JP2006060162A - Laser light unit and method of controlling excited light of laser light unit - Google Patents

Laser light unit and method of controlling excited light of laser light unit Download PDF

Info

Publication number
JP2006060162A
JP2006060162A JP2004243219A JP2004243219A JP2006060162A JP 2006060162 A JP2006060162 A JP 2006060162A JP 2004243219 A JP2004243219 A JP 2004243219A JP 2004243219 A JP2004243219 A JP 2004243219A JP 2006060162 A JP2006060162 A JP 2006060162A
Authority
JP
Japan
Prior art keywords
light source
light
excitation light
output
pump light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004243219A
Other languages
Japanese (ja)
Inventor
Satoshi Miwa
聡 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2004243219A priority Critical patent/JP2006060162A/en
Publication of JP2006060162A publication Critical patent/JP2006060162A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser light unit wherein the number of pump light sources is reduced and controllability of output of laser light is improved. <P>SOLUTION: A fiber amplifier section 1 amplifies and outputs light from a DFB laser light source through three stages of fiber amplifiers of EDF2, EDF3. The pump light source section includes two pump light sources 4, 5, pump light from the pump light source 4 is inputted to the fiber amplifier EDF1, and pump light from the pump light source 5 is split into two beams by a fiber coupler 7 and inputted to the fiber amplifiers EDF2, EDF3. When it is desired to increase the output of the laser light unit, a pump light source control unit 3 reduces the output of the pump light source 4 and increases the output of the pump light source 5. Furthermore, when it is desired to reduce the output of the laser light unit, the pump light source control unit 3 increases the output of the pump light source 4 and reduces the output of the pump light source 5. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、レーザ光源からの光を、3段のファイバアンプ(EDFA)によって増幅して出力するレーザ光源装置に関するものである。   The present invention relates to a laser light source device that amplifies and outputs light from a laser light source by a three-stage fiber amplifier (EDFA).

半導体や液晶デバイスの製造工程において使用される露光装置、加工装置、治療装置等において、波長が200nm程度の深紫外光が用いられるようになってきている。このような深紫外光は、例えばArFエキシマレーザ等で発生することができるが、ArFエキシマレーザ等では、アルゴンガス、フッ素ガス等を取り扱うための設備が必要となり、装置が大型化、複雑化するという問題がある。 Deep ultraviolet light having a wavelength of about 200 nm has been used in an exposure apparatus, a processing apparatus, a treatment apparatus, and the like used in the manufacturing process of semiconductors and liquid crystal devices. Such deep ultraviolet light can be generated by, for example, an ArF excimer laser or the like, but an ArF excimer laser or the like requires equipment for handling argon gas, fluorine gas, etc., and the apparatus becomes large and complicated. There is a problem.

そこで、これに変わるものとして、半導体レーザ(例えばDFBレーザ)を使用し、それから発生するレーザ光の波長を、波長変換素子を利用して短くし、深紫外光を得る方法が開発され、例えば特開2001−353176号公報に記載されている。   Therefore, as an alternative, a method has been developed in which a semiconductor laser (for example, a DFB laser) is used and the wavelength of laser light generated therefrom is shortened by using a wavelength conversion element to obtain deep ultraviolet light. This is described in Japanese Unexamined Patent Publication No. 2001-353176.

図4は、このような固体紫外レーザ装置の全体構成図であり、基本波発生部101、波長変換部102から構成されている。図5は基本波発生部101の概略構成図である。   FIG. 4 is an overall configuration diagram of such a solid-state ultraviolet laser device, which includes a fundamental wave generation unit 101 and a wavelength conversion unit 102. FIG. 5 is a schematic configuration diagram of the fundamental wave generator 101.

基本波発生部101は、主にDFB半導体レーザ201、Er3+添加光ファイバ増幅器であるEDF部202、励起用光源部203から構成される。 The fundamental wave generation unit 101 mainly includes a DFB semiconductor laser 201, an EDF unit 202 that is an Er 3 + -doped optical fiber amplifier, and a pumping light source unit 203.

