JP2006058175A - Electromagnetic flowmeter - Google Patents

Electromagnetic flowmeter Download PDF

Info

Publication number
JP2006058175A
JP2006058175A JP2004241463A JP2004241463A JP2006058175A JP 2006058175 A JP2006058175 A JP 2006058175A JP 2004241463 A JP2004241463 A JP 2004241463A JP 2004241463 A JP2004241463 A JP 2004241463A JP 2006058175 A JP2006058175 A JP 2006058175A
Authority
JP
Japan
Prior art keywords
component
electromotive force
excitation
angular frequency
span
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004241463A
Other languages
Japanese (ja)
Other versions
JP4550523B2 (en
Inventor
Tomoshige Yamamoto
友繁 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2004241463A priority Critical patent/JP4550523B2/en
Publication of JP2006058175A publication Critical patent/JP2006058175A/en
Application granted granted Critical
Publication of JP4550523B2 publication Critical patent/JP4550523B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To correct zero-point errors, without exactly correcting the span and making the flow of objective fluid zero. <P>SOLUTION: The electromagnetic flowmeter comprises the pairs of excitation coils 3 for impressing magnetic field on the fluid; a pair of electrodes 2a, 2b for extracting the first δA/δt component (δ: partial differentiation symbol) and the first correction objective electromotive force and the second δA/δt component of the second frequency and the second correction objective electromotive force; the span correcting part 51 for span correcting the first correction object electromotive force for correction, on the basis of the first δA/δt component and for span correcting the second correction object electromotive force, on the basis of the second δA/δt component; the zero-point correction part 52 for extracting the v×B component, by eliminating the third δA/δt component from either of two correction object electromotive force by extracting the third δA/δt component, on the basis of the corrected first correction object electromotive force and the second correction object electromotive force; and the flow rate output part 6 for computing the flow rate of the fluid from the v×B component. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電磁流量計に係り、特に電極で検出される電極間起電力のうち被測定流体の流量に起因する成分の流速にかかる係数を自動的に補正するスパン補正と、磁場の変動に起因する0点のずれを自動的に補正する0補正の技術に関するものである。   The present invention relates to an electromagnetic flow meter, and more particularly to span correction for automatically correcting a coefficient relating to a flow velocity of a component caused by a flow rate of a fluid to be measured among electromotive forces detected between electrodes, and variations in a magnetic field. The present invention relates to a zero correction technique that automatically corrects the resulting zero point shift.

従来技術と本発明を理解するために必要な両者に共通する理論的前提部分について説明する。まず、一般に知られている数学的基礎知識について説明する。
同一周波数で異なる振幅の余弦波P・cos(ω・t)、正弦波Q・sin(ω・t)は、以下のような余弦波に合成される。P,Qは振幅、ωは角周波数である。
P・cos(ω・t)+Q・sin(ω・t)=(P2+Q21/2 ・cos(ω・t−ε)
ただし、ε=tan−1(Q/P) ・・・(1)
The theoretical premise part common to both prior art and in order to understand this invention is demonstrated. First, the basic mathematical knowledge that is generally known will be explained.
The cosine wave P · cos (ω · t) and the sine wave Q · sin (ω · t) having the same frequency and different amplitudes are combined into the following cosine wave. P and Q are amplitudes, and ω is an angular frequency.
P · cos (ω · t) + Q · sin (ω · t) = (P 2 + Q 2 ) 1/2 · cos (ω · t−ε)
However, ε = tan −1 (Q / P) (1)

式(1)の合成を分析するには、余弦波P・cos(ω・t)の振幅Pを実軸、正弦波Q・sin(ω・t)の振幅Qを虚軸にとるように複素座標平面に写像すると都合がよい。すなわち、複素座標平面上において、原点からの距離(P2+Q21/2 が合成波の振幅を与え、実軸との角度ε=tan−1(Q/P)が合成波とω・tとの位相差を与えることになる。 In order to analyze the synthesis of equation (1), the complex is such that the amplitude P of the cosine wave P · cos (ω · t) is the real axis and the amplitude Q of the sine wave Q · sin (ω · t) is the imaginary axis. It is convenient to map to the coordinate plane. That is, on the complex coordinate plane, the distance (P 2 + Q 2 ) 1/2 from the origin gives the amplitude of the composite wave, and the angle ε = tan −1 (Q / P) with the real axis is the composite wave and ω · A phase difference from t is given.

また、複素座標平面上においては、以下の関係式が成り立つ。
L・exp(j・ε)=L・cos(ε)+j・L・sin(ε) ・・・(2)
式(2)は複素ベクトルに関する表記であり、jは虚数単位である。Lは複素ベクトルの長さを与え、εは複素ベクトルの方向を与える。したがって、複素座標平面上の幾何学的関係を分析するには、複素ベクトルへの変換を活用すると都合がよい。
以下の説明では、電極間起電力がどのような挙動を示し、従来技術はこの挙動をどのように利用しているかを説明するために、上記のような複素座標平面への写像と、複素ベクトルによる幾何学的分析を採用する。
Further, the following relational expression is established on the complex coordinate plane.
L · exp (j · ε) = L · cos (ε) + j · L · sin (ε) (2)
Expression (2) is a notation for a complex vector, and j is an imaginary unit. L gives the length of the complex vector and ε gives the direction of the complex vector. Therefore, in order to analyze the geometric relationship on the complex coordinate plane, it is convenient to use conversion to a complex vector.
In the following explanation, in order to explain how the electromotive force between the electrodes shows and how the prior art uses this behavior, the mapping to the complex coordinate plane and the complex vector as described above are used. Employ geometric analysis by

次に、発明者が提案した電磁流量計(特許文献1参照)におけるコイル1組、電極1対の場合の複素ベクトル配置について説明する。
図29は、特許文献1の電磁流量計の原理を説明するためのブロック図である。この電磁流量計は、被測定流体が流れる測定管1と、被測定流体に印加される磁場および測定管1の軸PAXの双方と直交し、かつ被測定流体と接触するように測定管1に対向配置され、前記磁場と被測定流体の流れとによって生じた起電力を検出する一対の電極2a,2bと、測定管軸PAXの方向と直交する、電極2a,2bを含む平面PLNを測定管1の境としたとき、この平面PLNを境とする測定管1の前後で非対称な、時間変化する磁場を被測定流体に印加する励磁コイル3とを有する。
Next, a complex vector arrangement in the case of one set of coils and one pair of electrodes in an electromagnetic flow meter proposed by the inventor (see Patent Document 1) will be described.
FIG. 29 is a block diagram for explaining the principle of the electromagnetic flowmeter of Patent Document 1. In FIG. This electromagnetic flow meter is connected to the measuring tube 1 through which the fluid to be measured flows, the magnetic field applied to the fluid to be measured and the axis PAX of the measuring tube 1 and perpendicular to both the fluid to be measured. A plane PLN including a pair of electrodes 2a and 2b that are arranged to face each other and detect an electromotive force generated by the magnetic field and the flow of the fluid to be measured and the electrodes 2a and 2b perpendicular to the direction of the measurement tube axis PAX The excitation coil 3 applies a time-varying magnetic field that is asymmetrical before and after the measurement tube 1 with the plane PLN as a boundary.

ここで、励磁コイル3から発生する磁場のうち、電極2a,2b間を結ぶ電極軸EAX上において電極軸EAXおよび測定管軸PAXの双方と直交する磁場成分(磁束密度)B1は、以下のように与えられるものとする。
B1=b1・cos(ω0・t−θ1) ・・・(3)
式(3)において、b1は振幅、ω0は角周波数、θ1はω0・tとの位相差(位相遅れ)である。以下、磁束密度B1を磁場B1とする。
Here, of the magnetic field generated from the exciting coil 3, the magnetic field component (magnetic flux density) B1 orthogonal to both the electrode axis EAX and the measurement tube axis PAX on the electrode axis EAX connecting the electrodes 2a and 2b is as follows. Shall be given to
B1 = b1 · cos (ω0 · t−θ1) (3)
In equation (3), b1 is the amplitude, ω0 is the angular frequency, and θ1 is the phase difference (phase delay) from ω0 · t. Hereinafter, the magnetic flux density B1 is referred to as a magnetic field B1.

まず、磁場の変化に起因し、被測定流体の流速とは無関係な電極間起電力について説明する。磁場の変化に起因する起電力は、磁場の時間微分dB/dtによるので、励磁コイル3から発生する磁場B1を次式のように微分する。
dB1/dt=−ω0・b1・sin(ω0・t−θ1) ・・・(4)
被測定流体の流速が0の場合、発生する渦電流は、磁場の変化に起因する成分のみとなり、磁場Baの変化による渦電流Iは、図30に示すような向きとなる。したがって、電極軸EAXと測定管軸PAXとを含む平面内において、磁場Baの変化によって発生する、流速と無関係な電極間起電力Eは、図30に示すような向きとなる。この向きをマイナス方向とする。
First, the inter-electrode electromotive force that is caused by the change of the magnetic field and is unrelated to the flow velocity of the fluid to be measured will be described. Since the electromotive force resulting from the change of the magnetic field is based on the time derivative dB / dt of the magnetic field, the magnetic field B1 generated from the exciting coil 3 is differentiated as the following equation.
dB1 / dt = −ω0 · b1 · sin (ω0 · t−θ1) (4)
When the flow velocity of the fluid to be measured is 0, the generated eddy current is only a component due to the change in the magnetic field, and the eddy current I due to the change in the magnetic field Ba is oriented as shown in FIG. Therefore, in the plane including the electrode axis EAX and the measurement tube axis PAX, the inter-electrode electromotive force E which is generated by the change of the magnetic field Ba and has no relation to the flow velocity is oriented as shown in FIG. This direction is the minus direction.

このとき、電極間起電力Eは、次式に示すように向きを考えた磁場の時間微分−dB1/dtに比例係数rkをかけ、位相θ1をθ1+θ00で置き換えたものとなる(rk、θ00は、被測定流体の導電率及び誘電率と電極2a,2bの配置を含む測定管1の構造に関係する)。
E=rk・ω0・b1・sin(ω0・t−θ1−θ00) ・・・(5)
そして、式(5)を変形すると次式となる。
E=rk・ω0・b1・{sin(−θ1−θ00)}・cos(ω0・t)
+rk・ω0・b1・{cos(−θ1−θ00)}・sin(ω0・t)
=rk・ω0・b1・{−sin(θ1+θ00)}・cos(ω0・t)
+rk・ω0・b1・{cos(θ1+θ00)}・sin(ω0・t)
・・・(6)
At this time, the inter-electrode electromotive force E is obtained by multiplying the time derivative −dB1 / dt of the magnetic field whose direction is considered as shown in the following expression by the proportional coefficient rk and replacing the phase θ1 with θ1 + θ00 (rk and θ00 are , Relating to the structure of the measuring tube 1 including the conductivity and dielectric constant of the fluid to be measured and the arrangement of the electrodes 2a, 2b).
E = rk · ω0 · b1 · sin (ω0 · t−θ1−θ00) (5)
Then, when equation (5) is modified, the following equation is obtained.
E = rk · ω0 · b1 · {sin (−θ1−θ00)} · cos (ω0 · t)
+ Rk · ω0 · b1 · {cos (−θ1−θ00)} · sin (ω0 · t)
= Rk · ω0 · b1 · {−sin (θ1 + θ00)} · cos (ω0 · t)
+ Rk · ω0 · b1 · {cos (θ1 + θ00)} · sin (ω0 · t)
... (6)

ここで、式(6)をω0・tを基準として複素座標平面に写像すると、実軸成分Ex、虚軸成分Eyは次式となる。
Ex=rk・ω0・b1・{−sin(θ1+θ00)}
=rk・ω0・b1・{cos(π/2+θ1+θ00)} ・・・(7)
Ey=rk・ω0・b1・{cos(θ1+θ00)}
=rk・ω0・b1・{sin(π/2+θ1+θ00)} ・・・(8)
Here, when Expression (6) is mapped to the complex coordinate plane with ω0 · t as a reference, the real axis component Ex and the imaginary axis component Ey are expressed by the following expressions.
Ex = rk · ω0 · b1 · {−sin (θ1 + θ00)}
= Rk · ω0 · b1 · {cos (π / 2 + θ1 + θ00)} (7)
Ey = rk · ω0 · b1 · {cos (θ1 + θ00)}
= Rk · ω0 · b1 · {sin (π / 2 + θ1 + θ00)} (8)

さらに、式(7)、式(8)に示したEx,Eyを次式に示す複素ベクトルEcに変換する。
Ec=Ex+j・Ey
=rk・ω0・b1・{cos(π/2+θ1+θ00)}
+j・rk・ω0・b1・{sin(π/2+θ1+θ00)}
=rk・ω0・b1
・{cos(π/2+θ1+θ00)+j・sin(π/2+θ1+θ00)} =rk・ω0・b1・exp{j・(π/2+θ1+θ00)} ・・・(9)
Further, Ex and Ey shown in the equations (7) and (8) are converted into a complex vector Ec shown in the following equation.
Ec = Ex + j · Ey
= Rk · ω0 · b1 · {cos (π / 2 + θ1 + θ00)}
+ J · rk · ω0 · b1 · {sin (π / 2 + θ1 + θ00)}
= Rk ・ ω0 ・ b1
{Cos (π / 2 + θ1 + θ00) + j · sin (π / 2 + θ1 + θ00)} = rk · ω0 · b1 · exp {j · (π / 2 + θ1 + θ00)} (9)

複素座標に変換された式(9)の電極間起電力Ecは、磁場の時間変化のみに起因し、流速とは無関係な電極間起電力となる。式(9)のrk・ω0・b1・exp{j・(π/2+θ1+θ00)}は、長さがrk・ω0・b1、実軸からの角度がπ/2+θ1+θ00の複素ベクトルである。
また、前述の比例係数rk及び角度θ00は、次の複素ベクトルkcで表すことができる。
kc=rk・cos(θ00)+j・rk・sin(θ00)
=rk・exp(j・θ00) ・・・(10)
式(10)において、rkはベクトルkcの大きさ、θ00は実軸に対するベクトルkcの角度である。
The inter-electrode electromotive force Ec of the equation (9) converted into the complex coordinates is caused only by the time change of the magnetic field, and becomes an inter-electrode electromotive force unrelated to the flow velocity. In equation (9), rk · ω0 · b1 · exp {j · (π / 2 + θ1 + θ00)} is a complex vector having a length of rk · ω0 · b1 and an angle from the real axis of π / 2 + θ1 + θ00.
Further, the proportional coefficient rk and the angle θ00 described above can be expressed by the following complex vector kc.
kc = rk · cos (θ00) + j · rk · sin (θ00)
= Rk · exp (j · θ00) (10)
In equation (10), rk is the magnitude of the vector kc, and θ00 is the angle of the vector kc with respect to the real axis.

次に、被測定流体の流速に起因する電極間起電力について説明する。被測定流体の流速の大きさがV(V≠0)の場合、発生する渦電流には、流速0のときの渦電流Iに加えて、被測定流体の流速ベクトルvに起因する成分v×Baが発生するため、流速ベクトルvと磁場Baによる渦電流Ivは、図31に示すような向きとなる。したがって、流速ベクトルvと磁場Baによって発生する電極間起電力Evは時間変化によって発生する電極間起電力Eと逆向きとなり、Evの方向をプラス方向とする。   Next, the inter-electrode electromotive force resulting from the flow velocity of the fluid to be measured will be described. When the magnitude of the flow velocity of the fluid to be measured is V (V ≠ 0), the generated eddy current includes, in addition to the eddy current I when the flow velocity is 0, a component v × due to the flow velocity vector v of the fluid to be measured. Since Ba is generated, the eddy current Iv caused by the flow velocity vector v and the magnetic field Ba is oriented as shown in FIG. Accordingly, the inter-electrode electromotive force Ev generated by the flow velocity vector v and the magnetic field Ba is opposite to the inter-electrode electromotive force E generated by the time change, and the direction of Ev is the plus direction.

このとき、流速に起因する電極間起電力Evは、次式に示すように、磁場B1に比例係数rkvをかけ、位相θ1をθ1+θ01で置き換えたものとなる(rkv、θ01は、流速の大きさVと被測定流体の導電率及び誘電率と電極2a,2bの配置を含む測定管1の構造に関係する)。
Ev=rkv・{b1・cos(ω0・t−θ1−θ01)} ・・・(11)
式(11)を変形すると次式となる。
Ev=rkv・b1・cos(ω0・t)・cos(−θ1−θ01)
−rkv・b1・sin(ω0・t)・sin(−θ1−θ01)
=rkv・b1・{cos(θ1+θ01)}・cos(ω0・t)
+rkv・b1・{sin(θ1+θ01)}・sin(ω0・t)
・・・(12)
At this time, the inter-electrode electromotive force Ev caused by the flow velocity is obtained by multiplying the magnetic field B1 by the proportional coefficient rkv and replacing the phase θ1 by θ1 + θ01 as shown in the following equation (rkv and θ01 are the magnitudes of the flow velocity). V, the conductivity and dielectric constant of the fluid to be measured, and the structure of the measuring tube 1 including the arrangement of the electrodes 2a and 2b).
Ev = rkv · {b1 · cos (ω0 · t−θ1−θ01)} (11)
When formula (11) is transformed, the following formula is obtained.
Ev = rkv · b1 · cos (ω0 · t) · cos (−θ1−θ01)
−rkv · b1 · sin (ω0 · t) · sin (−θ1−θ01)
= Rkv · b1 · {cos (θ1 + θ01)} · cos (ω0 · t)
+ Rkv · b1 · {sin (θ1 + θ01)} · sin (ω0 · t)
(12)

ここで、式(12)をω0・tを基準として複素座標平面に写像すると、実軸成分Evx、虚軸成分Evyは次式となる。
Evx=rkv・b1・{cos(θ1+θ01)} ・・・(13)
Evy=rkv・b1・{sin(θ1+θ01)} ・・・(14)
さらに、式(13)、式(14)に示したEvx,Evyを次式に示す複素ベクトルEvcに変換する。
Evc=Evx+j・Evy
=rkv・b1・{cos(θ1+θ01)}
+j・rkv・b1・{sin(θ1+θ01)}
=rkv・b1・{cos(θ1+θ01)+j・sin(θ1+θ01)}
=rkv・b1・exp{j・(θ1+θ01)} ・・・(15)
Here, when Expression (12) is mapped onto the complex coordinate plane with ω0 · t as a reference, the real axis component Evx and the imaginary axis component Evy are expressed by the following expressions.
Evx = rkv · b1 · {cos (θ1 + θ01)} (13)
Evy = rkv · b1 · {sin (θ1 + θ01)} (14)
Further, Evx and Evy shown in Expression (13) and Expression (14) are converted into a complex vector Evc shown in the following expression.
Evc = Evx + j · Evy
= Rkv · b1 · {cos (θ1 + θ01)}
+ J · rkv · b1 · {sin (θ1 + θ01)}
= Rkv · b1 · {cos (θ1 + θ01) + j · sin (θ1 + θ01)}
= Rkv · b1 · exp {j · (θ1 + θ01)} (15)

複素座標に変換された式(15)の電極間起電力Evcは、被測定流体の流速に起因する電極間起電力となる。式(15)のrkv・b1・exp{j・(θ1+θ01)}は、長さがrkv・b1、実軸からの角度がθ1+θ01の複素ベクトルである。
また、前述の比例係数rkv及び角度θ01は、次の複素ベクトルkvcで表すことができる。
kvc=rkv・cos(θ01)+j・rkv・sin(θ01)
=rkv・exp(j・θ01) ・・・(16)
式(16)においてrkvはベクトルkvcの大きさ、θ01は実軸に対するベクトルkvcの角度である。ここで、rkvは、前記比例係数rk(式(10)参照)に流速の大きさVと比例係数γをかけたものに相当する。すなわち、次式が成立する。
rkv=γ・rk・V ・・・(17)
The interelectrode electromotive force Evc of the equation (15) converted into the complex coordinates becomes the interelectrode electromotive force due to the flow velocity of the fluid to be measured. In equation (15), rkv · b1 · exp {j · (θ1 + θ01)} is a complex vector having a length of rkv · b1 and an angle from the real axis of θ1 + θ01.
The proportional coefficient rkv and the angle θ01 described above can be expressed by the following complex vector kvc.
kvc = rkv · cos (θ01) + j · rkv · sin (θ01)
= Rkv · exp (j · θ01) (16)
In Equation (16), rkv is the magnitude of the vector kvc, and θ01 is the angle of the vector kvc with respect to the real axis. Here, rkv corresponds to a value obtained by multiplying the proportional coefficient rk (see equation (10)) by the magnitude V of the flow velocity and the proportional coefficient γ. That is, the following equation is established.
rkv = γ · rk · V (17)

磁場の時間変化に起因する電極間起電力Ecと流体の流速に起因する電極間起電力Evcとを合わせた全体の電極間起電力Eacは、式(15)に式(17)を代入した式と、式(9)とを足すことにより、次式で表される。
Eac=rk・ω0・b1・exp{j・(π/2+θ1+θ00)}
+γ・rk・V・b1・exp{j・(θ1+θ01)} ・・・(18)
The total inter-electrode electromotive force Eac obtained by combining the inter-electrode electromotive force Ec caused by the time change of the magnetic field and the inter-electrode electromotive force Evc caused by the fluid flow velocity is an equation obtained by substituting the equation (17) into the equation (15). And the following expression (9).
Eac = rk · ω0 · b1 · exp {j · (π / 2 + θ1 + θ00)}
+ Γ · rk · V · b1 · exp {j · (θ1 + θ01)} (18)

式(18)から分かるように、電極間起電力Eacは、rk・ω0・b1・exp{j・(π/2+θ1+θ00)}とγ・rk・V・b1・exp{j・(θ1+θ01)}の2個の複素ベクトルにより記述される。複素ベクトルrk・ω0・b1・exp{j・(π/2+θ1+θ00)}は後述する∂A/∂t成分であり、複素ベクトルγ・rk・V・b1・exp{j・(θ1+θ01)}は後述するv×B成分である。この2個の複素ベクトルを合成した合成ベクトルの長さが出力(電極間起電力Eac)の振幅を表し、この合成ベクトルの角度φが入力(励磁電流)の位相ω0・tに対する電極間起電力Eacの位相差(位相遅れ)を表す。
なお、流量は流速に測定管の断面積をかけたものとなるため、通常、初期状態での校正において流速と流量は一対一の関係となり、流速を求めることと流量を求めることは同等に扱えるので、以下(流量を求めるために)流速を求める方式として説明を進める。
As can be seen from the equation (18), the electromotive force Eac between rk · ω0 · b1 · exp {j · (π / 2 + θ1 + θ00)} and γ · rk · V · b1 · exp {j · (θ1 + θ01)}. It is described by two complex vectors. The complex vector rk · ω0 · b1 · exp {j · (π / 2 + θ1 + θ00)} is a later-described ∂A / 後 述 t component, and the complex vector γ · rk · V · b1 · exp {j · (θ1 + θ01)} is later described. V × B component. The length of the combined vector obtained by combining the two complex vectors represents the amplitude of the output (interelectrode electromotive force Eac), and the angle φ of the combined vector is the interelectrode electromotive force with respect to the phase (excitation current) phase ω0 · t. It represents the phase difference (phase delay) of Eac.
Since the flow rate is obtained by multiplying the flow velocity by the cross-sectional area of the measuring tube, the flow rate and the flow rate are usually in a one-to-one relationship in the calibration in the initial state, and the flow rate and the flow rate can be treated equally. Therefore, the description will be given below as a method for obtaining the flow velocity (in order to obtain the flow rate).

特許文献1の電磁流量計は、上記のような理論を背景に、スパンのシフトに影響されないパラメータ(非対称励磁パラメータ)を抽出し、これに基づき流量を出力することで、スパンのシフトの問題を解決している。
ここで、図32を用いてスパンのシフトについて説明する。被測定流体の流速が変化していないにもかかわらず、電磁流量計によって計測される流速の大きさVが変化したとすると、この出力変動の要因としてスパンのシフトが考えられる。
The electromagnetic flow meter of Patent Document 1 extracts a parameter (asymmetric excitation parameter) that is not affected by the span shift, and outputs a flow rate based on this parameter, thereby solving the problem of the span shift. It has been solved.
Here, the span shift will be described with reference to FIG. If the magnitude V of the flow velocity measured by the electromagnetic flowmeter has changed even though the flow velocity of the fluid to be measured has not changed, a span shift can be considered as a factor of this output fluctuation.

例えば、初期状態において被測定流体の流速が0のときに電磁流量計の出力が0(v)となり、流速が1(m/sec)のときに出力が1(v)となるように校正したとする。ここでの電磁流量計の出力は、流速の大きさVを表す電圧である。このような校正により、被測定流体の流速が1(m/sec)であれば、電磁流量計の出力は当然1(v)になるはずである。ところが、ある時間t1が経過したところで、被測定流体の流速が同じく1(m/sec)であるにもかかわらず、電磁流量計の出力が1.2(v)になることがある。この出力変動の要因として考えられるのが、スパンのシフトである。スパンのシフトという現象は、例えば電磁流量計の周囲温度の変化などにより、励磁コイルを流れる励磁電流値が一定値を維持できなくなるなどの原因により発生する。   For example, calibration was performed so that the output of the electromagnetic flowmeter is 0 (v) when the flow velocity of the fluid to be measured is 0 in the initial state, and the output is 1 (v) when the flow velocity is 1 (m / sec). And Here, the output of the electromagnetic flow meter is a voltage representing the magnitude V of the flow velocity. As a result of such calibration, if the flow rate of the fluid to be measured is 1 (m / sec), the output of the electromagnetic flowmeter should naturally be 1 (v). However, when a certain time t1 elapses, the output of the electromagnetic flow meter may become 1.2 (v) even though the flow velocity of the fluid to be measured is also 1 (m / sec). A possible cause of this output fluctuation is a span shift. The phenomenon of span shift occurs due to, for example, the fact that the exciting current value flowing through the exciting coil cannot maintain a constant value due to a change in the ambient temperature of the electromagnetic flowmeter.

特許文献1の電磁流量計は、スパンのシフトを補正することにより正確な流量計測を実現するものであるが、流量計測の精度に影響を与える他の要因として、出力の0点のシフトがある。ここで、図33を用いて出力の0点のシフトについて説明しておく。被測定流体の流速が変化していないにもかかわらず、電磁流量計によって計測される流速の大きさVが変化したとすると、この出力変動の要因として0点のシフトが考えられる。
例えば、初期状態において被測定流体の流量が0のときに電磁流量計の出力が0(v)となり、流速が1(m/sec)のときに出力が1(v)となるように校正したとする。ここでの電磁流量計の出力は、流速の大きさVを表す電圧である。このような校正により、被測定流体の流速が1(m/sec)であれば、電磁流量計の出力は当然1(v)になるはずである。ところが、ある時間t1が経過したところで、被測定流体の流速が同じく1(m/sec)であるにもかかわらず、電磁流量計の出力が1.5(v)になり、さらに流速を0に戻しても0.5(v)が出力され、0にならないことがある。この出力変動の要因として考えられるのが、0点のシフトである。0点のシフトという現象は、例えば電磁流量計の周囲温度の変化などにより、磁場の変化によって発生する電圧が変動し、キャンセルできなくなることから生じる。
The electromagnetic flow meter of Patent Document 1 realizes accurate flow measurement by correcting a span shift. However, as another factor affecting the accuracy of flow measurement, there is a shift of 0 point of output. . Here, the shift of the output 0 point will be described with reference to FIG. Assuming that the magnitude V of the flow velocity measured by the electromagnetic flow meter has changed even though the flow velocity of the fluid to be measured has not changed, a shift of 0 point can be considered as a factor of this output fluctuation.
For example, calibration was performed so that the output of the electromagnetic flowmeter is 0 (v) when the flow rate of the fluid to be measured is 0 in the initial state and the output is 1 (v) when the flow velocity is 1 (m / sec). And Here, the output of the electromagnetic flowmeter is a voltage representing the magnitude V of the flow velocity. As a result of such calibration, if the flow rate of the fluid to be measured is 1 (m / sec), the output of the electromagnetic flowmeter should naturally be 1 (v). However, when a certain time t1 has passed, the output of the electromagnetic flowmeter becomes 1.5 (v) even though the flow velocity of the fluid to be measured is also 1 (m / sec), and the flow velocity is further reduced to 0. Even if it returns, 0.5 (v) may be output and may not become 0. A possible cause of this output fluctuation is a zero point shift. The phenomenon of the zero point shift occurs because the voltage generated by the change in the magnetic field fluctuates due to, for example, a change in the ambient temperature of the electromagnetic flow meter and cannot be canceled.

励磁コイルに供給する励磁電流に正弦波を用いる正弦波励磁方式の電磁流量計には、商用周波数ノイズの影響を受けやすいという欠点があるが、この欠点は励磁電流の周波数を高くした高周波励磁方式によって解決することができる(例えば、非特許文献1参照)。また、高周波励磁方式には、電気化学ノイズやスパイクノイズといった1/fノイズに強いという利点があり、さらに応答性(流量変化に対して流量信号を素早く追従させる特性)を向上させることができるという利点がある。正弦波励磁方式の電磁流量計では、常に磁場が変化しており、この磁場の変化によって発生する電極間起電力の成分の影響をなくすために、電極軸を境とする測定管の前後で磁場が対称に分布するような構造となっている。しかし、実際には電極や取り出し線の位置ずれ、コイルから発生する磁場の対称性のずれなどにより、磁場の時間変化によって発生する成分の影響を受ける。そこで、正弦波励磁方式の電磁流量計では、磁場の時間変化によって発生する成分の影響を校正時にオフセットとして取り除いているが、磁場のシフトや磁場の分布の変化等により影響をうけ、電磁流量計の出力の0点がシフトしてしまうことが避けられない。また、正弦波励磁方式の電磁流量計では、位相検波により磁場の変化による成分をキャンセルするようにしているが、この位相検波が安定しないため、出力の0点の安定性が悪いという欠点があった。   The sine wave excitation type electromagnetic flow meter that uses a sine wave as the excitation current supplied to the excitation coil has the disadvantage of being easily affected by commercial frequency noise, but this disadvantage is a high frequency excitation method with a higher excitation current frequency. (For example, refer nonpatent literature 1). In addition, the high frequency excitation method has an advantage of being resistant to 1 / f noise such as electrochemical noise and spike noise, and can further improve responsiveness (characteristic for quickly following a flow rate signal against a flow rate change). There are advantages. In a sinusoidal excitation type electromagnetic flow meter, the magnetic field is constantly changing, and in order to eliminate the influence of the inter-electrode electromotive force component generated by the change of the magnetic field, the magnetic field before and after the measurement tube with the electrode axis as the boundary. Are distributed symmetrically. However, in actuality, it is affected by a component generated by a time change of the magnetic field due to a positional shift of the electrode or the extraction line, a shift of the symmetry of the magnetic field generated from the coil, or the like. Therefore, in the electromagnetic flow meter of the sine wave excitation method, the influence of the component generated by the time change of the magnetic field is removed as an offset at the time of calibration. However, the electromagnetic flow meter is affected by the shift of the magnetic field or the change of the magnetic field distribution. It is inevitable that the zero point of the output will shift. In addition, the sinusoidal excitation type electromagnetic flowmeter cancels the component due to the change of the magnetic field by phase detection. However, since this phase detection is not stable, there is a disadvantage that the stability of the output zero point is poor. It was.

一方、励磁コイルに供給する励磁電流に矩形波を用いる矩形波励磁方式の電磁流量計の場合、磁場の変化がなくなったところで、電極間起電力を検出するという手法をとっているため、出力の0点の安定性が正弦波励磁方式に比べて優れている(例えば、非特許文献1参照)。しかし、矩形波励磁方式の電磁流量計では、励磁電流が高周波になると、励磁コイルのインピーダンスや、励磁電流の応答性、磁場の応答性、励磁コイルのコアや測定管での過電流損失といった影響を無視できなくなり、矩形波励磁を維持すること(すなわち、磁場の変化がないところで電極間起電力を検出すること)が難しくなり、出力の0点の安定性を確保できなくなる。結果として、矩形波励磁方式の電磁流量計の場合、高周波励磁が難しく、流量変化に対する応答性の向上や1/fノイズの除去を実現できないという問題点があった。   On the other hand, in the case of a rectangular wave excitation type electromagnetic flowmeter that uses a rectangular wave as the excitation current supplied to the excitation coil, the method of detecting the electromotive force between the electrodes is taken when the change in the magnetic field is eliminated. The zero point stability is superior to the sine wave excitation method (see Non-Patent Document 1, for example). However, in the electromagnetic flowmeter of the rectangular wave excitation method, when the excitation current becomes high frequency, the influence of the excitation coil impedance, the excitation current response, the magnetic field response, the overcurrent loss in the excitation coil core and measurement tube, etc. Cannot be ignored, and it becomes difficult to maintain the rectangular wave excitation (that is, to detect the electromotive force between the electrodes when there is no change in the magnetic field), and the stability of the output zero point cannot be ensured. As a result, in the case of a rectangular wave excitation type electromagnetic flow meter, there has been a problem that high-frequency excitation is difficult and improvement in response to flow rate changes and removal of 1 / f noise cannot be realized.

また、正弦波励磁方式と矩形波励磁方式のいずれにおいても、被測定流体を流したままでは0点がシフトしたかどうかを確認することができないので、被測定流体を止めて流量を0にした上で、出力の0点がシフトしたかどうかを確認し、設定している0点のオフセットを修正する作業が必要となる。   In addition, in both the sine wave excitation method and the rectangular wave excitation method, it is impossible to confirm whether the zero point has shifted while the fluid to be measured is flowing, so the fluid to be measured is stopped and the flow rate is reduced to zero. In the above, it is necessary to check whether or not the output zero point has been shifted, and to correct the set zero offset.

