JP2006059860A - Immersion aligner and its method, and method for manufacturing semiconductor device - Google Patents

Immersion aligner and its method, and method for manufacturing semiconductor device Download PDF

Info

Publication number
JP2006059860A
JP2006059860A JP2004237329A JP2004237329A JP2006059860A JP 2006059860 A JP2006059860 A JP 2006059860A JP 2004237329 A JP2004237329 A JP 2004237329A JP 2004237329 A JP2004237329 A JP 2004237329A JP 2006059860 A JP2006059860 A JP 2006059860A
Authority
JP
Japan
Prior art keywords
exposure
liquid
exposure area
photosensitive surface
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004237329A
Other languages
Japanese (ja)
Inventor
Fumikatsu Uesawa
史且 上澤
Koichi Takeuchi
幸一 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004237329A priority Critical patent/JP2006059860A/en
Publication of JP2006059860A publication Critical patent/JP2006059860A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize highly accurate levelling measurement in the following exposure area adjacent to an immersion lithography area by one shot. <P>SOLUTION: In immersion lithography, an image projecting from a reticle is transferred onto a photosensitive surface 20A while a liquid 40 is held between a projection optics and the photosensitive surface 20A on a substrate 20. When the immersion lithography is repeated while changing an exposure area sequentially within the photosensitive surface 20A, a liquid holding frame 30 is provided to hold a liquid 40 for a part of a substrate facing surface 5A of a projection optics 5B. Thus, one exposure area EAx is included in a portion being in contact with the liquid 40 of the photosensitive surface 20A, and at least a part of a following exposure area EAx+1 adjacent to the exposure area becomes in non-contact with the liquid 40. Therefore, pre-read levelling in air is made possible. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、いわゆる液浸露光(Immersion Lithography)を基板上の感光面内で露光エリアを順次変えながら繰り返す液浸露光装置と、その方法、ならびに、液浸露光を用いてパターン転写を行う半導体デバイスの製造方法に関する。   The present invention relates to an immersion exposure apparatus that repeats so-called immersion exposure (Immersion Lithography) while sequentially changing the exposure area within a photosensitive surface on a substrate, a method thereof, and a semiconductor device that performs pattern transfer using immersion exposure. It relates to the manufacturing method.

近年、LSIの集積度の増大や性能の向上を目的に、回路パターンの微細化が急ピッチで進められている。その結果、LSIの回路パターンに用いられる線幅の最小寸法がリソグラフィプロセスの解像限界に近づき、深刻なプロセスマージン不足を招いている。   In recent years, circuit patterns have been miniaturized at a rapid pitch for the purpose of increasing the degree of integration of LSIs and improving performance. As a result, the minimum dimension of the line width used for the LSI circuit pattern approaches the resolution limit of the lithography process, resulting in a serious shortage of process margin.

この問題の打開策として液浸露光装置が提案されている。液浸露光は、投影光学系(Projection Optics)の最もウエハ寄りの光学部品とウエハとの間の空間を水で満たすことにより、リソグラフィの解像度を向上させる技術である。リソグラフィの解像度(resolution)Rは、よく知られているように以下に示すRayleighの式によって決定される。   An immersion exposure apparatus has been proposed as a solution to this problem. Immersion exposure is a technique for improving the resolution of lithography by filling the space between the optical components closest to the wafer of the projection optical system (Projection Optics) and the wafer with water. Lithographic resolution R is determined by the Rayleigh equation shown below, as is well known.

[数1]
R=k1・(λ/NA) …(1)
[Equation 1]
R = k1 · (λ / NA) (1)

ここで「k1」はプロセスに依存した定数を、「λ」は露光に用いられる光の波長をそれぞれ表す。また、「NA」は露光装置の投影光学系の開口数を示すパラメータであり、以下の式により定義される。   Here, “k1” represents a process-dependent constant, and “λ” represents the wavelength of light used for exposure. “NA” is a parameter indicating the numerical aperture of the projection optical system of the exposure apparatus, and is defined by the following equation.

[数2]
NA=n・sinθ …(2)
[Equation 2]
NA = n · sin θ (2)

ここで「θ」は前記投影光学系による像面からレンズを見込む角度を表し、これは投影レンズの大きさに相当する。   Here, “θ” represents the angle at which the lens is viewed from the image plane by the projection optical system, and this corresponds to the size of the projection lens.

従来の露光装置では、レンズの大口径化によって角度θを大きくして開口数NAを上げ、結果的に解像度を向上させる手法がとられてきた。ただし、レンズの大口径化には物理的な限界がある。
現在、最小解像幅が65nmクラスの量産用投影露光装置としてsinθ=0.85の投影レンズが既に導入され始めており、さらに最小解像幅が45nmクラスの投影露光装置用にsinθ=0.93の投影レンズの開発が進められている。投影レンズの大口径化はここまでが事実上の限界と言われている。
In a conventional exposure apparatus, a method has been employed in which the angle θ is increased by increasing the lens diameter to increase the numerical aperture NA, and as a result, the resolution is improved. However, there is a physical limit to increasing the lens diameter.
At present, a projection lens of sin θ = 0.85 has already been introduced as a projection exposure apparatus for mass production with a minimum resolution width of 65 nm class, and sin θ = 0.93 for a projection exposure apparatus with a minimum resolution width of 45 nm class. Development of a projection lens is underway. Up to this point, it is said that the projection lens has a large aperture.

一方、前記(2)式の「n」は結像空間を満たす媒質の屈折率を表す。
従来の露光装置では、レンズとウエハ間の媒質は空気であったため屈折率nは1であった。液浸露光装置では、投影光学系の基板との対向面、すなわち最終レンズあるいは光学プレート(平行平面板等)とウエハとの間に水、あるいは水よりも屈折率nの高い液体を満たすことにより、開口数NAを上げ、結果的に解像度を向上させている。
On the other hand, “n” in the equation (2) represents the refractive index of the medium that fills the imaging space.
In the conventional exposure apparatus, since the medium between the lens and the wafer is air, the refractive index n is 1. In an immersion exposure apparatus, water or a liquid having a refractive index n higher than water is filled between the wafer and the surface facing the substrate of the projection optical system, that is, the final lens or optical plate (parallel plane plate, etc.). The numerical aperture NA is increased, and as a result, the resolution is improved.

ところで、現在稼動しているステップ移動型の露光装置においては、1ショットの露光でフォトマスク上のパターンが転写される領域は限られており、ウエハが置かれたテーブルを駆動してウエハ上の露光エリアを順次移動しながら露光を繰り返す。このとき最先端の半導体製造プロセスに用いられる露光装置では高精度なフォーカスコントロールが要求される。   By the way, in the step movement type exposure apparatus currently in operation, the area where the pattern on the photomask is transferred by one shot exposure is limited, and the table on which the wafer is placed is driven to The exposure is repeated while sequentially moving the exposure area. At this time, an exposure apparatus used in a state-of-the-art semiconductor manufacturing process requires highly accurate focus control.

高精度なフォーカスコントロールのために、「先読み式」と呼ばれるオートフォーカス機構が一般的に用いられている。
これは、たとえばステップ・アンド・スキャン方式の露光装置(スキャナー)による露光シーケンスに適したオートフォーカス方法である。ステップ・アンド・スキャン方式の露光装置は、スキャニングの向きに対して直交する方向に細長い長方形の照明光スリット(照明視野絞りの開口部)によってレチクルの一部に光が当たり、そのレチクル部分のパターンが投影される。つぎに、レチクルとウエハをスキャンニングの向きと異なる向きにステップ移動し、レチクルの既に投影されたパターンの隣のパターンを投影する。このときウエハがレチクルと逆の向きにステップ移動していることから、当該パターンはウエハ上の既に露光された領域の隣の領域に転写される。スキャンニング露光では、このような動作を繰り返すことによって、通常のステップ・アンド・リピート方式の露光装置(ステッパ)ではレンズ径の制約を受けて実現できない大面積の露光が可能となる。
For high-precision focus control, an autofocus mechanism called “look ahead type” is generally used.
This is an autofocus method suitable for an exposure sequence using, for example, a step-and-scan exposure apparatus (scanner). In the step-and-scan type exposure apparatus, light hits a part of a reticle by an elongated illumination light slit (illumination field stop opening) elongated in a direction orthogonal to the scanning direction, and the pattern of the reticle part Is projected. Next, the reticle and wafer are stepped in a direction different from the scanning direction, and a pattern next to the already projected pattern of the reticle is projected. At this time, since the wafer is stepped in the opposite direction to the reticle, the pattern is transferred to an area adjacent to the already exposed area on the wafer. In scanning exposure, by repeating such an operation, it becomes possible to perform exposure of a large area that cannot be realized by a normal step-and-repeat exposure apparatus (stepper) due to lens diameter restrictions.