基本波発生部101では、DFB半導体レーザ201から波長1547nmのパルス光が出力され、EDF部202により増幅される。EDF部202はEDF1、EDF2、EDF3の3段階のEDF(ファイバ増幅器)から構成され、励起用光源部203からそれぞれのEDFへ励起光が供給される。基本波発生部101からの出力光が後に説明する波長変換部に入力される。   In the fundamental wave generation unit 101, pulsed light having a wavelength of 1547 nm is output from the DFB semiconductor laser 201 and amplified by the EDF unit 202. The EDF unit 202 includes three stages of EDFs (fiber amplifiers), that is, EDF1, EDF2, and EDF3, and excitation light is supplied from the excitation light source unit 203 to each EDF. Output light from the fundamental wave generator 101 is input to a wavelength converter described later.

図6は5種類の非線形光学結晶を用い、5段階の波長変換を行う場合の波長変換部の概略構成図である。波長変換部は基本波発生部から出力される波長1547nmのレーザ光の波長変換を行い、その8倍波である波長193nmのレーザ光を放出する。   FIG. 6 is a schematic configuration diagram of a wavelength conversion unit when five types of nonlinear optical crystals are used and wavelength conversion is performed in five steps. The wavelength conversion unit converts the wavelength of the laser beam having a wavelength of 1547 nm output from the fundamental wave generation unit, and emits a laser beam having a wavelength of 193 nm, which is an eighth harmonic wave.

波長変換部は主に複数の波長変換手段、すなわち、2倍波発生部21、3倍波発生部22、4倍波発生部23、7倍波発生部24、8倍波発生部25から構成されている。
具体的には、各高調波発生部とも非線形光学結晶を用いており、2倍波発生部21、3倍波発生部22、4倍波発生部23にはLiB(LBO)結晶を、7倍波発生部24にはβ−BaB(BBO)結晶を、8倍波発生部25にはCsLiB10(CLBO)結晶を用い、それぞれ波長773nm、516nm、387nm、221nm、193nmを発生する。
The wavelength conversion unit mainly includes a plurality of wavelength conversion means, that is, a second harmonic generation unit 21, a third harmonic generation unit 22, a fourth harmonic generation unit 23, a seventh harmonic generation unit 24, and an eighth harmonic generation unit 25. Has been.
Specifically, a nonlinear optical crystal is used for each harmonic generation unit, and LiB 3 O 5 (LBO) crystal is used for the second harmonic generation unit 21, the third harmonic generation unit 22, and the fourth harmonic generation unit 23. , The seventh harmonic generation unit 24 uses β-BaB 2 O 4 (BBO) crystal, and the eighth harmonic generation unit 25 uses CsLiB 6 O 10 (CLBO) crystal, with wavelengths of 773 nm, 516 nm, 387 nm, 221 nm, Generates 193 nm.

さらに、2倍波発生部21、3倍波発生部22では温度位相整合を行い、4倍波発生部23、7倍波発生部24、8倍波発生部25では角度位相整合を行っている。温度位相整合部は温度調節手段30および図示しない温度制御手段により100℃以上の一定温度に制御されているが、高温のため角度位相整合部の温度変動の要因になると考えられる。そのため角度位相整合部分も、温度調節手段30および図示しない温度制御手段により温度が一定に保たれるよう温度制御を行っている。   Further, the second harmonic generation unit 21, the third harmonic generation unit 22 perform temperature phase matching, and the fourth harmonic generation unit 23, the seventh harmonic generation unit 24, and the eighth harmonic generation unit 25 perform angular phase matching. . The temperature phase matching unit is controlled to a constant temperature of 100 ° C. or higher by the temperature adjusting unit 30 and a temperature control unit (not shown). However, it is considered that the temperature phase matching unit causes a temperature variation of the angle phase matching unit due to the high temperature. For this reason, the angle phase matching portion is also temperature-controlled so that the temperature is kept constant by the temperature adjusting means 30 and a temperature control means (not shown).

なお、図6において、26はレンズ、27はシリンドリカルレンズ、28はダイクロイックミラー、29はミラーである。波長変換の原理及びその作用については、前記特許文献1に説明されており、かつ、本発明の趣旨と直接の関係がないので、その説明を省略する。   In FIG. 6, 26 is a lens, 27 is a cylindrical lens, 28 is a dichroic mirror, and 29 is a mirror. The principle of wavelength conversion and its operation are described in the above-mentioned patent document 1 and are not directly related to the gist of the present invention.