なお、出願人は、本明細書に記載した先行技術文献情報で特定される先行技術文献以外には、本発明に関連する先行技術文献を出願時までに発見するには至らなかった。
WO 03/027614 社団法人日本計量機器工業連合会編,「計装エンジニアのための流量計測 AtoZ」,工業技術社,1995年,p.143−160
The applicant has not yet found prior art documents related to the present invention by the time of filing other than the prior art documents specified by the prior art document information described in this specification.
WO 03/027614 Edited by the Japan Measuring Instruments Manufacturers Association, “Flow Measurement AtoZ for Instrumentation Engineers”, Kogyo Kogyosha, 1995, p. 143-160

まず、電磁流量計のスパン補正の問題を説明するために必要な物理現象について説明しておく。変化する磁場中を物体が移動する場合、電磁誘導によって2種類の電界、(a) 磁場の時間変化によって発生する電界E(i)=∂A/∂t 、(b) 磁場中を物体が動くことにより発生する電界E(v)=v×B が発生する。v×BはvとBの外積を示し、∂A/∂tはAの時間による偏微分を示す。v、B、Aはそれぞれ下記に対応しており、3次元(x、y、z)に方向をもつベクトルである(v:流速、B:磁束密度、A:ベクトルポテンシャル(磁束密度とはB=rotAの関係がある))。ただし、ここでの3次元ベクトルは複素平面上のベクトルとは意味が異なる。この2種類の電界によって、電位分布が流体中に発生し、この電位は電極によって検出することができる。
特許文献1の電磁流量計では、基本的な理論展開においては実軸に対するベクトルkcの角度θ00、実軸に対するベクトルkvcの角度θ01を考慮しているが、スパンのシフトの問題を解決できる電磁流量計の制約条件として、θ00=θ01=0を前提においている。すなわち、上記前提が成立するように電磁流量計の条件を整えることが制約条件になる。なお、θ1は初期位相であり、励磁電流と電極間起電力に共通の位相部分である。ゆえに、従来技術および本発明のように、励磁電流と電極間起電力の位相差のみを考える場合は、理解を容易にするためθ1=0とする。
First, the physical phenomenon necessary for explaining the problem of the span correction of the electromagnetic flow meter will be described. When an object moves in a changing magnetic field, two types of electric fields are generated by electromagnetic induction: (a) an electric field E generated by time-dependent changes in the magnetic field (i) = ∂A / ∂t, (b) an object moves in the magnetic field As a result, an electric field E (v) = v × B is generated. v × B represents an outer product of v and B, and ∂A / ∂t represents a partial differentiation of A with respect to time. v, B, and A respectively correspond to the following, and are vectors having directions in three dimensions (x, y, z) (v: flow velocity, B: magnetic flux density, A: vector potential (the magnetic flux density is B = RotA))). However, the three-dimensional vector here has a different meaning from the vector on the complex plane. By these two types of electric fields, a potential distribution is generated in the fluid, and this potential can be detected by the electrodes.
In the electromagnetic flow meter of Patent Document 1, the angle θ00 of the vector kc with respect to the real axis and the angle θ01 of the vector kvc with respect to the real axis are considered in the basic theoretical development, but the electromagnetic flow rate that can solve the problem of span shift. As a total constraint, θ00 = θ01 = 0 is assumed. That is, the restriction condition is to prepare the conditions of the electromagnetic flowmeter so that the above assumption is satisfied. Note that θ1 is an initial phase, which is a phase portion common to the excitation current and the inter-electrode electromotive force. Therefore, when considering only the phase difference between the excitation current and the inter-electrode electromotive force as in the prior art and the present invention, θ1 = 0 is set to facilitate understanding.

前記制約条件が流量計測に与える影響について、図34を用いて複素ベクトルの考え方で説明する。図34において、Reは実軸、Imは虚軸である。まず、磁場の時間変化のみに依存し、被測定流体の流速に依存しない電極間起電力Ecを∂A/∂t成分と呼び、この∂A/∂t成分をベクトルVaで表すと共に、被測定流体の流速に依存する電極間起電力Evcをv×B成分と呼び、このv×B成分をベクトルVbで表す。前述のスパンとは、この被測定流体の流速に依存するv×B成分の流速の大きさVにかかる係数である。なお、θ00,θ01の前述の定義を言い換えると、θ00は虚軸に対するベクトルVaの角度、θ01は実軸に対するベクトルVbの角度である。   The influence of the constraint condition on the flow rate measurement will be described using the concept of complex vectors with reference to FIG. In FIG. 34, Re is a real axis and Im is an imaginary axis. First, the inter-electrode electromotive force Ec that depends only on the time change of the magnetic field and does not depend on the flow velocity of the fluid to be measured is referred to as ∂A / ∂t component. The interelectrode electromotive force Evc depending on the flow velocity of the fluid is called a v × B component, and this v × B component is represented by a vector Vb. The above-mentioned span is a coefficient applied to the magnitude V of the flow velocity of the v × B component depending on the flow velocity of the fluid to be measured. In other words, in other words, the definition of θ00 and θ01 is θ00 is the angle of the vector Va with respect to the imaginary axis, and θ01 is the angle of the vector Vb with respect to the real axis.

図29に示した電磁流量計の構成において、θ00=θ01=0ということは、ベクトルVaが虚軸Im上に存在し、ベクトルVbが実軸Re上に存在することを意味する。すなわち、ベクトルVaとVbは直交する位置関係にある。このように、特許文献1の電磁流量計は、∂A/∂t成分のベクトルVaとv×B成分のベクトルVbが直交することを前提としている。   In the configuration of the electromagnetic flow meter shown in FIG. 29, θ00 = θ01 = 0 means that the vector Va exists on the imaginary axis Im and the vector Vb exists on the real axis Re. That is, the vectors Va and Vb are in a positional relationship orthogonal to each other. As described above, the electromagnetic flow meter of Patent Document 1 is based on the assumption that the vector Va of the ∂A / ∂t component and the vector Vb of the v × B component are orthogonal.

しかしながら、現実の電磁流量計において、上記前提は必ずしも常に成立するとは限らない。その理由は、ミクロ的には∂A/∂t成分のベクトルVaとv×B成分のベクトルVbの直交性は保証されるが、マクロ的に見ると、被測定流体に印加される磁場が理想的な分布になっていないため、電極で検出されるマクロ的な∂A/∂t成分のベクトルVaとv×B成分のベクトルVbが若干のゆがみを含むと考えなければならないからである。したがって、ベクトルVaとVbは直交しないし、θ00≠0、θ01≠0、θ00≠θ01と考えなければならない。   However, in an actual electromagnetic flow meter, the above assumption is not always true. Microscopically, the orthogonality of the vector Va of the ∂A / ∂t component and the vector Vb of the v × B component is ensured microscopically, but when viewed macroscopically, the magnetic field applied to the fluid to be measured is ideal. This is because the macro-like ∂A / ∂t component vector Va and the v × B component vector Vb detected by the electrodes must be considered to contain a slight distortion. Therefore, the vectors Va and Vb are not orthogonal, and must be considered as θ00 ≠ 0, θ01 ≠ 0, and θ00 ≠ θ01.

以上の説明から明らかなように、高精度の流量計測を指向する場合には、ベクトルVaとVbの直交性を精密に考慮しなければならないが、特許文献1の電磁流量計では、ベクトルVaとVbの直交性を前提としているので、直交性に誤差が生じる場合には、正確なスパン補正や流量計測ができない可能性があった。
また、電磁流量計の材料や構造によっては磁場の損失により、励磁コイルから発生する磁場の振幅が周波数によって変化する可能性がある。したがって、特許文献1の電磁流量計において正確なスパン補正や流量測定を行うためには、励磁コイルから発生する磁場の振幅が周波数で変動しないように調整するといった手順が必要になる可能性があった。
As is clear from the above description, when directing high-precision flow rate measurement, the orthogonality between the vectors Va and Vb must be accurately considered. Since the orthogonality of Vb is assumed, if there is an error in the orthogonality, there is a possibility that accurate span correction and flow rate measurement cannot be performed.
In addition, depending on the material and structure of the electromagnetic flowmeter, the amplitude of the magnetic field generated from the exciting coil may change depending on the frequency due to the loss of the magnetic field. Therefore, in order to perform accurate span correction and flow rate measurement in the electromagnetic flow meter of Patent Document 1, there is a possibility that a procedure for adjusting the amplitude of the magnetic field generated from the exciting coil so as not to fluctuate with frequency may be required. It was.

次に、電磁流量計の0補正の問題について説明すると、特許文献1の電磁流量計では、出力の0点のシフトを考慮しておらず、0点の誤差を補正することができないという問題点があった。特許文献1の電磁流量計で0点のシフトによる流量計測誤差が生じることは、式(18)において∂A/∂t成分が変動すると、流速の大きさVが0であっても、電極間起電力Eacが0にならないことから明らかである。
一方、非特許文献1に記載された電磁流量計では、校正時に0点の誤差を補正することができる。しかし、正弦波励磁方式の電磁流量計では、校正した後に0点がシフトしてしまうことがあり、0点の安定性を確保することができないという問題点があった。また、矩形波励磁方式の電磁流量計においても、高周波励磁において0点の安定性を確保することができないという問題点があった。
さらに、特許文献1および非特許文献1に記載されたいずれの電磁流量計においても、被測定流体を流したままの状態では出力の0点の誤差を補正することができないという問題点があった。
Next, the problem of the zero correction of the electromagnetic flow meter will be described. The electromagnetic flow meter of Patent Document 1 does not consider the shift of the zero point of the output and cannot correct the zero point error. was there. The flow measurement error caused by the zero point shift in the electromagnetic flow meter of Patent Document 1 is that if the ∂A / ∂t component fluctuates in Equation (18), even if the flow velocity magnitude V is 0, it is between the electrodes. It is clear from the fact that the electromotive force Eac does not become zero.
On the other hand, the electromagnetic flow meter described in Non-Patent Document 1 can correct the zero point error during calibration. However, the sine wave excitation type electromagnetic flowmeter has a problem that the zero point may shift after calibration, and the stability of the zero point cannot be ensured. Also, the rectangular wave excitation type electromagnetic flowmeter has a problem that the stability of 0 point cannot be ensured in high frequency excitation.
Furthermore, in any of the electromagnetic flowmeters described in Patent Document 1 and Non-Patent Document 1, there is a problem that the error of the output 0 point cannot be corrected in a state where the fluid to be measured is kept flowing. .

本発明は、上記課題を解決するためになされたもので、磁場の損失による影響がある場合でも、正確なスパン補正を自動的に行うことができ、かつ高周波励磁においても出力の0点の安定性を確保することができ、被測定流体の流量を0にすることなく0点の誤差を補正することができる電磁流量計を提供することを目的とする。   The present invention has been made to solve the above-described problems, and can automatically perform accurate span correction even when there is an influence due to magnetic field loss, and can stabilize the zero point of output even in high-frequency excitation. It is an object of the present invention to provide an electromagnetic flow meter that can ensure the performance and can correct an error at zero point without setting the flow rate of the fluid to be measured to zero.

本発明の電磁流量計は、被測定流体が流れる測定管と、この測定管に配設され、前記流体に印加される磁場と前記流体の流れとによって生じた起電力を検出する電極と、この電極を含む、前記測定管の軸方向と垂直な第1の平面に対して非対称かつ時間変化する磁場を前記流体に印加する励磁部と、前記電極で検出される、前記流体の流速とは無関係な∂A/∂t成分の起電力と前記流体の流速に起因するv×B成分の起電力との合成起電力から、第1の周波数における第1の∂A/∂t成分と第1の補正対象起電力とを抽出すると共に、第2の周波数における第2の∂A/∂t成分と第2の補正対象起電力とを抽出し、前記抽出した第1の∂A/∂t成分に基づいて前記第1の補正対象起電力の中のv×B成分の流速の大きさVにかかる係数であるスパンの変動要因を除去すると共に、前記抽出した第2の∂A/∂t成分に基づいて前記第2の補正対象起電力の中のv×B成分の流速の大きさVにかかる係数であるスパンの変動要因を除去するスパン補正を行うスパン補正部と、前記スパン補正された第1の補正対象起電力と前記スパン補正された第2の補正対象起電力に基づいて、前記流体の流速とは無関係であり、前記磁場の時間変化に起因する第3の∂A/∂t成分を抽出し、このスパン補正された2つの補正対象起電力のうちいずれか1つの中から、前記抽出した第3の∂A/∂t成分を取り除くことによりv×B成分を抽出する0点補正部と、前記抽出されたv×B成分から前記流体の流量を算出する流量出力部とを備えるものである。   An electromagnetic flowmeter according to the present invention includes a measurement tube through which a fluid to be measured flows, an electrode that is disposed in the measurement tube and detects an electromotive force generated by a magnetic field applied to the fluid and the flow of the fluid, An excitation unit that applies an asymmetrical and time-varying magnetic field to the fluid, including an electrode, on a first plane perpendicular to the axial direction of the measuring tube, and is independent of the fluid velocity detected by the electrode From the combined electromotive force of the electromotive force of the ∂A / ∂t component and the v × B component caused by the flow velocity of the fluid, the first ∂A / ∂t component and the first The correction target electromotive force is extracted, the second ∂A / ∂t component and the second correction target electromotive force at the second frequency are extracted, and the extracted first ∂A / ∂t component is extracted. Based on the coefficient of the flow velocity magnitude V of the v × B component in the first correction target electromotive force Is a coefficient applied to the magnitude V of the flow velocity of the v × B component in the second correction target electromotive force based on the extracted second ∂A / ∂t component. A span correction unit that performs span correction to remove the variation factor of the span, and the first correction target electromotive force that has been subjected to the span correction and the second correction target electromotive force that has been subjected to the span correction. A third ∂A / ∂t component that is independent of the flow velocity and caused by the time change of the magnetic field is extracted, and the extraction is performed from either one of the two correction target electromotive forces that have been subjected to span correction. A zero point correction unit that extracts the v × B component by removing the third ∂A / ∂t component, and a flow rate output unit that calculates the flow rate of the fluid from the extracted v × B component It is.

また、本発明の電磁流量計の1構成例において、前記励磁部は、前記電極を含む、前記測定管の軸方向と垂直な第1の平面から第1のオフセットを設けて離れた位置に配設された第1の励磁コイルと、前記第1の平面から第2のオフセットを設けて離れた位置に、前記第1の平面を挟んで前記第1の励磁コイルと対向するように配設された第2の励磁コイルと、前記第1の励磁コイルに供給する励磁電流と第2の励磁コイルに供給する励磁電流の位相差および励磁角周波数を切り替えながら、前記第1の励磁コイルと第2の励磁コイルに励磁電流を供給する電源部とからなるものである。
また、本発明の電磁流量計の1構成例(第1の実施の形態)において、前記スパン補正部は、前記第1の励磁コイルにより発生する第1の磁場と前記第2の励磁コイルにより発生する第2の磁場との位相差がΔθ3で、励磁角周波数がω0の第1の励磁状態と、この第1の励磁状態に対して前記第1の磁場と第2の磁場との位相差をΔθ3+πに変更した第2の励磁状態と、前記第1の励磁状態に対して励磁角周波数をω2に変更した第3の励磁状態と、前記第2の励磁状態に対して励磁角周波数をω2に変更した第4の励磁状態の4つの励磁状態の各々において前記電極で検出される合成起電力の振幅と位相を求め、これらの振幅と位相に基づいて前記第2の励磁状態の合成起電力を前記第1の∂A/∂t成分として抽出すると共に、前記第4の励磁状態の合成起電力を前記第2の∂A/∂t成分として抽出し、前記第1の励磁状態の合成起電力を第1の補正対象起電力として、前記抽出した第1の∂A/∂t成分に基づいて前記第1の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去すると共に、前記第3の励磁状態の合成起電力を第2の補正対象起電力として、前記抽出した第2の∂A/∂t成分に基づいて前記第2の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去するスパン補正を行い、前記0点補正部は、前記スパン補正された第1の補正対象起電力と前記スパン補正された第2の補正対象起電力との差を前記第3の∂A/∂t成分として抽出し、このスパン補正された2つの補正対象起電力のうちいずれか1つの中から、前記抽出した第3の∂A/∂t成分を取り除くことによりv×B成分を抽出するものである。
Further, in one configuration example of the electromagnetic flowmeter of the present invention, the excitation unit is arranged at a position apart from the first plane perpendicular to the axial direction of the measurement tube including the electrode by providing a first offset. The first exciting coil provided is disposed at a position spaced apart from the first plane by providing a second offset so as to face the first exciting coil with the first plane interposed therebetween. The first excitation coil and the second excitation coil are switched while switching the phase difference and excitation angular frequency between the second excitation coil and the excitation current supplied to the first excitation coil and the excitation current supplied to the second excitation coil. And a power supply unit for supplying an exciting current to the exciting coil.
In one configuration example (first embodiment) of the electromagnetic flowmeter of the present invention, the span correction unit is generated by the first magnetic field generated by the first excitation coil and the second excitation coil. The phase difference between the first magnetic field and the second magnetic field with respect to the first excitation state is Δθ3 and the excitation angular frequency is ω0. The second excitation state changed to Δθ3 + π, the third excitation state in which the excitation angular frequency is changed to ω2 with respect to the first excitation state, and the excitation angular frequency to ω2 with respect to the second excitation state. The amplitude and phase of the composite electromotive force detected by the electrode in each of the four excitation states of the changed fourth excitation state are obtained, and the composite electromotive force of the second excitation state is obtained based on these amplitudes and phases. Extracting the first ∂A / ∂t component and the fourth ∂ The synthesized electromotive force in the excited state is extracted as the second ∂A / ∂t component, the synthesized electromotive force in the first excited state is used as the first correction target electromotive force, and the extracted first ∂A / Based on the ∂t component, the variation factor of the span included in the v × B component in the first correction target electromotive force is removed, and the combined electromotive force in the third excitation state is changed to the second correction target electromotive force. Based on the extracted second ∂A / ∂t component as the power, span correction is performed to remove the span variation factor included in the v × B component in the second correction target electromotive force, and the 0 The point correction unit extracts a difference between the first correction target electromotive force subjected to the span correction and the second correction target electromotive force subjected to the span correction as the third ∂A / ∂t component, and this span The one extracted from any one of the two corrected electromotive forces to be corrected The v × B component is extracted by removing the third ∂A / ∂t component.

また、本発明の電磁流量計の1構成例において、前記励磁部は、前記電極を含む、前記測定管の軸方向と垂直な第1の平面から第1のオフセットを設けて離れた位置に配設された第1の励磁コイルと、前記第1の平面から第2のオフセットを設けて離れた位置に、前記第1の平面を挟んで前記第1の励磁コイルと対向するように配設された第2の励磁コイルと、前記第1の励磁コイルに供給する励磁電流と第2の励磁コイルに供給する励磁電流の位相差を切り替えながら、複数の励磁角周波数を同時に与える励磁電流を前記第1の励磁コイルと第2の励磁コイルに供給する電源部とからなるものである。
また、本発明の電磁流量計の1構成例(第2の実施の形態)において、前記電源部は、角周波数ω0とω2の異なる2つの励磁角周波数を同時に与える励磁電流を前記第1の励磁コイルと第2の励磁コイルに供給し、前記スパン補正部は、前記第1の励磁コイルにより発生する第1の磁場と前記第2の励磁コイルにより発生する第2の磁場との位相差がΔθ7で、励磁角周波数がω0,ω2の第1の励磁状態と、この第1の励磁状態に対して前記第1の磁場と第2の磁場との位相差をΔθ7+πに変更した第2の励磁状態の2つの励磁状態の各々において前記電極で検出される合成起電力の振幅と位相を求め、これらの振幅と位相に基づいて前記第2の励磁状態の合成起電力の角周波数ω0の成分を前記第1の∂A/∂t成分として抽出すると共に、前記第2の励磁状態の合成起電力の角周波数ω2の成分を前記第2の∂A/∂t成分として抽出し、前記第1の励磁状態の合成起電力の角周波数ω0の成分を第1の補正対象起電力として、前記抽出した第1の∂A/∂t成分に基づいて前記第1の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去すると共に、前記第1の励磁状態の合成起電力の角周波数ω2の成分を第2の補正対象起電力として、前記抽出した第2の∂A/∂t成分に基づいて前記第2の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去するスパン補正を行い、前記0点補正部は、前記スパン補正された第1の補正対象起電力と前記スパン補正された第2の補正対象起電力との差を前記第3の∂A/∂t成分として抽出し、このスパン補正された2つの補正対象起電力のうちいずれか1つの中から、前記抽出した第3の∂A/∂t成分を取り除くことによりv×B成分を抽出するものである。
Further, in one configuration example of the electromagnetic flowmeter of the present invention, the excitation unit is arranged at a position apart from the first plane perpendicular to the axial direction of the measurement tube including the electrode by providing a first offset. The first exciting coil provided is disposed at a position spaced apart from the first plane by providing a second offset so as to face the first exciting coil with the first plane interposed therebetween. The excitation current that simultaneously gives a plurality of excitation angular frequencies while switching the phase difference between the excitation current supplied to the second excitation coil and the excitation current supplied to the first excitation coil and the excitation current supplied to the second excitation coil. It consists of a power supply unit that supplies one excitation coil and a second excitation coil.
Further, in one configuration example (second embodiment) of the electromagnetic flowmeter of the present invention, the power supply unit supplies an excitation current that simultaneously provides two excitation angular frequencies having different angular frequencies ω0 and ω2 to the first excitation. The span correction unit supplies a phase difference between the first magnetic field generated by the first excitation coil and the second magnetic field generated by the second excitation coil by Δθ7. Thus, the first excitation state with excitation angular frequencies ω0 and ω2, and the second excitation state in which the phase difference between the first magnetic field and the second magnetic field is changed to Δθ7 + π with respect to the first excitation state. The amplitude and phase of the composite electromotive force detected by the electrode in each of the two excitation states are determined, and the component of the angular frequency ω0 of the composite electromotive force in the second excitation state is calculated based on these amplitudes and phases. While extracting as the first ∂A / ∂t component The component of the angular frequency ω2 of the synthetic electromotive force in the second excitation state is extracted as the second ∂A / ∂t component, and the component of the angular frequency ω0 of the synthetic electromotive force in the first excitation state is extracted as the first component. As a correction target electromotive force, a span variation factor included in a v × B component in the first correction target electromotive force is removed based on the extracted first ∂A / ∂t component, and Based on the extracted second ∂A / ∂t component, the component of the angular frequency ω2 of the composite electromotive force in the first excitation state is the second correction target electromotive force. The span correction for removing the variation factor of the span included in the v × B component is performed, and the zero point correction unit performs the first correction target electromotive force subjected to the span correction and the second correction target subjected to the span correction. The difference from the electromotive force is extracted as the third ∂A / ∂t component, and this span is extracted. Tadashisa from the one of the two corrected electromotive force was, it extracts a the v × B component by removing the third ∂A / ∂t component the extracted.

また、本発明の電磁流量計の1構成例において、前記励磁部は、前記電極を含む、前記測定管の軸方向と垂直な第1の平面から第1のオフセットを設けて離れた位置に配設された第1の励磁コイルと、前記第1の平面から第2のオフセットを設けて離れた位置に、前記第1の平面を挟んで前記第1の励磁コイルと対向するように配設された第2の励磁コイルと、前記第1の励磁コイルに供給する励磁電流と第2の励磁コイルに供給する励磁電流の位相差および励磁角周波数を切り替えながら、前記第1の励磁コイルと第2の励磁コイルに複数の励磁角周波数を同時に与える励磁電流を供給する電源部とからなるものである。
また、本発明の電磁流量計の1構成例(第3の実施の形態)において、前記電源部は、角周波数ω0±Δωの異なる2つの励磁角周波数を同時に与える励磁電流を前記第1の励磁コイルと第2の励磁コイルに供給する励磁状態と、角周波数ω2±Δωの異なる2つの励磁角周波数を同時に与える励磁電流を前記第1の励磁コイルと第2の励磁コイルに供給する励磁状態とを切り換えながら前記励磁コイルに励磁電流を供給し、前記スパン補正部は、前記第1の励磁コイルにより発生する第1の磁場と前記第2の励磁コイルにより発生する第2の磁場との位相差がΔθ9で、励磁角周波数がω0±Δωの第1の励磁状態と、この第1の励磁状態に対して前記第1の磁場と第2の磁場との位相差をΔθ9+πに変更した第2の励磁状態と、前記第1の励磁状態に対して励磁角周波数をω2±Δωに変更した第3の励磁状態と、この第3の励磁状態に対して前記第1の磁場と第2の磁場との位相差をΔθ9+πに変更した第4の励磁状態の4つの励磁状態の各々において前記電極で検出される合成起電力の振幅と位相を求め、これらの振幅と位相に基づいて前記第2の励磁状態の合成起電力の角周波数ω0+Δωの成分と角周波数ω0−Δωの成分との起電力和を前記第1の∂A/∂t成分として抽出すると共に、前記第4の励磁状態の合成起電力の角周波数ω2+Δωの成分と角周波数ω2−Δωの成分との起電力和を前記第2の∂A/∂t成分として抽出し、前記第1の励磁状態の合成起電力の角周波数ω0+Δωの成分と角周波数ω0−Δωの成分との起電力和を第1の補正対象起電力として、前記抽出した第1の∂A/∂t成分に基づいて前記第1の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去すると共に、前記第3の励磁状態の合成起電力の角周波数ω2+Δωの成分と角周波数ω2−Δωの成分との起電力和を第2の補正対象起電力として、前記抽出した第2の∂A/∂t成分に基づいて前記第2の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去するスパン補正を行い、前記0点補正部は、前記スパン補正された第1の補正対象起電力と前記スパン補正された第2の補正対象起電力との差を前記第3の∂A/∂t成分として抽出し、このスパン補正された2つの補正対象起電力のうちいずれか1つの中から、前記抽出した第3の∂A/∂t成分を取り除くことによりv×B成分を抽出するものである。
Further, in one configuration example of the electromagnetic flowmeter of the present invention, the excitation unit is arranged at a position apart from the first plane perpendicular to the axial direction of the measurement tube including the electrode by providing a first offset. The first exciting coil provided is disposed at a position spaced apart from the first plane by providing a second offset so as to face the first exciting coil with the first plane interposed therebetween. The first excitation coil and the second excitation coil are switched while switching the phase difference and excitation angular frequency between the second excitation coil and the excitation current supplied to the first excitation coil and the excitation current supplied to the second excitation coil. And a power supply unit that supplies an excitation current that simultaneously applies a plurality of excitation angular frequencies to the excitation coil.
Further, in one configuration example (third embodiment) of the electromagnetic flowmeter of the present invention, the power supply unit supplies an excitation current that simultaneously gives two excitation angular frequencies having different angular frequencies ω0 ± Δω to the first excitation. An excitation state to be supplied to the coil and the second excitation coil, and an excitation state to supply an excitation current that simultaneously gives two excitation angular frequencies having different angular frequencies ω2 ± Δω to the first excitation coil and the second excitation coil, An excitation current is supplied to the excitation coil while switching the phase, and the span correction unit causes a phase difference between a first magnetic field generated by the first excitation coil and a second magnetic field generated by the second excitation coil. Is a first excitation state having an excitation angular frequency of ω0 ± Δω and a phase difference between the first magnetic field and the second magnetic field with respect to the first excitation state is changed to Δθ9 + π. Excitation state and the first excitation state And a third excitation state in which the excitation angular frequency is changed to ω2 ± Δω, and a fourth excitation state in which the phase difference between the first magnetic field and the second magnetic field is changed to Δθ9 + π with respect to the third excitation state. The amplitude and phase of the combined electromotive force detected by the electrode in each of the four excitation states are determined, and the angular frequency ω0 + Δω of the combined electromotive force in the second excitation state is determined based on these amplitudes and phases. The sum of the electromotive force of the component and the component of the angular frequency ω0−Δω is extracted as the first ∂A / ∂t component, and the component of the angular frequency ω2 + Δω and the angular frequency ω2 of the synthetic electromotive force in the fourth excitation state are extracted. The sum of the electromotive force with the component of -Δω is extracted as the second ∂A / ∂t component, and the component of the angular frequency ω0 + Δω and the component of the angular frequency ω0-Δω of the composite electromotive force in the first excitation state are extracted. The first electromotive force as the first correction target electromotive force is extracted as the first electromotive force. Based on ∂A / ∂t component, the variation factor of the span included in the v × B component in the first correction target electromotive force is removed, and the angular frequency ω2 + Δω of the composite electromotive force in the third excitation state is removed. Of the second correction target electromotive force based on the extracted second ∂A / ∂t component, with the sum of the electromotive force of the component and the component of the angular frequency ω2−Δω as the second correction target electromotive force. The span correction for removing the variation factor of the span included in the v × B component is performed, and the zero point correction unit performs the first correction target electromotive force subjected to the span correction and the second correction target subjected to the span correction. The difference from the electromotive force is extracted as the third ∂A / ∂t component, and the extracted third ∂A / ∂ is extracted from any one of the two correction target electromotive forces subjected to the span correction. The v × B component is extracted by removing the t component.

また、本発明の電磁流量計の1構成例において、前記励磁部は、前記電極を含む、前記測定管の軸方向と垂直な第1の平面から第1のオフセットを設けて離れた位置に配設された第1の励磁コイルと、前記第1の平面から第2のオフセットを設けて離れた位置に、前記第1の平面を挟んで前記第1の励磁コイルと対向するように配設された第2の励磁コイルと、前記第1の励磁コイルと第2の励磁コイルに複数の励磁角周波数を同時又は交互に与える励磁電流を供給する電源部とからなるものである。
また、本発明の電磁流量計の1構成例において、前記電源部は、複数の周波数の搬送波をこの搬送波と異なる周波数の変調波によって変調した複数の成分を同時又は交互に与える励磁電流を前記第1の励磁コイルと第2の励磁コイルに供給するものである。
Further, in one configuration example of the electromagnetic flowmeter of the present invention, the excitation unit is arranged at a position apart from the first plane perpendicular to the axial direction of the measurement tube including the electrode by providing a first offset. The first exciting coil provided is disposed at a position spaced apart from the first plane by providing a second offset so as to face the first exciting coil with the first plane interposed therebetween. The second excitation coil and a power supply unit that supplies an excitation current that simultaneously or alternately provides a plurality of excitation angular frequencies to the first excitation coil and the second excitation coil.
Further, in one configuration example of the electromagnetic flowmeter of the present invention, the power supply unit supplies an excitation current that simultaneously or alternately applies a plurality of components obtained by modulating a carrier wave having a plurality of frequencies with a modulated wave having a frequency different from the carrier wave. The first and second exciting coils are supplied.

また、本発明の電磁流量計の1構成例(第4の実施の形態)において、前記電源部は、角周波数ω0の搬送波を角周波数ω1の変調波によって振幅変調した第1の励磁電流を前記第1の励磁コイルに供給すると同時に、前記角周波数ω0の搬送波を前記第1の励磁電流の変調波に対して同一角周波数で逆位相の変調波によって振幅変調した第2の励磁電流を前記第2の励磁コイルに供給する第1の励磁状態と、角周波数ω2の搬送波を角周波数ω1の変調波によって振幅変調した第3の励磁電流を前記第1の励磁コイルに供給すると同時に、前記角周波数ω2の搬送波を前記第3の励磁電流の変調波に対して同一角周波数で逆位相の変調波によって振幅変調した第4の励磁電流を前記第2の励磁コイルに供給する第2の励磁状態とを切り換えながら、前記第1の励磁コイルと第2の励磁コイルに励磁電流を供給し、前記スパン補正部は、前記第1の励磁状態と第2の励磁状態の各々において前記電極で検出される合成起電力の振幅と位相を求め、これらの振幅と位相に基づいて前記第1の励磁状態の合成起電力の角周波数ω0+ω1の成分と角周波数ω0−ω1の成分との起電力和を前記第1の∂A/∂t成分として抽出すると共に、前記第2の励磁状態の合成起電力の角周波数ω2+ω1の成分と角周波数ω2−ω1の成分との起電力和を前記第2の∂A/∂t成分として抽出し、前記第1の励磁状態の合成起電力の角周波数ω0の成分を第1の補正対象起電力として、前記抽出した第1の∂A/∂t成分に基づいて前記第1の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去すると共に、前記第2の励磁状態の合成起電力の角周波数ω2の成分を第2の補正対象起電力として、前記抽出した第2の∂A/∂t成分に基づいて前記第2の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去するスパン補正を行い、前記0点補正部は、前記スパン補正された第1の補正対象起電力と前記スパン補正された第2の補正対象起電力との差を前記第3の∂A/∂t成分として抽出し、このスパン補正された2つの補正対象起電力のうちいずれか1つの中から、前記抽出した第3の∂A/∂t成分を取り除くことによりv×B成分を抽出するものである。   Further, in one configuration example (fourth embodiment) of the electromagnetic flowmeter of the present invention, the power supply unit generates a first excitation current obtained by amplitude-modulating a carrier wave having an angular frequency ω0 with a modulated wave having an angular frequency ω1. Simultaneously with supplying the first exciting coil, the second exciting current obtained by amplitude-modulating the carrier wave having the angular frequency ω0 with the modulated wave having the same angular frequency and the opposite phase with respect to the modulated wave of the first exciting current. The first excitation state supplied to the second excitation coil and the third excitation current obtained by amplitude-modulating the carrier wave of the angular frequency ω2 with the modulated wave of the angular frequency ω1 are simultaneously supplied to the first excitation coil. a second excitation state in which a fourth excitation current obtained by amplitude-modulating a carrier wave of ω2 with a modulated wave of the same angular frequency and opposite phase with respect to the modulated wave of the third excitation current is supplied to the second excitation coil; Switch The excitation current is supplied to the first excitation coil and the second excitation coil, and the span correction unit detects the combined electromotive force detected by the electrodes in each of the first excitation state and the second excitation state. And the sum of the electromotive force of the component of the angular frequency ω0 + ω1 and the component of the angular frequency ω0−ω1 of the composite electromotive force in the first excitation state is calculated based on the amplitude and phase of the first excitation power. A sum of the electromotive force of the component of the angular frequency ω2 + ω1 and the component of the angular frequency ω2-ω1 of the combined electromotive force in the second excitation state is extracted as the A / ∂t component and the second ∂A / ∂t component The first correction is made based on the extracted first ∂A / ∂t component with the component of the angular frequency ω0 of the composite electromotive force in the first excitation state as the first correction target electromotive force. The variation factor of the span included in the v × B component in the target electromotive force The second correction is performed based on the extracted second ∂A / ∂t component with the component of the angular frequency ω2 of the combined electromotive force in the second excitation state as the second correction target electromotive force. Span correction is performed to remove the span variation factor included in the v × B component in the target electromotive force, and the zero point correction unit performs the span correction on the first correction target electromotive force and the span correction. The difference from the second correction target electromotive force is extracted as the third ∂A / ∂t component, and the extracted third electromotive force is selected from one of the two correction target electromotive forces subjected to the span correction. The v × B component is extracted by removing the ∂A / ∂t component.