先読みオートフォーカスでは、ウエハ上の、あるエリアを露光している最中に、スキャンニングの向きに沿って隣接し次回露光予定のウエハの領域(次回露光エリア)に対し、いわゆるレベリング計測が行われる。レベリング計測では、ウエハの露光エリアの感光面(レジスト層面)が、ジャストフォーカスとなる面(投影光学系による像面)からどの程度、相対位置としてずれているかが調べられる。レベリング計測値は、ウエハを保持しているテーブルの制御にフィードバックされて、その高さおよび傾き(Tilt)が補正された後、次の露光が行われる。テーブル移動では厳密には機械的な精度誤差があることから、ある程度のフォーカスずれが生じるのが普通である。ただし先読みオートフォーカスでは、投影光学系に対するウエハの相対位置が、このように露光ショットごとに常にベストフォーカスに近い状態に調整される結果、全体としてみれば、ウエハの大口径化にともなうフォーカスずれを吸収し、全てのエリアでほぼ最適な露光が達成できる。   In read-ahead autofocus, so-called leveling measurement is performed on a wafer area (next exposure area) that is adjacent along the scanning direction and is planned for the next exposure while a certain area on the wafer is being exposed. . In the leveling measurement, it is checked how much the photosensitive surface (resist layer surface) of the exposure area of the wafer is displaced as a relative position from the surface (image surface by the projection optical system) that becomes the just focus. The leveling measurement value is fed back to the control of the table holding the wafer, and after the height and tilt (Tilt) are corrected, the next exposure is performed. Strictly speaking, since there is a mechanical accuracy error in table movement, a certain degree of focus deviation usually occurs. However, in the read-ahead autofocus, the relative position of the wafer with respect to the projection optical system is always adjusted to a state close to the best focus for each exposure shot as described above. Absorb and achieve almost optimal exposure in all areas.

図7(A)〜図7(D)に、先読みオートフォーカスを露光と同時に行う方法の概念図を示す。ここでは、1枚のレチクル上のパターンが6ショットの露光によりウエハ上の感光面に転写される場合を例に、各図においてウエハ上の6つの連続した露光エリアEA1,EA2,EA3,EA4,EA5およびEA6を示している。   7A to 7D are conceptual diagrams of a method for performing pre-read autofocus simultaneously with exposure. Here, as an example of the case where the pattern on one reticle is transferred to the photosensitive surface on the wafer by 6-shot exposure, in each drawing, there are six continuous exposure areas EA1, EA2, EA3, EA4 on the wafer. EA5 and EA6 are shown.

図7(A)に示す最初のステップで、露光開始前の初期段階として、最初の露光エリアEA1に対しレベリング計測を行う。
レベリング計測は複数のスポット光(計測光)を長方形の露光エリア(ここではEA1)の長手方向に、たとえば等間隔に当て、その反射スポット光の規定値からの位置ずれを計測する。その計測値に基づいて、とくにウエハのZ方向(投影光学系の光軸方向)の位置、露光エリアの長手方向のウエハの傾き等のずれが算出され、それらのずれをキャンセルするようにテーブルをZ方向に移動し、スキャン方向の軸を中心に回転させ、露光エリアEA1の感光面と投影光学系の像面との相対位置をほぼ一致させる。
In the first step shown in FIG. 7A, leveling measurement is performed on the first exposure area EA1 as an initial stage before the start of exposure.
In the leveling measurement, a plurality of spot lights (measurement lights) are applied in the longitudinal direction of a rectangular exposure area (here, EA1), for example, at equal intervals, and the positional deviation from the prescribed value of the reflected spot light is measured. Based on the measured values, deviations such as the position of the wafer in the Z direction (optical axis direction of the projection optical system) and the inclination of the wafer in the longitudinal direction of the exposure area are calculated, and the table is set so as to cancel these deviations. Moving in the Z direction and rotating about the axis in the scanning direction, the relative positions of the photosensitive surface of the exposure area EA1 and the image plane of the projection optical system are substantially matched.

つぎの図7(B)に示すステップで、既にオートフォーカスのための相対位置補正を行った最初の露光エリアEA1が露光される。この露光期間中に、つぎの露光エリアEA2に対して、図7(A)の場合と同様にして先読みオートフォーカス動作、すなわちレベリング計測およびオートフォーカスのための相対位置補正を行う。   In the next step shown in FIG. 7B, the first exposure area EA1 that has already been subjected to relative position correction for autofocus is exposed. During this exposure period, a pre-read autofocus operation, that is, a relative position correction for leveling measurement and autofocus is performed on the next exposure area EA2 as in the case of FIG.

以後、同様にして露光と先読みオートフォーカス動作とを、露光エリアを順次スキャン方向に送りながら実行する。図7(C)は4番目の露光エリアに対する露光と、5番目の露光エリアに対する先読みのためのレベリング計測を実行中の様子を示す。
図7(D)に示す最終ステップでは、6番目の露光エリアEA6を露光する。このとき先読みオートフォーカス動作は行わない。
Thereafter, similarly, the exposure and the pre-read autofocus operation are executed while sequentially sending the exposure area in the scanning direction. FIG. 7C shows a state in which leveling measurement is being performed for exposure on the fourth exposure area and prefetching on the fifth exposure area.
In the final step shown in FIG. 7D, the sixth exposure area EA6 is exposed. At this time, the prefetch autofocus operation is not performed.

液浸露光装置では、図8(A)に例示するように、ウエハ100の表面の全面、あるいは少なくとも投影光学系の鏡筒(バレル101)の下面全体に対応したウエハ100の表面に液体102が供給される。このため、図8(B)に示すようにレベリング計測対象の次回露光エリアEA5が常に、液体102に浸された状態になる。したがって、この液体102に浸された状態で次回露光エリアEA5に対し、前述したマルチポイント(多点)のレベリング計測を行う必要がある。   In the immersion exposure apparatus, as illustrated in FIG. 8A, the liquid 102 is applied to the entire surface of the wafer 100 or at least the entire lower surface of the lens barrel (barrel 101) of the projection optical system. Supplied. For this reason, as shown in FIG. 8B, the next exposure area EA5 to be leveled is always immersed in the liquid 102. Therefore, it is necessary to perform the above-described multipoint (multipoint) leveling measurement on the next exposure area EA5 in a state immersed in the liquid 102.

このように液体中でレベリング計測を行おうとすると、液面の揺らぎによってレベリング光の反射角度が変動し、あるいは、反射率が落ちる。このため、レベリンク計測の精度が低下し、これに加え反射スポット光の強度が弱まり、結果としてオートフォーカスの精度が低下するという問題が生じる。また、スポット光により液体が温められことから液体の屈折率が変化し、レベリング計測だけでなく、液浸露光自体へ悪影響がある。   When leveling measurement is performed in the liquid as described above, the reflection angle of the leveling light fluctuates due to fluctuations in the liquid level, or the reflectance decreases. For this reason, the accuracy of the level link measurement is lowered, and in addition to this, the intensity of the reflected spot light is weakened, resulting in a problem that the accuracy of the autofocus is lowered. In addition, since the liquid is warmed by the spot light, the refractive index of the liquid changes, which adversely affects not only leveling measurement but also immersion exposure itself.

本発明が解決しようとする課題は、一回のショットによる液浸露光のエリアに隣接する次回露光エリアで高精度なレベリング計測を可能とすることである。   The problem to be solved by the present invention is to enable highly accurate leveling measurement in the next exposure area adjacent to the immersion exposure area by one shot.

本発明に係る液浸露光装置は、光を照射したマスクからの投影像を投影光学系と基板上の感光面との間に液体を保持した状態で前記感光面に転写する液浸露光を、前記感光面内で露光エリアを順次変えながら繰り返す液浸露光装置であって、前記感光面内の前記液体に接触する箇所に一つの露光エリアを含み、かつ、当該露光エリアに隣接する次回露光エリアの少なくとも一部が前記液体と非接触となるように、前記投影光学系の基板対向面内の一部に対し前記液体を保持する液体保持手段を有する。
この液浸露光装置において、好適に、前記液体保持手段は、一方の環状枠端面が前記基板対向面に固定され、前記液体を保持する環状枠体を含む。
また、好適に、液浸露光時に前記マスクを照明する光の一部を通過させる照明光スリットを備え、前記液体保持手段は、前記照明光スリットの開口面形状に対応した前記基板対向面の一部に前記液体の保持エリアを限定している。
The immersion exposure apparatus according to the present invention performs immersion exposure in which a projection image from a mask irradiated with light is transferred to the photosensitive surface in a state where liquid is held between the projection optical system and the photosensitive surface on the substrate. An immersion exposure apparatus that repeats while sequentially changing exposure areas within the photosensitive surface, and includes a single exposure area at a location in contact with the liquid within the photosensitive surface and is adjacent to the exposure area. Liquid holding means for holding the liquid with respect to a part of the projection optical system in the substrate facing surface so that at least a part of the projection optical system is not in contact with the liquid.
In the immersion exposure apparatus, it is preferable that the liquid holding unit includes an annular frame body in which one annular frame end surface is fixed to the substrate facing surface and holds the liquid.
Preferably, an illumination light slit that allows a part of the light that illuminates the mask to pass during immersion exposure is provided, and the liquid holding unit is a surface of the substrate facing surface that corresponds to the shape of the opening surface of the illumination light slit. The liquid holding area is limited to the portion.