特開2001−353176号公報JP 2001-353176 A

このような目的で用いられるEDF部202は、前述のように、EDF1、EDF2、EDF3の3段階のEDF(ファイバアンプ:FDFA)から構成され、励起用光源部203からそれぞれのEDFへ励起光が供給される。よって、それぞれのEDF用に励起光源が合計3つ必要であるという問題点があった。又、ファイバアンプ部と励起光源部の接続に光ファイバが3本必要となり、光ファイバが折損する等の事故が起きやすいという問題もあった。これらの問題を解決するため、図7に示すように、励起光源203を1つとし、それをファイバカプラ204で分岐して、各EDFに供給する方法が提案されている。   As described above, the EDF unit 202 used for such a purpose is composed of three stages of EDFs (fiber amplifiers: FDFA) of EDF1, EDF2, and EDF3, and excitation light is supplied from the excitation light source unit 203 to each EDF. Supplied. Therefore, there is a problem that a total of three excitation light sources are required for each EDF. In addition, three optical fibers are required to connect the fiber amplifier unit and the excitation light source unit, and there is a problem that accidents such as breakage of the optical fiber are likely to occur. In order to solve these problems, as shown in FIG. 7, there has been proposed a method in which one excitation light source 203 is provided, which is branched by a fiber coupler 204 and supplied to each EDF.

この場合、励起光の各EDFへの分配比率の決定方法は、波長193nmレーザ光の出力が所望になるように適宜決定されていた。ファイバカプラ204により分岐される励起光の分配比率は固定(EDF1:EDF2:EDF3=約2:3:45)であり、励起光源からの出力とEDF1に入射される励起光との関係は、図8に示すような関係を示す。   In this case, the method for determining the distribution ratio of the excitation light to each EDF was appropriately determined so that the output of laser light having a wavelength of 193 nm was desired. The distribution ratio of the excitation light branched by the fiber coupler 204 is fixed (EDF1: EDF2: EDF3 = about 2: 3: 45), and the relationship between the output from the excitation light source and the excitation light incident on the EDF 1 is shown in FIG. The relationship as shown in FIG.

励起光源の出力を0〜5Wの範囲で増加させるとEDF1へ分配される励起光の出力は線形的に増加する。励起光の各EDFへの分配比率を固定にして、励起光源の出力を変化させると、図9に示すように波長193nmレーザ光の出力が変化する。則ち、励起光源からの出力が小さい場合には、波長193nmレーザ光の出力がほとんど得られず(両者間の線形性が悪い)、かつ励起光源からの出力の少しの変化で波長193nmレーザ光の出力が大きく変化する領域が多いため、制御が困難であるという問題点があった。   When the output of the excitation light source is increased in the range of 0 to 5 W, the output of the excitation light distributed to the EDF 1 increases linearly. When the distribution ratio of the excitation light to each EDF is fixed and the output of the excitation light source is changed, the output of the laser light with a wavelength of 193 nm changes as shown in FIG. In other words, when the output from the excitation light source is small, the output of the laser light with a wavelength of 193 nm is hardly obtained (the linearity between the two is poor), and the laser light with a wavelength of 193 nm is obtained with a slight change in the output from the excitation light source. There is a problem that control is difficult because there are many regions in which the output of greatly changes.

本発明はこのような事情に鑑みてなされたもので、励起光源の台数が少なく、かつ、レーザ光の出力の制御性が良いレーザ光源装置を提供することを課題とする。   The present invention has been made in view of such circumstances, and an object thereof is to provide a laser light source device having a small number of excitation light sources and good controllability of laser light output.