また、本発明の電磁流量計の1構成例(第5の実施の形態)において、前記電源部は、角周波数ω0の搬送波を角周波数ω1の変調波によって振幅変調した第1の励磁電流を前記第1の励磁コイルに供給すると同時に、前記角周波数ω0の搬送波を前記第1の励磁電流の変調波に対して同一角周波数で逆位相の変調波によって振幅変調した第2の励磁電流を前記第2の励磁コイルに供給する第1の励磁状態と、角周波数ω2の搬送波を角周波数ω1の変調波によって振幅変調した第3の励磁電流を前記第1の励磁コイルに供給すると同時に、前記角周波数ω2の搬送波を前記第3の励磁電流の変調波に対して同一角周波数で逆位相の変調波によって振幅変調した第4の励磁電流を前記第2の励磁コイルに供給する第2の励磁状態とを切り換えながら、前記第1の励磁コイルと第2の励磁コイルに励磁電流を供給し、前記スパン補正部は、前記第1の励磁状態と第2の励磁状態の各々において前記電極で検出される合成起電力の振幅と位相を求め、これらの振幅と位相に基づいて前記第1の励磁状態の合成起電力の角周波数ω0の成分を前記第1の∂A/∂t成分として抽出すると共に、前記第2の励磁状態の合成起電力の角周波数ω2の成分を前記第2の∂A/∂t成分として抽出し、前記第1の励磁状態の合成起電力の角周波数ω0+ω1の成分と角周波数ω0−ω1の成分との起電力和を第1の補正対象起電力として、前記抽出した第1の∂A/∂t成分に基づいて前記第1の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去すると共に、前記第2の励磁状態の合成起電力の角周波数ω2+ω1の成分と角周波数ω2−ω1の成分との起電力和を第2の補正対象起電力として、前記抽出した第2の∂A/∂t成分に基づいて前記第2の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去するスパン補正を行い、前記0点補正部は、前記スパン補正された第1の補正対象起電力と前記スパン補正された第2の補正対象起電力との差を前記第3の∂A/∂t成分として抽出し、このスパン補正された2つの補正対象起電力のうちいずれか1つの中から、前記抽出した第3の∂A/∂t成分を取り除くことによりv×B成分を抽出するものである。   Further, in one configuration example (fifth embodiment) of the electromagnetic flowmeter of the present invention, the power supply unit generates a first excitation current obtained by amplitude-modulating a carrier wave having an angular frequency ω0 with a modulated wave having an angular frequency ω1. Simultaneously with supplying the first exciting coil, the second exciting current obtained by amplitude-modulating the carrier wave having the angular frequency ω0 with the modulated wave having the same angular frequency and the opposite phase with respect to the modulated wave of the first exciting current. The first excitation state supplied to the second excitation coil and the third excitation current obtained by amplitude-modulating the carrier wave of the angular frequency ω2 with the modulation wave of the angular frequency ω1 are simultaneously supplied to the first excitation coil. a second excitation state in which a fourth excitation current obtained by amplitude-modulating a carrier wave of ω2 with a modulated wave of the same angular frequency and opposite phase with respect to the modulated wave of the third excitation current is supplied to the second excitation coil; Switch The excitation current is supplied to the first excitation coil and the second excitation coil, and the span correction unit detects the combined electromotive force detected by the electrodes in each of the first excitation state and the second excitation state. And the component of the angular frequency ω0 of the synthetic electromotive force in the first excitation state is extracted as the first ∂A / ∂t component based on these amplitude and phase, and the second The component of the angular frequency ω2 of the synthetic electromotive force in the excited state is extracted as the second ∂A / ∂t component, and the component of the angular frequency ω0 + ω1 and the angular frequency ω0−ω1 of the synthetic electromotive force in the first excited state are extracted. As the first correction target electromotive force is included in the v × B component of the first correction target electromotive force based on the extracted first ∂A / ∂t component. While removing the variation factor of the span, the composition of the second excitation state The second correction based on the extracted second ∂A / ∂t component, with the sum of electromotive forces of the component of the angular frequency ω2 + ω1 and the component of the angular frequency ω2-ω1 as the second correction target electromotive force. Span correction is performed to remove the span variation factor included in the v × B component in the target electromotive force, and the zero point correction unit performs the span correction on the first correction target electromotive force and the span correction. The difference from the second correction target electromotive force is extracted as the third ∂A / ∂t component, and the extracted third electromotive force is selected from one of the two correction target electromotive forces subjected to the span correction. The v × B component is extracted by removing the ∂A / ∂t component.

また、本発明の電磁流量計の1(第6の実施の形態)構成例において、前記電源部は、角周波数ω0の搬送波を角周波数ω1の変調波によって位相変調又は周波数変調した第1の励磁電流を前記第1の励磁コイルに供給すると同時に、前記角周波数ω0の搬送波を前記第1の励磁電流の変調波に対して同一角周波数で逆位相の変調波によって位相変調又は周波数変調した第2の励磁電流を前記第2の励磁コイルに供給する第1の励磁状態と、角周波数ω2の搬送波を角周波数ω1の変調波によって位相変調又は周波数変調した第3の励磁電流を前記第1の励磁コイルに供給すると同時に、前記角周波数ω2の搬送波を前記第3の励磁電流の変調波に対して同一角周波数で逆位相の変調波によって位相変調又は周波数変調した第4の励磁電流を前記第2の励磁コイルに供給する第2の励磁状態とを切り換えながら、前記第1の励磁コイルと第2の励磁コイルに励磁電流を供給し、前記スパン補正部は、前記第1の励磁状態と第2の励磁状態の各々において前記電極で検出される合成起電力の振幅と位相を求め、これらの振幅と位相に基づいて前記第1の励磁状態の合成起電力の角周波数ω0+ζ1・ω1(ζ1は正の整数)の成分と角周波数ω0−ζ1・ω1の成分との起電力和を前記第1の∂A/∂t成分として抽出すると共に、前記第2の励磁状態の合成起電力の角周波数ω2+ζ2・ω1(ζ2は正の整数)の成分と角周波数ω2−ζ2・ω1の成分との起電力和を前記第2の∂A/∂t成分として抽出し、前記第1の励磁状態の合成起電力の角周波数ω0の成分を第1の補正対象起電力として、前記抽出した第1の∂A/∂t成分に基づいて前記第1の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去すると共に、前記第2の励磁状態の合成起電力の角周波数ω2の成分を第2の補正対象起電力として、前記抽出した第2の∂A/∂t成分に基づいて前記第2の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去するスパン補正を行い、前記0点補正部は、前記スパン補正された第1の補正対象起電力と前記スパン補正された第2の補正対象起電力との差を前記第3の∂A/∂t成分として抽出し、このスパン補正された2つの補正対象起電力のうちいずれか1つの中から、前記抽出した第3の∂A/∂t成分を取り除くことによりv×B成分を抽出するものである。   In the configuration example 1 (sixth embodiment) of the electromagnetic flowmeter of the present invention, the power supply unit performs the first excitation in which the carrier wave having the angular frequency ω0 is phase-modulated or frequency-modulated by the modulation wave having the angular frequency ω1. Secondly, the current is supplied to the first exciting coil, and at the same time, the carrier wave having the angular frequency ω0 is phase-modulated or frequency-modulated by the modulated wave having the same angular frequency and the opposite phase with respect to the modulated wave of the first exciting current. And a third excitation current obtained by phase-modulating or frequency-modulating a carrier wave having an angular frequency ω2 with a modulated wave having an angular frequency ω1. At the same time as supplying to the coil, the fourth excitation current obtained by phase-modulating or frequency-modulating the carrier wave having the angular frequency ω2 with the modulation wave having the same angular frequency and the opposite phase with respect to the modulation wave of the third excitation current. While switching the second excitation state to be supplied to the second excitation coil, an excitation current is supplied to the first excitation coil and the second excitation coil, and the span correction unit is connected to the first excitation state and the second excitation state. The amplitude and phase of the composite electromotive force detected by the electrode in each of the two excitation states are obtained, and the angular frequency ω0 + ζ1 · ω1 (ζ1 of ζ1) of the composite electromotive force in the first excitation state is obtained based on these amplitude and phase A sum of electromotive forces of a positive integer component and an angular frequency ω0−ζ1 · ω1 component is extracted as the first ∂A / ∂t component, and the angular frequency of the composite electromotive force in the second excitation state is extracted. The sum of electromotive forces of the component of ω2 + ζ2 · ω1 (ζ2 is a positive integer) and the component of the angular frequency ω2-ζ2 · ω1 is extracted as the second ∂A / ∂t component, and the first excitation state is synthesized. The component of the electromotive force at the angular frequency ω0 is the first correction target electromotive force. And removing the variation factor of the span included in the v × B component in the first correction target electromotive force based on the extracted first ∂A / ∂t component, and the second excitation state. The component of the angular frequency ω2 of the combined electromotive force is set as the second correction target electromotive force, and the v × B component in the second correction target electromotive force is calculated based on the extracted second ∂A / ∂t component. The span correction is performed to remove the included variation factor of the span, and the zero point correction unit calculates the difference between the first corrected electromotive force corrected for the span and the second corrected electromotive force corrected for the span. By extracting the third ∂A / ∂t component as the third ∂A / ∂t component and removing the extracted third ∂A / ∂t component from any one of the two correction target electromotive forces subjected to the span correction The v × B component is extracted.

また、本発明の電磁流量計の1構成例(第7の実施の形態)において、前記電源部は、角周波数ω0の搬送波を角周波数ω1の変調波によって位相変調又は周波数変調した第1の励磁電流を前記第1の励磁コイルに供給すると同時に、前記角周波数ω0の搬送波を前記第1の励磁電流の変調波に対して同一角周波数で逆位相の変調波によって位相変調又は周波数変調した第2の励磁電流を前記第2の励磁コイルに供給する第1の励磁状態と、角周波数ω2の搬送波を角周波数ω1の変調波によって位相変調又は周波数変調した第3の励磁電流を前記第1の励磁コイルに供給すると同時に、前記角周波数ω2の搬送波を前記第3の励磁電流の変調波に対して同一角周波数で逆位相の変調波によって位相変調又は周波数変調した第4の励磁電流を前記第2の励磁コイルに供給する第2の励磁状態とを切り換えながら、前記第1の励磁コイルと第2の励磁コイルに励磁電流を供給し、前記スパン補正部は、前記第1の励磁状態と第2の励磁状態の各々において前記電極で検出される合成起電力の振幅と位相を求め、これらの振幅と位相に基づいて前記第1の励磁状態の合成起電力の角周波数ω0の成分を前記第1の∂A/∂t成分として抽出すると共に、前記第2の励磁状態の合成起電力の角周波数ω2の成分を前記第2の∂A/∂t成分として抽出し、前記第1の励磁状態の合成起電力の角周波数ω0+ζ1・ω1(ζ1は正の整数)の成分と角周波数ω0−ζ1・ω1の成分との起電力和を第1の補正対象起電力として、前記抽出した第1の∂A/∂t成分に基づいて前記第1の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去すると共に、前記第2の励磁状態の合成起電力の角周波数ω2+ζ2・ω1(ζ2は正の整数)の成分と角周波数ω2−ζ2・ω1の成分との起電力和を第2の補正対象起電力として、前記抽出した第2の∂A/∂t成分に基づいて前記第2の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去するスパン補正を行い、前記0点補正部は、前記スパン補正された第1の補正対象起電力と前記スパン補正された第2の補正対象起電力との差を前記第3の∂A/∂t成分として抽出し、このスパン補正された2つの補正対象起電力のうちいずれか1つの中から、前記抽出した第3の∂A/∂t成分を取り除くことによりv×B成分を抽出するものである。   Further, in one configuration example (seventh embodiment) of the electromagnetic flowmeter of the present invention, the power source section performs first excitation in which a carrier wave having an angular frequency ω0 is phase-modulated or frequency-modulated by a modulated wave having an angular frequency ω1. Secondly, the current is supplied to the first exciting coil, and at the same time, the carrier wave having the angular frequency ω0 is phase-modulated or frequency-modulated by the modulated wave having the same angular frequency and the opposite phase with respect to the modulated wave of the first exciting current. And a third excitation current obtained by phase-modulating or frequency-modulating a carrier wave having an angular frequency ω2 with a modulated wave having an angular frequency ω1. At the same time as supplying to the coil, the fourth excitation current obtained by phase-modulating or frequency-modulating the carrier wave having the angular frequency ω2 with the modulation wave having the same angular frequency and the opposite phase with respect to the modulation wave of the third excitation current. While switching the second excitation state to be supplied to the second excitation coil, an excitation current is supplied to the first excitation coil and the second excitation coil, and the span correction unit is connected to the first excitation state and the second excitation state. The amplitude and phase of the composite electromotive force detected by the electrode in each of the two excitation states are obtained, and the component of the angular frequency ω0 of the composite electromotive force in the first excitation state is determined based on these amplitudes and phases. In addition to extracting the first ∂A / 抽出 t component, the component of the angular frequency ω2 of the combined electromotive force in the second excitation state is extracted as the second ∂A / ∂t component, and the first excitation state The sum of electromotive forces of the component of angular frequency ω0 + ζ1 · ω1 (ζ1 is a positive integer) and the component of angular frequency ω0−ζ1 · ω1 of the combined electromotive force of The first correction target electromotive force based on ∂A / ∂t component And a component of the angular frequency ω2 + ζ2 · ω1 (ζ2 is a positive integer) and an angular frequency ω2−ζ2 · The sum of electromotive forces with the component of ω1 is included in the v × B component in the second correction target electromotive force based on the extracted second ∂A / ∂t component as the second correction target electromotive force. The zero correction unit removes the difference between the first correction target electromotive force subjected to the span correction and the second correction target electromotive force subjected to the span correction. By extracting the third ∂A / ∂t component extracted as the third ∂A / ∂t component and removing the extracted third ∂A / ∂t component from any one of the two correction target electromotive forces subjected to span correction. XB component is extracted.

また、本発明の電磁流量計の1構成例において、前記励磁部は、前記流体に磁場を印加する励磁コイルと、この励磁コイルに励磁角周波数を切り替えながら励磁電流を供給する電源部とからなり、前記電極は、前記励磁コイルの軸を含む、前記測定管の軸方向と垂直な第2の平面から第1のオフセットを設けて離れた位置に配設された第1の電極と、前記第2の平面から第2のオフセットを設けて離れた位置に、前記第2の平面を挟んで前記第1の電極と対向するように配設された第2の電極とからなるものである。
また、本発明の電磁流量計の1構成例(第8の実施の形態)において、前記電源部は、角周波数ω0の励磁電流を前記励磁コイルに供給する第1の励磁状態と、角周波数ω2の励磁電流を前記励磁コイルに供給する第2の励磁状態とを切り換えながら前記励磁コイルに励磁電流を供給し、前記スパン補正部は、前記第1の励磁状態と第2の励磁状態の各々において前記第1の電極で検出される第1の合成起電力と前記第2の電極で検出される第2の合成起電力の振幅と位相を求め、これらの振幅と位相に基づいて前記第1の合成起電力と前記第2の合成起電力の同一励磁状態の起電力和および同一励磁状態の起電力差を前記第1の励磁状態と第2の励磁状態の各々について求め、前記第1の励磁状態の起電力差を前記第1の∂A/∂t成分として抽出すると共に、前記第2の励磁状態の起電力差を前記第2の∂A/∂t成分として抽出し、前記第1の励磁状態の起電力和を第1の補正対象起電力として、前記抽出した第1の∂A/∂t成分に基づいて前記第1の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去すると共に、前記第2の励磁状態の起電力和を第2の補正対象起電力として、前記抽出した第2の∂A/∂t成分に基づいて前記第2の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去するスパン補正を行い、前記0点補正部は、前記スパン補正された第1の補正対象起電力と前記スパン補正された第2の補正対象起電力との差を前記第3の∂A/∂t成分として抽出し、このスパン補正された2つの補正対象起電力のうちいずれか1つの中から、前記抽出した第3の∂A/∂t成分を取り除くことによりv×B成分を抽出するものである。
Further, in one configuration example of the electromagnetic flowmeter of the present invention, the excitation unit includes an excitation coil that applies a magnetic field to the fluid, and a power supply unit that supplies an excitation current to the excitation coil while switching an excitation angular frequency. The first electrode disposed at a position apart from the second plane perpendicular to the axial direction of the measurement tube, including the axis of the excitation coil, with a first offset, and the first electrode The second electrode is disposed at a position away from the two planes by providing a second offset so as to face the first electrode with the second plane interposed therebetween.
Further, in one configuration example (eighth embodiment) of the electromagnetic flowmeter of the present invention, the power supply section includes a first excitation state in which an excitation current having an angular frequency ω0 is supplied to the excitation coil, and an angular frequency ω2. The excitation current is supplied to the excitation coil while switching between the second excitation state for supplying the excitation current to the excitation coil, and the span correction unit is configured to change the excitation current in each of the first excitation state and the second excitation state. The amplitude and phase of the first synthetic electromotive force detected by the first electrode and the second synthetic electromotive force detected by the second electrode are obtained, and the first and second electromotive forces are detected based on the amplitude and phase. A sum of electromotive forces in the same excitation state and a difference in electromotive force in the same excitation state of the composite electromotive force and the second composite electromotive force are obtained for each of the first excitation state and the second excitation state, and the first excitation state is obtained. The state electromotive force difference is the first ∂A / ∂t component And extracting the electromotive force difference in the second excitation state as the second ∂A / ∂t component, and using the electromotive force sum in the first excitation state as the first correction target electromotive force, Based on the extracted first ∂A / ∂t component, the variation factor of the span included in the v × B component in the first correction target electromotive force is removed, and the occurrence of the second excitation state is performed. Using the power sum as the second correction target electromotive force, the variation factor of the span included in the v × B component in the second correction target electromotive force is calculated based on the extracted second ∂A / ∂t component. Span correction to be removed is performed, and the zero point correction unit calculates a difference between the first correction target electromotive force subjected to the span correction and the second correction target electromotive force subjected to the span correction to the third ∂A / Any one of the two correction target electromotive forces extracted as the ∂t component and subjected to the span correction The v × B component is extracted by removing the extracted third ∂A / ∂t component.

また、本発明の電磁流量計の1構成例において、前記励磁部は、前記流体に磁場を印加する励磁コイルと、複数の励磁角周波数を同時に与える励磁電流を前記励磁コイルに供給する電源部とからなり、前記電極は、前記励磁コイルの軸を含む、前記測定管の軸方向と垂直な第2の平面から第1のオフセットを設けて離れた位置に配設された第1の電極と、前記第2の平面から第2のオフセットを設けて離れた位置に、前記第2の平面を挟んで前記第1の電極と対向するように配設された第2の電極とからなるものである。
また、本発明の電磁流量計の1構成例(第9の実施の形態)において、前記電源部は、角周波数ω0とω2の異なる2つの励磁角周波数を同時に与える励磁電流を前記励磁コイルに供給し、前記スパン補正部は、前記第1の電極で検出される第1の合成起電力と前記第2の電極で検出される第2の合成起電力の振幅と位相を求め、これらの振幅と位相に基づいて前記第1の合成起電力と第2の合成起電力の同一周波数成分の起電力和および同一周波数成分の起電力差を角周波数ω0とω2の各々について求め、前記角周波数ω0の起電力差を前記第1の∂A/∂t成分として抽出すると共に、前記角周波数ω2の起電力差を前記第2の∂A/∂t成分として抽出し、前記角周波数ω0の起電力和を第1の補正対象起電力として、前記抽出した第1の∂A/∂t成分に基づいて前記第1の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去すると共に、前記角周波数ω2の起電力和を第2の補正対象起電力として、前記抽出した第2の∂A/∂t成分に基づいて前記第2の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去するスパン補正を行い、前記0点補正部は、前記スパン補正された第1の補正対象起電力と前記スパン補正された第2の補正対象起電力との差を前記第3の∂A/∂t成分として抽出し、このスパン補正された2つの補正対象起電力のうちいずれか1つの中から、前記抽出した第3の∂A/∂t成分を取り除くことによりv×B成分を抽出するものである。
Further, in one configuration example of the electromagnetic flowmeter of the present invention, the excitation unit includes an excitation coil that applies a magnetic field to the fluid, and a power supply unit that supplies an excitation current that simultaneously provides a plurality of excitation angular frequencies to the excitation coil. The first electrode disposed at a position spaced apart from the second plane perpendicular to the axial direction of the measurement tube, including the axis of the excitation coil, by providing a first offset; A second electrode disposed at a position spaced apart from the second plane by providing a second offset so as to face the first electrode across the second plane. .
In one configuration example (9th embodiment) of the electromagnetic flowmeter of the present invention, the power supply unit supplies an excitation current that simultaneously gives two excitation angular frequencies having different angular frequencies ω0 and ω2 to the excitation coil. The span correction unit obtains the amplitude and phase of the first combined electromotive force detected by the first electrode and the second combined electromotive force detected by the second electrode, and the amplitude and Based on the phase, the sum of the electromotive forces of the same frequency components and the electromotive force difference of the same frequency components of the first composite electromotive force and the second composite electromotive force are obtained for each of the angular frequencies ω0 and ω2, and the angular frequency ω0 The electromotive force difference is extracted as the first ∂A / ∂t component, the electromotive force difference at the angular frequency ω2 is extracted as the second ∂A / ∂t component, and the electromotive force sum of the angular frequency ω0 is extracted. As the first correction target electromotive force, the extracted first Based on ∂A / ∂t component, the variation factor of the span included in the v × B component in the first correction target electromotive force is removed, and the electromotive force sum of the angular frequency ω2 is set as the second correction target. As the electromotive force, based on the extracted second ∂A / ∂t component, span correction is performed to remove a span variation factor included in the v × B component in the second correction target electromotive force, and The zero point correction unit extracts a difference between the first correction target electromotive force subjected to the span correction and the second correction target electromotive force subjected to the span correction as the third ∂A / ∂t component, The v × B component is extracted by removing the extracted third ∂A / ∂t component from any one of the two correction target electromotive forces subjected to span correction.

また、本発明の電磁流量計の1構成例において、前記電源部は、異なる2つの励磁角周波数を同時に与える励磁電流を前記励磁コイルに供給するものである。
また、本発明の電磁流量計の1構成例(第10の実施の形態)において、前記電源部は、角周波数ω0±Δωの異なる2つの励磁角周波数を同時に与える励磁電流を前記励磁コイルに供給する第1の励磁状態と、角周波数ω2±Δωの異なる2つの励磁角周波数を同時に与える励磁電流を前記励磁コイルに供給する第2の励磁状態とを切り換えながら前記励磁コイルに励磁電流を供給し、前記スパン補正部は、前記第1の励磁状態と第2の励磁状態の各々において前記第1の電極で検出される第1の合成起電力と前記第2の電極で検出される第2の合成起電力の振幅と位相を求め、これらの振幅と位相に基づいて前記第1の合成起電力と第2の合成起電力の同一周波数成分の起電力和および同一周波数成分の起電力差を、前記第1の励磁状態の角周波数ω0±Δωと前記第2の励磁状態の角周波数ω2±Δωの各々について求め、前記第1の励磁状態の角周波数ω0+Δωの起電力差と角周波数ω0−Δωの起電力差との和を前記第1の∂A/∂t成分として抽出すると共に、前記第2の励磁状態の角周波数ω2+Δωの起電力差と角周波数ω2−Δωの起電力差との和を前記第2の∂A/∂t成分として抽出し、前記第1の励磁状態の角周波数ω0+Δωの起電力和と角周波数ω0−Δωの起電力和との和を第1の補正対象起電力として、前記抽出した第1の∂A/∂t成分に基づいて前記第1の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去すると共に、前記第2の励磁状態の角周波数ω2+Δωの起電力和と角周波数ω2−Δωの起電力和との和を第2の補正対象起電力として、前記抽出した第2の∂A/∂t成分に基づいて前記第2の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去するスパン補正を行い、前記0点補正部は、前記スパン補正された第1の補正対象起電力と前記スパン補正された第2の補正対象起電力との差を前記第3の∂A/∂t成分として抽出し、このスパン補正された2つの補正対象起電力のうちいずれか1つの中から、前記抽出した第3の∂A/∂t成分を取り除くことによりv×B成分を抽出するものである。
In one configuration example of the electromagnetic flowmeter of the present invention, the power supply unit supplies an excitation current that simultaneously gives two different excitation angular frequencies to the excitation coil.
In one configuration example (tenth embodiment) of the electromagnetic flowmeter of the present invention, the power supply unit supplies an excitation current that simultaneously gives two excitation angular frequencies having different angular frequencies ω0 ± Δω to the excitation coil. The excitation current is supplied to the excitation coil while switching between the first excitation state to be performed and the second excitation state to supply the excitation coil with an excitation current that simultaneously gives two excitation angular frequencies having different angular frequencies ω2 ± Δω. The span correction unit includes a first synthetic electromotive force detected by the first electrode and a second detected by the second electrode in each of the first excitation state and the second excitation state. Obtaining the amplitude and phase of the combined electromotive force, and based on these amplitudes and phases, the electromotive force sum of the same frequency component and the electromotive force difference of the same frequency component of the first combined electromotive force and the second combined electromotive force, Angular circumference of the first excitation state The wave number ω0 ± Δω and the angular frequency ω2 ± Δω of the second excitation state are obtained for each, and the sum of the electromotive force difference of the angular frequency ω0 + Δω of the first excitation state and the electromotive force difference of the angular frequency ω0−Δω is calculated. The sum of the electromotive force difference of the angular frequency ω2 + Δω and the electromotive force difference of the angular frequency ω2-Δω in the second excitation state is extracted as the first ∂A / ∂t component and the second ∂A / ∂t component is extracted, and the sum of the electromotive force sum of the angular frequencies ω0 + Δω and the sum of the electromotive forces of the angular frequencies ω0-Δω in the first excitation state is used as the first correction target electromotive force. Based on ∂A / ∂t component, the variation factor of the span included in the v × B component of the first correction target electromotive force is removed, and the electromotive force sum of the angular frequency ω2 + Δω in the second excitation state And the sum of the electromotive forces of the angular frequencies ω2−Δω as the second correction target electromotive force, Based on the output second 補正 A / ∂t component, span correction is performed to remove a span variation factor included in the v × B component of the second correction target electromotive force. The difference between the first correction target electromotive force subjected to the span correction and the second correction target electromotive force subjected to the span correction is extracted as the third ∂A / ∂t component, and this span corrected 2 The v × B component is extracted by removing the extracted third ∂A / ∂t component from any one of the two correction target electromotive forces.

また、本発明の電磁流量計の1構成例において、前記励磁部は、前記流体に磁場を印加する励磁コイルと、複数の励磁角周波数を同時又は交互に与える励磁電流を前記励磁コイルに供給する電源部とからなり、前記電極は、前記励磁コイルの軸を含む、前記測定管の軸方向と垂直な第2の平面から第1のオフセットを設けて離れた位置に配設された第1の電極と、前記第2の平面から第2のオフセットを設けて離れた位置に、前記第2の平面を挟んで前記第1の電極と対向するように配設された第2の電極とからなるものである。
また、本発明の電磁流量計の1構成例において、前記電源部は、複数の周波数の搬送波をこの搬送波と異なる周波数の変調波によって変調した複数の成分を同時又は交互に与える励磁電流を前記励磁コイルに供給するものである。
In one configuration example of the electromagnetic flowmeter of the present invention, the excitation unit supplies an excitation coil that applies a magnetic field to the fluid and an excitation current that simultaneously or alternately provides a plurality of excitation angular frequencies to the excitation coil. A first power supply unit, and the electrode is disposed at a position spaced apart from a second plane perpendicular to the axial direction of the measurement tube, including the axis of the excitation coil, by providing a first offset. An electrode and a second electrode disposed at a position spaced apart from the second plane by providing a second offset so as to face the first electrode across the second plane Is.
Further, in one configuration example of the electromagnetic flowmeter of the present invention, the power supply unit excites an excitation current that simultaneously or alternately gives a plurality of components obtained by modulating a carrier wave having a plurality of frequencies with a modulated wave having a frequency different from the carrier wave. It supplies to the coil.

本発明によれば、電極で検出される、流体の流速とは無関係な∂A/∂t成分の起電力と流体の流速に起因するv×B成分の起電力との合成起電力から、第1の周波数における第1の∂A/∂t成分と第1の補正対象起電力とを抽出すると共に、第2の周波数における第2の∂A/∂t成分と第2の補正対象起電力とを抽出し、抽出した第1の∂A/∂t成分に基づいて第1の補正対象起電力の中のv×B成分の流速の大きさVにかかる係数であるスパンの変動要因を除去すると共に、抽出した第2の∂A/∂t成分に基づいて第2の補正対象起電力の中のv×B成分の流速の大きさVにかかる係数であるスパンの変動要因を除去するスパン補正を行い、スパン補正した第1の補正対象起電力とスパン補正した第2の補正対象起電力に基づいて、流体の流速とは無関係な第3の∂A/∂t成分を抽出し、このスパン補正した2つの補正対象起電力のうちいずれか1つの中から第3の∂A/∂t成分を取り除くことによりv×B成分を抽出し、抽出したv×B成分から流体の流量を算出するようにしたので、正確なスパン補正を自動的に行うことができ、かつ被測定流体の流量を0にすることなく電磁流量計の出力の0点を補正することができ、高周波励磁においても0点の安定性を確保することができる。また、本発明では、第1の周波数における第1の補正対象起電力を同じ第1の周波数における第1の∂A/∂t成分を用いてスパン補正すると共に、第2の周波数における第2の補正対象起電力を同じ第2の周波数における第2の∂A/∂t成分を用いてスパン補正し、それぞれスパン補正した2つの補正対象起電力に基づいて0補正を行うようにしたので、磁場の損失による影響がある場合でも、正確なスパン補正と0補正を行うことができる。その結果、本発明では、高精度の流量計測を行うことができる。   According to the present invention, from the combined electromotive force detected by the electrode, the electromotive force of the ∂A / ∂t component independent of the fluid flow velocity and the electromotive force of the v × B component caused by the fluid flow velocity, The first ∂A / ∂t component and the first correction target electromotive force at the first frequency are extracted, and the second ∂A / ∂t component and the second correction target electromotive force at the second frequency are extracted. And the variation factor of the span, which is a coefficient related to the magnitude V of the flow velocity of the v × B component in the first correction target electromotive force, is removed based on the extracted first ∂A / ∂t component. At the same time, based on the extracted second ∂A / ∂t component, span correction for removing a span variation factor which is a coefficient related to the flow velocity magnitude V of the v × B component in the second correction target electromotive force Based on the first correction target electromotive force subjected to the span correction and the second correction target electromotive force subjected to the span correction. A third ∂A / ∂t component that is unrelated to the flow velocity of the fluid is extracted, and the third ∂A / ∂t component is removed from any one of the two correction target electromotive forces subjected to the span correction. Since the v × B component is extracted by the above and the flow rate of the fluid is calculated from the extracted v × B component, accurate span correction can be automatically performed and the flow rate of the fluid to be measured is set to zero. Therefore, the zero point of the output of the electromagnetic flow meter can be corrected, and the stability of the zero point can be ensured even in the high frequency excitation. In the present invention, the first correction target electromotive force at the first frequency is subjected to span correction using the first ∂A / ∂t component at the same first frequency, and the second correction at the second frequency is performed. The correction target electromotive force is subjected to span correction using the second ∂A / ∂t component at the same second frequency, and zero correction is performed based on the two correction target electromotive forces that have been subjected to span correction. Even if there is an influence due to the loss of the error, accurate span correction and zero correction can be performed. As a result, in the present invention, highly accurate flow rate measurement can be performed.

[基本原理]
本発明は、電磁流量計の電極で検出される電極間起電力から、∂A/∂t成分のベクトルVaとv×B成分のベクトルVbとの合成ベクトルVa+Vbを求めたとき、ベクトルVaは磁場の時間変化のみに依存し、被測定流体の流速の大きさVに無関係なベクトルであり、ベクトルVbは被測定流体の流速の大きさVに比例して大きさが変化するベクトルであることに着目している。
[Basic principle]
In the present invention, when a combined vector Va + Vb of a vector Va of ∂A / ∂t component and a vector Vb of v × B component is obtained from an electromotive force detected by an electrode of an electromagnetic flow meter, the vector Va is a magnetic field. The vector Vb is a vector that changes only in proportion to the magnitude V of the flow velocity of the fluid to be measured, and the vector Vb changes in proportion to the magnitude V of the flow velocity of the fluid to be measured. Pay attention.

本発明では、合成ベクトルVa+Vbの中から、v×B成分に含まれるスパン変動要因を消去することが可能な第1の∂A/∂t成分を抽出し、この第1の∂A/∂t成分を用いて合成ベクトルVa+Vbを正規化することにより、合成ベクトルVa+Vb中のv×B成分に含まれるスパン変動要因を消去する。第1の∂A/∂t成分を抽出することにより、第1の∂A/∂t成分とv×B成分とが直交するか否かに関係なく、第1の∂A/∂t成分とv×B成分を別々のベクトルとして扱えることが重要である。   In the present invention, a first ∂A / ∂t component that can eliminate the span variation factor included in the v × B component is extracted from the combined vector Va + Vb, and the first ∂A / ∂t is extracted. By normalizing the combined vector Va + Vb using the components, the span variation factor included in the v × B component in the combined vector Va + Vb is eliminated. By extracting the first ∂A / ∂t component, regardless of whether the first ∂A / と t component and the v × B component are orthogonal, the first 第 A / ∂t component and It is important to be able to treat the v × B component as separate vectors.

次に、本発明では、正規化した合成ベクトルVa+Vbの中から0点の変動要因となる第2の∂A/∂t成分を抽出して、正規化した合成ベクトルVa+Vbから第2の∂A/∂t成分を引くことにより、v×B成分のみを抽出している。これにより、本発明では、スパンの変動要因と0点の変動要因がともに消去された出力を得ることができ、v×B成分から被測定流体の流量を算出することができる。v×B成分を0にすることなく(流量を0にすることなく)、また∂A/∂t成分を0にすることなく(励磁周波数を0にすることなく)、v×B成分のみを取り出せることが重要である。また、本発明では、周波数による磁場の損失の違いを考慮して、励磁角周波数ω0,ω2の成分においてそれぞれ合成ベクトルの正規化を行い、それぞれの正規化した∂A/∂t成分の差を基に0補正を行うことにより、磁場の損失の影響が少ない0補正を行うことが可能になる。   Next, in the present invention, a second ∂A / ∂t component that causes a 0-point variation is extracted from the normalized composite vector Va + Vb, and the second ∂A / Vb is extracted from the normalized composite vector Va + Vb. By subtracting the ∂t component, only the v × B component is extracted. As a result, in the present invention, an output in which both the span variation factor and the zero point variation factor are eliminated can be obtained, and the flow rate of the fluid to be measured can be calculated from the v × B component. Without setting the v × B component to 0 (without setting the flow rate to 0) and without setting the ∂A / ∂t component to 0 (without setting the excitation frequency to 0), only the v × B component is set. It is important to be able to take it out. In the present invention, in consideration of the difference in magnetic field loss depending on the frequency, the synthesized vectors are normalized in the components of the excitation angular frequencies ω0 and ω2, and the difference between the normalized ∂A / ∂t components is calculated. By performing zero correction based on this, it is possible to perform zero correction with little influence of magnetic field loss.