本発明の液浸露光装置は、好適に、前記次回露光エリアの前記液体と非接触の箇所で前記投影光学系と前記基板との相対的位置ずれを測定し、当該次回露光エリアで前記投影光学系による像面と前記基板との相対位置を前記測定の結果に基づいて調整する先読みオートフォーカス部をさらに有する。
この場合にさらに好適に、前記先読みオートフォーカス部は、前記露光エリアが前記感光面内を移動する方向と異なる方向から前記次回露光エリアの前記液体と非接触の箇所に対し斜めに複数のスポット光を当て、当該次回露光エリアで反射した各スポット光を受光し、当該受光の位置情報から前記投影光学系と前記基板との相対的位置の調整量を求める。
The immersion exposure apparatus of the present invention preferably measures a relative positional deviation between the projection optical system and the substrate at a position that is not in contact with the liquid in the next exposure area, and the projection optical system in the next exposure area. It further has a pre-read autofocus unit that adjusts the relative position between the image plane by the system and the substrate based on the measurement result.
More preferably, in this case, the pre-read autofocus unit includes a plurality of spotlights obliquely with respect to a portion that is not in contact with the liquid in the next exposure area from a direction different from a direction in which the exposure area moves within the photosensitive surface. , Each spot light reflected in the next exposure area is received, and an adjustment amount of the relative position between the projection optical system and the substrate is obtained from the position information of the received light.

本発明に係る液浸露光方法は、光を照射したマスクからの投影像を投影光学系と基板上の感光面との間に液体を保持した状態で前記感光面に転写する液浸露光を、前記感光面内で露光エリアを順次変えながら繰り返す液浸露光方法であって、前記感光面の前記液体と接触する箇所に一つの露光エリアを含み、かつ、当該露光エリアに隣接する次回露光エリアの少なくとも一部が前記液体と非接触となるように、前記投影光学系の基板対向面内の一部に対し前記液体を保持した状態で前記液浸露光を行う。
この液浸露光方法において好適に、前記液浸露光の工程が、前記投影光学系と前記基板との相対的位置ずれを前記感光面内の一つの露光エリアで測定し、当該露光エリアで前記投影光学系による像面と前記基板との相対位置を前記測定の結果に基づいて調整するオートフォーカスステップと、前記測定に用いた露光エリアを前記液体の直下に移動し、前記液浸露光を行う露光ステップとを含み、前記露光ステップの実行中に、前記次回露光エリアの前記液体と非接触の箇所で前記測定を行うことによって当該次回露光エリアに対し前記オートフォーカスステップを実行する。
In the immersion exposure method according to the present invention, immersion exposure is performed in which a projection image from a mask irradiated with light is transferred to the photosensitive surface in a state where the liquid is held between the projection optical system and the photosensitive surface on the substrate. In the immersion exposure method, the exposure area is repeatedly changed while sequentially changing the exposure area in the photosensitive surface, the exposure surface including one exposure area at a position in contact with the liquid and adjacent to the exposure area. The immersion exposure is performed in a state where the liquid is held on a part of the projection optical system in the substrate facing surface so that at least a part thereof is not in contact with the liquid.
Preferably, in the immersion exposure method, in the immersion exposure step, a relative positional shift between the projection optical system and the substrate is measured in one exposure area in the photosensitive surface, and the projection is performed in the exposure area. An autofocus step for adjusting the relative position between the image plane by the optical system and the substrate based on the result of the measurement, and an exposure for moving the exposure area used for the measurement directly below the liquid and performing the immersion exposure And performing the autofocus step on the next exposure area by performing the measurement at a location not in contact with the liquid in the next exposure area during execution of the exposure step.

このような構成の液浸露光装置および液浸露光方法によれば、各液浸露光時に、ウエハ上の感光面で露光の対象であるエリア(露光エリア)は、当該露光エリアと投影光学系の基板対向面とに間に液体が満ちた状態となる。ただし、露光エリアに隣接し、次にウエハがステップ移動したときに前面が液体に接触することになる次回露光エリアについては、その少なくとも一部が液体に非接触となり、空気中でのレベリング計測が可能な状態となっている。   According to the immersion exposure apparatus and the immersion exposure method having such a configuration, at each immersion exposure, the area (exposure area) to be exposed on the photosensitive surface on the wafer is the exposure area and the projection optical system. The liquid is filled between the substrate facing surface. However, at the next exposure area that is adjacent to the exposure area and the front surface will be in contact with the liquid when the wafer is next moved stepwise, at least a part of the exposure area will not be in contact with the liquid, and leveling measurement in air will be performed. It is possible.

液浸露光装置では液体保持手段によって、上記状態が常に、すなわち各露光において保たれる。
液浸露光方法では、いわゆる先読みのオートフォーカス動作と液浸露光とを並列して実行するが、このときも、露光対象のエリア(露光エリア)の全面が液体に接触しているが、隣接する次回露光エリアの少なくとも一部が液体に非接触となる状態、たとえば空気中でのレベリング計測が可能な状態が、各露光で常に保たれる。
In the immersion exposure apparatus, the above state is always maintained by the liquid holding means, that is, in each exposure.
In the immersion exposure method, so-called pre-read autofocus operation and immersion exposure are performed in parallel, and at this time as well, the entire area to be exposed (exposure area) is in contact with the liquid, but adjacent to it. A state in which at least a part of the next exposure area is not in contact with the liquid, for example, a state in which leveling measurement in air can be performed is always maintained in each exposure.

本発明に係る半導体デバイスの製造方法は、半導体デバイスを半導体基板に形成する際に、光を照射したマスクからの投影像を投影光学系と前記半導体基板上の感光面との間に液体を保持した状態で前記感光面に転写する液浸露光を、前記感光面内で露光エリアを順次変えながら繰り返す半導体デバイスの製造方法であって、前記感光面を構成するフォトレジストの、前記半導体基板の素子形成面の最上位への塗布を含む前処理のステップと、前記感光面の前記液体と接触する箇所に一つの露光エリアを含み、かつ、当該露光エリアに隣接する次回露光エリアの少なくとも一部が前記液体と非接触となるように、前記投影光学系の基板対向面内の一部に対し前記液体を保持した状態で前記液浸露光を、前記感光面内で露光エリアを順次代えながら繰り返す露光ステップと、露光後のフォトレジストを現像し、形成されたレジストパターンを前記半導体デバイスの形成に利用する後処理のステップとを含む。
この製造方法では好適に、前記液浸露光が、前記投影光学系と前記基板との相対的位置ずれを前記感光面内の一つの露光エリアで測定し、当該露光エリアで前記投影光学系による像面と前記基板との相対位置を前記測定の結果に基づいて調整するオートフォーカスステップと、前記測定に用いた露光エリアを前記液体の直下に移動し、前記液浸露光を行う露光ステップと
を含み、前記露光ステップの実行中に、前記次回露光エリアの前記液体と非接触の箇所で前記測定を行うことによって当該次回露光エリアに対し前記オートフォーカスステップを実行する。
In the method of manufacturing a semiconductor device according to the present invention, when a semiconductor device is formed on a semiconductor substrate, a projection image from a mask irradiated with light is held between the projection optical system and the photosensitive surface on the semiconductor substrate. A method of manufacturing a semiconductor device in which immersion exposure to be transferred to the photosensitive surface is repeated while sequentially changing the exposure area within the photosensitive surface, wherein the photo resist forming the photosensitive surface is an element of the semiconductor substrate. A pre-processing step including application to the uppermost surface of the formation surface; and a portion of the photosensitive surface that is in contact with the liquid includes one exposure area, and at least a part of the next exposure area adjacent to the exposure area is The immersion exposure is performed while the liquid is held on a part of the surface of the projection optical system facing the substrate so as not to contact the liquid, and the exposure area is sequentially changed within the photosensitive surface. Developed an exposure step of repeating al, the photoresist after the exposure, the formed resist pattern and a step of post-processing to be used for formation of the semiconductor device.
In this manufacturing method, preferably, the immersion exposure measures a relative positional shift between the projection optical system and the substrate in one exposure area in the photosensitive surface, and the image by the projection optical system in the exposure area. An autofocus step of adjusting the relative position of the surface and the substrate based on the measurement result, and an exposure step of moving the exposure area used for the measurement directly below the liquid and performing the immersion exposure. During the exposure step, the autofocus step is performed on the next exposure area by performing the measurement at a location that is not in contact with the liquid in the next exposure area.