前記課題を解決するための第1の手段は、レーザ光源からの光を、3段のファイバアンプ(EDFA)において各ファイバアンプにそれぞれ入射される励起光により増幅して出力するレーザ光源装置の励起光の制御方法であって、第二、第三番目のファイバアンプに入射される第二励起光の出力増加に伴って第一番目のファイバアンプに入射される第一励起光を減少させ、第二励起光の減少に伴って第一励起光を増加させ、かつ、第二励起光がゼロであるとき第一励起光はゼロを超える値を有し、第二励起光のゼロからの増加に応じて第一励起光をゼロを超える値から減少させ、同一出力値となった後は、第一励起光を第二励起光の大きさより小さくなるように制御を行うことを特徴とするレーザ光源装置の励起光の制御方法(請求項1)である。   The first means for solving the above-described problem is to pump the laser light source device that amplifies and outputs the light from the laser light source by the pump light incident on each fiber amplifier in a three-stage fiber amplifier (EDFA). A method for controlling light, wherein the first pumping light incident on the first fiber amplifier is decreased as the output of the second pumping light incident on the second and third fiber amplifiers is increased. When the first pump light is increased with the decrease of the second pump light and the second pump light is zero, the first pump light has a value exceeding zero, and the second pump light increases from zero. Accordingly, the first pumping light is reduced from a value exceeding zero, and after the same output value is reached, the first pumping light is controlled to be smaller than the size of the second pumping light. A method for controlling excitation light of an apparatus (claim 1).

本手段により、広い範囲に亘ってレーザ光源装置の出力を制御することが可能となる。   By this means, the output of the laser light source device can be controlled over a wide range.

前記課題を解決するための第2の手段は、レーザ光源からの光を、3段のファイバアンプ(EDFA)によって増幅する出力するレーザ光源装置であって、2つの励起光源を有し、第一の励起光源からの第一励起光は第一段目のファイバアンプに入射され、第二の励起光源からの第二励起光は分岐されて第二段目、第三段目のファイバアンプに入射され、第二励起光の出力増加に伴って第一励起光を減少させ、第二励起光の減少に伴って第一励起光を増加させ、かつ第二励起光がゼロであるとき第一励起光はゼロを超える値を有し、第二励起光のゼロからの増加に応じて第一励起光をゼロを超える値から減少させ、同一出力値となった後は、第一励起光を第二励起光の大きさより小さくなるように制御を行う制御装置を有することを特徴とするレーザ光源装置(請求項2)である。   A second means for solving the above-mentioned problem is a laser light source device that outputs light from a laser light source that is amplified by a three-stage fiber amplifier (EDFA), has two excitation light sources, The first pump light from the first pump light source is incident on the first-stage fiber amplifier, and the second pump light from the second pump light source is branched and incident on the second-stage and third-stage fiber amplifiers. The first excitation light is decreased as the output of the second excitation light is increased, the first excitation light is increased as the second excitation light is decreased, and the first excitation light is zero when the second excitation light is zero. The light has a value exceeding zero, and after the first excitation light is decreased from the value exceeding zero according to the increase of the second excitation light from zero, and the same output value is obtained, the first excitation light is A laser device comprising a control device for controlling the size to be smaller than the magnitude of the dual excitation light. The light source device (claim 2).

本手段は、前記第1の手段と同様の作用効果を奏する。   This means has the same effect as the first means.

本発明によれば、励起光源の台数が少なく、かつ、レーザ光の出力の制御性が良いレーザ光源装置を提供することができる。   According to the present invention, it is possible to provide a laser light source device having a small number of excitation light sources and good controllability of laser light output.

以下、本発明の実施の形態の例を、図を用いて説明する。図1は、本発明の実施の形態の1例であるレーザ光源装置の構成の概要を示す図である。このレーザ装置は、基本波発生部11と波長変換部12と検出機構13からなり、基本波発生部は、DFBレーザ光源1とEDF部10と励起光源部2と励起光源制御部3とから構成されている。波長変換部12は図6で説明したものと同じであるので、ここでは説明を省略する。   Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an outline of a configuration of a laser light source device which is an example of an embodiment of the present invention. This laser device includes a fundamental wave generation unit 11, a wavelength conversion unit 12, and a detection mechanism 13. The fundamental wave generation unit includes a DFB laser light source 1, an EDF unit 10, an excitation light source unit 2, and an excitation light source control unit 3. Has been. The wavelength converter 12 is the same as that described with reference to FIG.