以下、0点とスパンを実際に補正するための本発明の基本原理について説明する。
まず、本発明の基本原理に基づく電磁流量計のうち、2個の励磁コイルと1対の電極とを有する電磁流量計の原理を図1を用いて説明する。図1の電磁流量計は、測定管1と、電極2a,2bと、測定管軸PAXの方向と直交する、電極2a,2bを含む平面PLNを測定管1の境としたとき、この平面PLNを境とする測定管1の前後で非対称な、時間変化する磁場を被測定流体に印加する第1の励磁コイル3a、第2の励磁コイル3bとを有する。第1の励磁コイル3aは、平面PLNから例えば下流側にオフセット距離d1だけ離れた位置に配設される。第2の励磁コイル3bは、平面PLNから例えば上流側にオフセット距離d2だけ離れた位置に、平面PLNを挟んで第1の励磁コイル3aと対向するように配設される。
Hereinafter, the basic principle of the present invention for actually correcting the zero point and the span will be described.
First, the principle of an electromagnetic flowmeter having two excitation coils and a pair of electrodes among the electromagnetic flowmeters based on the basic principle of the present invention will be described with reference to FIG. The electromagnetic flow meter of FIG. 1 has the plane PLN when the plane PLN including the electrodes 2a and 2b, which is orthogonal to the direction of the measurement tube 1, the electrodes 2a and 2b, and the measurement tube axis PAX, is the boundary of the measurement tube 1. And a first exciting coil 3a and a second exciting coil 3b for applying a time-varying magnetic field that is asymmetric before and after the measuring tube 1 at the boundary to the fluid to be measured. The first excitation coil 3a is disposed at a position separated from the plane PLN by, for example, an offset distance d1 on the downstream side. The second excitation coil 3b is disposed at a position separated from the plane PLN, for example, by an offset distance d2 on the upstream side so as to face the first excitation coil 3a across the plane PLN.

第2の励磁コイル3bを平面PLNを挟んで第1の励磁コイル3aと対向するように配設した場合、電極2a,2bで検出される電極間起電力のうち、第1の励磁コイル3aから発生する磁場および流体の流速に起因するv×B成分と、第2の励磁コイル3bから発生する磁場および流体の流速に起因するv×B成分とは同じ方向になる。一方、電極間起電力のうち、第1の励磁コイル3aから発生する磁場の変化に起因する∂A/∂t成分と、第2の励磁コイル3bから発生する磁場の変化に起因する∂A/∂t成分とは逆向きになる。そのため、第1の励磁コイル3aから発生する磁場の変化に起因する∂A/∂t成分と、第1の励磁コイル3aから発生する磁場および流体の流速に起因するv×B成分と、第2の励磁コイル3bから発生する磁場の変化に起因する∂A/∂t成分と、第2の励磁コイル3bから発生する磁場および流体の流速に起因するv×B成分とを合わせた全ての合成ベクトルにおけるv×B成分の変動要因と∂A/∂t成分の変動要因は、等しくならないことを考慮して補正を行う必要がある。   When the second excitation coil 3b is disposed so as to face the first excitation coil 3a across the plane PLN, out of the inter-electrode electromotive force detected by the electrodes 2a and 2b, the first excitation coil 3a The v × B component caused by the generated magnetic field and the fluid flow velocity is in the same direction as the v × B component caused by the magnetic field and the fluid flow velocity generated from the second exciting coil 3b. On the other hand, of the electromotive force between the electrodes, ∂A / ∂t component caused by the change of the magnetic field generated from the first excitation coil 3a and ∂A / caused by the change of the magnetic field generated by the second excitation coil 3b. The direction is opposite to the ∂t component. Therefore, the ∂A / ∂t component resulting from the change in the magnetic field generated from the first excitation coil 3a, the v × B component resulting from the magnetic field generated from the first excitation coil 3a and the fluid flow velocity, and the second All the combined vectors of the ∂A / ∂t component resulting from the change in the magnetic field generated from the exciting coil 3b and the v × B component resulting from the magnetic field generated from the second exciting coil 3b and the fluid flow velocity It is necessary to perform correction in consideration of the fact that the variation factor of the v × B component and the variation factor of the ∂A / ∂t component are not equal.

ここで、第1の励磁コイル3aから発生する磁場Bbのうち、電極2a,2b間を結ぶ電極軸EAX上において電極軸EAXおよび測定管軸PAXの双方と直交する磁場成分(磁束密度)B2と、第2の励磁コイル3bから発生する磁場Bcのうち、電極軸EAX上において電極軸EAXおよび測定管軸PAXの双方と直交する磁場成分(磁束密度)B3は、以下のように与えられるものとする。
B2=b2・cos(ω0・t−θ2) ・・・(19)
B3=b3・cos(ω0・t−θ3) ・・・(20)
式(19)、式(20)において、b2,b3はそれぞれ磁束密度B2,B3の振幅、ω0は角周波数、θ2は磁束密度B2とω0・tとの位相差(位相遅れ)、θ3は磁束密度B3とω0・tとの位相差である。以下、磁束密度B2を磁場B2とし、磁束密度B3を磁場B3とする。
Here, of the magnetic field Bb generated from the first exciting coil 3a, the magnetic field component (magnetic flux density) B2 orthogonal to both the electrode axis EAX and the measurement tube axis PAX on the electrode axis EAX connecting the electrodes 2a and 2b, Of the magnetic field Bc generated from the second exciting coil 3b, the magnetic field component (magnetic flux density) B3 orthogonal to both the electrode axis EAX and the measurement tube axis PAX on the electrode axis EAX is given as follows: To do.
B2 = b2 · cos (ω0 · t−θ2) (19)
B3 = b3 · cos (ω0 · t−θ3) (20)
In equations (19) and (20), b2 and b3 are the amplitudes of the magnetic flux densities B2 and B3, ω0 is the angular frequency, θ2 is the phase difference (phase lag) between the magnetic flux density B2 and ω0 · t, and θ3 is the magnetic flux. The phase difference between the density B3 and ω0 · t. Hereinafter, the magnetic flux density B2 is defined as the magnetic field B2, and the magnetic flux density B3 is defined as the magnetic field B3.

被測定流体の流速が0の場合、発生する渦電流は、磁場の変化に起因する成分のみとなり、磁場Bbの変化による渦電流I1、磁場Bcの変化による渦電流I2は、図2に示すような向きとなる。したがって、電極軸EAXと測定管軸PAXとを含む平面内において、磁場Bbの変化によって発生する、流速と無関係な電極間起電力E1と、磁場Bcの変化によって発生する、流速と無関係な電極間起電力E2は、図2に示すように互いに逆向きとなる。   When the flow velocity of the fluid to be measured is 0, the generated eddy current is only a component due to the change in the magnetic field, and the eddy current I1 due to the change in the magnetic field Bb and the eddy current I2 due to the change in the magnetic field Bc are as shown in FIG. It becomes the direction. Therefore, in the plane including the electrode axis EAX and the measurement tube axis PAX, the inter-electrode electromotive force E1 which is generated by the change of the magnetic field Bb and which is irrelevant to the flow velocity, and the electrode which is generated by the change of the magnetic field Bc and which is irrelevant to the flow velocity. The electromotive forces E2 are opposite to each other as shown in FIG.

被測定流体の流速がV(V≠0)の場合、発生する渦電流には、流速0のときの渦電流I1,I2に加えて、被測定流体の流速ベクトルvに起因する成分v×Bb,v×Bcが発生するため、流速ベクトルvと磁場Bbによる渦電流Iv1、流速ベクトルvと磁場Bcによる渦電流Iv2は、図3に示すような向きとなる。したがって、流速ベクトルvと磁場Bbによって発生する電極間起電力Ev1、流速ベクトルvと磁場Bcによって発生する電極間起電力Ev2は、同じ向きとなる。   When the flow velocity of the fluid to be measured is V (V ≠ 0), the generated eddy current includes the component v × Bb due to the flow velocity vector v of the fluid to be measured, in addition to the eddy currents I1 and I2 at the flow velocity of 0. , V × Bc are generated, the eddy current Iv1 due to the flow velocity vector v and the magnetic field Bb, and the eddy current Iv2 due to the flow velocity vector v and the magnetic field Bc are oriented as shown in FIG. Therefore, the interelectrode electromotive force Ev1 generated by the flow velocity vector v and the magnetic field Bb and the interelectrode electromotive force Ev2 generated by the flow velocity vector v and the magnetic field Bc are in the same direction.

図2、図3で説明した電極間起電力の向きを考慮すると、磁場の時間変化に起因する電極間起電力と被測定流体の流速に起因する電極間起電力とを合わせた全体の電極間起電力を複素ベクトルであらわした起電力Eac2は、式(10)、式(16)、式(17)を用いれば、式(18)に対応して次式で表される。
Eac2=rk・ω0・b2・exp{j・(π/2+θ2+θ00)}
+γ・rk・V・b2・exp{j・(θ2+θ01)}
+rk・ω0・b3・exp{j・(−π/2+θ3+θ00)}
+γ・rk・V・b3・exp{j・(θ3+θ01)} ・・・(21)
Considering the direction of the interelectrode electromotive force described in FIG. 2 and FIG. 3, the entire inter-electrode total including the interelectrode electromotive force caused by the time change of the magnetic field and the interelectrode electromotive force caused by the flow velocity of the fluid to be measured. The electromotive force Eac2 representing the electromotive force as a complex vector is expressed by the following equation corresponding to the equation (18) using the equations (10), (16), and (17).
Eac2 = rk · ω0 · b2 · exp {j · (π / 2 + θ2 + θ00)}
+ Γ · rk · V · b2 · exp {j · (θ2 + θ01)}
+ Rk · ω0 · b3 · exp {j · (−π / 2 + θ3 + θ00)}
+ Γ · rk · V · b3 · exp {j · (θ3 + θ01)} (21)

ここで、ω0・tに対する磁場B2の位相遅れθ2とω0・tに対する磁場B3の位相遅れθ3との関係がθ3=θ2+Δθ3で、虚軸に対する∂A/∂t成分の角度θ00と実軸に対するv×B成分の角度θ01との関係がθ01=θ00+Δθ01である状態を第1の励磁状態とし、この第1の励磁状態における電極間起電力Eac2をEac20とすると、電極間起電力Eac20は次式のようになる。
Eac20=rk・exp{j・(θ2+θ00)}
・exp(j・π/2)・{b2−b3・exp(j・Δθ3)}・ω0
+rk・exp{j・(θ2+θ00)}
・γ・exp(j・Δθ01)・{b2+b3・exp(j・Δθ3)} ・V ・・・(22)
Here, the relationship between the phase delay θ2 of the magnetic field B2 with respect to ω0 · t and the phase delay θ3 of the magnetic field B3 with respect to ω0 · t is θ3 = θ2 + Δθ3, and the angle θ00 of the ∂A / ∂t component with respect to the imaginary axis and v with respect to the real axis When the relationship between the xB component and the angle θ01 is θ01 = θ00 + Δθ01 is defined as the first excitation state, and the interelectrode electromotive force Eac2 in this first excitation state is Eac20, the interelectrode electromotive force Eac20 is It becomes like this.
Eac20 = rk · exp {j · (θ2 + θ00)}
Exp (j · π / 2) · {b2-b3 · exp (j · Δθ3)} · ω0
+ Rk · exp {j · (θ2 + θ00)}
Γ · exp (j · Δθ01) · {b2 + b3 · exp (j · Δθ3)} V (22)

また、磁場B2と磁場B3との位相差が第1の励磁状態から一定値πだけ変化し(θ3=π+θ2+Δθ3)、かつθ01=θ00+Δθ01である状態を第2の励磁状態とし、この第2の励磁状態における電極間起電力Eac2をEac2Rとしたときの電極間起電力Eac2Rは式(22)より次式のようになる。
Eac2R=rk・exp{j・(θ2+θ00)}
・exp(j・π/2)・{b2+b3・exp(j・Δθ3)}・ω0
+rk・exp{j・(θ2+θ00)}
・γ・exp(j・Δθ01)・{b2−b3・exp(j・Δθ3)} ・V ・・・(23)
In addition, a state in which the phase difference between the magnetic field B2 and the magnetic field B3 changes by a constant value π from the first excitation state (θ3 = π + θ2 + Δθ3) and θ01 = θ00 + Δθ01 is defined as the second excitation state. When the interelectrode electromotive force Eac2 in the state is Eac2R, the interelectrode electromotive force Eac2R is expressed by the following equation from the equation (22).
Eac2R = rk · exp {j · (θ2 + θ00)}
Exp (j · π / 2) · {b2 + b3 · exp (j · Δθ3)} · ω0
+ Rk · exp {j · (θ2 + θ00)}
Γ · exp (j · Δθ01) · {b2-b3 · exp (j · Δθ3)} V (23)

式(21)の右辺第1項は第1の励磁コイル3aから発生する磁場の変化に起因する∂A/∂t成分、右辺第2項は第1の励磁コイル3aから発生する磁場と流体の流速に起因するv×B成分、右辺第3項は第2の励磁コイル3bから発生する磁場の変化に起因する∂A/∂t成分、右辺第4項は第2の励磁コイル3bから発生する磁場と流体の流速に起因するv×B成分となる。   The first term on the right side of Equation (21) is the ∂A / ∂t component resulting from the change in the magnetic field generated from the first excitation coil 3a, and the second term on the right side is the relationship between the magnetic field and fluid generated from the first excitation coil 3a. The v × B component resulting from the flow velocity, the third term on the right side is the ∂A / ∂t component resulting from the change in the magnetic field generated from the second excitation coil 3b, and the fourth term on the right side is generated from the second excitation coil 3b. It becomes a v × B component resulting from the magnetic field and the flow velocity of the fluid.

また、式(22)の右辺第1項と式(23)の右辺第1項とを合わせたものが、第1の励磁コイル3aから発生する磁場の変化に起因する∂A/∂t成分と第2の励磁コイル3bから発生する磁場の変化に起因する∂A/∂t成分とを合わせた全ての∂A/∂t成分、式(22)の右辺第2項と式(23)の右辺第2項とを合わせたものが、第1の励磁コイル3aから発生する磁場および流体の流速に起因するv×B成分と第2の励磁コイル3bから発生する磁場および流体の流速に起因するv×B成分とを合わせた全てのv×B成分となる。   The combination of the first term on the right side of Equation (22) and the first term on the right side of Equation (23) is the ∂A / ∂t component resulting from the change in the magnetic field generated from the first excitation coil 3a. All ∂A / ∂t components combined with ∂A / ∂t components resulting from changes in the magnetic field generated from the second excitation coil 3b, the second term on the right side of equation (22) and the right side of equation (23) The combination of the second term is the v × B component resulting from the magnetic field and fluid flow velocity generated from the first excitation coil 3a and v resulting from the magnetic field and fluid flow velocity generated from the second excitation coil 3b. All v × B components are combined with the × B component.

式(22)において、全てのv×B成分の流速の大きさVに係る係数の変動要因と、全ての∂A/∂t成分の角周波数ω0に係る係数の変動要因とが一致しないことから分かるように、図1の電磁流量計の構成では、合成ベクトルから取り出した1つの∂A/∂t成分を用いて0補正とスパン補正とを行うことはできない。そこで、コイル間の位相差を第1の励磁状態での位相差プラスπとすると、式(22)における全てのv×B成分の流速の大きさVに係る係数の変動要因と式(23)における全ての∂A/∂t成分の角周波数ω0に係る係数の変動要因とが等しくなり、この第2の励磁状態の∂A/∂t成分を取り出せば、補正が可能になる。この場合に適用できる原理を以下説明する。   In the equation (22), the coefficient variation factors related to the flow velocity magnitude V of all v × B components do not match the coefficient variation factors related to the angular frequency ω0 of all ∂A / 成分 t components. As can be seen, in the configuration of the electromagnetic flow meter of FIG. 1, zero correction and span correction cannot be performed using one ∂A / ∂t component extracted from the combined vector. Therefore, assuming that the phase difference between the coils is the phase difference in the first excitation state plus π, the coefficient variation factors related to the magnitude V of the flow velocity of all v × B components in equation (22) and equation (23) The variation factors of the coefficients related to the angular frequency ω0 of all the ∂A / ∂t components in are equal, and correction can be performed by extracting the 励磁 A / ∂t components in the second excitation state. The principle applicable in this case will be described below.

第1の励磁コイル3aのみに角周波数ω0の励磁電流を供給した場合に電極2a,2bで検出される電極間起電力は、以下の∂A/∂t成分のベクトルVa10とv×B成分のベクトルVb10の合成ベクトルVa10+Vb10に相当する。
Va10=ra・exp(j・θa)・B1c[ω0]・C・ω0 ・・・(24)
Vb10=rb・exp(j・θb)・B1c[ω0]・C・V ・・・(25)
図4に、ベクトルVa10とベクトルVb10と合成ベクトルVa10+Vb10とを示す。
When an excitation current having an angular frequency ω0 is supplied only to the first excitation coil 3a, the inter-electrode electromotive force detected by the electrodes 2a and 2b is expressed by the following vectors Va10 and v × B components of 成分 A / ∂t components: This corresponds to the combined vector Va10 + Vb10 of the vector Vb10.
Va10 = ra · exp (j · θa) · B1c [ω0] · C · ω0 (24)
Vb10 = rb · exp (j · θb) · B1c [ω0] · C · V (25)
FIG. 4 shows a vector Va10, a vector Vb10, and a combined vector Va10 + Vb10.

ここで、∂A/∂t成分のベクトルVa10は、磁場の変化により発生する起電力なので、励磁角周波数ω0に比例する大きさになる。このベクトルVa10の大きさの既知の比例定数部分をra、ベクトルVa10の既知の方向をθaとし、励磁角周波数がω0のときの磁場に関係する項をB1c[ω0]として関数形式で表すと、C(複素ベクトル)が磁場の変動以外の要因で変化する要素として与えられる。また、v×B成分のベクトルVb10は、測定管中の流体の移動により発生する起電力なので、流速の大きさVに比例する大きさになる。このベクトルVb10の大きさの既知の比例定数部分をrb、ベクトルVb10の既知の方向をθbとし、励磁周波数がω0のときの磁場に関係する項をB1c[ω0]として関数形式で表すと、C(複素ベクトル)が磁場の変動以外の要因で変化する要素として与えられる。したがって、∂A/∂t成分のベクトルVa10におけるCとv×B成分のベクトルVb10におけるCは、同一の要素になる。   Here, the vector Va10 of the ∂A / ∂t component is an electromotive force generated by a change in the magnetic field, and thus has a magnitude proportional to the excitation angular frequency ω0. When the known proportionality constant part of the magnitude of the vector Va10 is represented by ra, the known direction of the vector Va10 is represented by θa, and the term related to the magnetic field when the excitation angular frequency is ω0 is represented by B1c [ω0] in a functional form. C (complex vector) is given as an element that changes due to factors other than the fluctuation of the magnetic field. Further, the vector Vb10 of the v × B component is an electromotive force generated by the movement of the fluid in the measurement tube, and therefore has a magnitude proportional to the magnitude V of the flow velocity. When a known proportional constant part of the magnitude of the vector Vb10 is rb, a known direction of the vector Vb10 is θb, and a term related to the magnetic field when the excitation frequency is ω0 is expressed in a functional form as B1c [ω0], C (Complex vector) is given as an element that changes due to factors other than the fluctuation of the magnetic field. Therefore, C in the vector Va10 of ∂A / ∂t component and C in the vector Vb10 of v × B component are the same element.

一方、第2の励磁コイル3bのみに角周波数ω0の励磁電流を供給した場合に電極2a,2bで検出される電極間起電力は、以下の∂A/∂t成分のベクトルVa20とv×B成分のベクトルVb20の合成ベクトルVa20+Vb20に相当する。
Va20=−ra・exp(j・θa)・B2c[ω0]・C・ω0 ・・・(26)
Vb20=rb・exp(j・θb)・B2c[ω0]・C・V ・・・(27)
図5に、ベクトルVa20とベクトルVb20と合成ベクトルVa20+Vb20とを示す。
On the other hand, when an excitation current having an angular frequency ω 0 is supplied only to the second excitation coil 3 b, the inter-electrode electromotive force detected by the electrodes 2 a and 2 b is the following vector Va20 and v × B of ∂A / ∂t components: This corresponds to a composite vector Va20 + Vb20 of the component vector Vb20.
Va20 = −ra · exp (j · θa) · B2c [ω0] · C · ω0 (26)
Vb20 = rb · exp (j · θb) · B2c [ω0] · C · V (27)
FIG. 5 shows a vector Va20, a vector Vb20, and a combined vector Va20 + Vb20.

ここで、∂A/∂t成分のベクトルVa20の大きさの既知の比例定数部分をra、ベクトルVa20の既知の方向をθaとし、励磁角周波数がω0のときの磁場に関係する項をB2c[ω0]として関数形式で表すと、C(複素ベクトル)が磁場の変動以外の要因で変化する要素として与えられる。また、v×B成分のベクトルVb20の大きさの既知の比例定数部分をrb、ベクトルVb20の既知の方向をθbとし、励磁周波数がω0のときの磁場に関係する項をB2c[ω0]として関数形式で表すと、C(複素ベクトル)が磁場の変動以外の要因で変化する要素として与えられる。したがって、∂A/∂t成分のベクトルVa20におけるCとv×B成分のベクトルVb20におけるCは、同一の要素になる。   Here, a known proportionality constant portion of the magnitude of the vector Va20 of the ∂A / ∂t component is ra, a known direction of the vector Va20 is θa, and a term related to the magnetic field when the excitation angular frequency is ω0 is B2c [ When expressed in a functional form as ω0], C (complex vector) is given as an element that changes due to a factor other than the fluctuation of the magnetic field. Further, the function of the vector Vb20 of the v × B component with the known proportionality constant portion being rb, the known direction of the vector Vb20 being θb, and the term related to the magnetic field when the excitation frequency is ω0 is B2c [ω0]. When expressed in a form, C (complex vector) is given as an element that changes due to factors other than the fluctuation of the magnetic field. Therefore, C in the vector Va20 of the ∂A / ∂t component and C in the vector Vb20 of the v × B component are the same element.

第1の励磁コイル3aから発生する磁場の変化に起因する∂A/∂t成分(図4)と第2の励磁コイル3bから発生する磁場の変化に起因する∂A/∂t成分(図5)とが逆方向を向いていることに注意すれば、励磁コイル3aと3bの両方に角周波数ω0の励磁電流を供給した場合の電極間起電力は、以下の∂A/∂t成分のベクトルVas0とv×B成分のベクトルVbs0の合成ベクトルVas0+Vbs0に相当することが分かる。
Vas0=Va10+Va20
=ra・exp(j・θa)・(B1c[ω0]−B2c[ω0])・C・ω0
・・・(28)
Vbs0=Vb10+Vb20
=rb・exp(j・θb)・(B1c[ω0]+B2c[ω0])・C・V
・・・(29)
∂A / ∂t component (FIG. 4) resulting from a change in the magnetic field generated from the first excitation coil 3a (FIG. 4) and ∂A / ∂t component resulting from a change in the magnetic field generated from the second excitation coil 3b (FIG. 5) If the excitation current of the angular frequency ω0 is supplied to both the exciting coils 3a and 3b, the inter-electrode electromotive force is the following vector of ∂A / ∂t components: It can be seen that this corresponds to the combined vector Vas0 + Vbs0 of Vas0 and the vector Vbs0 of the v × B component.
Vas0 = Va10 + Va20
= Ra · exp (j · θa) · (B1c [ω0] −B2c [ω0]) · C · ω0
... (28)
Vbs0 = Vb10 + Vb20
= Rb · exp (j · θb) · (B1c [ω0] + B2c [ω0]) · C · V
... (29)

図6に、ベクトルVas0とベクトルVbs0と合成ベクトルVas0+Vbs0とを示す。式(29)に示すベクトルVbs0の流速の大きさVにかかる係数の中で(B1c[ω0]+B2c[ω0])・Cが、スパン変動要因として与えられる。また、流速の大きさVが0の時は、ベクトルVas0が変動することにより、合成ベクトルの大きさが変動する(すなわち、0点が変動する)。   FIG. 6 shows a vector Vas0, a vector Vbs0, and a combined vector Vas0 + Vbs0. Among the coefficients related to the magnitude V of the flow velocity of the vector Vbs0 shown in Expression (29), (B1c [ω0] + B2c [ω0]) · C is given as a span variation factor. Further, when the magnitude V of the flow velocity is 0, the magnitude of the combined vector fluctuates due to the fluctuation of the vector Vas0 (that is, the zero point fluctuates).

0補正及びスパン補正の対象となる合成ベクトルVas0+Vbs0中の∂A/∂t成分のベクトルVas0におけるスパン変動要因(B1c[ω0]−B2c[ω0])・Cとv×B成分のベクトルVbs0におけるスパン変動要因(B1c[ω0]+B2c[ω0])・Cは異なる値となる。したがって、合成ベクトルVas0+Vbs0中の∂A/∂t成分のベクトルVas0でv×B成分のベクトルVbs0の正規化を行っても次式の通り、スパンの変動要因(B1c[ω0]−B2c[ω0])/(B1c[ω0]+B2c[ω0])が残り、スパンの変動要因を除去することはできない。
Vbs0/Vas0=(rb/ra)・exp{j・(θb−θa)}
・{(B1c[ω0]−B2c[ω0])
/(B1c[ω0]+B2c[ω0])}・(V/ω) ・・(30)
Span fluctuation factor (B1c [ω0] −B2c [ω0]) · C and v × B component vector Vbs0 in the vector Vas0 of ∂A / ∂t component in the combined vector Vas0 + Vbs0 subject to zero correction and span correction Variation factors (B1c [ω0] + B2c [ω0]) · C have different values. Therefore, even if the vector Vbs0 of the v × B component is normalized by the vector Vas0 of the ∂A / ∂t component in the combined vector Vas0 + Vbs0, the variation factor of the span (B1c [ω0] −B2c [ω0] ) / (B1c [ω0] + B2c [ω0]) remains, and the span variation factor cannot be removed.
Vbs0 / Vas0 = (rb / ra) · exp {j · (θb−θa)}
・ {(B1c [ω0] −B2c [ω0])
/ (B1c [ω0] + B2c [ω0])} (V / ω) (30)

そのため、v×B成分の変動要因と同じスパン変動要因(B1c[ω0]+B2c[ω0])・Cを含む第1の∂A/∂t成分を抽出する必要がある。このような第1の∂A/∂t成分を抽出するために、第1の励磁コイル3aから発生する磁場と第2の励磁コイル3bから発生する磁場との位相差がΔθ3である第1の励磁状態から位相差がΔθ3+πである第2の励磁状態に変化させると、B2c[ω0]・Cが反転することを利用する。つまり、第1の励磁状態に対して位相差を+π変化させた第2の励磁状態の位相条件で第2の励磁コイル3bのみを角周波数ω0で励磁した場合に電極2a,2bで検出される合成ベクトルは、第1の励磁状態で検出した合成ベクトル(図5)に対して反転し、以下の∂A/∂t成分のベクトルVa20Rとv×B成分のベクトルVb20Rの合成ベクトルVa20R+Vb20Rに相当する。
Va20R=ra・exp(j・θa)・B2c[ω0]・C・ω0 ・・・(31)
Vb20R=−rb・exp(j・θb)・B2c[ω0]・C・V ・・・(32)
図7に、ベクトルVa20RとベクトルVb20Rと合成ベクトルVa20R+Vb20Rとを示す。
Therefore, it is necessary to extract the first ∂A / ∂t component including the same span variation factor (B1c [ω0] + B2c [ω0]) · C as the variation factor of the v × B component. In order to extract such a first ∂A / ∂t component, the first phase difference between the magnetic field generated from the first excitation coil 3a and the magnetic field generated from the second excitation coil 3b is Δθ3. When the excitation state is changed to the second excitation state where the phase difference is Δθ3 + π, the fact that B2c [ω0] · C is inverted is used. That is, when only the second excitation coil 3b is excited at the angular frequency ω0 under the phase condition of the second excitation state in which the phase difference is changed by + π with respect to the first excitation state, it is detected by the electrodes 2a and 2b. The combined vector is inverted with respect to the combined vector (FIG. 5) detected in the first excitation state, and corresponds to the combined vector Va20R + Vb20R of the following vector A20 / Vt component Va20R and v × B component vector Vb20R. .
Va20R = ra · exp (j · θa) · B2c [ω0] · C · ω0 (31)
Vb20R = −rb · exp (j · θb) · B2c [ω0] · C · V (32)
FIG. 7 shows a vector Va20R, a vector Vb20R, and a combined vector Va20R + Vb20R.

角周波数ω0の第1の励磁電流を第1の励磁コイル3aに供給し、第1の励磁電流との位相差がΔθ3+πで角周波数がω0の第2の励磁電流を第2の励磁コイル3bに供給した場合の電極間起電力は、以下の∂A/∂t成分のベクトルVas0Rとv×B成分のベクトルVbs0Rの合成ベクトルVas0R+Vbs0Rに相当する。
Vas0R=Va10+Va20R
=ra・exp(j・θa)・(B1c[ω0]+B2c[ω0])・C・ω0
・・・(33)
Vbs0R=Vb10+Vb20R
=rb・exp(j・θb)・(B1c[ω0]−B2c[ω0])・C・V
・・・(34)
図8に、ベクトルVas0RとベクトルVbs0Rと合成ベクトルVas0R+Vbs0Rとを示す。
A first excitation current having an angular frequency ω0 is supplied to the first excitation coil 3a, and a second excitation current having a phase difference from the first excitation current of Δθ3 + π and an angular frequency of ω0 is supplied to the second excitation coil 3b. The inter-electrode electromotive force when supplied corresponds to a combined vector Vas0R + Vbs0R of a vector Vas0R of the following ∂A / ∂t component and a vector Vbs0R of the v × B component.
Vas0R = Va10 + Va20R
= Ra · exp (j · θa) · (B1c [ω0] + B2c [ω0]) · C · ω0
... (33)
Vbs0R = Vb10 + Vb20R
= Rb · exp (j · θb) · (B1c [ω0] −B2c [ω0]) · C · V
... (34)
FIG. 8 shows a vector Vas0R, a vector Vbs0R, and a combined vector Vas0R + Vbs0R.

∂A/∂t成分のベクトルVas0Rにおけるスパン変動要因は、前述のv×B成分のベクトルVbs0のスパン変動要因(B1c[ω0]+B2c[ω0])・Cと等しい。したがって、第1の∂A/∂t成分としてVas0Rを抽出すれば、ベクトルVbs0の正規化が可能になる。第1の∂A/∂t成分のベクトルVas0Rを抽出する方法としては、以下の2つの方法がある。第1の抽出方法は、Vas0R≫Vbs0Rと近似できる場合に、Vbs0R≒0として、近似的に第1の∂A/∂t成分のベクトルVas0Rを抽出する方法である。第2の抽出方法は、角周波数(ω0±Δω)で励磁した場合の合成ベクトルから近似的に∂A/∂t成分のベクトルVas0Rを抽出する方法である。   The span variation factor in the vector Vas0R of ∂A / ∂t component is equal to the span variation factor (B1c [ω0] + B2c [ω0]) · C of the vector Vbs0 of the v × B component. Therefore, if Vas0R is extracted as the first ∂A / ∂t component, the vector Vbs0 can be normalized. There are the following two methods for extracting the first ∂A / ∂t component vector Vas0R. The first extraction method is a method of approximately extracting the first 0A / ∂t component vector Vas0R as Vbs0R≈0 when it can be approximated as Vas0R >> Vbs0R. The second extraction method is a method of approximately extracting the vector Vas0R of the ∂A / ∂t component from the combined vector when excited at the angular frequency (ω0 ± Δω).

第1の∂A/∂t成分のベクトルVas0Rにより、合成ベクトルVas0+Vbs0を正規化する。この正規化の対象となる合成ベクトルVas0+Vbs0を検出する方法としては、以下の2つの方法がある。第1の検出方法は、角周波数ω0で励磁して合成ベクトルVas0+Vbs0を直接求める方法である。第2の検出方法は、上記第1の∂A/∂t成分を抽出したときと同様に、角周波数(ω0±Δω)で励磁した場合の合成ベクトルから近似的に合成ベクトルVas0+Vbs0を求める方法である。   The composite vector Vas0 + Vbs0 is normalized by the vector Vas0R of the first ∂A / ∂t component. There are the following two methods for detecting the composite vector Vas0 + Vbs0 to be normalized. The first detection method is a method for directly obtaining the composite vector Vas0 + Vbs0 by exciting at the angular frequency ω0. The second detection method is a method of approximately obtaining a composite vector Vas0 + Vbs0 from a composite vector when excitation is performed at an angular frequency (ω0 ± Δω), similarly to the case where the first ∂A / ∂t component is extracted. is there.

第2の検出方法を用いる例として励磁角周波数(ω0+Δω)と(ω0−Δω)をとる場合を記しておく。第1の励磁状態の位相条件で励磁コイル3aと3bの両方に角周波数(ω0+Δω)の励磁電流を供給した場合に電極2a,2bで検出される電極間起電力は、以下の∂A/∂t成分のベクトルVaspとv×B成分のベクトルVbspの合成ベクトルVasp+Vbspに相当する。
Vasp=ra・exp(j・θa)
・(B1c[ω0+Δω]−B2c[ω0+Δω])・C・(ω0+Δω)
・・・(35)
Vbsp=rb・exp(j・θb)
・(B1c[ω0+Δω]+B2c[ω0+Δω])・C・V ・・(36)
As an example of using the second detection method, a case of taking the excitation angular frequency (ω0 + Δω) and (ω0−Δω) will be described. When an excitation current having an angular frequency (ω0 + Δω) is supplied to both the excitation coils 3a and 3b under the phase condition of the first excitation state, the inter-electrode electromotive force detected by the electrodes 2a and 2b is This corresponds to a combined vector Vasp + Vbsp of the vector Vasp of the t component and the vector Vbsp of the v × B component.
Vasp = ra · exp (j · θa)
(B1c [ω0 + Δω] −B2c [ω0 + Δω]) C (ω0 + Δω)
... (35)
Vbsp = rb · exp (j · θb)
(B1c [ω0 + Δω] + B2c [ω0 + Δω]) CV (36)

次に、第1の励磁状態の位相条件で励磁コイル3aと3bの両方に角周波数(ω0−Δω)の励磁電流を供給した場合に電極2a,2bで検出される電極間起電力は、以下の∂A/∂t成分のベクトルVasmとv×B成分のベクトルVbsmの合成ベクトルVasm+Vbsmに相当する。
Vasm=ra・exp(j・θa)
・(B1c[ω0−Δω]−B2c[ω0−Δω])・C・(ω0−Δω)
・・・(37)
Vbsm=rb・exp(j・θb)
・(B1c[ω0−Δω]+B2c[ω0−Δω])・C・V ・・(38)
Next, when an excitation current having an angular frequency (ω0−Δω) is supplied to both excitation coils 3a and 3b under the phase condition of the first excitation state, the inter-electrode electromotive force detected by the electrodes 2a and 2b is as follows: ∂A / mt component vector Vasm and v × B component vector Vbsm corresponding to a combined vector Vasm + Vbsm.
Vasm = ra · exp (j · θa)
(B1c [ω0−Δω] −B2c [ω0−Δω]) C / (ω0−Δω)
... (37)
Vbsm = rb · exp (j · θb)
(B1c [ω0−Δω] + B2c [ω0−Δω]) CV (38)

励磁角周波数(ω0+Δω)における∂A/∂t成分のベクトルVaspとv×B成分のベクトルVbspと励磁角周波数(ω0−Δω)における∂A/∂t成分のベクトルVasmとv×B成分のベクトルVbsmとを合成したベクトルから、正規化の対象となる合成ベクトルVas0+Vbs0を次式のように近似的に抽出することができる。
Vas0+Vbs0≒{(Vasp+Vbsp)+(Vasm+Vbsm)}/2
・・・(39)
The vector Vasp of the ∂A / ∂t component at the excitation angular frequency (ω0 + Δω) and the vector Vbsp of the v × B component and the vector Vasm of the ∂A / ∂t component at the excitation angular frequency (ω0−Δω) and the vector of the v × B component. From a vector obtained by combining Vbsm, a combined vector Vas0 + Vbs0 to be normalized can be approximately extracted as in the following equation.
Vas0 + Vbs0≈ {(Vasp + Vbsp) + (Vasm + Vbsm)} / 2
... (39)

ここで、式(39)のように合成ベクトルVas0+Vbs0を近似的に求めることができる理由について説明する。文献「太田恵造著,“磁気工学の基礎II”,共立出版株式会社,昭和59年4月15日初版第8版発行,p304−318」に述べられているように渦電流による磁場の損失は磁場の大きさと周波数に比例するので、第1の励磁コイル3aから発生する磁場の損失と第2の励磁コイル3bから発生する磁場の損失とを同じにしておけば、次式の関係が成り立つ。
B1c[ω0]=B1c−B1c・ω0・ec ・・・(40)
B2c[ω0]=B2c−B2c・ω0・ec ・・・(41)
式(40)、式(41)において、ecは励磁コイル3a,3bのコアの材質やコアの構造による複素係数である。
Here, the reason why the combined vector Vas0 + Vbs0 can be obtained approximately as in Expression (39) will be described. As described in the document “Eta Ota,“ Basics of Magnetic Engineering II ”, Kyoritsu Shuppan Co., Ltd., April 15, 1984, 8th edition, p. Since it is proportional to the magnitude and frequency of the magnetic field, if the loss of the magnetic field generated from the first excitation coil 3a is the same as the loss of the magnetic field generated from the second excitation coil 3b, the following relationship is established.
B1c [ω0] = B1c−B1c · ω0 · ec (40)
B2c [ω0] = B2c−B2c · ω0 · ec (41)
In the equations (40) and (41), ec is a complex coefficient depending on the core material and the core structure of the exciting coils 3a and 3b.