この製造方法は、フォトレジストの塗布を含む前処理、露光、現像を含む後処理の各ステップを有すること自体は、通常のフォトリソグラフィと同様である。ただし、露光ステップが、液浸露光をウエハの相対位置をステップ移動しながら繰り返す液浸露光であり、かつ、露光ごとに、これと並列に、いわゆる先読みのオートフォーカス動作を行う。このとき、前述した液浸露光装置や方法と同様、露光対象のエリア(露光エリア)の全面が液体に接触しているが、隣接する次回露光エリアの少なくとも一部が液体に非接触となる状態、たとえば空気中でのレベリング計測が可能な状態が、各露光で常に保たれる。   This manufacturing method is similar to ordinary photolithography in that it includes steps of preprocessing including application of a photoresist, post-processing including exposure and development. However, the exposure step is immersion exposure in which immersion exposure is repeated while moving the relative position of the wafer stepwise, and a so-called pre-read autofocus operation is performed in parallel with each exposure. At this time, as in the above-described immersion exposure apparatus and method, the entire area to be exposed (exposure area) is in contact with the liquid, but at least a part of the adjacent next exposure area is not in contact with the liquid. For example, a state in which leveling measurement in the air is possible is always maintained in each exposure.

本発明に係る液浸露光装置およびその方法によれば、いわゆる先読みオートフォーカスにおけるレベリング計測が空気中等で可能であり、その場合に、その計測精度が高いことによってフォーカス合わせの精度が高くなるという利点がある。
また、本発明に係る半導体デバイスの製造方法によれば、同様に、レベリング計測が空気中等で可能であり、その場合に、その計測精度が高いことによってフォーカス合わせの精度が高くなる。さらに、結果として半導体デバイスへのパターン転写精度(解像度および焦点深度)が高くなり、これが半導体デバイスの特性や歩留まりの向上をもたらすという利点がある。
According to the immersion exposure apparatus and the method thereof according to the present invention, leveling measurement in so-called pre-read autofocus is possible in the air, and in that case, the accuracy of focusing is increased due to the high measurement accuracy. There is.
In addition, according to the semiconductor device manufacturing method of the present invention, leveling measurement can be performed in the air or the like. In that case, the accuracy of focusing is increased due to the high measurement accuracy. Further, as a result, the pattern transfer accuracy (resolution and depth of focus) to the semiconductor device is increased, which has the advantage that the characteristics and yield of the semiconductor device are improved.

以下、半導体デバイスの製造に用いる場合を例として、液浸露光装置、液浸露光方法の実施の形態を、図を参照して説明する。   Hereinafter, an embodiment of an immersion exposure apparatus and an immersion exposure method will be described with reference to the drawings, taking as an example the case of use in manufacturing a semiconductor device.

図1に、液浸露光装置の全体構成を示す。また、図2に、ステップ・アンド・スキャン露光におけるレベリング計測のための手段のより詳細な構成図を示す。
図1に示す液浸露光装置1は、露光光源としてのKrFエキシマレーザ光源を内蔵する照明系2と、照明光スリット3Aを有する照明視野絞り3と、レチクルテーブル4と、投影光学系5と、Zテーブル6と、XYテーブル7と、先読みオートフォーカス(AF)部8と、スキャン部9とを備える。
FIG. 1 shows the overall configuration of the immersion exposure apparatus. FIG. 2 shows a more detailed configuration diagram of the means for leveling measurement in the step-and-scan exposure.
An immersion exposure apparatus 1 shown in FIG. 1 includes an illumination system 2 incorporating a KrF excimer laser light source as an exposure light source, an illumination field stop 3 having an illumination light slit 3A, a reticle table 4, a projection optical system 5, A Z table 6, an XY table 7, a prefetch autofocus (AF) unit 8, and a scanning unit 9 are provided.

スキャン部9は、レチクルテーブル4とXYテーブル7のX方向およびY方向の位置を検出する手段、たとえばレーザ干渉計9Bと9Cを有する。また、スキャン部9は、2つのレーザ干渉計9Bと9Cの出力(位置検出結果)を基に不図示のアクチュエータあるいはリニアモータ等の駆動手段を制御することによって、レチクルテーブル4およびXYテーブル7のX方向およびY方向の相対的位置を制御するスキャン制御部9Aを有する。   The scanning unit 9 includes means for detecting positions of the reticle table 4 and the XY table 7 in the X direction and the Y direction, for example, laser interferometers 9B and 9C. The scanning unit 9 controls the reticle table 4 and the XY table 7 by controlling driving means such as an actuator (not shown) or a linear motor based on the outputs (position detection results) of the two laser interferometers 9B and 9C. It has a scan controller 9A that controls the relative positions in the X direction and the Y direction.

図1において、レチクルテーブル4に、半導体デバイス製造用のパターンが形成されているレチクル10が真空吸着等により固定されている。また、Zテーブル6に、ウエハ(半導体基板)20が真空吸着等により固定されている。ウエハ20の素子形成面には既に幾層かの絶縁膜が形成されているものとし、その最上位にフォトレジスト層20Aが塗布されている。   In FIG. 1, a reticle 10 on which a pattern for manufacturing a semiconductor device is formed is fixed to a reticle table 4 by vacuum suction or the like. A wafer (semiconductor substrate) 20 is fixed to the Z table 6 by vacuum suction or the like. It is assumed that several layers of insulating films are already formed on the element forming surface of the wafer 20, and a photoresist layer 20A is applied on the uppermost layer.

光源からの光(たとえばKrFエキシマレーザ光)は、照明系2内の光学部品(不図示)を通り照明視野絞り3に設けられている開口部、すなわち照明光スリット3Aにより一部に制限される。そして、照明光スリット3Aを通った光が、スキャン部9の制御により決められたレチクル10の所定の範囲を照らし、レチクルからの投影像が投影光学系5に入力される。投影光学系5は鏡筒内に多数の光学部品、たとえば投影レンズや対物レンズ等を収容し、これらの光学部品によって所定の縮小倍率で投影像を縮小し、かつ、ウエハ20のフォトレジスト層(感光面)20Aで当該縮小した投影像を結像させる。   Light from the light source (for example, KrF excimer laser light) passes through optical components (not shown) in the illumination system 2 and is limited to a part by an opening provided in the illumination field stop 3, that is, the illumination light slit 3A. . Then, the light passing through the illumination light slit 3 A illuminates a predetermined range of the reticle 10 determined by the control of the scanning unit 9, and a projection image from the reticle is input to the projection optical system 5. The projection optical system 5 accommodates a large number of optical components, such as a projection lens and an objective lens, in a lens barrel, reduces the projected image with a predetermined reduction magnification by these optical components, and also forms a photoresist layer ( The reduced projection image is formed on the photosensitive surface 20A.

より正確には、このときスキャン部9の制御を受けてウエハ20の露光対象部分のZ方向の位置(高さ)およびレチクル10や投影光学系5に対する水平度等が精密制御されることにより、感光面20Aへの投影像の結像が実現される。この制御はレベリングと称され、本例では先読みAF部8により実行される。   More precisely, the position of the exposure target portion of the wafer 20 in the Z direction (height) and the level of the reticle 10 and the projection optical system 5 are precisely controlled under the control of the scanning unit 9 at this time. The projection image is formed on the photosensitive surface 20A. This control is called leveling, and is executed by the prefetch AF unit 8 in this example.

先読みAF部8は、オートフォーカス制御部(AF.CONT)8Aとレベリング計測部(LEV)8Bとを有する。
レベリング計測部8Bは、図2に示すように、ブロードバンド照明81、マルチスリット82、照射光学部品83、受光光学部品84、反射ミラー85Aと85B、集光光学部品86およびマルチAF受光位置センサ87を有する。ブロードバンド照明81からの計測光から、マルチスリット82によって所定数のスポット光が生成される。スポット光は、照射光学部品83により径が絞られ、かつ、相互間の位置が調整されてZテーブル6上のウエハ20上の感光面20Aに照射される。ここで反射された光(反射スポット光)は、受光光学部品84で調整後、反射ミラー85Aと85Bを通って、集光光学部品86で再度調整され、マルチAF受光位置センサ87に入射される。
マルチAF受光位置センサ87は、入力したスポット光を光電変換し、たとえば二次元で受光強度分布の情報を出力する。このとき検出方向の分布精度を高めるために、マルチスリット82によってスポット光形状を所定の形状に予め生成することが望ましい。
The prefetch AF unit 8 includes an autofocus control unit (AF.CONT) 8A and a leveling measurement unit (LEV) 8B.
As shown in FIG. 2, the leveling measurement unit 8B includes a broadband illumination 81, a multi slit 82, an irradiation optical component 83, a light receiving optical component 84, reflection mirrors 85A and 85B, a condensing optical component 86, and a multi AF light receiving position sensor 87. Have. A predetermined number of spot lights are generated by the multi slit 82 from the measurement light from the broadband illumination 81. The spot light is irradiated on the photosensitive surface 20 </ b> A on the wafer 20 on the Z table 6 by reducing the diameter by the irradiation optical component 83 and adjusting the position between them. The reflected light (reflected spot light) is adjusted by the light receiving optical component 84, passes through the reflection mirrors 85 </ b> A and 85 </ b> B, is adjusted again by the condensing optical component 86, and enters the multi-AF light receiving position sensor 87. .
The multi-AF light receiving position sensor 87 photoelectrically converts the input spot light and outputs, for example, received light intensity distribution information in two dimensions. At this time, in order to increase the distribution accuracy in the detection direction, it is desirable to generate the spot light shape in a predetermined shape by the multi slit 82 in advance.