波長変換部12から出力した波長193nmのレーザ光は検出機構13により検出され、検出された出力値は励起光源制御部3に転送される。この出力値との関係で励起光源制御部3において励起光源4及び励起光源5から出力する出力値が決定される。EDF部10は、EDF1、EDF2、EDF3の3段のファイバアンプからなり、励起光源部2は2台の励起光源4、5からなる。DFBレーザ光源1からの光は、EDF1、EDF2、EDF3においてそれぞれ励起光により増幅して出力される。   The laser beam with a wavelength of 193 nm output from the wavelength converter 12 is detected by the detection mechanism 13, and the detected output value is transferred to the excitation light source controller 3. The output value output from the excitation light source 4 and the excitation light source 5 is determined in the excitation light source control unit 3 in relation to the output value. The EDF unit 10 includes a three-stage fiber amplifier of EDF1, EDF2, and EDF3, and the pumping light source unit 2 includes two pumping light sources 4 and 5. The light from the DFB laser light source 1 is amplified and output by excitation light in the EDF1, EDF2, and EDF3, respectively.

励起光源4から励起光は、WDM6を介してEDF1へ入射され、励起光源5からの励起光は、ファイバカプラ7で2つに分岐され、分岐された励起光は、それぞれWDM8を介してEDF2へ、WDM9を介してEDF3へ入射される。   Excitation light from the excitation light source 4 is incident on the EDF 1 via the WDM 6, the excitation light from the excitation light source 5 is branched into two by the fiber coupler 7, and the branched excitation light is respectively sent to the EDF 2 via the WDM 8. , And enters the EDF 3 via the WDM 9.

図2に示すように励起光源2の出力を0〜5Wの範囲で増加させて波長193nmのレーザ光を緩やかに増加させる制御方法として、図3に示すように励起光源2の出力を0〜5Wの範囲で増加させるのに対して、励起光源1の出力を140〜70mWの範囲で減少させる。一方、波長193nmのレーザ光を緩やかに減少させる方法は、これらの逆である。即ち、励起光源出力の各EDF部への分配比率は固定ではなく、励起光源出力の増加に伴って、EDF1に対するEDF2、3への分配比が大きくなるようにする。なお、励起光源1は、最初から140mWの出力がでるように準備しておく。励起光源出力の増加に伴って、励起光源1の出力を減少させるのは、出力を一定に保った場合には、ファイバアンプ内で非線形効果を生じ、かえって増幅効率が悪くなってしまうからである。   As shown in FIG. 2, as a control method for increasing the output of the excitation light source 2 in the range of 0 to 5 W and gradually increasing the laser beam having a wavelength of 193 nm, the output of the excitation light source 2 is changed to 0 to 5 W as shown in FIG. The output of the excitation light source 1 is decreased in the range of 140 to 70 mW. On the other hand, the method of gently decreasing the laser beam having a wavelength of 193 nm is the reverse of these. That is, the distribution ratio of the excitation light source output to each EDF unit is not fixed, and the distribution ratio of the EDF 1 to the EDFs 2 and 3 is increased as the excitation light source output increases. The excitation light source 1 is prepared so that an output of 140 mW can be obtained from the beginning. The reason why the output of the excitation light source 1 is decreased as the output of the excitation light source is increased is that when the output is kept constant, a nonlinear effect is generated in the fiber amplifier, and the amplification efficiency is deteriorated. .

他の実施形態として、図7に示すレーザ光源装置のファイバカプラ204に励起光源出力の増加に伴ってEDF2及びEDF3に対するEDF1の分配比率が図3に示す変化をするような制御機構を設けてもよい。   As another embodiment, the fiber coupler 204 of the laser light source device shown in FIG. 7 may be provided with a control mechanism in which the distribution ratio of EDF 1 to EDF 2 and EDF 3 changes as shown in FIG. Good.

