B Water or dilute electrolyte solution

Claims (4)

内部に一対の電極を対設する容器に、水または希薄な電解質溶液と共に、電解質を含む食品材料を、該電極に接触させることなく、かつ該水または希薄な電解質溶液中に浸漬した状態で収容し、該食品材料から該水または希薄な電解質溶液に溶出した電解質により通電可能な状態になった後、該食品材料に通電作用を施して殺菌処理せしめることを特徴とする通電加工食品の製造法。   In a container with a pair of electrodes inside, together with water or a dilute electrolyte solution, a food material containing the electrolyte is accommodated without being in contact with the electrode and immersed in the water or dilute electrolyte solution. A method for producing an electrically processed food, characterized in that the food material is energized by an electrolyte eluted from the food material into the water or a dilute electrolyte solution, and then the food material is energized to be sterilized. . 請求項1に記載の方法であって、前記電極と前記食品材料との距離に対する印加電圧の比率が、20V/cm以上となる条件下で通電作用を施すことを特徴とする、方法。   2. The method according to claim 1, wherein an energizing action is performed under a condition that a ratio of an applied voltage to a distance between the electrode and the food material is 20 V / cm or more. 前記食品材料の電解質濃度が0.5〜5重量%の範囲にある、請求項1または2に記載の方法。   The method according to claim 1 or 2, wherein the food material has an electrolyte concentration in the range of 0.5 to 5 wt%. 前記食品材料が、ハム、ソーセージ、魚肉ハム、魚肉ソーセージ、およびかまぼこからなる群より選択される、請求項1〜3のいずれか一項に記載の方法。

The method according to any one of claims 1 to 3, wherein the food material is selected from the group consisting of ham, sausage, fish ham, fish sausage, and kamaboko.

JP2004248069A 2004-08-27 2004-08-27 Method for producing food by electric conductive processing Pending JP2006061084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004248069A JP2006061084A (en) 2004-08-27 2004-08-27 Method for producing food by electric conductive processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004248069A JP2006061084A (en) 2004-08-27 2004-08-27 Method for producing food by electric conductive processing

Publications (1)

Publication Number Publication Date
JP2006061084A true JP2006061084A (en) 2006-03-09

Family

ID=36108081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004248069A Pending JP2006061084A (en) 2004-08-27 2004-08-27 Method for producing food by electric conductive processing

Country Status (1)

Country Link
JP (1) JP2006061084A (en)

Similar Documents

Publication Publication Date Title
De Alwis et al. The use of direct resistance heating in the food industry
WO2015005793A1 (en) Process for batchwise cooking of a food product using a pulsed electric field and cooking system for such process
GB2282052A (en) Electroheating of food products using low frequency current
EP2829156A1 (en) Process for fast and homogeneously heating a liquid product and apparatus for such process
Lyng et al. Ohmic heating of foods
JP4997606B2 (en) Short wave electric field sterilization method and sterilization apparatus for liquid food
JP2007229319A (en) Sterilizing device
JP2013176343A (en) Method for sterilizing liquid food
EP1290949A1 (en) Pasteurized fish foods having fresh feel and frozen products thereof
JP2018117605A (en) Adductor muscle processed product
JP2006061084A (en) Method for producing food by electric conductive processing
JP6484783B2 (en) Pressurized heat treatment apparatus and pressure heat treatment method for food
JP2009230966A (en) Cooker
JP3845107B1 (en) Method for producing food by Joule heating
JP3564642B2 (en) Manufacturing method of electrically heated food
JPH078230A (en) Electric heating of fish cake and apparatus therefor
JP7386454B2 (en) Underwater shortwave heating method
Lyng Ohmic heating of muscle foods (meat, poultry, and fish products)
JP3194733B2 (en) Electric resistance food heating method and apparatus
Uemura et al. Ohmic Heating of Food Materials Effects of Frequency on the Heating Rate of Fish Protein
JP2020036562A (en) Method of producing pickles
JP4323712B2 (en) Method for thawing frozen surimi fish
JP3377581B2 (en) Manufacturing method of electrically processed food
JPH04267866A (en) Continuous heating process for food
JPS62186776A (en) Production of electrically processed food and apparatus therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060522

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060919

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090903

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091022

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20091113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100416