オートフォーカス制御部8Aは、所定数のスポット光の二次元の各方向の受光強度分布の信号を入力し、たとえば、そのピーク点検出を行う。オートフォーカス制御部8Aは、その計測結果がジャストフォーカス時の基準値からどの程度ずれているかを検出し、その結果から、Zテーブル6の制御量、すなわちZ方向の調整量の向きと大きさ、傾き調整量の向きと大きさを算出する。このような機能のオートフォーカス制御部8Aを、たとえばマイクロコンピュータ、CPU等のコンピュータベースの制御手段から構成できる。   The autofocus control unit 8A inputs a signal of the received light intensity distribution in each direction of a two-dimensional direction of a predetermined number of spot lights, and detects the peak point, for example. The autofocus control unit 8A detects how much the measurement result deviates from the reference value at the time of just focus, and from the result, the control amount of the Z table 6, that is, the direction and magnitude of the adjustment amount in the Z direction, The direction and magnitude of the tilt adjustment amount are calculated. The autofocus control unit 8A having such a function can be constituted by computer-based control means such as a microcomputer and CPU.

なお、スポット光の数とウエハ上の照射点配置は任意であるが、傾きを検出するには最低でも2点必要で、3点から6点以上が望ましい。本発明の実施の形態では、図面の簡略化のためすべて3点の場合を例示しているが、これに限定されない。   The number of spot lights and the arrangement of irradiation points on the wafer are arbitrary, but at least two points are required to detect the inclination, and three to six points or more are desirable. In the embodiment of the present invention, the case of all three points is illustrated for simplification of the drawings, but the present invention is not limited to this.

図2には、さらに、レチクル上のパターン領域PAとウエハ20上の露光エリアEAとの関係を示している。
スキャン露光では1枚のレチクル上のパターン領域PAを複数回ショットの露光でウエハ20の感光面に転写する。このときの1ショット露光領域PAxは、前述した照明光スリット3Aの開口形状(図1参照)で規定されており、通常ウエハ20やレチクルの移動方向と直交する方向に長い矩形、たとえば1:3程度以上の縦横比を有する長方形となっている。これは、図1に示す投影光学系5内の投影レンズの径方向を有効利用し、前記式(2)内の角度θの有効利用角度を大きくして解像度を上げるためである。また、これにより、投影レンズの径より対角距離が大きなデバイスブロックの露光が可能となる。
FIG. 2 further shows the relationship between the pattern area PA on the reticle and the exposure area EA on the wafer 20.
In the scan exposure, the pattern area PA on one reticle is transferred to the photosensitive surface of the wafer 20 by multiple shot exposures. The one-shot exposure area PAx at this time is defined by the opening shape (see FIG. 1) of the illumination light slit 3A described above, and is usually a rectangle that is long in the direction orthogonal to the moving direction of the wafer 20 and the reticle, for example, 1: 3. It is a rectangle having an aspect ratio of more than about. This is to increase the resolution by effectively using the radial direction of the projection lens in the projection optical system 5 shown in FIG. 1 and increasing the effective use angle of the angle θ in the equation (2). In addition, this makes it possible to expose a device block having a diagonal distance larger than the diameter of the projection lens.

従来のスキャン式液浸露光装置は、投影光学系の最下端の光学部品の基板対向面とウエハ上の感光面との間は全域が純水等の液体で満たされていた。
これに対し、本実施の形態では、液体の供給エリアを照明光スリットで規定される1ショット露光エリアPAx(図2)を含む必要最低限の領域に限定する。これにより、レベリング計測を行う次回露光エリアを液体が存在しない状態に保つ。
In the conventional scanning immersion exposure apparatus, the entire area between the substrate facing surface of the lowermost optical component of the projection optical system and the photosensitive surface on the wafer is filled with a liquid such as pure water.
On the other hand, in the present embodiment, the liquid supply area is limited to the minimum necessary area including the one-shot exposure area PAx (FIG. 2) defined by the illumination light slit. Thereby, the next exposure area where the leveling measurement is performed is maintained in a state where no liquid exists.

そのための構成として、図1に示すように、投影光学系5の最下端の光学部品(光学プレート5B)の基板対向面5Aに、液体保持手段として、たとえば液体保持枠体30を設けている。
液体保持枠体30が設けられる光学部品としては、下面が平坦な正レンズ(対物レンズ)であってもよいが、好ましくは本例のように、取り替えやクリーニングが容易な光学プレート(平行平面板等)5Bが望ましい。また、液体保持枠体30は、光学プレートとは別に形成して強固に固定してもよいし、光学プレート5Bと同じ材質(たとえば石英ガラス等)で一体形成したものでもよい。
As a configuration for this, as shown in FIG. 1, for example, a liquid holding frame 30 is provided as a liquid holding means on the substrate facing surface 5A of the lowermost optical component (optical plate 5B) of the projection optical system 5.
The optical component on which the liquid holding frame 30 is provided may be a positive lens (objective lens) having a flat bottom surface, but preferably an optical plate (parallel plane plate) that can be easily replaced or cleaned as in this example. Etc.) 5B is desirable. Further, the liquid holding frame 30 may be formed separately from the optical plate and firmly fixed, or may be integrally formed of the same material (for example, quartz glass) as the optical plate 5B.

図3(A)は液体保持枠体の一構成例を、光学プレート側から見た平面図である。本例の液体保持枠体30は、薄い幅の環状枠体からなり、その一方の環状枠端面(図の斜線部)が光学プレートに固定、または一体形成されている。この環状枠体の内側の面積は、図において破線で示す1ショット分の露光エリアEAxを含み、レベリング計測を可能とするためにスキャンの向きに隣接する次回露光エリアEAx+1の少なくとも一部を含まない大きさを有する。   FIG. 3A is a plan view of one configuration example of the liquid holding frame viewed from the optical plate side. The liquid holding frame 30 of this example is formed of a thin-width annular frame, and one end of the annular frame (shaded portion in the figure) is fixed to or integrally formed with the optical plate. The inner area of the annular frame includes an exposure area EAx for one shot indicated by a broken line in the drawing, and does not include at least a part of the next exposure area EAx + 1 adjacent to the scan direction to enable leveling measurement. Have a size.

図3(B)に図3(A)のB−B線に沿った断面図、図3(C)に図3(A)のC−C線に沿った断面図を、それぞれ示す。
どちら断面図においても明らかなように、液体保持枠体30の内部に液体40、たとえば純水、その他、純水より屈折率が大きな液を充填している。液体保持枠体30の高さは、Zテーブル6の最大高さ制御時において当該枠体がウエハの感光面20Aに接触しないように設定されている。この液体保持枠体30と感光面20Aとの隙間にも液体が満たされ、ウエハ20のステップ移動時にも、その表面張力により液体40が外部に洩れることがない。
また、液体は露光により温度上昇し屈折率が変化することがある、あるいは、感光面を常に洗浄に保つ必要がある場合、液体を常にあるいは定期的に循環させることが望ましい。そのための構成としては、とくに図示しないが、光学プレート5Bの基板対向面5Aに沿った管、あるいは、光学プレート5Bの内部溝や配管によって液体を循環可能な構成にするとよい。
3B is a cross-sectional view taken along line BB in FIG. 3A, and FIG. 3C is a cross-sectional view taken along line CC in FIG. 3A.
As is clear from both cross-sectional views, the liquid holding frame 30 is filled with a liquid 40, for example, pure water, or other liquid having a higher refractive index than that of pure water. The height of the liquid holding frame 30 is set so that the frame does not contact the photosensitive surface 20A of the wafer when the maximum height control of the Z table 6 is performed. The liquid is also filled in the gap between the liquid holding frame 30 and the photosensitive surface 20A, and the liquid 40 does not leak to the outside due to the surface tension even when the wafer 20 is stepped.
Further, when the temperature of the liquid increases due to exposure and the refractive index may change, or when it is necessary to keep the photosensitive surface constantly washed, it is desirable to circulate the liquid constantly or periodically. As a configuration for that purpose, although not particularly shown, it is preferable that the liquid can be circulated by a tube along the substrate facing surface 5A of the optical plate 5B, or an internal groove or piping of the optical plate 5B.