本発明の実施の形態の1例であるレーザ光源装置の構成の概要を示す図である。It is a figure which shows the outline | summary of a structure of the laser light source device which is an example of embodiment of this invention. 励起光源からの出力変化に対する理想的な波長193nmレーザ光の出力変化を示す図である。It is a figure which shows the output change of ideal wavelength 193nm laser light with respect to the output change from an excitation light source. 励起光源2からの出力変化と励起光源1からの出力変化の関係を示す図である。It is a figure which shows the relationship between the output change from the excitation light source 2, and the output change from the excitation light source 1. FIG. 固体紫外レーザ装置の全体構成図である。It is a whole block diagram of a solid-state ultraviolet laser apparatus. 基本波発生部の概略構成図である。It is a schematic block diagram of a fundamental wave generation part. 5種類の非線形光学結晶を用い、5段階の波長変換を行う場合の波長変換部の概略構成図である。It is a schematic block diagram of the wavelength conversion part in the case of performing five steps of wavelength conversion using five types of nonlinear optical crystals. 励起光源を1つとし、それをファイバカプラで分岐して、各EDFに供給する方法を示す図である。It is a figure which shows the method which makes one excitation light source, branches it with a fiber coupler, and supplies it to each EDF. 励起光源からの出力変化とEDF1へ分配される励起光の変化の関係を示す図である。It is a figure which shows the relationship between the output change from an excitation light source, and the change of the excitation light distributed to EDF1. 図7に示す構成における光源の出力と、波長変換部からの波長193nmレーザ光の出力の関係を示す図である。It is a figure which shows the relationship between the output of the light source in the structure shown in FIG. 7, and the output of the wavelength 193 nm laser beam from a wavelength conversion part.

符号の説明Explanation of symbols

1…DFBレーザ光源部、2…励起光源部、3…励起光源制御部、4…励起光源、5…励起光源、6…WOM、7…ファイバカプラ、8…WOM、9…WOM、10…ファイバカプラ、11…基本波発生部、12…波長変換部、13…検出機構
DESCRIPTION OF SYMBOLS 1 ... DFB laser light source part, 2 ... Excitation light source part, 3 ... Excitation light source control part, 4 ... Excitation light source, 5 ... Excitation light source, 6 ... WOM, 7 ... Fiber coupler, 8 ... WOM, 9 ... WOM, 10 ... Fiber Coupler 11 ... Fundamental wave generator 12 ... Wavelength converter 13 ... Detection mechanism

Claims (2)

レーザ光源からの光を、3段のファイバアンプ(EDFA)において各ファイバアンプにそれぞれ入射される励起光により増幅して出力するレーザ光源装置の励起光の制御方法であって、
第二、第三番目のファイバアンプに入射される第二励起光の出力増加に伴って第一番目のファイバアンプに入射される第一励起光を減少させ、第二励起光の減少に伴って第一励起光を増加させ、かつ、第二励起光がゼロであるとき第一励起光はゼロを超える値を有し、第二励起光のゼロからの増加に応じて第一励起光をゼロを超える値から減少させ、同一出力値となった後は、第一励起光を第二励起光の大きさより小さくなるように制御を行うことを特徴とするレーザ光源装置の励起光の制御方法。
A method for controlling excitation light of a laser light source device that amplifies and outputs light from a laser light source by excitation light incident on each fiber amplifier in a three-stage fiber amplifier (EDFA),
As the output of the second pump light incident on the second and third fiber amplifiers increases, the first pump light incident on the first fiber amplifier decreases, and as the second pump light decreases, When the first pumping light is increased and the second pumping light is zero, the first pumping light has a value exceeding zero, and the first pumping light is zeroed according to the increase of the second pumping light from zero. A method for controlling excitation light of a laser light source device, wherein the first excitation light is controlled to be smaller than the size of the second excitation light after the value is decreased from a value exceeding 1 and the same output value is obtained.
レーザ光源からの光を、3段のファイバアンプ(EDFA)によって増幅する出力するレーザ光源装置であって、
2つの励起光源を有し、第一の励起光源からの第一励起光は第一段目のファイバアンプに入射され、第二の励起光源からの第二励起光は分岐されて第二段目、第三段目のファイバアンプに入射され、第二励起光の出力増加に伴って第一励起光を減少させ、第二励起光の減少に伴って第一励起光を増加させ、かつ第二励起光がゼロであるとき第一励起光はゼロを超える値を有し、第二励起光のゼロからの増加に応じて第一励起光をゼロを超える値から減少させ、同一出力値となった後は、第一励起光を第二励起光の大きさより小さくなるように制御を行う制御装置を有することを特徴とするレーザ光源装置。