第1の励磁コイル3aのみに角周波数(ω0+Δω)の励磁電流を供給した場合に電極2a,2bで検出される合成ベクトルにおいて、磁場に関係する項をB1c[ω0+Δω]とし、同様に第1の励磁コイル3aのみに角周波数(ω0−Δω)の励磁電流を供給した場合に検出される合成ベクトルにおいて、磁場に関係する項B1c[ω0−Δω]とする。B1c[ω0+Δω]とB1c[ω0−Δω]との間には、式(40)、式(41)より次の関係が成り立つ。   In the combined vector detected by the electrodes 2a and 2b when the excitation current of the angular frequency (ω0 + Δω) is supplied only to the first excitation coil 3a, the term related to the magnetic field is B1c [ω0 + Δω], and the first A combined vector detected when an excitation current having an angular frequency (ω0−Δω) is supplied only to the excitation coil 3a is a term B1c [ω0−Δω] related to the magnetic field. The following relationship is established between B1c [ω0 + Δω] and B1c [ω0−Δω] from Equation (40) and Equation (41).

B1c[ω0+Δω]+B1c[ω−Δω]
=B1c−B1c・(ω0+Δω)・ec+B1c−B1c・(ω0−Δω)・ec
=2・B1c・(1−ω0・ec)
=2・B1c[ω0] ・・・(42)
B1c[ω0+Δω]−B1c[ω−Δω]
=B1c−B1c・(ω0+Δω)・ec−B1c+B1c・(ω0−Δω)・ec
=−B1c・(Δω)・ec+B1c・(−Δω)・ec
=−2・B1c・Δω・ec ・・・(43)
B1c [ω0 + Δω] + B1c [ω−Δω]
= B1c−B1c · (ω0 + Δω) · ec + B1c−B1c · (ω0−Δω) · ec
= 2 · B1c · (1−ω0 · ec)
= 2 · B1c [ω0] (42)
B1c [ω0 + Δω] −B1c [ω−Δω]
= B1c-B1c · (ω0 + Δω) · ec-B1c + B1c · (ω0-Δω) · ec
= −B1c · (Δω) · ec + B1c · (−Δω) · ec
= -2 · B1c · Δω · ec (43)

また、第2の励磁コイル3bのみに角周波数(ω0+Δω)の励磁電流を供給した場合に検出される合成ベクトルにおいて、磁場に関係する項をB2c[ω0+Δω]とし、第2の励磁コイル3bのみに角周波数(ω0−Δω)の励磁電流を供給した場合に検出される合成ベクトルにおいて、磁場に関係する項をB2c[ω0−Δω]とする。B2c[ω0+Δω]とB2c[ω0−Δω]との間には、式(40)、式(41)より次の関係が成り立つ。
B2c[ω0+Δω]+B2c[ω0−Δω]=2・B2c[ω0] ・・・(44)
B2c[ω0+Δω]−B2c[ω0−Δω]=−2・B2c・Δω・ec ・・(45)
In the combined vector detected when the excitation current having the angular frequency (ω0 + Δω) is supplied only to the second excitation coil 3b, the term related to the magnetic field is B2c [ω0 + Δω], and only the second excitation coil 3b is used. In a combined vector detected when an excitation current having an angular frequency (ω0−Δω) is supplied, a term related to the magnetic field is defined as B2c [ω0−Δω]. Between B2c [ω0 + Δω] and B2c [ω0−Δω], the following relationship is established from Equation (40) and Equation (41).
B2c [ω0 + Δω] + B2c [ω0−Δω] = 2 · B2c [ω0] (44)
B2c [ω0 + Δω] −B2c [ω0−Δω] = − 2 · B2c · Δω · ec (45)

式(42)〜式(45)の関係式を用いれば、励磁角周波数(ω0+Δω)における∂A/∂t成分のベクトルVaspと励磁角周波数(ω0−Δω)における∂A/∂t成分のベクトルVasmとを合成したベクトルは、次式のように変形できる。
Vasp+Vasm
=ra・exp(j・θa)・C
・{(ω0+Δω)・(B1c[ω0+Δω]−B2c[ω0+Δω])
+(ω0−Δω)・(B1c[ω0−Δω]−B2c[ω0−Δω])}
=2・ra・exp(j・θa)・C
・{ω0・(B1c[ω0]−B2c[ω0])
−(Δω・Δω)・(B1c−B2c)・ec} ・・・(46)
Using the relational expressions (42) to (45), the vector Vasp of aA / ∂t component at the excitation angular frequency (ω0 + Δω) and the vector of ∂A / ∂t component at the excitation angular frequency (ω0-Δω). A vector obtained by combining Vasm can be transformed as follows.
Vasp + Vasm
= Ra · exp (j · θa) · C
・ {(Ω0 + Δω) ・ (B1c [ω0 + Δω] −B2c [ω0 + Δω])
+ (Ω0−Δω) · (B1c [ω0−Δω] −B2c [ω0−Δω])}
= 2 · ra · exp (j · θa) · C
・ {Ω0 ・ (B1c [ω0] −B2c [ω0])
− (Δω · Δω) · (B1c−B2c) · ec} (46)

また、同じく式(42)〜式(45)の関係式を用いれば、励磁角周波数(ω0+Δω)におけるv×B成分のベクトルVbspと励磁角周波数(ω0−Δω)におけるv×B成分のベクトルVbsmとを合成したベクトルは、次式のように変形できる。
Vbsp+Vbsm
=2・rb・exp(j・θb)・C・V
・(B1c[ω0+Δω]+B2c[ω0+Δω]
+B1c[ω0−Δω]+B2c[ω0−Δω])
=2・rb・exp(j・θb)・C・V・(B1c[ω0]+B2c[ω0])
・・・(47)
Similarly, if the relational expressions (42) to (45) are used, the v × B component vector Vbsp at the excitation angular frequency (ω0 + Δω) and the v × B component vector Vbsm at the excitation angular frequency (ω0−Δω). The vector obtained by combining can be transformed as follows.
Vbsp + Vbsm
= 2 · rb · exp (j · θb) · C · V
(B1c [ω0 + Δω] + B2c [ω0 + Δω]
+ B1c [ω0−Δω] + B2c [ω0−Δω])
= 2 · rb · exp (j · θb) · C · V · (B1c [ω0] + B2c [ω0])
... (47)

励磁角周波数(ω0+Δω)における∂A/∂t成分のベクトルVaspとv×B成分のベクトルVbspと励磁角周波数(ω0−Δω)における∂A/∂t成分のベクトルVasmとv×B成分のベクトルVbsmとを合成したベクトルは、式(46)、式(47)より次式で表される。
Vasp+Vasm+Vbsp+Vbsm
=2・ra・exp(j・θa)・C・ω0・(B1c[ω0]−B2c[ω0])
−2・ra・exp(j・θa)・C・(Δω・Δω)・(B1c−B2c)・ec
+2・rb・exp(j・θb)・C・V・(B1c[ω0]+B2c[ω0])
・・・(48)
The vector Vasp of the ∂A / ∂t component at the excitation angular frequency (ω0 + Δω) and the vector Vbsp of the × A / ∂t component and the vector Vasm of the ∂A / ∂t component and the vector of the v × B component at the excitation angular frequency (ω0-Δω). A vector obtained by synthesizing Vbsm is expressed by the following equation from equations (46) and (47).
Vasp + Vasm + Vbsp + Vbsm
= 2 · ra · exp (j · θa) · C · ω0 · (B1c [ω0] −B2c [ω0])
-2, ra, exp (j, θa), C, (Δω, Δω), (B1c-B2c), ec
+ 2 · rb · exp (j · θb) · C · V · (B1c [ω0] + B2c [ω0])
... (48)

式(48)の右辺第1項及び右辺第3項に対して右辺第2項は無視することができ、次式のように近似することができる。
Vasp+Vasm+Vbsp+Vbsm
≒2・ra・exp(j・θa)・C・ω0・(B1c[ω0]−B2c[ω0])
+2・rb・exp(j・θb)・C・V・(B1c[ω0]+B2c[ω0])
=2・(Vas0+Vbs0) ・・・(49)
こうして式(49)より、前記の式(39)を導出することができる。
The second term on the right side can be ignored with respect to the first term on the right side and the third term on the right side of Equation (48), and can be approximated as the following equation.
Vasp + Vasm + Vbsp + Vbsm
≈ 2 · ra · exp (j · θa) · C · ω0 · (B1c [ω0] −B2c [ω0])
+ 2 · rb · exp (j · θb) · C · V · (B1c [ω0] + B2c [ω0])
= 2 · (Vas0 + Vbs0) (49)
Thus, the equation (39) can be derived from the equation (49).

次に、合成ベクトルVas0+Vbs0の正規化について説明する。図9は、第1の∂A/∂t成分のベクトルVas0Rと合成ベクトルVas0+Vbs0とを示す図であり、図10は、合成ベクトルVas0+Vbs0を第1の∂A/∂t成分のベクトルVas0Rにより正規化する処理を複素ベクトル表現した図である。合成ベクトルVas0+Vbs0を正規化し、ω0倍した合成ベクトルは、以下の∂A/∂t成分のベクトルVnas0とv×B成分のベクトルVnbs0の合成ベクトルVnas0+Vnbs0で表される。
Vnas0=(Vas0/Vas0R)・ω0
={(B1c[ω0]−B2c[ω0])/(B1c[ω0]+B2c[ω0])}・ω0
={(B1c−B2c)/(B1c+B2c)}・ω0 ・・・(50)
Vnbs0=(Vbs0/Vas0R)・ω0
=(rb/ra)・exp{j・(θb−θa)}・V ・・・(51)
Next, normalization of the combined vector Vas0 + Vbs0 will be described. FIG. 9 is a diagram illustrating a first ∂A / ∂t component vector Vas0R and a combined vector Vas0 + Vbs0. FIG. 10 is a diagram illustrating normalization of the combined vector Vas0 + Vbs0 by the first ∂A / ∂t component vector Vas0R. It is the figure which expressed the processing to perform complex vector. A combined vector obtained by normalizing the combined vector Vas0 + Vbs0 and multiplying it by ω0 is expressed as a combined vector Vnas0 + Vnbs0 of the following vector Vnas0 of ∂A / ∂t component and vector Vnbs0 of v × B component.
Vnas0 = (Vas0 / Vas0R) · ω0
= {(B1c [ω0] −B2c [ω0]) / (B1c [ω0] + B2c [ω0])} · ω0
= {(B1c-B2c) / (B1c + B2c)} · ω0 (50)
Vnbs0 = (Vbs0 / Vas0R) · ω0
= (Rb / ra) · exp {j · (θb−θa)} · V (51)

なお、正規化した合成ベクトルをω0倍する理由は、流速の大きさVにかかる係数(スパン)からω0を取り除くためである。(B1c[ω0]−B2c[ω0])/(B1c[ω0]+B2c[ω0])に式(40)、式(41)を代入すると、次式のように角周波数ω0に関係しない形に変形できる。
(B1c[ω0]−B2c[ω0])/(B1c[ω0]+B2c[ω0])
=(B1c−B1c・ω0・ec−B2c+B2c・ω0・ec)
/(B1c−B1c・ω0・ec+B2c−B2c・ω0・ec)
={(B1c−B2c)・(1−ω0・ec)}
/{(B1c+B2c)・(1−ω0・ec)}
=(B1c−B2c)/(B1c+B2c) ・・・(52)
式(50)では、式(52)に基づいて(B1c[ω0]−B2c[ω0])/(B1c[ω0]+B2c[ω0])を角周波数ω0に関係しない形に変形している。
The reason why the normalized composite vector is multiplied by ω0 is to remove ω0 from the coefficient (span) related to the magnitude V of the flow velocity. Substituting Equation (40) and Equation (41) into (B1c [ω0] −B2c [ω0]) / (B1c [ω0] + B2c [ω0]), the shape is transformed into a form not related to the angular frequency ω0 as shown in the following equation. it can.
(B1c [ω0] −B2c [ω0]) / (B1c [ω0] + B2c [ω0])
= (B1c−B1c · ω0 · ec−B2c + B2c · ω0 · ec)
/ (B1c−B1c · ω0 · ec + B2c−B2c · ω0 · ec)
= {(B1c-B2c) · (1-ω0 · ec)}
/ {(B1c + B2c) · (1-ω0 · ec)}
= (B1c-B2c) / (B1c + B2c) (52)
In Expression (50), (B1c [ω0] −B2c [ω0]) / (B1c [ω0] + B2c [ω0]) is transformed into a form not related to the angular frequency ω0 based on Expression (52).

式(51)によれば、正規化されたv×B成分のベクトルVnbs0のVにかかる係数から変動要因(B1c[ω0]+B2c[ω0])・Cが消去され、スパンが補正されていることが分かる。また、正規化された∂A/∂t成分のベクトルVnas0においては、{}の中で周波数に関連する項がなくなり、磁場の損失を考慮しなくても良いことが分かる。   According to the equation (51), the variation factor (B1c [ω0] + B2c [ω0]) · C is eliminated from the coefficient applied to V of the normalized v × B component vector Vnbs0, and the span is corrected. I understand. In addition, in the normalized vector Vnas0 of ∂A / ∂t component, there is no term related to the frequency in {}, and it is understood that the loss of the magnetic field need not be taken into consideration.

図11は、正規化した合成ベクトルVnas0+Vnbs0から第3の∂A/∂t成分のベクトルVnas0を抽出する処理を複素ベクトル表現した図である。正規化した合成ベクトルVnas0+Vnbs0から第3の∂A/∂t成分を抽出する方法としては、複数の励磁周波数による磁場を被測定流体に印加し、電極間起電力に含まれる複数の周波数成分の出力差を利用して∂A/∂t成分を抽出する方法を用いる。この方法は、∂A/∂t成分の大きさは励磁周波数に比例し、v×B成分は励磁周波数に依存しないことに着目したものである。具体的には、ある角周波数ω0で励磁したときの合成ベクトルを正規化したベクトルと別の角周波数ω2で励磁したときの合成ベクトルを正規化したベクトルとの差を求める。この差は、∂A/∂t成分の大きさの変化分だけを与えるベクトルになるので、この変化分から∂A/∂t成分を抽出することができる。   FIG. 11 is a complex vector representation of the process of extracting the vector Vnas0 of the third ∂A / ∂t component from the normalized composite vector Vnas0 + Vnbs0. As a method for extracting the third ∂A / ∂t component from the normalized composite vector Vnas0 + Vnbs0, a magnetic field having a plurality of excitation frequencies is applied to the fluid to be measured, and a plurality of frequency components included in the inter-electrode electromotive force are output. A method of extracting the ∂A / ∂t component using the difference is used. This method focuses on the fact that the magnitude of the ∂A / ∂t component is proportional to the excitation frequency, and the v × B component does not depend on the excitation frequency. Specifically, a difference between a vector obtained by normalizing a combined vector when excited at a certain angular frequency ω0 and a vector obtained by normalizing a combined vector when excited at another angular frequency ω2 is obtained. Since this difference is a vector that gives only a change in the magnitude of the ∂A / ∂t component, the ∂A / ∂t component can be extracted from this change.

励磁コイル3aと3bの両方に角周波数ω2の励磁電流を供給した場合の電極間起電力は、以下の∂A/∂t成分のベクトルVas2とv×B成分のベクトルVbs2の合成ベクトルVas2+Vbs2に相当することが分かる。
Vas2=ra・exp(j・θa)・(B1c[ω2]−B2c[ω2])・C・ω2
・・・(53)
Vbs2=Vbs0
=rb・exp(j・θb)・(B1c[ω2]+B2c[ω2])・C・V
・・・(54)
The inter-electrode electromotive force when the excitation current having the angular frequency ω2 is supplied to both the excitation coils 3a and 3b corresponds to the combined vector Vas2 + Vbs2 of the vector ass2 of the following ∂A / ∂t component and the vector Vbs2 of the v × B component. I understand that
Vas2 = ra · exp (j · θa) · (B1c [ω2] −B2c [ω2]) · C · ω2
... (53)
Vbs2 = Vbs0
= Rb · exp (j · θb) · (B1c [ω2] + B2c [ω2]) · C · V
... (54)

B1c[ω2]は第1の励磁コイル3aのみに角周波数ω2の励磁電流を供給した場合に電極2a,2bで検出される合成ベクトルにおいて磁場に関係する項である。また、B2c[ω2]は、第2の励磁コイル3bのみに角周波数ω2の励磁電流を供給した場合に検出される合成ベクトルにおいて磁場に関係する項である。   B1c [ω2] is a term related to the magnetic field in the combined vector detected by the electrodes 2a and 2b when the exciting current having the angular frequency ω2 is supplied only to the first exciting coil 3a. B2c [ω2] is a term related to the magnetic field in the combined vector detected when the excitation current having the angular frequency ω2 is supplied only to the second excitation coil 3b.

角周波数ω2の第1の励磁電流を第1の励磁コイル3aに供給し、第1の励磁電流との位相差がΔθ3+πで角周波数がω2の第2の励磁電流を第2の励磁コイル3bに供給した場合に電極2a,2bで検出される合成ベクトルのうち、∂A/∂t成分のベクトルVas2Rは次式で表される。
Vas2R=ra・exp(j・θa)・(B1c[ω2]+B2c[ω2])・C・ω2
・・・(55)
式(55)で示されるベクトルVas2Rを第2の∂A/∂t成分とする。
A first excitation current having an angular frequency ω2 is supplied to the first excitation coil 3a, and a second excitation current having a phase difference of Δθ3 + π and an angular frequency ω2 from the first excitation current is supplied to the second excitation coil 3b. Of the combined vectors detected by the electrodes 2a and 2b when supplied, the vector Vas2R of the ∂A / ∂t component is expressed by the following equation.
Vas2R = ra · exp (j · θa) · (B1c [ω2] + B2c [ω2]) · C · ω2
... (55)
A vector Vas2R represented by Expression (55) is set as a second ∂A / ∂t component.

第2の∂A/∂t成分のベクトルVas2Rを用いて合成ベクトルVas2+Vbs2を正規化し、ω2倍した合成ベクトルは、以下の∂A/∂t成分のベクトルVnas2とv×B成分のベクトルVnbs2の合成ベクトルVnas2+Vnbs2で表される。
Vnas2=(Vas2/Vas2R)・ω2
={(B1c[ω2]−B2c[ω2])/(B1c[ω2]+B2c[ω2])}・ω2
={(B1c−B2c)/(B1c+B2c)}・ω2 ・・・(56)
Vnbs2=Vnbs0
=(Vbs2/Vas2R)・ω2
=(rb/ra)・exp{j・(θb−θa)}・V ・・・(57)
The composite vector Vas2 + Vbs2 is normalized using the second vector asA / ∂t component Vas2R and multiplied by ω2, and the resultant vector is a combination of the following vector Vnas2 of ∂A / ∂t component and vector Vnbs2 of v × B component. It is represented by the vector Vnas2 + Vnbs2.
Vnas2 = (Vas2 / Vas2R) · ω2
= {(B1c [ω2] -B2c [ω2]) / (B1c [ω2] + B2c [ω2])} · ω2
= {(B1c-B2c) / (B1c + B2c)} · ω2 (56)
Vnbs2 = Vnbs0
= (Vbs2 / Vas2R) · ω2
= (Rb / ra) · exp {j · (θb−θa)} · V (57)

励磁角周波数をω2としたときの正規化されたv×B成分のベクトルVnbs2は、式(51)に示したベクトルVnbs0と同じになる。一方、励磁角周波数をω2としたときの正規化された∂A/∂t成分のベクトルVnas2は、式(50)においてω0をω2で置き換えたものとなる。   The normalized v × B component vector Vnbs2 when the excitation angular frequency is ω2 is the same as the vector Vnbs0 shown in the equation (51). On the other hand, the normalized vector Vnas2 of ∂A / ∂t component when the excitation angular frequency is ω2 is obtained by replacing ω0 with ω2 in equation (50).

励磁角周波数をω0としたときの正規化された合成ベクトルVnas0+Vnbs0と、励磁角周波数をω2としたときの正規化された合成ベクトルVnas2+Vnbs2との差分を求めると、v×B成分がキャンセルされ、求めた差分をω0/(ω0−ω2)倍したものは次式のとおりベクトルVnas0と同じになる。
{(Vnas0+Vnbs0)−(Vnas2+Vnbs2)}・ω0/(ω0−ω2)
=(Vnas0−Vnas2)・ω0/(ω0−ω2)
={(B1c−B2c)/(B1c+B2c)}・ω0
=Vnas0 ・・・(58)
When the difference between the normalized composite vector Vnas0 + Vnbs0 when the excitation angular frequency is ω0 and the normalized composite vector Vnas2 + Vnbs2 when the excitation angular frequency is ω2, the v × B component is canceled and obtained. The difference obtained by multiplying the difference by ω0 / (ω0−ω2) is the same as the vector Vnas0 as shown in the following equation.
{(Vnas0 + Vnbs0) − (Vnas2 + Vnbs2)} · ω0 / (ω0−ω2)
= (Vnas0−Vnas2) · ω0 / (ω0−ω2)
= {(B1c-B2c) / (B1c + B2c)} · ω0
= Vnas0 (58)

よって、正規化した合成ベクトルVnas0+Vnbs0中の∂A/∂t成分のベクトルVnas0を異なる周波数成分の出力差を利用することにより抽出することができる。この抽出した∂A/∂t成分のベクトルVnas0を第3の∂A/∂t成分とする。   Therefore, the vector Vnas0 of the ∂A / ∂t component in the normalized combined vector Vnas0 + Vnbs0 can be extracted by using the output difference of different frequency components. The extracted vector Vnas0 of ∂A / ∂t component is set as a third ∂A / ∂t component.

図12は、正規化した合成ベクトルVnas0+Vnbs0からv×B成分のベクトルVnbs0を抽出する処理を複素ベクトル表現した図である。正規化した合成ベクトルVnas0+Vnbs0から第3の∂A/∂t成分のベクトルVnas0を引けば、式(51)に示したv×B成分のベクトルVnbs0を抽出することができる。式(51)より、v×B成分のベクトルVnbs0には、角周波数ω0,ω2に関連する項(0点変動要因)が含まれていないことが分かる。   FIG. 12 is a diagram representing the process of extracting the vector Vnbs0 of the v × B component from the normalized composite vector Vnas0 + Vnbs0 as a complex vector. By subtracting the vector Vnas0 of the third ∂A / ∂t component from the normalized composite vector Vnas0 + Vnbs0, the vector Vnbs0 of the v × B component shown in Expression (51) can be extracted. From equation (51), it can be seen that the vector (Vnbs0) of the v × B component does not include a term related to the angular frequencies ω0 and ω2 (zero point variation factor).

式(51)より、被測定流体の流速の大きさVを以下のように算出することができる。
V=|Vnbs0/[(rb/ra)・exp{j・(θb−θa)}]|
=|Vnbs0|/(rb/ra) ・・・(59)
From equation (51), the magnitude V of the flow velocity of the fluid to be measured can be calculated as follows.
V = | Vnbs0 / [(rb / ra) · exp {j · (θb−θa)}] |
= | Vnbs0 | / (rb / ra) (59)

次に、本発明の基本原理に基づく電磁流量計のうち、1個の励磁コイルと2対の電極とを有する電磁流量計の原理を図13を用いて説明する。図13の電磁流量計は、測定管1と、被測定流体に印加される磁場および測定管軸PAXの双方と直交し、かつ被測定流体と接触するように測定管1に対向配置され、前記磁場と被測定流体の流れとによって生じた起電力を検出する第1の電極2a,2bおよび第2の電極2c,2dと、測定管軸PAXと直交する、第1の電極2a,2bを含む平面をPLN1、測定管軸PAXと直交する、第2の電極2c,2dを含む平面をPLN2としたとき、平面PLN1を境とする測定管1の前後で非対称な、時間変化する磁場を被測定流体に印加すると同時に、平面PLN2を境とする測定管1の前後で非対称な、時間変化する磁場を被測定流体に印加する励磁コイル3とを有する。   Next, the principle of an electromagnetic flowmeter having one excitation coil and two pairs of electrodes among the electromagnetic flowmeters based on the basic principle of the present invention will be described with reference to FIG. The electromagnetic flow meter of FIG. 13 is disposed opposite to the measurement tube 1 so as to be orthogonal to both the measurement tube 1, the magnetic field applied to the fluid to be measured, and the measurement tube axis PAX, and to be in contact with the fluid to be measured. 1st electrode 2a, 2b and 2nd electrode 2c, 2d which detect the electromotive force which generate | occur | produced with the magnetic field and the flow of to-be-measured fluid, and 1st electrode 2a, 2b orthogonal to the measurement pipe axis PAX are included. When a plane including PLN1 and the plane including the second electrodes 2c and 2d orthogonal to the measurement tube axis PAX is PLN2, a non-symmetrical time-varying magnetic field is measured before and after the measurement tube 1 with the plane PLN1 as a boundary. At the same time as applying to the fluid, it has an exciting coil 3 that applies a time-varying magnetic field that is asymmetric before and after the measuring tube 1 with the plane PLN2 as a boundary.

第1の電極2a,2bは、励磁コイル3の軸を含む、測定管軸PAXの方向と垂直な平面PLN3から例えば上流側にオフセット距離d3だけ離れた位置に配設される。第2の電極2c,2dは、平面PLN3から例えば下流側にオフセット距離d4だけ離れた位置に配設され、平面PLN3を挟んで第1の電極2a,2bと対向するように配設される。   The first electrodes 2a and 2b are arranged at a position separated from the plane PLN3 including the axis of the exciting coil 3 and perpendicular to the direction of the measurement tube axis PAX, for example, by an offset distance d3 upstream. The second electrodes 2c and 2d are disposed at a position separated from the plane PLN3, for example, by an offset distance d4 on the downstream side, and are disposed so as to face the first electrodes 2a and 2b across the plane PLN3.

第2の電極2c,2dを平面PLN3を挟んで第1の電極2a,2bと対向するように配設した場合、第1の電極2a,2bで検出される電極間起電力のうち、励磁コイル3から発生する磁場および流体の流速に起因するv×B成分と、第2の電極2c,2dで検出される電極間起電力のうち、励磁コイル3から発生する磁場および流体の流速に起因するv×B成分とは、同じ方向になる。一方、第1の電極2a,2bで検出される電極間起電力のうち、励磁コイル3から発生する磁場の変化に起因する∂A/∂t成分と、第2の電極2c,2dで検出される電極間起電力のうち、励磁コイル3から発生する磁場の変化に起因する∂A/∂t成分とは逆向きになる。そのため、第1の電極2a,2bで検出される∂A/∂t成分およびv×B成分と、第2の電極2c,2dで検出される∂A/∂t成分およびv×B成分とを合わせた全ての合成ベクトルにおけるv×B成分の変動要因と∂A/∂t成分の変動要因は、等しくならないことを考慮して補正を行う必要がある。   When the second electrodes 2c and 2d are disposed so as to face the first electrodes 2a and 2b across the plane PLN3, the exciting coil among the inter-electrode electromotive forces detected by the first electrodes 2a and 2b Among the v × B component caused by the magnetic field generated from the magnetic field 3 and the flow velocity of the fluid and the inter-electrode electromotive force detected by the second electrodes 2c and 2d, the magnetic field generated from the exciting coil 3 and the flow velocity of the fluid The direction is the same as the v × B component. On the other hand, among the inter-electrode electromotive force detected by the first electrodes 2a and 2b, the ∂A / ∂t component caused by the change in the magnetic field generated from the exciting coil 3 and the second electrodes 2c and 2d are detected. In the electromotive force between the electrodes, the ∂A / ∂t component caused by the change in the magnetic field generated from the exciting coil 3 is opposite. Therefore, the ∂A / ∂t component and the v × B component detected by the first electrodes 2a and 2b and the ∂A / ∂t component and the v × B component detected by the second electrodes 2c and 2d are It is necessary to perform correction in consideration of the fact that the variation factor of the v × B component and the variation factor of the ∂A / 全 て t component in all the combined vectors are not equal.

ここで、励磁コイル3から発生する磁場Bdのうち、電極2a,2b間を結ぶ電極軸EAX1上において電極軸EAX1および測定管軸PAXの双方と直交する磁場成分(磁束密度)B4と、励磁コイル3から発生する磁場Bdのうち、電極2c,2d間を結ぶ電極軸EAX2上において電極軸EAX2および測定管軸PAXの双方と直交する磁場成分(磁束密度)B5は、以下のように与えられるものとする。
B4=b4・cos(ω0・t−θ4) ・・・(60)
B5=b5・cos(ω0・t−θ5) ・・・(61)
Here, among the magnetic field Bd generated from the excitation coil 3, a magnetic field component (magnetic flux density) B4 orthogonal to both the electrode axis EAX1 and the measurement tube axis PAX on the electrode axis EAX1 connecting the electrodes 2a and 2b, and the excitation coil Among the magnetic fields Bd generated from 3, the magnetic field component (magnetic flux density) B5 orthogonal to both the electrode axis EAX2 and the measurement tube axis PAX on the electrode axis EAX2 connecting the electrodes 2c and 2d is given as follows: And
B4 = b4 · cos (ω0 · t−θ4) (60)
B5 = b5 · cos (ω0 · t−θ5) (61)

但し、B4、B5は1つの励磁コイル3から発生しているので、b4とb5、θ4とθ5は互いに関係があり、独立変数ではない。式(60)、式(61)において、b4,b5はそれぞれ磁束密度B4,B5の振幅、ω0は角周波数、θ4は磁束密度B4とω0・tとの位相差(位相遅れ)、θ5は磁束密度B5とω0・tとの位相差である。以下、磁束密度B4を磁場B4とし、磁束密度B5を磁場B5とする。   However, since B4 and B5 are generated from one excitation coil 3, b4 and b5 and θ4 and θ5 are related to each other and are not independent variables. In equations (60) and (61), b4 and b5 are the amplitudes of the magnetic flux densities B4 and B5, ω0 is the angular frequency, θ4 is the phase difference (phase lag) between the magnetic flux density B4 and ω0 · t, and θ5 is the magnetic flux. It is a phase difference between the density B5 and ω0 · t. Hereinafter, the magnetic flux density B4 is referred to as a magnetic field B4, and the magnetic flux density B5 is referred to as a magnetic field B5.

被測定流体の流速が0の場合、発生する渦電流は、磁場の変化に起因する成分のみとなり、磁場Bdの変化による渦電流Iは、図14に示すような向きとなる。したがって、電極軸EAX1と測定管軸PAXとを含む平面内において磁場Bdの変化によって発生する電極2a,2b間の、流速と無関係な起電力E1と、電極軸EAX2と測定管軸PAXとを含む平面内において磁場Bdの変化によって発生する電極2c,2d間の、流速と無関係な起電力E2とは、図14に示すように互いに逆向きとなる。   When the flow velocity of the fluid to be measured is 0, the eddy current generated is only a component due to the change in the magnetic field, and the eddy current I due to the change in the magnetic field Bd has a direction as shown in FIG. Therefore, an electromotive force E1 irrelevant to the flow velocity between the electrodes 2a and 2b generated by a change in the magnetic field Bd in a plane including the electrode axis EAX1 and the measurement tube axis PAX, and the electrode axis EAX2 and the measurement tube axis PAX are included. The electromotive force E2 between the electrodes 2c and 2d generated by the change of the magnetic field Bd in the plane is opposite to each other as shown in FIG.

被測定流体の流速がV(V≠0)の場合、発生する渦電流には、流速0のときの渦電流Iに加えて、被測定流体の流速ベクトルvに起因する成分v×Bdが発生するため、流速ベクトルvと磁場Bdによる渦電流Ivは、図15に示すような向きとなる。したがって、流速ベクトルvと磁場Bdによって発生する電極2a,2bの起電力Ev1と、流速ベクトルvと磁場Bdによって発生する電極2c,2d間の起電力Ev2とは、同じ向きとなる。   When the flow velocity of the fluid to be measured is V (V ≠ 0), in addition to the eddy current I when the flow velocity is 0, a component v × Bd due to the flow velocity vector v of the fluid to be measured is generated. Therefore, the eddy current Iv due to the flow velocity vector v and the magnetic field Bd is oriented as shown in FIG. Accordingly, the electromotive force Ev1 of the electrodes 2a and 2b generated by the flow velocity vector v and the magnetic field Bd and the electromotive force Ev2 between the electrodes 2c and 2d generated by the flow velocity vector v and the magnetic field Bd are in the same direction.