つぎに、液浸露光および先読みオートフォーカス動作の手順を説明する。
図4(A)〜図4(D)に、先読みオートフォーカスを露光と同時に行う方法の概念図を示す。ここでは、1枚のレチクル上のパターンが6ショットの露光によりウエハ上の感光面に転写される場合を例に、各図においてウエハ上の6つの連続した露光エリアEA1,EA2,EA3,EA4,EA5およびEA6を示している。
Next, procedures for immersion exposure and pre-read autofocus operation will be described.
4A to 4D are conceptual diagrams of a method for performing pre-read autofocus simultaneously with exposure. Here, as an example of the case where the pattern on one reticle is transferred to the photosensitive surface on the wafer by 6-shot exposure, in each drawing, there are six continuous exposure areas EA1, EA2, EA3, EA4 on the wafer. EA5 and EA6 are shown.

図4(A)に示す最初のステップで、露光開始前の初期段階として、最初の露光エリアEA1に対しレベリング計測を行う。
レベリング計測は、図2に示すように、複数のスポット光(計測光)を長方形の露光エリア(ここではEA1)の長手方向に、たとえば等間隔に当て、その反射スポット光の規定値からの位置ずれを、オートフォーカス制御部(AF.CONT)8AがマルチAF位置検出センサ87からの受光強度分布の情報から求める。さらにオートフォーカス制御部8Aは、その位置ずれの計測値に基づいて、とくにウエハのZ方向(投影光学系5の光軸方向)の位置、露光エリアEA1の長手方向のウエハの傾き等のずれが算出され、それらのずれをキャンセルするようにZテーブル6をZ方向に移動し、スキャン方向の軸を中心に回転させ、露光エリアEA1の感光面と投影光学系の像面との相対位置をほぼ一致させる。
In the first step shown in FIG. 4A, leveling measurement is performed on the first exposure area EA1 as an initial stage before the start of exposure.
In the leveling measurement, as shown in FIG. 2, a plurality of spot lights (measurement lights) are applied in the longitudinal direction of a rectangular exposure area (here, EA1), for example, at equal intervals, and the position from the prescribed value of the reflected spot light. The shift is obtained from the information of the received light intensity distribution from the multi-AF position detection sensor 87 by the autofocus control unit (AF.CONT) 8A. Further, the autofocus control unit 8A determines the deviations such as the position of the wafer in the Z direction (the optical axis direction of the projection optical system 5) and the inclination of the wafer in the longitudinal direction of the exposure area EA1 based on the measurement value of the positional deviation. The Z table 6 is moved in the Z direction so as to cancel these deviations and rotated about the axis in the scanning direction, so that the relative position between the photosensitive surface of the exposure area EA1 and the image plane of the projection optical system is approximately Match.

つぎの図4(B)に示すステップで、既にオートフォーカスのための相対位置補正を行った最初の露光エリアEA1が露光される。この露光期間中に、つぎの露光エリアEA2に対して、図4(A)の場合と同様にして先読みオートフォーカス動作、すなわちレベリング計測およびオートフォーカスのための相対位置補正を行う。このとき露光エリアEA1を中心とした領域にしか液体40が存在しないことから、レベリング計測が空気中で行われる。   In the next step shown in FIG. 4B, the first exposure area EA1 that has already been subjected to relative position correction for autofocus is exposed. During this exposure period, the pre-read autofocus operation, that is, the relative position correction for leveling measurement and autofocus is performed on the next exposure area EA2 as in the case of FIG. At this time, since the liquid 40 exists only in an area centered on the exposure area EA1, leveling measurement is performed in the air.

以後、同様にして露光と先読みオートフォーカス動作とを、露光エリアを順次スキャン方向に送りながら実行する。図4(C)は4番目の露光エリアEA4に対する露光と、5番目の露光エリアEA5に対する先読みのためのレベリング計測を実行中の様子を示す。
図4(D)に示す最終ステップでは、6番目の露光エリアEA6を露光する。このとき先読みオートフォーカス動作は行わない。ただし、6ショット分の露光エリアが隣接している場合は、図4(D)に示す段階で、その最初の露光エリアのために先読みオートフォーカスを行うようにしてもよい。
Thereafter, similarly, the exposure and the pre-read autofocus operation are executed while sequentially sending the exposure area in the scanning direction. FIG. 4C shows a state in which leveling measurement is being performed for exposure to the fourth exposure area EA4 and prefetching for the fifth exposure area EA5.
In the final step shown in FIG. 4D, the sixth exposure area EA6 is exposed. At this time, the prefetch autofocus operation is not performed. However, if the exposure areas for six shots are adjacent, pre-read autofocus may be performed for the first exposure area at the stage shown in FIG.

図4(B)以降の何れの場合でも、露光エリアのステップ移動にともなって、露光エリアを覆うが次回露光エリアでレベリング計測を可能とするように液体40も移動する。
このため、液体40内の計測光(スポット光)が通ることがなく、計測精度が高く、また、スポット光による液体40の温度上昇もないため、液浸露光の精度自体も高く維持できるという利点が得られる。
In any case after FIG. 4B, as the exposure area is stepped, the liquid 40 also moves so as to cover the exposure area but enable leveling measurement in the next exposure area.
For this reason, the measurement light (spot light) in the liquid 40 does not pass, the measurement accuracy is high, and the temperature of the liquid 40 does not increase due to the spot light, so that the accuracy of the immersion exposure itself can be maintained high. Is obtained.

なお、X方向およびY方向に関しては、たとえばレーザ干渉計を用いてレチクルとウエハの相対位置が合うようにフィードバック制御されることから通常、レベリング計測の対象ではない。また、露光エリアEA1の幅方向の回転補正は、その方向に複数のスポット光を当てることにより、あるいは複数の露光エリアにおけるレベリング計測値を行った時点で、その値から割り出して求めるようにしてもよい。   Note that the X direction and the Y direction are usually not subject to leveling measurement because feedback control is performed using a laser interferometer so that the relative positions of the reticle and wafer are matched. Further, the rotation correction in the width direction of the exposure area EA1 may be obtained by applying a plurality of spot lights in that direction or by calculating the leveling measurement values in the plurality of exposure areas from the values. Good.

液浸露光を用いて、実際に半導体デバイスを形成した。
微細パターンを形成する膜を半導体基板の最上位に堆積した後、前処理のステップとして、洗浄、プリベーク後に、その表面にフォトレジストを塗布しポストベークを行った。
つぎに、前述した方法で液浸露光のステップを実行し、後処理のステップとして現像、キュア(リンス)および乾燥を行い、異方性ドライエッチングで下地を加工し、レジストを剥離し、洗浄することによって目的とする微細パターンの形成を行った。
A semiconductor device was actually formed using immersion exposure.
After a film for forming a fine pattern was deposited on the top of the semiconductor substrate, as a pretreatment step, after cleaning and pre-baking, a photoresist was applied to the surface and post-baking was performed.
Next, the immersion exposure step is executed by the above-described method, and development, curing (rinsing) and drying are performed as post-processing steps, the base is processed by anisotropic dry etching, the resist is peeled off, and the substrate is washed. Thus, the desired fine pattern was formed.

このような半導体製造方法を用いると、0.1μmの凹凸を有する基板上でのリソグラフィ工程において、液浸剤の供給エリアを露光装置のスリット部(23mm×8mm)のみに絞り、レベリング計測は液浸剤が存在しない空気中で行ってオートフォーカスを行うことにより、高精度なLSIパターンを十分に大きな露光マージンで形成することができた。
このLSIでは、上述した液浸露光方法の適用により解像度Rが向上し、このときのレベリンス精度の高さから、よりフォーカスが合った露光が可能となった。その結果、解像度Rおよび焦点深度(DOF)の向上が見られ、プロセスマージンの向上、ひいてはデバイス特性や歩留まりが向上できるという利点が得られた。
When such a semiconductor manufacturing method is used, in the lithography process on the substrate having the unevenness of 0.1 μm, the immersion agent supply area is limited to only the slit portion (23 mm × 8 mm) of the exposure apparatus, and the leveling measurement is performed by the immersion agent. By performing autofocusing in the air in which no air is present, a highly accurate LSI pattern can be formed with a sufficiently large exposure margin.
In this LSI, the resolution R is improved by applying the liquid immersion exposure method described above, and exposure with a higher focus is possible because of the high relevance accuracy at this time. As a result, the resolution R and the depth of focus (DOF) were improved, and the process margin was improved, and the device characteristics and yield were improved.

最後に、液浸露光と液浸を行わないドライ露光で、同じフォトマスク(レチクル)と同じ性能のスキャナーを用いたデバイスを作製した。
図5および図6に、露光マージンと焦点深度(DOF)との関係をグラフに示す。図5が80nm幅の孤立ラインの形成時、図6が120nm径のコンタクトホールの形成時のグラフである。
Finally, a device using a scanner having the same performance as that of the same photomask (reticle) was manufactured by immersion exposure and dry exposure without immersion.
5 and 6 are graphs showing the relationship between the exposure margin and the depth of focus (DOF). FIG. 5 is a graph when an 80 nm wide isolated line is formed, and FIG. 6 is a graph when a 120 nm diameter contact hole is formed.