A laser light source device that outputs light from a laser light source that is amplified by a three-stage fiber amplifier (EDFA),
There are two pump light sources, the first pump light from the first pump light source is incident on the first stage fiber amplifier, and the second pump light from the second pump light source is branched to the second stage The first pumping light is decreased as the second pumping light is increased, the first pumping light is increased as the second pumping light is decreased, and the second pumping light is increased. When the excitation light is zero, the first excitation light has a value exceeding zero, and the first excitation light is decreased from the value exceeding zero according to the increase of the second excitation light from zero, and the same output value is obtained. After that, a laser light source device comprising a control device that controls the first excitation light so as to be smaller than the magnitude of the second excitation light.

JP2004243219A 2004-08-24 2004-08-24 Laser light unit and method of controlling excited light of laser light unit Pending JP2006060162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004243219A JP2006060162A (en) 2004-08-24 2004-08-24 Laser light unit and method of controlling excited light of laser light unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004243219A JP2006060162A (en) 2004-08-24 2004-08-24 Laser light unit and method of controlling excited light of laser light unit

Publications (1)

Publication Number Publication Date
JP2006060162A true JP2006060162A (en) 2006-03-02

Family

ID=36107353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004243219A Pending JP2006060162A (en) 2004-08-24 2004-08-24 Laser light unit and method of controlling excited light of laser light unit

Country Status (1)

Country Link
JP (1) JP2006060162A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007111794A2 (en) * 2006-03-23 2007-10-04 Matsushita Electric Industrial Co., Ltd. A laser system with the laser oscillator and the laser amplifier pumped by a single source
WO2008010417A1 (en) * 2006-07-20 2008-01-24 Nikon Corporation Optical fiber amplifier, light source device, exposure device, object inspection device, and treatment device
WO2014043112A1 (en) * 2012-09-11 2014-03-20 Kla-Tencor Corporation Solid state illumination source and inspection system
US8929406B2 (en) 2013-01-24 2015-01-06 Kla-Tencor Corporation 193NM laser and inspection system
US9413134B2 (en) 2011-07-22 2016-08-09 Kla-Tencor Corporation Multi-stage ramp-up annealing for frequency-conversion crystals
US9419407B2 (en) 2014-09-25 2016-08-16 Kla-Tencor Corporation Laser assembly and inspection system using monolithic bandwidth narrowing apparatus
US9529182B2 (en) 2013-02-13 2016-12-27 KLA—Tencor Corporation 193nm laser and inspection system
US9608399B2 (en) 2013-03-18 2017-03-28 Kla-Tencor Corporation 193 nm laser and an inspection system using a 193 nm laser
US9748729B2 (en) 2014-10-03 2017-08-29 Kla-Tencor Corporation 183NM laser and inspection system
US9804101B2 (en) 2014-03-20 2017-10-31 Kla-Tencor Corporation System and method for reducing the bandwidth of a laser and an inspection system and method using a laser
US10175555B2 (en) 2017-01-03 2019-01-08 KLA—Tencor Corporation 183 nm CW laser and inspection system