図14、図15で説明した電極間起電力の向きを考慮すると、磁場の時間変化に起因する電極間起電力を複素ベクトルに変換した起電力と被測定流体の流速に起因する電極間起電力を複素ベクトルに変換した起電力とを合わせた、電極2a,2b間の第1の電極間起電力Eac31は、式(10)、式(16)、式(17)を用いれば、式(18)に対応して次式で表される。
Eac31=rk・ω0・b4・exp{j・(π/2+θ4+θ00)}
+γ・rk・V・b4・exp{j・(θ4+θ01)} ・・・(62)
In consideration of the direction of the inter-electrode electromotive force described with reference to FIGS. 14 and 15, the electro-electromotive force obtained by converting the electro-electromotive force due to the time change of the magnetic field into a complex vector and the flow velocity of the fluid to be measured. The first inter-electrode electromotive force Eac31 between the electrodes 2a and 2b, which is combined with the electromotive force converted into a complex vector, is obtained by using the equation (18) by using the equations (10), (16), and (17). ) Is represented by the following equation.
Eac31 = rk · ω0 · b4 · exp {j · (π / 2 + θ4 + θ00)}
+ Γ · rk · V · b4 · exp {j · (θ4 + θ01)} (62)

また、磁場の時間変化に起因する電極間起電力を複素ベクトルに変換した起電力と被測定流体の流速に起因する電極間起電力を複素ベクトルに変換した起電力とを合わせた、電極2c,2d間の第2の電極間起電力Eac32は、式(10)、式(16)、式(17)を用いれば、式(18)に対応して次式で表される。
Eac32=rk・ω0・b5・exp{j・(−π/2+θ5+θ00)}
+γ・rk・V・b5・exp{j・(θ5+θ01)} ・・・(63)
In addition, an electrode 2c, which is a combination of an electromotive force obtained by converting the inter-electrode electromotive force caused by the time change of the magnetic field into a complex vector and an electromotive force obtained by converting the inter-electrode electromotive force caused by the flow velocity of the fluid to be measured into the complex vector. The second inter-electrode electromotive force Eac32 between 2d is expressed by the following equation corresponding to the equation (18) using the equations (10), (16), and (17).
Eac32 = rk · ω0 · b5 · exp {j · (−π / 2 + θ5 + θ00)}
+ Γ · rk · V · b5 · exp {j · (θ5 + θ01)} (63)

式(62)の右辺第1項は第1の電極2a,2bで検出される∂A/∂t成分、式(62)の右辺第2項は第1の電極2a,2bで検出されるv×B成分となる。式(63)の右辺第1項は第2の電極2c,2dで検出される∂A/∂t成分、式(63)の右辺第2項は第2の電極2c,2dで検出されるv×B成分となる。   The first term on the right side of Equation (62) is the ∂A / ∂t component detected by the first electrodes 2a and 2b, and the second term on the right side of Equation (62) is v detected by the first electrodes 2a and 2b. × B component. The first term on the right side of Equation (63) is the ∂A / ∂t component detected by the second electrodes 2c and 2d, and the second term on the right side of Equation (63) is v detected by the second electrodes 2c and 2d. × B component.

ここで、ω0・tに対する磁場B4の位相遅れθ4とω0・tに対する磁場B5の位相遅れθ5との関係をθ5=θ4+Δθ5とし、虚軸に対する∂A/∂t成分の角度θ00と実軸に対するv×B成分の角度θ01との関係をθ01=θ00+Δθ01とする。式(62)にθ5=θ4+Δθ5、θ01=θ00+Δθ01を代入したときの第1の電極間起電力Eac31と式(63)にθ5=θ4+Δθ5、θ01=θ00+Δθ01を代入したときの第2の電極間起電力Eac32との和をEac3sとすれば、起電力和Eac3sは次式で表される。
Eac3s=rk・exp{j・(θ4+θ00)}
・exp(j・π/2)・{b4−b5・exp(j・Δθ5)}・ω0
+rk・exp{j・(θ4+θ00)}
・γ・exp(j・Δθ01)・{b4+b5・exp(j・Δθ5)} ・V ・・・(64)
Here, the relationship between the phase delay θ4 of the magnetic field B4 with respect to ω0 · t and the phase delay θ5 of the magnetic field B5 with respect to ω0 · t is θ5 = θ4 + Δθ5, and the angle θ00 of the ∂A / ∂t component with respect to the imaginary axis and v with respect to the real axis The relationship with the angle θ01 of the × B component is θ01 = θ00 + Δθ01. The first inter-electrode electromotive force Eac31 when θ5 = θ4 + Δθ5 and θ01 = θ00 + Δθ01 are substituted into equation (62), and the second inter-electrode electromotive force when θ5 = θ4 + Δθ5 and θ01 = θ00 + Δθ01 are substituted into equation (63) If the sum with Eac32 is Eac3s, the electromotive force sum Eac3s is expressed by the following equation.
Eac3s = rk · exp {j · (θ4 + θ00)}
Exp (j · π / 2) · {b4-b5 · exp (j · Δθ5)} · ω0
+ Rk · exp {j · (θ4 + θ00)}
Γ · exp (j · Δθ01) · {b4 + b5 · exp (j · Δθ5)} V (64)

また、式(62)にθ5=θ4+Δθ5、θ01=θ00+Δθ01を代入したときの第1の電極間起電力Eac31と式(63)にθ5=θ4+Δθ5、θ01=θ00+Δθ01を代入したときの第2の電極間起電力Eac32との差をEac3dとすれば、起電力差Eac3dは次式で表される。
Eac3d=rk・exp{j・(θ4+θ00)}
・exp(j・π/2)・{b4+b5・exp(j・Δθ5)}・ω0
+rk・exp{j・(θ4+θ00)}
・γ・exp(j・Δθ01)・{b4−b5・exp(j・Δθ5)} ・V ・・・(65)
Further, the first inter-electrode electromotive force Eac31 when θ5 = θ4 + Δθ5 and θ01 = θ00 + Δθ01 are substituted into the equation (62) and the second interelectrode between when θ5 = θ4 + Δθ5 and θ01 = θ00 + Δθ01 are substituted into the equation (63). If the difference from the electromotive force Eac32 is Eac3d, the electromotive force difference Eac3d is expressed by the following equation.
Eac3d = rk · exp {j · (θ4 + θ00)}
Exp (j · π / 2) · {b4 + b5 · exp (j · Δθ5)} · ω0
+ Rk · exp {j · (θ4 + θ00)}
Γ · exp (j · Δθ01) · {b4-b5 · exp (j · Δθ5)} V (65)

式(64)の右辺第1項は起電力和Eac3sの中の∂A/∂t成分、式(64)の右辺第2項は起電力和Eac3sの中のv×B成分となる。式(65)の右辺第1項は起電力差Eac3dの中の∂A/∂t成分、式(65)の右辺第2項は起電力差Eac3dの中のv×B成分となる。   The first term on the right side of Equation (64) is the ∂A / ∂t component in the electromotive force sum Eac3s, and the second term on the right side of Equation (64) is the v × B component in the electromotive force sum Eac3s. The first term on the right side of Equation (65) is the ∂A / ∂t component in the electromotive force difference Eac3d, and the second term on the right side of Equation (65) is the v × B component in the electromotive force difference Eac3d.

式(64)において、起電力和Eac3sの中のv×B成分の流速の大きさVに係る係数の変動要因と、起電力和Eac3sの中の∂A/∂t成分の角周波数ω0に係る係数の変動要因とが一致しないことから分かるように、図13の電磁流量計の構成では、合成ベクトルから取り出した1つの∂A/∂t成分を用いて0補正とスパン補正とを行うことはできない。そこで、式(64)に示した起電力和Eac3sの中のv×B成分の流速の大きさVに係る係数の変動要因と、式(65)に示した起電力差Eac3dの中の∂A/∂t成分の角周波数ω0に係る係数の変動要因とが等しくなることを利用して、起電力差Eac3dの中の∂A/∂t成分を取り出せば、0補正とスパン補正が可能になり、図1の電磁流量計と同じ原理を補正に適用できる。   In the equation (64), the coefficient variation factor relating to the flow velocity V of the v × B component in the electromotive force sum Eac3s and the angular frequency ω0 of the ∂A / ∂t component in the electromotive force sum Eac3s As can be seen from the fact that the coefficient variation factors do not match, in the configuration of the electromagnetic flow meter of FIG. 13, it is possible to perform zero correction and span correction using one ∂A / ∂t component extracted from the combined vector. Can not. Therefore, the variation factor of the coefficient related to the magnitude V of the flow velocity of the v × B component in the electromotive force sum Eac3s shown in Expression (64) and ∂A in the electromotive force difference Eac3d shown in Expression (65). Using the fact that the variation factor of the coefficient related to the angular frequency ω 0 of the / ∂t component becomes equal, by extracting the ∂A / ∂t component in the electromotive force difference Eac3d, 0 correction and span correction can be performed. The same principle as the electromagnetic flow meter of FIG. 1 can be applied to the correction.

図1の電磁流量計の場合で説明した原理の内容を図13の電磁流量計に対応させるには、第1の励磁コイル3aから発生する磁場の影響に起因する起電力を第1の電極2a,2bで検出される起電力Eac31に置き換え、第2の励磁コイル3bから発生する磁場の影響に起因する起電力を第2の電極2c,2dで検出される起電力Eac32に置き換え、第1の励磁状態で検出される起電力を起電力和Eac3sに置き換え、第2の励磁状態で検出される起電力を起電力差Eac3dに置き換えればよい。   In order to make the content of the principle explained in the case of the electromagnetic flow meter of FIG. 1 correspond to the electromagnetic flow meter of FIG. 13, the electromotive force due to the influence of the magnetic field generated from the first excitation coil 3a is changed to the first electrode 2a. , 2b, the electromotive force Eac31 detected by the second electrodes 2c, 2d is replaced with the electromotive force Eac32 detected by the second electrodes 2c, 2d, and the first electromotive force Eac31 detected by the second excitation coil 3b. The electromotive force detected in the excited state may be replaced with the electromotive force sum Eac3s, and the electromotive force detected in the second excited state may be replaced with the electromotive force difference Eac3d.

[第1の実施の形態]
次に、本発明の第1の実施の形態について説明する。本実施の形態の電磁流量計は2個の励磁コイルと1対の電極とを有するものであり、信号処理系を除く構成は図1に示した電磁流量計と同様であるので、図1の符号を用いて本実施の形態の原理を説明する。本実施の形態は、正規化の対象となる合成ベクトルVas0+Vbs0を検出する方法として基本原理で説明した第1の検出方法を用い、第1の∂A/∂t成分を抽出する方法として基本原理で説明した第1の抽出方法を用いるものである。第2の励磁コイルを第1の励磁コイルと同じ側に追加した場合には、図29の電磁流量計の冗長な構成となる。したがって、第2の励磁コイルは、電極を含む平面を挟んで第1の励磁コイルと異なる側に配設する必要がある。
[First Embodiment]
Next, a first embodiment of the present invention will be described. The electromagnetic flow meter of the present embodiment has two excitation coils and a pair of electrodes, and the configuration excluding the signal processing system is the same as that of the electromagnetic flow meter shown in FIG. The principle of this embodiment will be described using reference numerals. The present embodiment uses the first detection method described in the basic principle as a method for detecting the composite vector Vas0 + Vbs0 to be normalized, and uses the basic principle as a method for extracting the first ∂A / ∂t component. The first extraction method described is used. When the second excitation coil is added on the same side as the first excitation coil, the electromagnetic flow meter of FIG. 29 has a redundant configuration. Therefore, the second exciting coil needs to be arranged on a different side from the first exciting coil across the plane including the electrodes.

第1の励磁コイル3aから発生する磁場Bbのうち、電極2a,2b間を結ぶ電極軸EAX上において電極軸EAXおよび測定管軸PAXの双方と直交する磁場成分(磁束密度)B2と、第2の励磁コイル3bから発生する磁場Bcのうち、電極軸EAX上において電極軸EAXおよび測定管軸PAXの双方と直交する磁場成分(磁束密度)B3は、以下のように与えられるものとする。
B2=b2・cos(ω0・t−θ2) ・・・(66)
B3=b3・cos(ω0・t−θ3) ・・・(67)
式(66)、式(67)において、b2,b3はそれぞれ磁束密度B2,B3の振幅、ω0は角周波数、θ2は磁束密度B2とω0・tとの位相差(位相遅れ)、θ3は磁束密度B3とω0・tとの位相差である。以下、磁束密度B2を磁場B2とし、磁束密度B3を磁場B3とする。
Of the magnetic field Bb generated from the first exciting coil 3a, a magnetic field component (magnetic flux density) B2 orthogonal to both the electrode axis EAX and the measurement tube axis PAX on the electrode axis EAX connecting the electrodes 2a, 2b, and the second Of the magnetic field Bc generated from the exciting coil 3b, a magnetic field component (magnetic flux density) B3 orthogonal to both the electrode axis EAX and the measurement tube axis PAX on the electrode axis EAX is given as follows.
B2 = b2 · cos (ω0 · t−θ2) (66)
B3 = b3 · cos (ω0 · t−θ3) (67)
In equations (66) and (67), b2 and b3 are the amplitudes of the magnetic flux densities B2 and B3, ω0 is the angular frequency, θ2 is the phase difference (phase lag) between the magnetic flux density B2 and ω0 · t, and θ3 is the magnetic flux. The phase difference between the density B3 and ω0 · t. Hereinafter, the magnetic flux density B2 is defined as the magnetic field B2, and the magnetic flux density B3 is defined as the magnetic field B3.

磁場の損失を考慮して、角周波数ω0における磁場B2,B3の振幅b2,b3をそれぞれb2[ω0],b3[ω0]と関数表記に変更し、同様に磁場B2,B3の位相差θ2,θ3をそれぞれθ2[ω0],θ3[ω0]と変更すると、式(66)、式(67)は式(68)、式(69)に置き換わる。
B2=b2[ω0]・cos(ω0・t−θ2[ω0]) ・・・(68)
B3=b3[ω0]・cos(ω0・t−θ3[ω0]) ・・・(69)
Considering the loss of the magnetic field, the amplitudes b2 and b3 of the magnetic fields B2 and B3 at the angular frequency ω0 are changed to the function notations b2 [ω0] and b3 [ω0], respectively, and the phase difference θ2 between the magnetic fields B2 and B3 is similarly changed. When θ3 is changed to θ2 [ω0] and θ3 [ω0], respectively, equations (66) and (67) are replaced with equations (68) and (69).
B2 = b2 [ω0] · cos (ω0 · t−θ2 [ω0]) (68)
B3 = b3 [ω0] · cos (ω0 · t−θ3 [ω0]) (69)

磁場の変化に起因する起電力は、磁場の時間微分dB/dtによるので、第1の励磁コイル3aから発生する磁場B2と第2の励磁コイル3bから発生する磁場B3を次式のように微分する。
dB2/dt=ω0・cos(ω0・t)・b2[ω0]・{sin(θ2[ω0])}
+ω0・sin(ω0・t)・b2[ω0]・{−cos(θ2[ω0])}
・・・(70)
dB3/dt=ω0・cos(ω0・t)・b3[ω0]・{sin(θ3[ω0])}
+ω0・sin(ω0・t)・b3[ω0]・{−cos(θ3[ω0])}
・・・(71)
Since the electromotive force resulting from the change in the magnetic field is based on the time derivative dB / dt of the magnetic field, the magnetic field B2 generated from the first excitation coil 3a and the magnetic field B3 generated from the second excitation coil 3b are differentiated as follows: To do.
dB2 / dt = ω0 · cos (ω0 · t) · b2 [ω0] · {sin (θ2 [ω0])}
+ Ω0 · sin (ω0 · t) · b2 [ω0] · {−cos (θ2 [ω0])}
... (70)
dB3 / dt = ω0 · cos (ω0 · t) · b3 [ω0] · {sin (θ3 [ω0])}
+ Ω0 · sin (ω0 · t) · b3 [ω0] · {−cos (θ3 [ω0])}
... (71)

被測定流体の流速が0の場合、電極軸EAXと測定管軸PAXとを含む平面内において、磁場Bbの変化によって発生する、流速と無関係な電極間起電力E1と、磁場Bcの変化によって発生する、流速と無関係な電極間起電力E2は、図2に示すように互いに逆向きとなる。このとき、電極間起電力E1とE2とを足した全体の電極間起電力Eは、次式に示すように、磁場の時間微分dB2/dtとdB3/dtとの差(−dB2/dt+dB3/dt)に比例係数rkをかけ、位相差θ2,θ3をそれぞれθ2+θ00,θ3+θ00で置き換えたものとなる(rk、θ00は、被測定流体の導電率及び誘電率と電極2a,2bの配置を含む測定管1の構造に関係する)。
E=rk・ω0・cos(ω0・t)
・{−b2[ω0]・sin(θ2[ω0]+θ00)
+b3[ω0]・sin(θ3[ω0]+θ00)}
+rk・ω0・sin(ω0・t)
・{b2[ω0]・cos(θ2[ω0]+θ00)
−b3[ω0]・cos(θ3[ω0]+θ00)} ・・・(72)
When the flow rate of the fluid to be measured is 0, it is generated by the change in the electromotive force E1 between the electrodes that is irrelevant to the flow rate and the change in the magnetic field Bc. The inter-electrode electromotive force E2 irrelevant to the flow velocity is opposite to each other as shown in FIG. At this time, the total inter-electrode electromotive force E obtained by adding the inter-electrode electromotive forces E1 and E2 is the difference between the time derivative of the magnetic field dB2 / dt and the dB3 / dt (−dB2 / dt + dB3 / dt) is multiplied by a proportional coefficient rk, and the phase differences θ2 and θ3 are replaced by θ2 + θ00 and θ3 + θ00, respectively (rk and θ00 are measurements including the conductivity and dielectric constant of the fluid to be measured and the arrangement of the electrodes 2a and 2b). Related to the structure of the tube 1).
E = rk · ω0 · cos (ω0 · t)
・ {−b2 [ω0] · sin (θ2 [ω0] + θ00)
+ B3 [ω0] · sin (θ3 [ω0] + θ00)}
+ Rk · ω0 · sin (ω0 · t)
・ {B2 [ω0] · cos (θ2 [ω0] + θ00)
-B3 [ω0] · cos (θ3 [ω0] + θ00)} (72)

被測定流体の流速の大きさがV(V≠0)の場合、流速ベクトルvと磁場Bbによって発生する電極間起電力Ev1、流速ベクトルvと磁場Bcによって発生する電極間起電力Ev2は、図3に示すように同じ向きとなる。このとき、電極間起電力Ev1とEv2とを足した全体の電極間起電力Evは、次式に示すように、磁場B2と磁場B3との和に比例係数rkvをかけ、位相差θ2,θ3をそれぞれθ2+θ01,θ3+θ01で置き換えたものとなる(rkv、θ01は、流速の大きさVと被測定流体の導電率及び誘電率と電極2a,2bの配置を含む測定管1の構造に関係する)。
Ev=rkv・cos(ω0・t)
・{b2[ω0]・cos(θ2[ω0]+θ01)
+b3[ω0]・cos(θ3[ω0]+θ01)}
+rkv・sin(ω0・t)
・{b2[ω0]・sin(θ2[ω0]+θ01)
+b3[ω0]・sin(θ3[ω0]+θ01)} ・・・(73)
When the magnitude of the flow velocity of the fluid to be measured is V (V ≠ 0), the interelectrode electromotive force Ev1 generated by the flow velocity vector v and the magnetic field Bb, and the interelectrode electromotive force Ev2 generated by the flow velocity vector v and the magnetic field Bc are shown in FIG. As shown in FIG. At this time, the total inter-electrode electromotive force Ev obtained by adding the inter-electrode electromotive forces Ev1 and Ev2 is obtained by multiplying the sum of the magnetic field B2 and the magnetic field B3 by the proportional coefficient rkv to obtain the phase difference θ2, θ3. Are replaced by θ2 + θ01 and θ3 + θ01, respectively (rkv and θ01 relate to the structure of the measuring tube 1 including the magnitude V of the flow velocity, the conductivity and the dielectric constant of the fluid to be measured, and the arrangement of the electrodes 2a and 2b). .
Ev = rkv · cos (ω0 · t)
・ {B2 [ω0] · cos (θ2 [ω0] + θ01)
+ B3 [ω0] · cos (θ3 [ω0] + θ01)}
+ Rkv · sin (ω0 · t)
・ {B2 [ω0] · sin (θ2 [ω0] + θ01)
+ B3 [ω0] · sin (θ3 [ω0] + θ01)} (73)

図2、図3で説明した電極間起電力の向きを考慮すると、磁場の時間変化に起因する電極間起電力を複素ベクトルに変換した起電力と被測定流体の流速に起因する電極間起電力を複素ベクトルに変換した起電力とを合わせた全体の電極間起電力のうち、角周波数ω0の成分の起電力E10cは、式(72)、式(73)に式(17)を適用することにより次式で表される。
E10c=rk・ω0・b2[ω0]・exp{j・(π/2+θ2[ω0]+θ00)}
+rk・ω0・b3[ω0]
・exp{j・(−π/2+θ3[ω0]+θ00)}
+γ・rk・V・b2[ω0]・exp{j・(θ2[ω0]+θ01)}
+γ・rk・V・b3[ω0]・exp{j・(θ3[ω0]+θ01)}
・・・(74)
In consideration of the direction of the electromotive force between the electrodes described in FIGS. 2 and 3, the electromotive force obtained by converting the interelectrode electromotive force due to the time change of the magnetic field into a complex vector and the interelectrode electromotive force due to the flow velocity of the fluid to be measured. Of the whole inter-electrode electromotive force combined with the electromotive force converted into a complex vector, the electromotive force E10c of the component of the angular frequency ω0 applies Equation (17) to Equation (72) and Equation (73). Is expressed by the following equation.
E10c = rk · ω0 · b2 [ω0] · exp {j · (π / 2 + θ2 [ω0] + θ00)}
+ Rk · ω0 · b3 [ω0]
• exp {j · (−π / 2 + θ3 [ω0] + θ00)}
+ Γ · rk · V · b2 [ω0] · exp {j · (θ2 [ω0] + θ01)}
+ Γ · rk · V · b3 [ω0] · exp {j · (θ3 [ω0] + θ01)}
... (74)

ここで、ω0・tに対する磁場B2の位相遅れθ2[ω0]とω0・tに対する磁場B3の位相遅れθ3[ω0]との関係がθ3[ω0]=θ2[ω0]+Δθ3[ω0]で、かつ虚軸に対する∂A/∂t成分の角度θ00と実軸に対するv×B成分の角度θ01との関係がθ01=θ00+Δθ01である状態を第1の励磁状態とし、この第1の励磁状態における電極間起電力E10cをE10とすると、電極間起電力E10は次式のようになる。
E10=rk・exp{j・(θ2[ω0]+θ00)}
・[ω0・exp(j・π/2)
・{b2[ω0]−b3[ω0]・exp(j・Δθ3[ω0])}
+γ・V・exp(j・Δθ01)
・{b2[ω0]+b3[ω0]・exp(j・Δθ3[ω0])}]
・・・(75)
Here, the relationship between the phase delay θ2 [ω0] of the magnetic field B2 with respect to ω0 · t and the phase delay θ3 [ω0] of the magnetic field B3 with respect to ω0 · t is θ3 [ω0] = θ2 [ω0] + Δθ3 [ω0] A state in which the relationship between the angle θ00 of the ∂A / ∂t component with respect to the imaginary axis and the angle θ01 of the v × B component with respect to the real axis is θ01 = θ00 + Δθ01 is defined as the first excitation state, and between the electrodes in the first excitation state When the electromotive force E10c is E10, the interelectrode electromotive force E10 is expressed by the following equation.
E10 = rk · exp {j · (θ2 [ω0] + θ00)}
・ [Ω0 ・ exp (j ・ π / 2)
{B2 [ω0] −b3 [ω0] · exp (j · Δθ3 [ω0])}
+ Γ · V · exp (j · Δθ01)
{B2 [ω0] + b3 [ω0] · exp (j · Δθ3 [ω0])}]
... (75)

また、磁場B2と磁場B3との位相差が第1の励磁状態から一定値πだけ変化し(θ3[ω2]=π+θ2[ω2]+Δθ3[ω2])、かつθ01=θ00+Δθ01である状態を第2の励磁状態とし、この第2の励磁状態における電極間起電力E10cをE1π0とすると、電極間起電力E1π0は次式のようになる。
E1π0=rk・exp{j・(θ2[ω0]+θ00)}
・[ω0・exp(j・π/2)
・{b2[ω0]+b3[ω0]・exp(j・Δθ3[ω0])}
+γ・V・exp(j・Δθ01)
・{b2[ω0]−b3[ω0]・exp(j・Δθ3[ω0])}]
・・・(76)
In addition, the phase difference between the magnetic field B2 and the magnetic field B3 changes from the first excitation state by a constant value π (θ3 [ω2] = π + θ2 [ω2] + Δθ3 [ω2]), and θ01 = θ00 + Δθ01. When the interelectrode electromotive force E10c in the second excitation state is E1π0, the interelectrode electromotive force E1π0 is expressed by the following equation.
E1π0 = rk · exp {j · (θ2 [ω0] + θ00)}
・ [Ω0 ・ exp (j ・ π / 2)
{B2 [ω0] + b3 [ω0] · exp (j · Δθ3 [ω0])}
+ Γ · V · exp (j · Δθ01)
{B2 [ω0] −b3 [ω0] · exp (j · Δθ3 [ω0])}]
... (76)

さらに、第1の励磁状態において励磁角周波数をω0からω2に変更した状態を第3の励磁状態とし、この第3の励磁状態における電極間起電力E10cをE12とすると、電極間起電力E12は式(75)より次式のようになる。
E12=rk・exp{j・(θ2[ω2]+θ00)}
・[ω2・exp(j・π/2)
・{b2[ω2]−b3[ω2]・exp(j・Δθ3[ω2])}
+γ・V・exp(j・Δθ01)
・{b2[ω2]+b3[ω2]・exp(j・Δθ3[ω2])}]
・・・(77)
Further, when the excitation angular frequency is changed from ω0 to ω2 in the first excitation state is defined as the third excitation state, and the interelectrode electromotive force E10c in the third excitation state is E12, the interelectrode electromotive force E12 is From the equation (75), the following equation is obtained.
E12 = rk · exp {j · (θ2 [ω2] + θ00)}
・ [Ω2 ・ exp (j ・ π / 2)
{B2 [ω2] −b3 [ω2] · exp (j · Δθ3 [ω2])}
+ Γ · V · exp (j · Δθ01)
{B2 [ω2] + b3 [ω2] · exp (j · Δθ3 [ω2])}]
... (77)

また、第2の励磁状態において励磁角周波数をω0からω2に変更した状態を第4の励磁状態とし、この第4の励磁状態における電極間起電力E10cをE1π2とすると、電極間起電力E1π2は式(76)より次式のようになる。
E1π2=rk・exp{j・(θ2[ω2]+θ00)}
・[ω2・exp(j・π/2)
・{b2[ω2]+b3[ω2]・exp(j・Δθ3[ω2])}
+γ・V・exp(j・Δθ01)
・{b2[ω2]−b3[ω2]・exp(j・Δθ3[ω2])}]
・・・(78)
In addition, when the state in which the excitation angular frequency is changed from ω0 to ω2 in the second excitation state is the fourth excitation state, and the inter-electrode electromotive force E10c in the fourth excitation state is E1π2, the inter-electrode electromotive force E1π2 is From the equation (76), the following equation is obtained.
E1π2 = rk · exp {j · (θ2 [ω2] + θ00)}
・ [Ω2 ・ exp (j ・ π / 2)
{B2 [ω2] + b3 [ω2] · exp (j · Δθ3 [ω2])}
+ Γ · V · exp (j · Δθ01)
{B2 [ω2] -b3 [ω2] · exp (j · Δθ3 [ω2])}]
... (78)

まず、角周波数ω0の状態のスパンを補正することについて説明する。初期状態(校正時の状態)において、第1の励磁コイル3aから発生する磁場B2と第2の励磁コイル3bから発生する磁場B3とを等しく設定しておくと、その後の磁場B2とB3の初期状態からの差は小さくなり、式(79)の条件が成り立つ。
|b2[ω0]+b3[ω0]・exp(j・Δθ3[ω0])|
≫|b2[ω0]−b3[ω0]・exp(j・Δθ3[ω0])| ・・・(79)
First, correction of the span in the state of the angular frequency ω0 will be described. If the magnetic field B2 generated from the first exciting coil 3a and the magnetic field B3 generated from the second exciting coil 3b are set equal in the initial state (state at the time of calibration), the initial values of the subsequent magnetic fields B2 and B3 are set. The difference from the state becomes small, and the condition of Expression (79) is satisfied.
| B2 [ω0] + b3 [ω0] · exp (j · Δθ3 [ω0]) |
>> | b2 [ω0] −b3 [ω0] · exp (j · Δθ3 [ω0]) | (79)

また、通常ω0>γ・Vが成り立つことから、式(79)の条件を考慮すると、式(76)において式(80)の条件が成り立つ。
|ω0・exp(j・π/2)
・{b2[ω0]+b3[ω0]・exp(j・Δθ3[ω0])}|
≫|γ・V・exp(j・Δθ01)
・{b2[ω0]−b3[ω0]・exp(j・Δθ3[ω0])}|
・・・(80)
In addition, since ω0> γ · V is normally satisfied, when the condition of Expression (79) is considered, the condition of Expression (80) is satisfied in Expression (76).
| Ω0 · exp (j · π / 2)
{B2 [ω0] + b3 [ω0] · exp (j · Δθ3 [ω0])} |
≫ | γ ・ V ・ exp (j ・ Δθ01)
{B2 [ω0] −b3 [ω0] · exp (j · Δθ3 [ω0])} |
... (80)

式(80)の条件を用いて、電極間起電力E1π0を近似した起電力EdA11は次式のように表される。この起電力EdA11は基本原理における第1の∂A/∂t成分に相当する。
EdA11≒E1π0 ・・・(81)
EdA11=rk・exp{j・(θ2[ω0]+θ00)}
・ω0・exp(j・π/2)
・{b2[ω0]+b3[ω0]・exp(j・Δθ3[ω0])}
・・・(82)
The electromotive force EdA11 that approximates the interelectrode electromotive force E1π0 using the condition of the equation (80) is expressed as the following equation. This electromotive force EdA11 corresponds to the first ∂A / ∂t component in the basic principle.
EdA11≈E1π0 (81)
EdA11 = rk · exp {j · (θ2 [ω0] + θ00)}
・ Ω0 ・ exp (j ・ π / 2)
{B2 [ω0] + b3 [ω0] · exp (j · Δθ3 [ω0])}
... (82)

起電力EdA11は、流速の大きさVに関係しないので、∂A/∂tにより発生する成分のみとなる。この起電力EdA11を用いて電極間起電力E10(合成ベクトルVas0+Vbs0)中のv×B成分の流速の大きさVにかかる係数(スパン)を正規化する。式(75)の電極間起電力E10を式(82)の起電力EdA11で正規化し、ω0倍した結果をEn10とすれば、正規化起電力En10は次式のようになる。
En10=(E10/EdA11)・ω0
=rk・exp{j・(θ2[ω0]+θ00)}・[ω0・exp(j・π/2)
・{b2[ω0]−b3[ω0]・exp(j・Δθ3[ω0])}
+γ・V・exp(j・Δθ01)
・{b2[ω0]+b3[ω0]・exp(j・Δθ3[ω0])}]
/[rk・exp{j・(θ2[ω0]+θ00)}・ω0・exp(j・π/2)
・{b2[ω0]+b3[ω0]・exp(j・Δθ3[ω0])}]・ω0
=ω0・{b2[ω0]−b3[ω0]・exp(j・Δθ3[ω0])}
/{b2[ω0]+b3[ω0]・exp(j・Δθ3[ω0])}
+[γ・exp{j・(−π/2+Δθ01)}]・V ・・・(83)
Since the electromotive force EdA11 is not related to the magnitude V of the flow velocity, only the component generated by ∂A / ∂t is included. Using this electromotive force EdA11, the coefficient (span) applied to the magnitude V of the flow velocity of the v × B component in the interelectrode electromotive force E10 (combined vector Vas0 + Vbs0) is normalized. When the inter-electrode electromotive force E10 in the equation (75) is normalized by the electromotive force EdA11 in the equation (82) and multiplied by ω0, the result is En10, and the normalized electromotive force En10 is expressed by the following equation.
En10 = (E10 / EdA11) · ω0
= Rk · exp {j · (θ2 [ω0] + θ00)} · [ω0 · exp (j · π / 2)
{B2 [ω0] −b3 [ω0] · exp (j · Δθ3 [ω0])}
+ Γ · V · exp (j · Δθ01)
{B2 [ω0] + b3 [ω0] · exp (j · Δθ3 [ω0])}]
/ [Rk · exp {j · (θ2 [ω0] + θ00)} · ω0 · exp (j · π / 2)
{B2 [ω0] + b3 [ω0] · exp (j · Δθ3 [ω0])}] · ω0
= Ω0 · {b2 [ω0] −b3 [ω0] · exp (j · Δθ3 [ω0])}
/ {B2 [ω0] + b3 [ω0] · exp (j · Δθ3 [ω0])}
+ [Γ · exp {j · (−π / 2 + Δθ01)}] · V (83)

式(83)の右辺第1項の角周波数ω0にかかる係数{b2[ω0]−b3[ω0]・exp(j・Δθ3[ω0])}/{b2[ω0]+b3[ω0]・exp(j・Δθ3[ω0])}も正規化されることにより角周波数ω0に関係しない値{b2−b3・exp(j・Δθ3)}/{b2+b3・exp(j・Δθ3)}で表されるので、式(83)を次式のように置き換えることができる。
En10=ω0・{b2−b3・exp(j・Δθ3)}
/{b2+b3・exp(j・Δθ3)}
+[γ・exp{j・(−π/2+Δθ01)}]・V ・・・(84)
The coefficient {b2 [ω0] −b3 [ω0] · exp (j · Δθ3 [ω0])} / {b2 [ω0] + b3 [ω0] · exp () applied to the angular frequency ω0 of the first term on the right side of the equation (83) j · Δθ3 [ω0])} is also normalized, and is represented by the value {b2−b3 · exp (j · Δθ3)} / {b2 + b3 · exp (j · Δθ3)} not related to the angular frequency ω0. Equation (83) can be replaced by the following equation.
En10 = ω0 · {b2−b3 · exp (j · Δθ3)}
/ {B2 + b3 · exp (j · Δθ3)}
+ [Γ · exp {j · (−π / 2 + Δθ01)}] · V (84)

式(84)の右辺第2項が、v×Bにより発生する成分を∂A/∂tにより発生する成分で正規化した項となる。なお、電極間起電力E10を起電力EdA11で正規化した結果をω0倍した理由は、流速の大きさVに係る右辺第2項から励磁角周波数ω0を消去するためである。式(84)によれば、流速の大きさVにかかる複素係数は、γの大きさ、−π/2+Δθ01の実軸からの角度をもつ。係数γおよび角度Δθ01は校正等により予め求めることができる定数であり、式(84)の右辺第2項は被測定流体の流速が変化しないかぎり一定となる。したがって、∂A/∂t成分を用いてv×B成分の正規化を行うことにより、磁場のシフトや位相変化による誤差を自動的に補正するスパン補正を実現することができる。   The second term on the right side of equation (84) is a term obtained by normalizing the component generated by v × B with the component generated by ∂A / ∂t. The reason why the result obtained by normalizing the inter-electrode electromotive force E10 with the electromotive force EdA11 is multiplied by ω0 is to eliminate the excitation angular frequency ω0 from the second term on the right side related to the magnitude V of the flow velocity. According to the equation (84), the complex coefficient related to the magnitude V of the flow velocity has a magnitude of γ and an angle from the real axis of −π / 2 + Δθ01. The coefficient γ and the angle Δθ01 are constants that can be obtained in advance by calibration or the like, and the second term on the right side of the equation (84) is constant as long as the flow velocity of the fluid to be measured does not change. Therefore, by performing the normalization of the v × B component using the ∂A / ∂t component, it is possible to realize span correction that automatically corrects an error due to a magnetic field shift or phase change.