図5の孤立ラインの形成時の条件を、以下に箇条書きで示す。
(1)照明条件:0.75開口数NA/0.75sigma(1/2輪帯照明)、
(2)ラインサイズ:80nmの孤立ライン、
(3)CD(短寸法あるいは微小寸法)余裕:±8nm、
(4)フォトマスクタイプ:ハーフトーン位相シフトマスク(透過率6%)、
(5)フォトレジスト:東京応化製TArF5068(膜厚225nm)、
(6)BARC:日産ケミカル製ARC28(膜厚37nm)、
(7)TARC:東京応化製TSP−3A(膜厚41nm)。
The conditions at the time of forming the isolated line in FIG.
(1) Illumination conditions: 0.75 numerical aperture NA / 0.75 sigma (1/2 annular illumination),
(2) Line size: 80 nm isolated line,
(3) CD (short dimension or minute dimension) margin: ± 8 nm,
(4) Photomask type: halftone phase shift mask (transmittance 6%),
(5) Photoresist: Tokyo Ohka TArF5068 (film thickness 225 nm),
(6) BARC: Nissan Chemical ARC28 (film thickness 37 nm),
(7) TARC: Tokyo Ohka TSP-3A (film thickness 41 nm).

図6のコンタクトホール形成時の条件を、以下に箇条書きで示す。
(1)照明条件:0.75開口数NA/0.85sigma(通常照明)、
(2)ホールサイズ:120nm(ピッチ220nm)、
(3)CD余裕:±10nm、
(4)フォトマスクタイプ:ハーフトーン位相シフトマスク(透過率6%)、
(5)フォトレジスト:東京応化製P7047(膜厚300nm)、
(6)BARC:日産ケミカル製ARC28(膜厚37nm)、
(7)TARC:東京応化製TSP−3A(膜厚41nm)。
The conditions at the time of forming the contact hole in FIG.
(1) Illumination conditions: 0.75 numerical aperture NA / 0.85 sigma (normal illumination),
(2) Hole size: 120 nm (pitch 220 nm),
(3) CD margin: ± 10 nm
(4) Photomask type: halftone phase shift mask (transmittance 6%),
(5) Photoresist: Tokyo Ohka P7047 (film thickness 300 nm),
(6) BARC: Nissan Chemical ARC28 (film thickness 37 nm),
(7) TARC: Tokyo Ohka TSP-3A (film thickness 41 nm).

図5および図6より、液浸露光により露光マージンが格段に拡大していることが分かる。   5 and 6 that the exposure margin is remarkably expanded by the immersion exposure.

以上の実施の形態によれば、液浸型露光装置においても従来の露光装置と遜色のないフォーカス精度が得られるため、安定したパターン形成が可能となる。このため半導体製造プロセスのマージンが広がり製造歩留まりが向上する。また、LSIの回路パターンを高精度に形成できるため、半導体デバイスの性能が向上する。   According to the embodiment described above, the immersion type exposure apparatus can obtain a focus accuracy comparable to that of the conventional exposure apparatus, so that a stable pattern can be formed. For this reason, the margin of the semiconductor manufacturing process is increased and the manufacturing yield is improved. Further, since the LSI circuit pattern can be formed with high accuracy, the performance of the semiconductor device is improved.

本発明の実施の形態に係る液浸露光装置の全体構成を示す図である。It is a figure which shows the whole structure of the immersion exposure apparatus which concerns on embodiment of this invention. ステップ・アンド・スキャン露光におけるレベリング計測のための手段のより詳細な構成図である。It is a more detailed block diagram of a means for leveling measurement in step-and-scan exposure. (A)は本実施の形態での液体保持枠体の一構成例を光学プレート側から見た平面図、(B)は(A)のB−B線に沿った断面図、(C)は(A)のC−C線に沿った断面図である。(A) is the top view which looked at the example of 1 structure of the liquid holding frame in this Embodiment from the optical plate side, (B) is sectional drawing along the BB line of (A), (C) is It is sectional drawing along CC line of (A). (A)〜(D)は、本実施の形態において先読みオートフォーカスを露光と同時に行う方法の概念図である。(A)-(D) are the conceptual diagrams of the method of performing prefetch autofocus simultaneously with exposure in this Embodiment. 80nm幅の孤立ラインの形成時の露光マージンと焦点深度(DOF)との関係を示すグラフである。It is a graph which shows the relationship between the exposure margin at the time of formation of an isolated line of 80 nm width, and a depth of focus (DOF). 120nm径のコンタクトホールの形成時の露光マージンと焦点深度(DOF)との関係を示すグラフである。It is a graph which shows the relationship between the exposure margin at the time of formation of a 120 nm diameter contact hole, and a depth of focus (DOF). (A)〜(D)は、従来の先読みオートフォーカスを露光と同時に行う方法の概念図である。(A)-(D) are the conceptual diagrams of the method of performing the conventional prefetch autofocus simultaneously with exposure. (A)と(B)は、従来の課題を説明するために用いた、次回露光エリアに対するマルチポイント(3点)での計測時の様子を断面方向と上面から模式的に示す図である。(A) And (B) is a figure which shows typically the mode at the time of the measurement at the multipoint (three points) with respect to the next exposure area from the cross-sectional direction and the upper surface used in order to demonstrate the conventional subject.

符号の説明Explanation of symbols

1…液浸露光装置、2…照明系、3…照明視野絞り、3A…照明光スリット、4…レチクルテーブル、5…投影光学系、5A…基板対向面、5B…光学プレート、6…Zテーブル、7…XYテーブル、8…先読みAF部、8A…オートフォーカス制御部、8B…レベリング計測部、9…スキャン部、9A…スキャン制御部、9B,9C…レーザ干渉計、10…レチクル、20…半導体基板、20A…感光面、30…液体保持枠体、40…液体、EA…露光エリア(次回露光エリア)
DESCRIPTION OF SYMBOLS 1 ... Immersion exposure apparatus, 2 ... Illumination system, 3 ... Illumination field stop, 3A ... Illumination light slit, 4 ... Reticle table, 5 ... Projection optical system, 5A ... Substrate facing surface, 5B ... Optical plate, 6 ... Z table , 7 ... XY table, 8 ... Prefetch AF section, 8A ... Autofocus control section, 8B ... Leveling measurement section, 9 ... Scan section, 9A ... Scan control section, 9B, 9C ... Laser interferometer, 10 ... Reticle, 20 ... Semiconductor substrate, 20A ... photosensitive surface, 30 ... liquid holding frame, 40 ... liquid, EA ... exposure area (next exposure area)

Claims (9)