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007111794A2 (en) * 2006-03-23 2007-10-04 Matsushita Electric Industrial Co., Ltd. A laser system with the laser oscillator and the laser amplifier pumped by a single source
WO2007111794A3 (en) * 2006-03-23 2009-03-26 Matsushita Electric Ind Co Ltd A laser system with the laser oscillator and the laser amplifier pumped by a single source
WO2008010417A1 (en) * 2006-07-20 2008-01-24 Nikon Corporation Optical fiber amplifier, light source device, exposure device, object inspection device, and treatment device
US8542436B2 (en) 2006-07-20 2013-09-24 Nikon Corporation Optical fiber amplifier, light source device, exposure device, object inspection device, and treatment device
US9413134B2 (en) 2011-07-22 2016-08-09 Kla-Tencor Corporation Multi-stage ramp-up annealing for frequency-conversion crystals
WO2014043112A1 (en) * 2012-09-11 2014-03-20 Kla-Tencor Corporation Solid state illumination source and inspection system
US9042006B2 (en) 2012-09-11 2015-05-26 Kla-Tencor Corporation Solid state illumination source and inspection system
US8929406B2 (en) 2013-01-24 2015-01-06 Kla-Tencor Corporation 193NM laser and inspection system
US9318869B2 (en) 2013-01-24 2016-04-19 Kla-Tencor Corporation 193nm laser and inspection system
US9529182B2 (en) 2013-02-13 2016-12-27 KLA—Tencor Corporation 193nm laser and inspection system
US9935421B2 (en) 2013-02-13 2018-04-03 Kla-Tencor Corporation 193nm laser and inspection system
US10439355B2 (en) 2013-02-13 2019-10-08 Kla-Tencor Corporation 193nm laser and inspection system
US9608399B2 (en) 2013-03-18 2017-03-28 Kla-Tencor Corporation 193 nm laser and an inspection system using a 193 nm laser
US9804101B2 (en) 2014-03-20 2017-10-31 Kla-Tencor Corporation System and method for reducing the bandwidth of a laser and an inspection system and method using a laser
US10495582B2 (en) 2014-03-20 2019-12-03 Kla-Tencor Corporation System and method for reducing the bandwidth of a laser and an inspection system and method using a laser
US9419407B2 (en) 2014-09-25 2016-08-16 Kla-Tencor Corporation Laser assembly and inspection system using monolithic bandwidth narrowing apparatus
US9748729B2 (en) 2014-10-03 2017-08-29 Kla-Tencor Corporation 183NM laser and inspection system
US10199149B2 (en) 2014-10-03 2019-02-05 Kla-Tencor Corporation 183NM laser and inspection system
US10175555B2 (en) 2017-01-03 2019-01-08 KLA—Tencor Corporation 183 nm CW laser and inspection system
US10429719B2 (en) 2017-01-03 2019-10-01 Kla-Tencor Corporation 183 nm CW laser and inspection system

Similar Documents

Publication Publication Date Title
JP4450147B2 (en) Exposure apparatus equipped with a laser device
JP2009535666A (en) Pulsed UV and visible Raman laser system
JP2009540538A (en) UV and visible laser systems
WO2011158927A1 (en) Ultraviolet laser device
JP2006060162A (en) Laser light unit and method of controlling excited light of laser light unit
US20180196330A1 (en) Solid-state laser system and excimer laser system
US9429850B2 (en) Laser device, and exposure device and inspection device provided with laser device
KR20180120137A (en) Homogeneous laser light source for domain processing applications
JP6020441B2 (en) UV laser equipment
US9083151B2 (en) Method for having laser light source in standby status
JP2010080642A (en) Fiber laser device, laser processing apparatus, and laser processing method
JP5359461B2 (en) Laser apparatus, light source apparatus, adjustment method thereof, light irradiation apparatus, exposure apparatus, and device manufacturing method
WO2009090935A1 (en) Optical amplifier
JP4449614B2 (en) Wavelength conversion optical system and laser apparatus
JP5472804B2 (en) Laser equipment
JP6299589B2 (en) Ultraviolet laser apparatus, exposure apparatus and inspection apparatus equipped with the ultraviolet laser apparatus
JP2013007931A (en) Laser device, exposure device and inspecting device
JP2013004597A (en) Laser device, exposure apparatus with laser device and inspection apparatus
JP2013044764A (en) Laser device, method for suppressing photorefractive effect of quasi-phase-matching wavelength conversion optical element, exposure device, and inspection device
JP2011059324A (en) Wavelength conversion device, laser device, and wavelength conversion method
JP2012037813A (en) Ultraviolet laser device
JP2012186333A (en) Laser device
JP2012203147A (en) Ultraviolet laser device
JP2006030720A (en) Wavelength conversion optical system
JP2014029384A (en) Wavelength conversion optical element holder, laser device including wavelength conversion optical element holder, exposure device including laser device and inspection device including laser device