次に、0点の変動要因である、式(84)の右辺第1項を除去する方法について説明する。角周波数ω0での正規化と同様に角周波数ω2において正規化を行う。まず、式(78)の電極間起電力E1π2を近似した起電力EdA12は次式で表される。この起電力EdA12は基本原理における第2の∂A/∂t成分に相当する。
EdA12≒E1π2 ・・・(85)
EdA12=rk・exp{j・(θ2[ω0]+θ00)}
・ω2・exp(j・π/2)
・{b2[ω2]+b3[ω2]・exp(j・Δθ3[ω2])}
・・・(86)
Next, a method for removing the first term on the right side of the equation (84), which is the variation factor of the zero point, will be described. Normalization is performed at the angular frequency ω2 as in the normalization at the angular frequency ω0. First, an electromotive force EdA12 that approximates the interelectrode electromotive force E1π2 in the equation (78) is expressed by the following equation. This electromotive force EdA12 corresponds to the second ∂A / ∂t component in the basic principle.
EdA12≈E1π2 (85)
EdA12 = rk · exp {j · (θ2 [ω0] + θ00)}
・ Ω2 ・ exp (j ・ π / 2)
{B2 [ω2] + b3 [ω2] · exp (j · Δθ3 [ω2])}
... (86)

式(77)の電極間起電力E12を起電力EdA12で正規化し、ω2倍した結果をEn12とすれば、正規化起電力En12は式(84)より次式で表される。
En12=(E12/EdA12)・ω2
=ω2・{b2[ω2]−b3[ω2]・exp(j・Δθ3[ω2])}
/{b2[ω2]+b3[ω2]・exp(j・Δθ3[ω2])}
+[γ・exp{j・(−π/2+Δθ01)}]・V
=ω2・{b2−b3・exp(j・Δθ3)}
/{b2+b3・exp(j・Δθ3)}
+[γ・exp{j・(−π/2+Δθ01)}]・V ・・・(87)
If the inter-electrode electromotive force E12 in the equation (77) is normalized by the electromotive force EdA12 and multiplied by ω2 is En12, the normalized electromotive force En12 is expressed by the following equation from the equation (84).
En12 = (E12 / EdA12) · ω2
= Ω2 · {b2 [ω2] −b3 [ω2] · exp (j · Δθ3 [ω2])}
/ {B2 [ω2] + b3 [ω2] · exp (j · Δθ3 [ω2])}
+ [Γ · exp {j · (−π / 2 + Δθ01)}] · V
= Ω2 · {b2−b3 · exp (j · Δθ3)}
/ {B2 + b3 · exp (j · Δθ3)}
+ [Γ · exp {j · (−π / 2 + Δθ01)}] · V (87)

正規化起電力En10とEn12との差をとり、求めた差分をω0/(ω0−ω2)倍した結果をEdA13とすれば、起電力差EdA13は次式で表される。この起電力差EdA13は基本原理における第3の∂A/∂t成分に相当する。
EdA13=(En10−En12)・ω0/(ω0−ω2)
=[ω0・{b2−b3・exp(j・Δθ3)}
/{b2+b3・exp(j・Δθ3)}
+γ・exp{j・(−π/2+Δθ01)}・V
−ω2・{b2−b3・exp(j・Δθ3)}
/{b2+b3・exp(j・Δθ3)}
−γ・exp{j・(−π/2+Δθ01)}・V]・ω0/(ω0−ω2)
=ω0・{b2−b3・exp(j・Δθ3)}
/{b2+b3・exp(j・Δθ3)} ・・・(88)
Taking the difference between the normalized electromotive forces En10 and En12 and multiplying the obtained difference by ω0 / (ω0−ω2) as EdA13, the electromotive force difference EdA13 is expressed by the following equation. This electromotive force difference EdA13 corresponds to the third ∂A / ∂t component in the basic principle.
EdA13 = (En10−En12) · ω0 / (ω0−ω2)
= [Ω0 · {b2−b3 · exp (j · Δθ3)}
/ {B2 + b3 · exp (j · Δθ3)}
+ Γ · exp {j · (−π / 2 + Δθ01)} · V
-Ω2 · {b2−b3 · exp (j · Δθ3)}
/ {B2 + b3 · exp (j · Δθ3)}
−γ · exp {j · (−π / 2 + Δθ01)} · V] · ω0 / (ω0−ω2)
= Ω0 · {b2−b3 · exp (j · Δθ3)}
/ {B2 + b3 · exp (j · Δθ3)} (88)

起電力差EdA13は正規化された∂A/∂t成分を表し、式(84)の右辺第1項と等しくなるので、この正規化起電力差EdA13を使用すれば、正規化されたv×B成分を正規化起電力En10から取り出すことができる。式(84)の正規化起電力En10から式(88)の正規化起電力差EdA13を引いたときに得られるv×B成分をEvBn1とすると、v×B成分EvBn1は次式で表される。
EvBn1=En10−EdA13
=ω0・{b2−b3・exp(j・Δθ3)}
/{b2+b3・exp(j・Δθ3)}
+[γ・exp{j・(−π/2+Δθ01)}]・V
−ω0・{b2−b3・exp(j・Δθ3)}
/{b2+b3・exp(j・Δθ3)}
=[γ・exp{j・(−π/2+Δθ01)}]・V ・・・(89)
The electromotive force difference EdA13 represents the normalized ∂A / ∂t component and is equal to the first term on the right side of the equation (84). Therefore, if this normalized electromotive force difference EdA13 is used, the normalized v × The B component can be extracted from the normalized electromotive force En10. When the v × B component obtained by subtracting the normalized electromotive force difference EdA13 of equation (88) from the normalized electromotive force En10 of equation (84) is EvBn1, the v × B component EvBn1 is expressed by the following equation: .
EvBn1 = En10-EdA13
= Ω0 · {b2−b3 · exp (j · Δθ3)}
/ {B2 + b3 · exp (j · Δθ3)}
+ [Γ · exp {j · (−π / 2 + Δθ01)}] · V
-Ω0 · {b2−b3 · exp (j · Δθ3)}
/ {B2 + b3 · exp (j · Δθ3)}
= [Γ · exp {j · (−π / 2 + Δθ01)}] · V (89)

v×B成分EvBn1は角周波数ω0,ω2に関係しない。流速の大きさVが0のときv×B成分EvBn1も0となることから分かるように、v×B成分EvBn1より、スパンが補正され、かつ0点が補正された出力を得ることができる。式(89)より、流速の大きさVは次式のように表される。
V=|EvBn1/[γ・exp{j・(−π/2+Δθ01)}]|
=|EvBn1|/γ ・・・(90)
The v × B component EvBn1 is not related to the angular frequencies ω0 and ω2. As can be seen from the fact that the v × B component EvBn1 becomes 0 when the magnitude V of the flow velocity is 0, an output in which the span is corrected and the zero point is corrected can be obtained from the v × B component EvBn1. From the equation (89), the magnitude V of the flow velocity is expressed as the following equation.
V = | EvBn1 / [γ · exp {j · (−π / 2 + Δθ01)}] |
= | EvBn1 | / γ (90)

なお、基本原理で用いた定数および変数と、本実施の形態の定数および変数との対応関係は以下の表1のとおりである。本実施の形態は、表1から明らかなように、前述の基本原理を具体的に実現する1つの例である。   Table 1 below shows the correspondence between the constants and variables used in the basic principle and the constants and variables of this embodiment. As is clear from Table 1, this embodiment is an example that specifically realizes the basic principle described above.

Figure 2006058175
Figure 2006058175

次に、本実施の形態の電磁流量計の具体的な構成とその動作について説明する。図16は本実施の形態の電磁流量計の構成を示すブロック図であり、図1と同一の構成には同一の符号を付してある。本実施の形態の電磁流量計は、測定管1と、電極2a,2bと、第1、第2の励磁コイル3a,3bと、第1、第2の励磁コイル3a,3bに励磁電流を供給する電源部4と、信号変換部5と、信号変換部5によって抽出されたv×B成分から流体の流量を算出する流量出力部6とを有する。第1、第2の励磁コイル3a,3bと電源部4とは、平面PLNに対して非対称、かつ時間変化する磁場を被測定流体に印加する励磁部となる。   Next, a specific configuration and operation of the electromagnetic flow meter of the present embodiment will be described. FIG. 16 is a block diagram showing the configuration of the electromagnetic flowmeter of the present embodiment, and the same components as those in FIG. The electromagnetic flow meter of the present embodiment supplies excitation current to the measuring tube 1, the electrodes 2a and 2b, the first and second excitation coils 3a and 3b, and the first and second excitation coils 3a and 3b. Power supply unit 4, signal conversion unit 5, and flow rate output unit 6 that calculates the flow rate of the fluid from the v × B component extracted by signal conversion unit 5. The first and second excitation coils 3a and 3b and the power supply unit 4 serve as excitation units that apply a magnetic field that is asymmetric and time-varying with respect to the plane PLN to the fluid to be measured.

信号変換部5は、第1の励磁状態〜第4の励磁状態の各々において電極2a,2bで検出される合成起電力の振幅と位相を求め、これらの振幅と位相に基づいて第2の励磁状態の合成起電力を第1の∂A/∂t成分として抽出すると共に、第4の励磁状態の合成起電力を第2の∂A/∂t成分として抽出し、第1の励磁状態の合成起電力を第1の補正対象起電力として、第1の∂A/∂t成分に基づいて第1の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去すると共に、第3の励磁状態の合成起電力を第2の補正対象起電力として、第2の∂A/∂t成分に基づいて第2の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去するスパン補正部51と、スパン補正された第1の補正対象起電力とスパン補正された第2の補正対象起電力との差を第3の∂A/∂t成分として抽出し、このスパン補正された2つの補正対象起電力のうちいずれか1つの中から第3の∂A/∂t成分を取り除くことによりv×B成分を抽出する0点補正部52とから構成される。   The signal conversion unit 5 obtains the amplitude and phase of the combined electromotive force detected by the electrodes 2a and 2b in each of the first to fourth excitation states, and performs the second excitation based on these amplitudes and phases. The combined electromotive force of the state is extracted as the first ∂A / ∂t component, and the combined electromotive force of the fourth excitation state is extracted as the second ∂A / ∂t component, thereby synthesizing the first excitation state. Using the electromotive force as the first correction target electromotive force, the variation factor of the span included in the v × B component in the first correction target electromotive force is removed based on the first ∂A / ∂t component, The composite electromotive force in the third excitation state is set as the second correction target electromotive force, and the span included in the v × B component in the second correction target electromotive force is based on the second ∂A / ∂t component. The span correction unit 51 for removing the variation factor, the first correction target electromotive force and the span correction subjected to the span correction The difference between the corrected second electromotive force and the second correction target electromotive force is extracted as a third ∂A / ∂t component, and the third ∂A is selected from any one of the two correction target electromotive forces subjected to the span correction. The zero point correction unit 52 extracts the v × B component by removing the / ∂t component.

電源部4は、第1の角周波数ω0の第1の励磁電流を第1の励磁コイル3aに供給すると同時に、第1の励磁電流との位相差がΔθ3で、第1の角周波数ω0の第2の励磁電流を第2の励磁コイル3bに供給する第1の励磁状態をT1秒継続し、この第1の励磁状態に対して第1の励磁電流と第2の励磁電流との位相差をΔθ3+πに変更した第2の励磁状態をT2秒継続し、第1の励磁状態に対して励磁角周波数をω0からω2に変更した第3の励磁状態をT3秒継続し、さらに第2の励磁状態に対して励磁角周波数をω0からω2に変更した第4の励磁状態をT4秒継続することをT秒周期で繰り返す。すなわち、T=T1+T2+T3+T4である。   The power supply unit 4 supplies the first excitation current having the first angular frequency ω0 to the first excitation coil 3a, and at the same time, the phase difference from the first excitation current is Δθ3 and the first excitation current having the first angular frequency ω0. The first excitation state in which two excitation currents are supplied to the second excitation coil 3b is continued for T1 seconds, and the phase difference between the first excitation current and the second excitation current is determined with respect to the first excitation state. The second excitation state changed to Δθ3 + π is continued for T2 seconds, the third excitation state in which the excitation angular frequency is changed from ω0 to ω2 with respect to the first excitation state is continued for T3 seconds, and further the second excitation state. On the other hand, the fourth excitation state in which the excitation angular frequency is changed from ω0 to ω2 is continued for T4 seconds at a cycle of T seconds. That is, T = T1 + T2 + T3 + T4.

図17は信号変換部5と流量出力部6の動作を示すフローチャートである。まず、信号変換部5のスパン補正部51は、第1の励磁状態において、電極2aと2b間の起電力のうち角周波数ω0の成分の起電力E10の振幅r10を求めると共に、実軸と電極間起電力E10との位相差φ10を図示しない位相検波器により求める(図17ステップ101)。続いて、スパン補正部51は、第2の励磁状態において、電極2aと2b間の起電力のうち角周波数ω0の成分の起電力E1π0の振幅r1π0を求めると共に、実軸と電極間起電力E1π0との位相差φ1π0を位相検波器により求める(ステップ102)。   FIG. 17 is a flowchart showing the operations of the signal conversion unit 5 and the flow rate output unit 6. First, the span correction unit 51 of the signal conversion unit 5 obtains the amplitude r10 of the electromotive force E10 of the component of the angular frequency ω0 among the electromotive forces between the electrodes 2a and 2b in the first excitation state, and the real axis and the electrode A phase difference φ10 with respect to the inter-electromotive force E10 is obtained by a phase detector (not shown) (step 101 in FIG. 17). Subsequently, in the second excitation state, the span correction unit 51 obtains the amplitude r1π0 of the electromotive force E1π0 of the component having the angular frequency ω0 among the electromotive forces between the electrodes 2a and 2b, and the electromotive force E1π0 between the real axis and the electrode. Is obtained by a phase detector (step 102).

また、スパン補正部51は、第3の励磁状態において、電極2aと2b間の起電力のうち角周波数ω2の成分の起電力E12の振幅r12を求めると共に、実軸と電極間起電力E12との位相差φ12を位相検波器により求める(ステップ103)。さらに、スパン補正部51は、第4の励磁状態において、電極2aと2b間の起電力のうち角周波数ω2の成分の起電力E1π2の振幅r1π2を求めると共に、実軸と電極間起電力E1π2との位相差φ1π2を位相検波器により求める(ステップ104)。なお、電極間起電力E10,E1π0,E12,E1π2は、バンドパスフィルタによっても周波数分離することができるが、実際にはコムフィルタとよばれる櫛形のデジタルフィルタを使用すれば、簡単に分離することができる。   Further, in the third excitation state, the span correction unit 51 obtains the amplitude r12 of the electromotive force E12 of the component of the angular frequency ω2 among the electromotive forces between the electrodes 2a and 2b, and the real axis and the interelectrode electromotive force E12 Is obtained by a phase detector (step 103). Further, in the fourth excitation state, the span correction unit 51 obtains the amplitude r1π2 of the electromotive force E1π2 of the component of the angular frequency ω2 among the electromotive forces between the electrodes 2a and 2b, and the real axis and the interelectrode electromotive force E1π2 Is obtained by a phase detector (step 104). The interelectrode electromotive forces E10, E1π0, E12, and E1π2 can be separated by a band-pass filter, but can be easily separated by actually using a comb-shaped digital filter called a comb filter. Can do.

次に、スパン補正部51は、電極間起電力E1π0を近似した起電力EdA11の大きさと角度を求める(ステップ105)。このステップ105の処理は、第1の∂A/∂t成分を求めることに対応する処理であり、式(82)の算出に相当する処理である。スパン補正部51は、起電力EdA11の大きさ|EdA11|を次式のように算出する。
|EdA11|=r1π0 ・・・(91)
そして、スパン補正部51は、起電力EdA11の角度∠EdA11を次式のように算出する。
∠EdA11=φ1π0 ・・・(92)
これで、ステップ105の処理が終了する。
Next, the span correction unit 51 obtains the magnitude and angle of the electromotive force EdA11 that approximates the interelectrode electromotive force E1π0 (step 105). The process of step 105 is a process corresponding to obtaining the first ∂A / ∂t component, and is a process corresponding to the calculation of Expression (82). The span correction unit 51 calculates the magnitude | EdA11 | of the electromotive force EdA11 as the following equation.
| EdA11 | = r1π0 (91)
Then, the span correction unit 51 calculates the angle ∠EdA11 of the electromotive force EdA11 as the following equation.
∠EdA11 = φ1π0 (92)
This completes the process of step 105.

続いて、スパン補正部51は、電極間起電力E10を起電力EdA11で正規化した正規化起電力En10の大きさと角度を求める(ステップ106)。このステップ106の処理は、式(84)の算出に相当する処理である。スパン補正部51は、正規化起電力En10の大きさ|En10|を次式のように算出する。
|En10|=(r10/|EdA11|)・ω0 ・・・(93)
Subsequently, the span correction unit 51 obtains the magnitude and angle of the normalized electromotive force En10 obtained by normalizing the interelectrode electromotive force E10 with the electromotive force EdA11 (step 106). The process of step 106 is a process corresponding to the calculation of Expression (84). The span correction unit 51 calculates the magnitude | En10 | of the normalized electromotive force En10 as the following expression.
| En10 | = (r10 / | EdA11 |) · ω0 (93)

そして、スパン補正部51は、正規化起電力En10の角度∠En10を次式のように算出する。
∠En10=φ10−∠EdA11 ・・・(94)
さらに、スパン補正部51は、正規化起電力En10の実軸成分En10xと虚軸成分En10yを次式のように算出する。
En10x=|En10|・cos(∠En10) ・・・(95)
En10y=|En10|・sin(∠En10) ・・・(96)
これで、ステップ106の処理が終了する。
Then, the span correction unit 51 calculates the angle ∠En10 of the normalized electromotive force En10 as the following expression.
∠En10 = φ10−∠EdA11 (94)
Further, the span correction unit 51 calculates the real axis component En10x and the imaginary axis component En10y of the normalized electromotive force En10 as the following expression.
En10x = | En10 | .cos (∠En10) (95)
En10y = | En10 | .sin (∠En10) (96)
This completes the process of step 106.

次に、スパン補正部51は、電極間起電力E1π2を近似した起電力EdA12の大きさと角度を求める(ステップ107)。このステップ107の処理は、第2の∂A/∂t成分を求めることに対応する処理であり、式(86)の算出に相当する処理である。スパン補正部51は、起電力EdA12の大きさ|EdA12|を次式のように算出する。
|EdA12|=r1π2 ・・・(97)
そして、スパン補正部51は、起電力EdA12の角度∠EdA12を次式のように算出する。
∠EdA12=φ1π2 ・・・(98)
これで、ステップ107の処理が終了する。
Next, the span correction unit 51 obtains the magnitude and angle of the electromotive force EdA12 that approximates the interelectrode electromotive force E1π2 (step 107). The process of step 107 is a process corresponding to obtaining the second ∂A / ∂t component, and is a process corresponding to the calculation of Expression (86). The span correction unit 51 calculates the magnitude | EdA12 | of the electromotive force EdA12 as the following equation.
| EdA12 | = r1π2 (97)
Then, the span correction unit 51 calculates the angle ∠EdA12 of the electromotive force EdA12 as the following equation.
∠EdA12 = φ1π2 (98)
This completes the process of step 107.

続いて、スパン補正部51は、電極間起電力E12を起電力EdA12で正規化した正規化起電力En12の大きさと角度を求める(ステップ108)。このステップ108の処理は、式(87)の算出に相当する処理である。スパン補正部51は、正規化起電力En12の大きさ|En12|を次式のように算出する。
|En12|=(r12/|EdA12|)・ω2 ・・・(99)
Subsequently, the span correction unit 51 obtains the magnitude and angle of the normalized electromotive force En12 obtained by normalizing the inter-electrode electromotive force E12 with the electromotive force EdA12 (step 108). The process of step 108 is a process corresponding to the calculation of Expression (87). The span correction unit 51 calculates the magnitude | En12 | of the normalized electromotive force En12 as the following equation.
| En12 | = (r12 / | EdA12 |) · ω2 (99)

そして、スパン補正部51は、正規化起電力En12の角度∠En12を次式のように算出する。
∠En12=φ12−∠EdA12 ・・・(100)
さらに、スパン補正部51は、正規化起電力En12の実軸成分En12xと虚軸成分En12yを次式のように算出する。
En12x=|En12|・cos(∠En12) ・・・(101)
En12y=|En12|・sin(∠En12) ・・・(102)
これで、ステップ108の処理が終了する。
Then, the span correction unit 51 calculates the angle ∠En12 of the normalized electromotive force En12 as the following expression.
∠En12 = φ12−∠EdA12 (100)
Further, the span correction unit 51 calculates the real axis component En12x and the imaginary axis component En12y of the normalized electromotive force En12 as the following expression.
En12x = | En12 | .cos (∠En12) (101)
En12y = | En12 | .sin (∠En12) (102)
This completes the processing of step 108.

次に、信号変換部5の0点補正部52は、正規化起電力En10とEn12との起電力差EdA13の大きさを求める(ステップ109)。このステップ109の処理は、第3の∂A/∂t成分を求めることに対応する処理であり、式(88)の算出に相当する処理である。0点補正部52は、起電力差EdA13の実軸成分EdA13xと虚軸成分EdA13yを次式のように算出する。
EdA13x=(En10x−En12x)・ω0/(ω0−ω2) ・・(103)
EdA13y=(En10y−En12y)・ω0/(ω0−ω2) ・・(104)
Next, the zero point correction unit 52 of the signal conversion unit 5 obtains the magnitude of the electromotive force difference EdA13 between the normalized electromotive forces En10 and En12 (step 109). The process of step 109 is a process corresponding to obtaining the third ∂A / ∂t component, and is a process corresponding to the calculation of Expression (88). The zero point correction unit 52 calculates the real axis component EdA13x and the imaginary axis component EdA13y of the electromotive force difference EdA13 as in the following equation.
EdA13x = (En10x−En12x) · ω0 / (ω0−ω2) (103)
EdA13y = (En10y−En12y) · ω0 / (ω0−ω2) (104)

そして、0点補正部52は、正規化起電力En10から起電力差EdA13を取り除き、v×B成分EvBn1の大きさを求める(ステップ110)。このステップ110の処理は、式(89)の算出に相当する処理である。0点補正部52は、v×B成分EvBn1の大きさ|EvBn1|を次式のように算出する。
|EvBn1|={(En10x−EdA13x)2
+(En10y−EdA13y)21/2 ・・・(105)
Then, the zero point correction unit 52 removes the electromotive force difference EdA13 from the normalized electromotive force En10, and obtains the magnitude of the v × B component EvBn1 (step 110). The process of step 110 is a process corresponding to the calculation of Expression (89). The zero point correction unit 52 calculates the magnitude | EvBn1 | of the v × B component EvBn1 as the following equation.
| EvBn1 | = {(En10x−EdA13x) 2
+ (En10y-EdA13y) 2 } 1/2 (105)

流量出力部6は、被測定流体の流速の大きさVを次式のように算出する(ステップ111)。このステップ111の処理は、式(90)の算出に相当する処理である。
V=|EvBn1|/γ ・・・(106)
なお、比例係数γは、校正等により予め求めることができる定数である。信号変換部5と流量出力部6とは、以上のようなステップ101〜111の処理を例えばオペレータによって計測終了が指示されるまで(ステップ112においてYES)、一定周期毎に行う。なお、ステップ104〜111の処理は第4の励磁状態において行われる。
The flow rate output unit 6 calculates the magnitude V of the flow velocity of the fluid to be measured as in the following equation (step 111). The process of step 111 is a process corresponding to the calculation of Expression (90).
V = | EvBn1 | / γ (106)
The proportionality coefficient γ is a constant that can be obtained in advance by calibration or the like. The signal conversion unit 5 and the flow rate output unit 6 perform the processing in steps 101 to 111 as described above at regular intervals until the operator instructs the end of measurement (YES in step 112). Note that the processing in steps 104 to 111 is performed in the fourth excitation state.

以上のように、本実施の形態では、第1の励磁コイル3aから発生する磁場B2と第2の励磁コイル3bから発生する磁場B3とが等しくなるように設定しておくと、電極間起電力E1π0が近似的に第1の∂A/∂t成分として抽出でき、また電極間起電力E1π2が近似的に第2の∂A/∂t成分として抽出できることに着眼し、第1の∂A/∂t成分を用いて第1の励磁状態における電極間起電力E10中のv×B成分の流速の大きさVにかかるスパンを正規化すると共に、第2の∂A/∂t成分を用いて第3の励磁状態における電極間起電力E12中のv×B成分の流速の大きさVにかかるスパンを正規化し、正規化起電力En10とEn12とから起電力差EdA13(第3の∂A/∂t成分)を抽出して、正規化起電力En10から第3の∂A/∂t成分を取り除くことによりv×B成分を抽出し、このv×B成分から被測定流体の流量を算出するようにしたので、正確なスパン補正を自動的に行うことができ、かつ被測定流体の流量を0にすることなく電磁流量計の出力の0点を補正することができ、高周波励磁においても0点の安定性を確保することができる。   As described above, in this embodiment, when the magnetic field B2 generated from the first excitation coil 3a is set to be equal to the magnetic field B3 generated from the second excitation coil 3b, the inter-electrode electromotive force is set. Focusing on the fact that E1π0 can be approximately extracted as the first ∂A / ∂t component and the inter-electrode electromotive force E1π2 can be approximately extracted as the second ∂A / ∂t component, the first ∂A / Using the ∂t component, the span of the flow velocity V of the v × B component in the interelectrode electromotive force E10 in the first excitation state is normalized, and the second ∂A / ∂t component is used. The span of the v × B component flow velocity V in the interelectrode electromotive force E12 in the third excitation state is normalized, and the electromotive force difference EdA13 (third ∂A / ∂t component) is extracted and normalized electromotive force En10 or Since the v × B component is extracted by removing the third ∂A / ∂t component, and the flow rate of the fluid to be measured is calculated from the v × B component, accurate span correction is automatically performed. The zero point of the output of the electromagnetic flow meter can be corrected without setting the flow rate of the fluid to be measured to zero, and the stability of the zero point can be ensured even in high frequency excitation.

また、本実施の形態では、周波数による磁場の損失の違いを考慮して、角周波数ω0の起電力E10のv×B成分を同じ角周波数ω0の起電力E1π0から抽出した第1の∂A/∂t成分を用いて正規化すると共に、角周波数ω2の起電力E12のv×B成分を同じ角周波数ω2の起電力E1π2から抽出した第2の∂A/∂t成分を用いて正規化し、それぞれ正規化した起電力En10とEn12との差を基に0補正を行うようにしたので、磁場の損失による影響がある場合でも、正確なスパン補正と0補正を行うことができる。   Further, in the present embodiment, in consideration of the difference in magnetic field loss depending on the frequency, the first ∂A / that is obtained by extracting the v × B component of the electromotive force E10 having the angular frequency ω0 from the electromotive force E1π0 having the same angular frequency ω0. Normalize using the ∂t component, normalize the v × B component of the electromotive force E12 of the angular frequency ω2 using the second ∂A / ∂t component extracted from the electromotive force E1π2 of the same angular frequency ω2, Since zero correction is performed based on the difference between the normalized electromotive forces En10 and En12, accurate span correction and zero correction can be performed even when there is an influence due to the loss of the magnetic field.

なお、本実施の形態では、角周波数ω0の成分の起電力E10を0補正およびスパン補正の対象としたが、角周波数ω2の成分の起電力E12を0補正およびスパン補正の対象としてもよい。この場合は、次式のように正規化起電力En12とEn10とから起電力差EdA13(第3の∂A/∂t成分)を求める。
EdA13=(En12−En10)・ω2/(ω2−ω0) ・・・(107)
そして、次式のように正規化起電力En12から起電力差EdA13を引くことによりv×B成分EvBn1を求めるようにすればよい。その他の処理は電極間起電力E10を0補正およびスパン補正の対象とする場合と同じである。
|EvBn1|=|En12−EdA13| ・・・(108)
In the present embodiment, the electromotive force E10 of the component of the angular frequency ω0 is the target of 0 correction and span correction, but the electromotive force E12 of the component of the angular frequency ω2 may be the target of 0 correction and span correction. In this case, the electromotive force difference EdA13 (third ∂A / ∂t component) is obtained from the normalized electromotive forces En12 and En10 as in the following equation.
EdA13 = (En12-En10) · ω2 / (ω2-ω0) (107)
Then, the v × B component EvBn1 may be obtained by subtracting the electromotive force difference EdA13 from the normalized electromotive force En12 as in the following equation. The other processes are the same as the case where the interelectrode electromotive force E10 is subjected to 0 correction and span correction.
| EvBn1 | = | En12-EdA13 | (108)

[第2の実施の形態]
次に、本発明の第2の実施の形態について説明する。本実施の形態の電磁流量計は2個の励磁コイルと1対の電極とを有するものであり、信号処理系を除く構成は図1に示した電磁流量計と同様であるので、図1の符号を用いて本実施の形態の原理を説明する。本実施の形態は、正規化の対象となる合成ベクトルVas0+Vbs0を検出する方法として基本原理で説明した第1の検出方法を用い、第1の∂A/∂t成分を抽出する方法として基本原理で説明した第1の抽出方法を用いるものである。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. The electromagnetic flow meter of the present embodiment has two excitation coils and a pair of electrodes, and the configuration excluding the signal processing system is the same as that of the electromagnetic flow meter shown in FIG. The principle of this embodiment will be described using reference numerals. The present embodiment uses the first detection method described in the basic principle as a method for detecting the composite vector Vas0 + Vbs0 to be normalized, and uses the basic principle as a method for extracting the first ∂A / ∂t component. The first extraction method described is used.

第1の励磁コイル3aから発生する磁場Bbのうち、電極2a,2b間を結ぶ電極軸EAX上において電極軸EAXおよび測定管軸PAXの双方と直交する磁場成分(磁束密度)B6と、第2の励磁コイル3bから発生する磁場Bcのうち、電極軸EAX上において電極軸EAXおよび測定管軸PAXの双方と直交する磁場成分(磁束密度)B7は、以下のように与えられるものとする。
B6=b6・cos(ω0・t−θ6)+b6・cos(ω2・t−θ6)
・・・(109)
B7=b7・cos(ω0・t−θ7)+b7・cos(ω2・t−θ7)
・・・(110)
Of the magnetic field Bb generated from the first exciting coil 3a, a magnetic field component (magnetic flux density) B6 orthogonal to both the electrode axis EAX and the measuring tube axis PAX on the electrode axis EAX connecting the electrodes 2a and 2b, and the second Of the magnetic field Bc generated from the exciting coil 3b, a magnetic field component (magnetic flux density) B7 orthogonal to both the electrode axis EAX and the measurement tube axis PAX on the electrode axis EAX is given as follows.
B6 = b6 · cos (ω0 · t−θ6) + b6 · cos (ω2 · t−θ6)
... (109)
B7 = b7 · cos (ω0 · t−θ7) + b7 · cos (ω2 · t−θ7)
... (110)

式(109)、式(110)において、ω0,ω2は異なる角周波数、b6は磁束密度B6の角周波数ω0の成分の振幅および角周波数ω2の成分の振幅、b7は磁束密度B7の角周波数ω0の成分の振幅および角周波数ω2の成分の振幅、θ6は磁束密度B6の角周波数ω0の成分とω0・tとの位相差(位相遅れ)および角周波数ω2の成分とω2・tとの位相差、θ7は磁束密度B7の角周波数ω0の成分とω0・tとの位相差および角周波数ω2の成分とω2・tとの位相差である。以下、磁束密度B6を磁場B6とし、磁束密度B7を磁場B7とする。   In equations (109) and (110), ω0 and ω2 are different angular frequencies, b6 is the amplitude of the angular frequency ω0 component and the amplitude of the angular frequency ω2 component of the magnetic flux density B6, and b7 is the angular frequency ω0 of the magnetic flux density B7. And θ6 is the phase difference (phase lag) between the angular frequency ω0 component of the magnetic flux density B6 and ω0 · t, and the phase difference between the angular frequency ω2 component and ω2 · t. , Θ7 are the phase difference between the angular frequency ω0 component of the magnetic flux density B7 and ω0 · t, and the phase difference between the angular frequency ω2 component and ω2 · t. Hereinafter, the magnetic flux density B6 is referred to as a magnetic field B6, and the magnetic flux density B7 is referred to as a magnetic field B7.

それぞれの角周波数における磁場の損失を考慮して、磁場B6,B7の角周波数ω0の成分の振幅b6,b7をそれぞれb6[ω0],b7[ω0]と関数表記に変更し、同様に角周波数ω0の成分の位相差θ6,θ7をそれぞれθ6[ω0],θ7[ω0]と変更する。さらに、磁場B6,B7の角周波数ω2の成分の振幅b6,b7をそれぞれb6[ω2],b7[ω2]と関数表記に変更し、同様に角周波数ω2の成分の位相差θ6,θ7をそれぞれθ6[ω2],θ7[ω2]と変更する。これにより、式(109)、式(110)は式(111)、式(112)に置き換わる。   Considering the loss of the magnetic field at each angular frequency, the amplitudes b6 and b7 of the components of the angular frequency ω0 of the magnetic fields B6 and B7 are changed to function notations b6 [ω0] and b7 [ω0], respectively. The phase differences θ6 and θ7 of the component of ω0 are changed to θ6 [ω0] and θ7 [ω0], respectively. Further, the amplitudes b6 and b7 of the components of the angular frequency ω2 of the magnetic fields B6 and B7 are changed to function notations b6 [ω2] and b7 [ω2], respectively. Change to θ6 [ω2] and θ7 [ω2]. Thereby, Formula (109) and Formula (110) are replaced with Formula (111) and Formula (112).