光を照射したマスクからの投影像を投影光学系と基板上の感光面との間に液体を保持した状態で前記感光面に転写する液浸露光を、前記感光面内で露光エリアを順次変えながら繰り返す液浸露光装置であって、
前記感光面内の前記液体に接触する箇所に一つの露光エリアを含み、かつ、当該露光エリアに隣接する次回露光エリアの少なくとも一部が前記液体と非接触となるように、前記投影光学系の基板対向面内の一部に対し前記液体を保持する液体保持手段を有する
液浸露光装置。
Immersion exposure in which a projection image from a mask irradiated with light is transferred to the photosensitive surface in a state where liquid is held between the projection optical system and the photosensitive surface on the substrate, and the exposure area is sequentially changed in the photosensitive surface. An immersion exposure apparatus that repeats while
The projection optical system includes a single exposure area at a position in contact with the liquid in the photosensitive surface, and at least a part of a next exposure area adjacent to the exposure area is not in contact with the liquid. An immersion exposure apparatus, comprising: a liquid holding unit that holds the liquid with respect to a part of the substrate facing surface.
前記液体保持手段は、一方の環状枠端面が前記基板対向面に固定され、前記液体を保持する環状枠体を含む
請求項1に記載の液浸露光装置。
The immersion exposure apparatus according to claim 1, wherein the liquid holding unit includes an annular frame body having one annular frame end face fixed to the substrate facing surface and holding the liquid.
液浸露光時に前記マスクを照明する光の一部を通過させる照明光スリットを備え、
前記液体保持手段は、前記照明光スリットの開口面形状に対応した前記基板対向面の一部に前記液体の保持エリアを限定している
請求項1に記載の液浸露光装置。
An illumination light slit for passing a part of the light that illuminates the mask during immersion exposure;
The immersion exposure apparatus according to claim 1, wherein the liquid holding unit limits the liquid holding area to a part of the substrate facing surface corresponding to the shape of the opening surface of the illumination light slit.
前記次回露光エリアの前記液体と非接触の箇所で前記投影光学系と前記基板との相対的位置ずれを測定し、当該次回露光エリアで前記投影光学系による像面と前記基板との相対位置を前記測定の結果に基づいて調整する先読みオートフォーカス部を
さらに有する請求項1に記載の液浸露光装置。
The relative positional deviation between the projection optical system and the substrate is measured at a position that is not in contact with the liquid in the next exposure area, and the relative position between the image plane and the substrate by the projection optical system is measured in the next exposure area. The immersion exposure apparatus according to claim 1, further comprising a prefetch autofocus unit that adjusts based on a result of the measurement.
前記先読みオートフォーカス部は、前記露光エリアが前記感光面内を移動する方向と異なる方向から前記次回露光エリアの前記液体と非接触の箇所に対し斜めに複数のスポット光を当て、当該次回露光エリアで反射した各スポット光を受光し、当該受光の位置情報から前記投影光学系と前記基板との相対的位置の調整量を求める
請求項4に記載の液浸露光装置。
The pre-read autofocus unit applies a plurality of spot lights obliquely to a portion of the next exposure area that is not in contact with the liquid from a direction different from a direction in which the exposure area moves in the photosensitive surface, and the next exposure area The liquid immersion exposure apparatus according to claim 4, wherein each spot light reflected by the step is received, and an adjustment amount of a relative position between the projection optical system and the substrate is obtained from position information of the received light.
光を照射したマスクからの投影像を投影光学系と基板上の感光面との間に液体を保持した状態で前記感光面に転写する液浸露光を、前記感光面内で露光エリアを順次変えながら繰り返す液浸露光方法であって、
前記感光面の前記液体と接触する箇所に一つの露光エリアを含み、かつ、当該露光エリアに隣接する次回露光エリアの少なくとも一部が前記液体と非接触となるように、前記投影光学系の基板対向面内の一部に対し前記液体を保持した状態で前記液浸露光を行う
液浸露光方法。
Immersion exposure in which a projection image from a mask irradiated with light is transferred to the photosensitive surface in a state where liquid is held between the projection optical system and the photosensitive surface on the substrate, and the exposure area is sequentially changed in the photosensitive surface. While repeating immersion exposure method,
The substrate of the projection optical system includes one exposure area at a location in contact with the liquid on the photosensitive surface, and at least a part of the next exposure area adjacent to the exposure area is not in contact with the liquid. A liquid immersion exposure method in which the liquid immersion exposure is performed in a state where the liquid is held on a part of an opposing surface.
前記液浸露光の工程が、
前記投影光学系と前記基板との相対的位置ずれを前記感光面内の一つの露光エリアで測定し、当該露光エリアで前記投影光学系による像面と前記基板との相対位置を前記測定の結果に基づいて調整するオートフォーカスステップと、
前記測定に用いた露光エリアを前記液体の直下に移動し、前記液浸露光を行う露光ステップと
を含み、
前記露光ステップの実行中に、前記次回露光エリアの前記液体と非接触の箇所で前記測定を行うことによって当該次回露光エリアに対し前記オートフォーカスステップを実行する
請求項6に記載の液浸露光方法。
The immersion exposure process includes:
The relative displacement between the projection optical system and the substrate is measured in one exposure area in the photosensitive surface, and the relative position between the image plane and the substrate by the projection optical system in the exposure area is a result of the measurement. An autofocus step to adjust based on
An exposure step of moving the exposure area used for the measurement directly below the liquid and performing the immersion exposure,
The immersion exposure method according to claim 6, wherein during the exposure step, the autofocus step is performed on the next exposure area by performing the measurement at a location not in contact with the liquid in the next exposure area. .
半導体デバイスを半導体基板に形成する際に、光を照射したマスクからの投影像を投影光学系と前記半導体基板上の感光面との間に液体を保持した状態で前記感光面に転写する液浸露光を、前記感光面内で露光エリアを順次変えながら繰り返す半導体デバイスの製造方法であって、
前記感光面を構成するフォトレジストの、前記半導体基板の素子形成面の最上位への塗布を含む前処理のステップと、
前記感光面の前記液体と接触する箇所に一つの露光エリアを含み、かつ、当該露光エリアに隣接する次回露光エリアの少なくとも一部が前記液体と非接触となるように、前記投影光学系の基板対向面内の一部に対し前記液体を保持した状態で前記液浸露光を、前記感光面内で露光エリアを順次代えながら繰り返す露光ステップと、
露光後のフォトレジストを現像し、形成されたレジストパターンを前記半導体デバイスの形成に利用する後処理のステップと
を含む半導体デバイスの製造方法。
When forming a semiconductor device on a semiconductor substrate, an immersion image is transferred to the photosensitive surface while a liquid is held between the projection optical system and the photosensitive surface on the semiconductor substrate. A method for manufacturing a semiconductor device in which exposure is repeated while sequentially changing exposure areas within the photosensitive surface,
A pretreatment step including application of a photoresist constituting the photosensitive surface to the uppermost surface of an element formation surface of the semiconductor substrate;
The substrate of the projection optical system includes one exposure area at a location in contact with the liquid on the photosensitive surface, and at least a part of the next exposure area adjacent to the exposure area is not in contact with the liquid. An exposure step of repeating the immersion exposure while holding the liquid with respect to a part of the opposing surface while sequentially changing the exposure area in the photosensitive surface;
A post-processing step of developing the exposed photoresist and utilizing the formed resist pattern for forming the semiconductor device.
前記液浸露光が、
前記投影光学系と前記基板との相対的位置ずれを前記感光面内の一つの露光エリアで測定し、当該露光エリアで前記投影光学系による像面と前記基板との相対位置を前記測定の結果に基づいて調整するオートフォーカスステップと、
前記測定に用いた露光エリアを前記液体の直下に移動し、前記液浸露光を行う露光ステップと
を含み、
前記露光ステップの実行中に、前記次回露光エリアの前記液体と非接触の箇所で前記測定を行うことによって当該次回露光エリアに対し前記オートフォーカスステップを実行する
請求項8に記載の半導体デバイスの製造方法。
The immersion exposure is
The relative displacement between the projection optical system and the substrate is measured in one exposure area in the photosensitive surface, and the relative position between the image plane and the substrate by the projection optical system in the exposure area is a result of the measurement. An autofocus step to adjust based on
An exposure step of moving the exposure area used for the measurement directly below the liquid and performing the immersion exposure,
9. The semiconductor device manufacturing according to claim 8, wherein during the exposure step, the autofocus step is performed on the next exposure area by performing the measurement at a location not in contact with the liquid in the next exposure area. Method.
JP2004237329A 2004-08-17 2004-08-17 Immersion aligner and its method, and method for manufacturing semiconductor device Pending JP2006059860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004237329A JP2006059860A (en) 2004-08-17 2004-08-17 Immersion aligner and its method, and method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004237329A JP2006059860A (en) 2004-08-17 2004-08-17 Immersion aligner and its method, and method for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JP2006059860A true JP2006059860A (en) 2006-03-02

Family

ID=36107105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004237329A Pending JP2006059860A (en) 2004-08-17 2004-08-17 Immersion aligner and its method, and method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2006059860A (en)

Similar Documents

Publication Publication Date Title
JP4347373B2 (en) Assembly comprising a sensor for determining at least one of substrate tilt and height, method and lithographic apparatus
JP4654313B2 (en) Lithographic apparatus and measuring method
KR100554887B1 (en) Lithography apparatus
JP3926570B2 (en) Method for measuring aberrations in optical imaging systems
JP4308202B2 (en) Method for measuring information about a substrate and substrate for use in a lithographic apparatus
US6373553B1 (en) Photo-lithographic method to print a line-space pattern with a pitch equal to half the pitch of the mask
US9046788B2 (en) Method for monitoring focus on an integrated wafer
US20060003240A1 (en) Methods for adjusting light intensity for photolithography and related systems
JP4405462B2 (en) Calibration substrate and lithographic apparatus calibration method
JP5068844B2 (en) Lithographic method and lithographic apparatus
KR20050026887A (en) Method for exposing a substrate and lithographic projection apparatus
US20090190116A1 (en) Method of manufacturing a miniaturized device
JP2010067979A (en) Pattern forming method and device production method
US8345221B2 (en) Aberration measurement method, exposure apparatus, and device manufacturing method
US7027227B2 (en) Three-dimensional structure forming method
TWI441239B (en) Lithographic device manufacturing method ,lithographic cell ,and computer program product
US20050169515A1 (en) Surface position measuring method and apparatus
JP2007311508A (en) Fine pattern forming method and device manufacturing method
JPH10177950A (en) Stage equipment and projection optics equipment
JP2006059860A (en) Immersion aligner and its method, and method for manufacturing semiconductor device
JP2002015992A (en) Lithographic process, evaluating method for lithography system, adjusting method for substrate-processing apparatus, lithography system, method and apparatus for exposure, and method for measuring condition of photosensitive material
TWI778584B (en) System and method for generating level data for a surface of a substrate
JP2001358059A (en) Method for evaluating exposure apparatus and exposure apparatus
JP2011249631A (en) Exposure method, patterning method, and method for manufacturing device
WO2021172003A1 (en) Film formation device, film formation method, and article manufacturing method