B6=b6[ω0]・cos(θ6[ω0])・cos(ω0・t)
+b6[ω0]・sin(θ6[ω0])・sin(ω0・t)
+b6[ω2]・cos(θ6[ω2])・cos(ω2・t)
+b6[ω2]・sin(θ6[ω2])・sin(ω2・t) ・・・(111)
B7=b7[ω0]・cos(θ7[ω0])・cos(ω0・t)
+b7[ω0]・sin(θ7[ω0])・sin(ω0・t)
+b7[ω2]・cos(θ7[ω2])・cos(ω2・t)
+b7[ω2]・sin(θ7[ω2])・sin(ω2・t) ・・・(112)
B6 = b6 [ω0] · cos (θ6 [ω0]) · cos (ω0 · t)
+ B6 [ω0] · sin (θ6 [ω0]) · sin (ω0 · t)
+ B6 [ω2] · cos (θ6 [ω2]) · cos (ω2 · t)
+ B6 [ω2] · sin (θ6 [ω2]) · sin (ω2 · t) (111)
B7 = b7 [ω0] · cos (θ7 [ω0]) · cos (ω0 · t)
+ B7 [ω0] · sin (θ7 [ω0]) · sin (ω0 · t)
+ B7 [ω2] · cos (θ7 [ω2]) · cos (ω2 · t)
+ B7 [ω2] · sin (θ7 [ω2]) · sin (ω2 · t) (112)

磁場の変化に起因する起電力は、磁場の時間微分dB/dtによるので、第1の励磁コイル3aから発生する磁場B6と第2の励磁コイル3bから発生する磁場B7を次式のように微分する。
dB6/dt=ω0・cos(ω0・t)・b6[ω0]・{sin(θ6[ω0])}
+ω0・sin(ω0・t)・b6[ω0]・{−cos(θ6[ω0])}
+ω2・cos(ω2・t)・b6[ω2]・{sin(θ6[ω2])}
+ω2・sin(ω2・t)・b6[ω2]・{−cos(θ6[ω2])}
・・・(113)
dB7/dt=ω0・cos(ω0・t)・b7[ω0]・{sin(θ7[ω0])}
+ω0・sin(ω0・t)・b7[ω0]・{−cos(θ7[ω0])}
+ω2・cos(ω2・t)・b7[ω2]・{sin(θ7[ω2])}
+ω2・sin(ω2・t)・b7[ω2]・{−cos(θ7[ω2])}
・・・(114)
Since the electromotive force resulting from the change of the magnetic field is based on the time differential dB / dt of the magnetic field, the magnetic field B6 generated from the first excitation coil 3a and the magnetic field B7 generated from the second excitation coil 3b are differentiated as follows: To do.
dB6 / dt = ω0 · cos (ω0 · t) · b6 [ω0] · {sin (θ6 [ω0])}
+ Ω0 · sin (ω0 · t) · b6 [ω0] · {−cos (θ6 [ω0])}
+ Ω2 · cos (ω2 · t) · b6 [ω2] · {sin (θ6 [ω2])}
+ Ω2 · sin (ω2 · t) · b6 [ω2] · {−cos (θ6 [ω2])}
... (113)
dB7 / dt = ω0 · cos (ω0 · t) · b7 [ω0] · {sin (θ7 [ω0])}
+ Ω0 · sin (ω0 · t) · b7 [ω0] · {−cos (θ7 [ω0])}
+ Ω2 · cos (ω2 · t) · b7 [ω2] · {sin (θ7 [ω2])}
+ Ω2 · sin (ω2 · t) · b7 [ω2] · {−cos (θ7 [ω2])}
... (114)

被測定流体の流速が0の場合、電極軸EAXと測定管軸PAXとを含む平面内において、磁場Bbの変化によって発生する、流速と無関係な電極間起電力E1と、磁場Bcの変化によって発生する、流速と無関係な電極間起電力E2は、図2に示すように互いに逆向きとなる。このとき、電極間起電力E1とE2とを足した全体の電極間起電力Eは、次式に示すように、磁場の時間微分dB6/dtとdB7/dtとの差(−dB6/dt+dB7/dt)にω0,ω2それぞれの角周波数成分における比例係数rkをかけ、位相差θ6,θ7をそれぞれθ6+θ00,θ7+θ00で置き換えたものとなる(rk、θ00は、被測定流体の導電率及び誘電率と電極2a,2bの配置を含む測定管1の構造に関係する)。   When the flow rate of the fluid to be measured is 0, it is generated by the change in the electromotive force E1 between the electrodes that is irrelevant to the flow rate and the change in the magnetic field Bc. The inter-electrode electromotive force E2 irrelevant to the flow velocity is opposite to each other as shown in FIG. At this time, the total inter-electrode electromotive force E obtained by adding the inter-electrode electromotive forces E1 and E2 is the difference between the time derivative of the magnetic field dB6 / dt and dB7 / dt (−dB6 / dt + dB7 / dt) is multiplied by a proportional coefficient rk for each angular frequency component of ω0, ω2, and the phase differences θ6, θ7 are replaced by θ6 + θ00, θ7 + θ00, respectively (rk, θ00 are the conductivity and dielectric constant of the fluid to be measured. (Related to the structure of the measuring tube 1 including the arrangement of the electrodes 2a, 2b).

E=rk・ω0・cos(ω0・t)
・{−b6[ω0]・sin(θ6[ω0]+θ00)
+b7[ω0]・sin(θ7[ω0]+θ00)}
+rk・ω0・sin(ω0・t)
・{b6[ω0]・cos(θ6[ω0]+θ00)
−b7[ω0]・cos(θ7[ω0]+θ00)}
+rk・ω2・cos(ω2・t)
・{−b6[ω2]・sin(θ6[ω2]+θ00)
+b7[ω2]・sin(θ7[ω2]+θ00)}
+rk・ω2・sin(ω2・t)
・{b6[ω2]・cos(θ6[ω2]+θ00)
−b7[ω2]・cos(θ7[ω2]+θ00)} ・・・(115)
E = rk · ω0 · cos (ω0 · t)
・ {-B6 [ω0] · sin (θ6 [ω0] + θ00)
+ B7 [ω0] · sin (θ7 [ω0] + θ00)}
+ Rk · ω0 · sin (ω0 · t)
・ {B6 [ω0] · cos (θ6 [ω0] + θ00)
-B7 [ω0] · cos (θ7 [ω0] + θ00)}
+ Rk · ω2 · cos (ω2 · t)
・ {−b6 [ω2] · sin (θ6 [ω2] + θ00)
+ B7 [ω2] · sin (θ7 [ω2] + θ00)}
+ Rk · ω2 · sin (ω2 · t)
・ {B6 [ω2] · cos (θ6 [ω2] + θ00)
-B7 [ω2] · cos (θ7 [ω2] + θ00)} (115)

被測定流体の流速の大きさがV(V≠0)の場合、流速ベクトルvと磁場Bbによって発生する電極間起電力Ev1、流速ベクトルvと磁場Bcによって発生する電極間起電力Ev2は、図3に示すように同じ向きとなる。このとき、電極間起電力Ev1とEv2とを足した全体の電極間起電力Evは、次式に示すように、磁場B6と磁場B7との和にω0,ω2それぞれの角周波数成分における比例係数rkvをかけ、位相差θ6,θ7をそれぞれθ6+θ01,θ7+θ01で置き換えたものとなる(rkv、θ01は、流速の大きさVと被測定流体の導電率及び誘電率と電極2a,2bの配置を含む測定管1の構造に関係する)。   When the magnitude of the flow velocity of the fluid to be measured is V (V ≠ 0), the interelectrode electromotive force Ev1 generated by the flow velocity vector v and the magnetic field Bb, and the interelectrode electromotive force Ev2 generated by the flow velocity vector v and the magnetic field Bc are shown in FIG. As shown in FIG. At this time, the inter-electrode electromotive force Ev obtained by adding the inter-electrode electromotive forces Ev1 and Ev2 is proportional to the sum of the magnetic field B6 and the magnetic field B7 in the angular frequency component of each of ω0 and ω2. Multiply rkv and replace phase differences θ6 and θ7 with θ6 + θ01 and θ7 + θ01, respectively (rkv and θ01 include the velocity V, the conductivity and dielectric constant of the fluid to be measured, and the arrangement of the electrodes 2a and 2b. (Related to the structure of the measuring tube 1).

Ev=rkv・cos(ω0・t)
・{b6[ω0]・cos(θ6[ω0]+θ01)
+b7[ω0]・cos(θ7[ω0]+θ01)}
+rkv・sin(ω0・t)
・{b6[ω0]・sin(θ6[ω0]+θ01)
+b7[ω0]・sin(θ7[ω0]+θ01)}
+rkv・cos(ω2・t)
・{b6[ω2]・cos(θ6[ω2]+θ01)
+b7[ω2]・cos(θ7[ω2]+θ01)}
+rkv・sin(ω2・t)
・{b6[ω2]・sin(θ6[ω2]+θ01)
+b7[ω2]・sin(θ7[ω2]+θ01)} ・・・(116)
Ev = rkv · cos (ω0 · t)
・ {B6 [ω0] · cos (θ6 [ω0] + θ01)
+ B7 [ω0] · cos (θ7 [ω0] + θ01)}
+ Rkv · sin (ω0 · t)
・ {B6 [ω0] · sin (θ6 [ω0] + θ01)
+ B7 [ω0] · sin (θ7 [ω0] + θ01)}
+ Rkv · cos (ω2 · t)
・ {B6 [ω2] · cos (θ6 [ω2] + θ01)
+ B7 [ω2] · cos (θ7 [ω2] + θ01)}
+ Rkv · sin (ω2 · t)
・ {B6 [ω2] · sin (θ6 [ω2] + θ01)
+ B7 [ω2] · sin (θ7 [ω2] + θ01)} (116)

図2、図3で説明した電極間起電力の向きを考慮すると、磁場の時間変化に起因する電極間起電力を複素ベクトルに変換した起電力と被測定流体の流速に起因する電極間起電力を複素ベクトルに変換した起電力とを合わせた全体の電極間起電力のうち、角周波数ω0の成分の起電力E20cは、式(115)の第1項および第2項と式(116)の第1項および第2項と式(17)とから次式で表される。
E20c=rk・ω0・b6[ω0]・exp{j・(π/2+θ6[ω0]+θ00)}
+γ・rk・V・b6[ω0]・exp{j・(θ6[ω0]+θ01)}
+rk・ω0・b7[ω0]
・exp{j・(−π/2+θ7[ω0]+θ00)}
+γ・rk・V・b7[ω0]・exp{j・(θ7[ω0]+θ01)}
・・・(117)
In consideration of the direction of the electromotive force between the electrodes described in FIGS. 2 and 3, the electromotive force obtained by converting the interelectrode electromotive force due to the time change of the magnetic field into a complex vector and the interelectrode electromotive force due to the flow velocity of the fluid to be measured. The electromotive force E20c of the component of the angular frequency ω0 out of the total electromotive force combined with the electromotive force obtained by converting into a complex vector is the first term and the second term of Equation (115) and Equation (116). From the first term and the second term and the equation (17), it is expressed by the following equation.
E20c = rk · ω0 · b6 [ω0] · exp {j · (π / 2 + θ6 [ω0] + θ00)}
+ Γ · rk · V · b6 [ω0] · exp {j · (θ6 [ω0] + θ01)}
+ Rk · ω0 · b7 [ω0]
Exp {j · (−π / 2 + θ7 [ω0] + θ00)}
+ Γ · rk · V · b7 [ω0] · exp {j · (θ7 [ω0] + θ01)}
... (117)

また、磁場の時間変化に起因する電極間起電力を複素ベクトルに変換した起電力と被測定流体の流速に起因する電極間起電力を複素ベクトルに変換した起電力とを合わせた全体の電極間起電力のうち、角周波数ω2の成分の起電力E22cは、式(115)の第3項および第4項と式(116)の第3項および第4項と式(17)とから次式で表される。
E22c=rk・ω2・b6[ω2]・exp{j・(π/2+θ6[ω2]+θ00)}
+γ・rk・V・b6[ω2]・exp{j・(θ6[ω2]+θ01)}
+rk・ω2・b7[ω2]
・exp{j・(−π/2+θ7[ω2]+θ00)}
+γ・rk・V・b7[ω2]・exp{j・(θ7[ω2]+θ01)}
・・・(118)
In addition, the inter-electrode electromotive force obtained by converting the inter-electrode electromotive force caused by the time change of the magnetic field into a complex vector and the electromotive force obtained by converting the inter-electrode electromotive force caused by the flow velocity of the fluid to be measured into the complex vector Among the electromotive forces, the electromotive force E22c of the component of the angular frequency ω2 is expressed by the following equation from the third and fourth terms of Equation (115), the third and fourth terms of Equation (116), and Equation (17). It is represented by
E22c = rk · ω2 · b6 [ω2] · exp {j · (π / 2 + θ6 [ω2] + θ00)}
+ Γ · rk · V · b6 [ω2] · exp {j · (θ6 [ω2] + θ01)}
+ Rk · ω2 · b7 [ω2]
• exp {j · (−π / 2 + θ7 [ω2] + θ00)}
+ Γ · rk · V · b7 [ω2] · exp {j · (θ7 [ω2] + θ01)}
... (118)

ここで、磁場B6の角周波数ω0の成分の位相遅れθ6[ω0]と磁場B7の角周波数ω0の成分の位相遅れθ7[ω0]との関係がθ7[ω0]=θ6[ω0]+Δθ7[ω0]で、かつ虚軸に対する∂A/∂t成分の角度θ00と実軸に対するv×B成分の角度θ01との関係がθ01=θ00+Δθ01である状態を第1の励磁状態とし、この第1の励磁状態における電極間起電力E20cをE20とすると、電極間起電力E20は次式のようになる。
E20=rk・exp{j・(θ6[ω0]+θ00)}
・[ω0・exp(j・π/2)
・{b6[ω0]−b7[ω0]・exp(j・Δθ7[ω0])}
+γ・V・exp(j・Δθ01)
・{b6[ω0]+b7[ω0]・exp(j・Δθ7[ω0])}]
・・・(119)
Here, the relationship between the phase delay θ6 [ω0] of the component of the angular frequency ω0 of the magnetic field B6 and the phase delay θ7 [ω0] of the component of the angular frequency ω0 of the magnetic field B7 is θ7 [ω0] = θ6 [ω0] + Δθ7 [ω0. And the relationship between the angle θ00 of the ∂A / ∂t component with respect to the imaginary axis and the angle θ01 of the v × B component with respect to the real axis is θ01 = θ00 + Δθ01, and is defined as the first excitation state. When the interelectrode electromotive force E20c in the state is E20, the interelectrode electromotive force E20 is expressed by the following equation.
E20 = rk · exp {j · (θ6 [ω0] + θ00)}
・ [Ω0 ・ exp (j ・ π / 2)
{B6 [ω0] −b7 [ω0] · exp (j · Δθ7 [ω0])}
+ Γ · V · exp (j · Δθ01)
{B6 [ω0] + b7 [ω0] · exp (j · Δθ7 [ω0])}]
... (119)

また、第1の励磁状態における電極間起電力E22cをE22とすると、電極間起電力E22は次式のようになる。
E22=rk・exp{j・(θ6[ω2]+θ00)}
・[ω2・exp(j・π/2)
・{b6[ω2]−b7[ω2]・exp(j・Δθ7[ω2])}
+γ・V・exp(j・Δθ01)
・{b6[ω2]+b7[ω2]・exp(j・Δθ7[ω2])}]
・・・(120)
Further, when the interelectrode electromotive force E22c in the first excitation state is E22, the interelectrode electromotive force E22 is expressed by the following equation.
E22 = rk · exp {j · (θ6 [ω2] + θ00)}
・ [Ω2 ・ exp (j ・ π / 2)
{B6 [ω2] −b7 [ω2] · exp (j · Δθ7 [ω2])}
+ Γ · V · exp (j · Δθ01)
{B6 [ω2] + b7 [ω2] · exp (j · Δθ7 [ω2])}]
... (120)

また、磁場B6と磁場B7との位相差が第1の励磁状態から一定値πだけ変化し(θ7[ω0]=π+θ6[ω0]+Δθ7[ω0])、かつθ01=θ00+Δθ01である状態を第2の励磁状態とし、この第2の励磁状態における電極間起電力E20cをE2π0とすると、電極間起電力E2π0は次式のようになる。
E2π0=rk・exp{j・(θ6[ω0]+θ00)}
・[ω0・exp(j・π/2)
・{b6[ω0]+b7[ω0]・exp(j・Δθ7[ω0])}
+γ・V・exp(j・Δθ01)
・{b6[ω0]−b7[ω0]・exp(j・Δθ7[ω0])}]
・・・(121)
In addition, a state in which the phase difference between the magnetic field B6 and the magnetic field B7 changes from the first excitation state by a constant value π (θ7 [ω0] = π + θ6 [ω0] + Δθ7 [ω0]) and θ01 = θ00 + Δθ01 is the second state. When the interelectrode electromotive force E20c in the second excitation state is E2π0, the interelectrode electromotive force E2π0 is expressed by the following equation.
E2π0 = rk · exp {j · (θ6 [ω0] + θ00)}
・ [Ω0 ・ exp (j ・ π / 2)
{B6 [ω0] + b7 [ω0] · exp (j · Δθ7 [ω0])}
+ Γ · V · exp (j · Δθ01)
{B6 [ω0] −b7 [ω0] · exp (j · Δθ7 [ω0])}]
... (121)

また、第2の励磁状態における電極間起電力E22cをE2π2とすると、電極間起電力E2π2は次式のようになる。
E2π2=rk・exp{j・(θ6[ω2]+θ00)}
・[ω2・exp(j・π/2)
・{b6[ω2]+b7[ω2]・exp(j・Δθ7[ω2])}
+γ・V・exp(j・Δθ01)
・{b6[ω2]−b7[ω2]・exp(j・Δθ7[ω2])}]
・・・(122)
When the interelectrode electromotive force E22c in the second excitation state is E2π2, the interelectrode electromotive force E2π2 is expressed by the following equation.
E2π2 = rk · exp {j · (θ6 [ω2] + θ00)}
・ [Ω2 ・ exp (j ・ π / 2)
{B6 [ω2] + b7 [ω2] · exp (j · Δθ7 [ω2])}
+ Γ · V · exp (j · Δθ01)
{B6 [ω2] −b7 [ω2] · exp (j · Δθ7 [ω2])}]
... (122)

ここで、初期状態(校正時の状態)の磁場B6、B7おいて、b6[ω0]=b7[ω0]、Δθ7[ω0]=0と設定しておくと、その後のずれを考慮してもb6[ω0]≒b7[ω0]、Δθ7[ω0]≒0であり、次の条件式が成り立つ。
|b6[ω0]+b7[ω0]・exp(j・Δθ7[ω0])|
≫|b6[ω0]−b7[ω0]・exp(j・Δθ7[ω0])| ・・・(123)
Here, in the magnetic fields B6 and B7 in the initial state (the state at the time of calibration), if b6 [ω0] = b7 [ω0] and Δθ7 [ω0] = 0 are set, even if the subsequent deviation is taken into consideration. b6 [ω0] ≈b7 [ω0] and Δθ7 [ω0] ≈0, and the following conditional expression holds.
| B6 [ω0] + b7 [ω0] · exp (j · Δθ7 [ω0]) |
>> | b6 [ω0] −b7 [ω0] · exp (j · Δθ7 [ω0]) | (123)

また、通常ω0>γ・Vが成り立つことから、式(123)の条件を考慮すると、式(121)において次式の条件が成り立つ。
|ω0・exp(j・π/2)
・{b6[ω0]+b7[ω0]・exp(j・Δθ7[ω0])}|
≫|γ・V・exp(j・Δθ01)・b6[ω0]
−b7[ω0]・exp(j・Δθ7[ω0])| ・・・(124)
In addition, since ω0> γ · V is normally satisfied, the condition of the following expression is satisfied in Expression (121) in consideration of the condition of Expression (123).
| Ω0 · exp (j · π / 2)
{B6 [ω0] + b7 [ω0] · exp (j · Δθ7 [ω0])} |
»| Γ · V · exp (j · Δθ01) · b6 [ω0]
−b7 [ω0] · exp (j · Δθ7 [ω0]) | (124)

式(124)の条件を用いて、式(121)の電極間起電力E2π0を近似した起電力EdA21は次式で表される。この起電力EdA21は基本原理における第1の∂A/∂t成分に相当する。
EdA21≒E2π0 ・・・(125)
EdA21=rk・exp{j・(θ6[ω0]+θ00)}
・ω0・exp(j・π/2)
・{b6[ω0]+b7[ω0]・exp(j・Δθ7[ω0])}
・・・(126)
The electromotive force EdA21 that approximates the interelectrode electromotive force E2π0 of the equation (121) using the condition of the equation (124) is expressed by the following equation. This electromotive force EdA21 corresponds to the first ∂A / ∂t component in the basic principle.
EdA21≈E2π0 (125)
EdA21 = rk · exp {j · (θ6 [ω0] + θ00)}
・ Ω0 ・ exp (j ・ π / 2)
{B6 [ω0] + b7 [ω0] · exp (j · Δθ7 [ω0])}
... (126)

起電力EdA21は、流速の大きさVに関係しないので、∂A/∂tによって発生する成分のみとなる。この起電力EdA21を用いて電極間起電力E20(合成ベクトルVas0+Vbs0)中のv×B成分の流速の大きさVにかかる係数(スパン)を正規化する。電極間起電力E20を起電力EdA21で正規化し、ω0倍した結果をEn20とすれば、正規化起電力En20は次式で表される。
En20=(E20/EdA21)・ω0
=rk・exp{j・(θ6[ω0]+θ00)}
・[ ω0・exp(j・π/2)
・{b6[ω0]−b7[ω0]・exp(j・Δθ7[ω0])}
+γ・V・exp(j・Δθ01)
・{b6[ω0]+b7[ω0]・exp(j・Δθ7[ω0])}]
/[rk・exp{j・(θ6[ω0]+θ00)}
・ω0・exp(j・π/2)
・{b6[ω0]+b7[ω0]・exp(j・Δθ7[ω0])}]・ω0
=ω0・{b6[ω0]−b7[ω0]・exp(j・Δθ7[ω0])}
/{b6[ω0]+b7[ω0]・exp(j・Δθ7[ω0])}
+[γ・exp{j・(−π/2+Δθ01)}]・V ・・・(127)
Since the electromotive force EdA21 is not related to the magnitude V of the flow velocity, it becomes only a component generated by ∂A / ∂t. Using this electromotive force EdA21, the coefficient (span) applied to the magnitude V of the flow velocity of the v × B component in the interelectrode electromotive force E20 (combined vector Vas0 + Vbs0) is normalized. If the inter-electrode electromotive force E20 is normalized by the electromotive force EdA21 and multiplied by ω0 is En20, the normalized electromotive force En20 is expressed by the following equation.
En20 = (E20 / EdA21) · ω0
= Rk · exp {j · (θ6 [ω0] + θ00)}
・ [Ω0 ・ exp (j ・ π / 2)
{B6 [ω0] −b7 [ω0] · exp (j · Δθ7 [ω0])}
+ Γ · V · exp (j · Δθ01)
{B6 [ω0] + b7 [ω0] · exp (j · Δθ7 [ω0])}]
/ [Rk · exp {j · (θ6 [ω0] + θ00)}
・ Ω0 ・ exp (j ・ π / 2)
{B6 [ω0] + b7 [ω0] · exp (j · Δθ7 [ω0])}] · ω0
= Ω0 · {b6 [ω0] −b7 [ω0] · exp (j · Δθ7 [ω0])}
/ {B6 [ω0] + b7 [ω0] · exp (j · Δθ7 [ω0])}
+ [Γ · exp {j · (−π / 2 + Δθ01)}] · V (127)

式(52)を用いると、式(127)の右辺第1項の角周波数ω0にかかる係数{b6[ω0]−b7[ω0]・exp(j・Δθ7[ω0])}/{b6[ω0]+b7[ω0]・exp(j・Δθ7[ω0])}を、角周波数ω0に関係しない値{b6−b7・exp(j・Δθ7)}/{b6+b7・exp(j・Δθ7)}で表すことができる。したがって、式(127)を次式のように置き換えることができる。
En20=ω0・{b6−b7・exp(j・Δθ7)}
/{b6+b7・exp(j・Δθ7)}
+[γ・exp{j・(−π/2+Δθ01)}]・V ・・・(128)
Using Expression (52), the coefficient {b6 [ω0] −b7 [ω0] · exp (j · Δθ7 [ω0])} / {b6 [ω0] applied to the angular frequency ω0 of the first term on the right side of Expression (127). ] + B7 [ω0] · exp (j · Δθ7 [ω0])} is represented by a value {b6-b7 · exp (j · Δθ7)} / {b6 + b7 · exp (j · Δθ7)} not related to the angular frequency ω0. be able to. Therefore, the equation (127) can be replaced by the following equation.
En20 = ω0 · {b6-b7 · exp (j · Δθ7)}
/ {B6 + b7 · exp (j · Δθ7)}
+ [Γ · exp {j · (−π / 2 + Δθ01)}] · V (128)

式(128)の右辺第2項が、v×Bにより発生する成分を正規化した項となる。なお、電極間起電力E20を起電力EdA21で正規化した結果をω0倍した理由は、流速の大きさVに係る右辺第2項から励磁角周波数ω0を消去するためである。式(128)によれば、流速の大きさVにかかる複素係数は、γの大きさ、−π/2+Δθ01の実軸からの角度をもつ。係数γおよび角度Δθ01は校正等により予め求めることができる定数であり、式(128)の右辺第2項は被測定流体の流速が変化しないかぎり一定となる。したがって、∂A/∂t成分を用いてv×B成分の正規化を行うことにより、磁場のシフトや位相変化による誤差を自動的に補正するスパン補正を実現することができる。   The second term on the right side of Equation (128) is a term obtained by normalizing the component generated by v × B. The reason why the result obtained by normalizing the inter-electrode electromotive force E20 with the electromotive force EdA21 is multiplied by ω0 is to eliminate the excitation angular frequency ω0 from the second term on the right side of the magnitude V of the flow velocity. According to the equation (128), the complex coefficient related to the magnitude V of the flow velocity has an angle from the real axis of the magnitude of γ, −π / 2 + Δθ01. The coefficient γ and the angle Δθ01 are constants that can be obtained in advance by calibration or the like, and the second term on the right side of the equation (128) is constant as long as the flow velocity of the fluid to be measured does not change. Therefore, by performing the normalization of the v × B component using the ∂A / ∂t component, it is possible to realize span correction that automatically corrects an error due to a magnetic field shift or phase change.

次に、0点の変動要因である、式(128)の右辺第1項を除去する方法について説明する。角周波数ω0での正規化と同様に角周波数ω2において正規化を行う。式(124)において、角周波数ω0をω2に置き換えても、同様の近似が成り立つので、式(122)の電極間起電力E2π2を近似した起電力EdA22は次式で表される。この起電力EdA22は基本原理における第2の∂A/∂t成分に相当する。
EdA22≒E2π2 ・・・(129)
EdA22=rk・exp{j・(θ6[ω2]+θ00)}
・ω2・exp(j・π/2)
・{b6[ω2]+b7[ω2]・exp(j・Δθ7[ω2])}
・・・(130)
Next, a method for removing the first term on the right side of the equation (128), which is a variation factor of 0 point, will be described. Normalization is performed at the angular frequency ω2 as in the normalization at the angular frequency ω0. In the equation (124), even if the angular frequency ω0 is replaced with ω2, the same approximation is established. Therefore, the electromotive force EdA22 that approximates the interelectrode electromotive force E2π2 in the equation (122) is expressed by the following equation. This electromotive force EdA22 corresponds to the second ∂A / ∂t component in the basic principle.
EdA22≈E2π2 (129)
EdA22 = rk · exp {j · (θ6 [ω2] + θ00)}
・ Ω2 ・ exp (j ・ π / 2)
{B6 [ω2] + b7 [ω2] · exp (j · Δθ7 [ω2])}
... (130)

式(120)の電極間起電力E22を式(130)の起電力EdA22で正規化し、ω2倍した結果をEn22とすれば、正規化起電力En22は式(128)より次式で表される。
En22=ω2・{b6−b7・exp(j・Δθ7)}
/{b6+b7・exp(j・Δθ7)}
+[γ・exp{j・(−π/2+Δθ01)}]・V ・・・(131)
When the inter-electrode electromotive force E22 in the equation (120) is normalized by the electromotive force EdA22 in the equation (130) and multiplied by ω2, the result is expressed as En22, from the equation (128). .
En22 = ω2 · {b6-b7 · exp (j · Δθ7)}
/ {B6 + b7 · exp (j · Δθ7)}
+ [Γ · exp {j · (−π / 2 + Δθ01)}] · V (131)

正規化起電力En20とEn22との差をとり、求めた差分をω0/(ω0−ω2)倍した結果をEdA23とすれば、起電力差EdA23は次式で表される。この起電力差EdA23は基本原理における第3の∂A/∂t成分に相当する。
EdA23=(En20−En22)・ω0/(ω0−ω2)
=[{b6−b7・exp(j・Δθ7)}
/{b6+b7・exp(j・Δθ7)}
・ω0+γ・exp{j・(−π/2+Δθ01)}・V
−{b6−b7・exp(j・Δθ7)}
/{b6+b7・exp(j・Δθ7)}
・ω2−γ・exp{j・(−π/2+Δθ01)}・V]
・ω0/(ω0−ω2)
={b6−b7・exp(j・Δθ7)}/{b6+b7・exp(j・Δθ7)}
・ω0 ・・・(132)
Taking the difference between the normalized electromotive forces En20 and En22 and multiplying the obtained difference by ω0 / (ω0−ω2) as EdA23, the electromotive force difference EdA23 is expressed by the following equation. This electromotive force difference EdA23 corresponds to the third ∂A / ∂t component in the basic principle.
EdA23 = (En20−En22) · ω0 / (ω0−ω2)
= [{B6-b7 · exp (j · Δθ7)}
/ {B6 + b7 · exp (j · Δθ7)}
.Omega.0 + .gamma.exp {j. (-. Pi./2+.DELTA..theta.01)}.V
-{B6-b7 · exp (j · Δθ7)}
/ {B6 + b7 · exp (j · Δθ7)}
.Omega.2-.gamma.exp {j. (-. Pi./2+.DELTA..theta.01)}.V]
・ Ω0 / (ω0−ω2)
= {B6-b7 · exp (j · Δθ7)} / {b6 + b7 · exp (j · Δθ7)}
・ Ω0 (132)

起電力差EdA23は正規化された∂A/∂t成分を表し、式(128)の右辺第1項と等しくなるので、この正規化起電力差EdA23を使用すれば、正規化されたv×B成分を正規化起電力En20から取り出すことができる。式(128)の正規化起電力En20から式(132)の正規化起電力差EdA23を引いたときに得られるv×B成分をEvBn2とすると、v×B成分EvBn2は次式で表される。
EvBn2=En20−EdA23
={b6−b7・exp(j・Δθ7)}/{b6+b7・exp(j・Δθ7)}
・ω0
+[γ・exp{j・(−π/2+Δθ01)}]・V
−{b6−b7・exp(j・Δθ7)}/{b6+b7・exp(j・Δθ7)}
・ω0
=[γ・exp{j・(−π/2+Δθ01)}]・V ・・・(133)
The electromotive force difference EdA23 represents the normalized ∂A / ∂t component and is equal to the first term on the right side of the equation (128). Therefore, if this normalized electromotive force difference EdA23 is used, the normalized v × The B component can be extracted from the normalized electromotive force En20. When the v × B component obtained by subtracting the normalized electromotive force difference EdA23 of equation (132) from the normalized electromotive force En20 of equation (128) is EvBn2, the v × B component EvBn2 is expressed by the following equation: .
EvBn2 = En20-EdA23
= {B6-b7 · exp (j · Δθ7)} / {b6 + b7 · exp (j · Δθ7)}
・ Ω0
+ [Γ · exp {j · (−π / 2 + Δθ01)}] · V
-{B6-b7 · exp (j · Δθ7)} / {b6 + b7 · exp (j · Δθ7)}
・ Ω0
= [Γ · exp {j · (−π / 2 + Δθ01)}] · V (133)

v×B成分EvBn2は角周波数ω0,ω2に関係しない。流速の大きさVが0のときv×B成分EvBn2も0となることから分かるように、v×B成分EvBn2より、スパンが補正され、かつ0点が補正された出力を得ることができる。また、このとき流速の大きさVにかかる係数の大きさと方向は、複素ベクトル[γ・rk・exp{j・(−π/2+Δθ01)}]で表される。式(133)より、流速の大きさVは次式のように表される。
V=|EvBn2/[γ・exp{j・(−π/2+Δθ01)}]|
=|EvBn2|/γ ・・・(134)
The v × B component EvBn2 is not related to the angular frequencies ω0 and ω2. As can be seen from the fact that the v × B component EvBn2 becomes 0 when the magnitude V of the flow velocity is 0, an output in which the span is corrected and the zero point is corrected can be obtained from the v × B component EvBn2. At this time, the magnitude and direction of the coefficient relating to the magnitude V of the flow velocity are represented by a complex vector [γ · rk · exp {j · (−π / 2 + Δθ01)}]. From the equation (133), the magnitude V of the flow velocity is expressed as the following equation.
V = | EvBn2 / [γ · exp {j · (−π / 2 + Δθ01)}] |
= | EvBn2 | / γ (134)

なお、基本原理で用いた定数および変数と、本実施の形態の定数および変数との対応関係は以下の表2のとおりである。本実施の形態は、表2から明らかなように、前述の基本原理を具体的に実現する1つの例である。   The correspondence relationship between the constants and variables used in the basic principle and the constants and variables of the present embodiment is as shown in Table 2 below. As is apparent from Table 2, this embodiment is one example that specifically realizes the basic principle described above.

Figure 2006058175
Figure 2006058175

次に、本実施の形態の電磁流量計の具体的な構成とその動作について説明する。本実施の形態の電磁流量計の構成は第1の実施の形態と同様であるので、図16の符号を用いて説明する。本実施の形態の電磁流量計は、測定管1と、電極2a,2bと、第1、第2の励磁コイル3a,3bと、電源部4と、信号変換部5と、流量出力部6とを有する。   Next, a specific configuration and operation of the electromagnetic flow meter of the present embodiment will be described. Since the configuration of the electromagnetic flowmeter of the present embodiment is the same as that of the first embodiment, description will be made using the reference numerals in FIG. The electromagnetic flowmeter of the present embodiment includes a measuring tube 1, electrodes 2a and 2b, first and second exciting coils 3a and 3b, a power supply unit 4, a signal conversion unit 5, and a flow rate output unit 6. Have

信号変換部5は、第1の励磁状態と第2の励磁状態の各々において電極2a,2bで検出される合成起電力の振幅と位相を求め、これらの振幅と位相に基づいて第2の励磁状態の合成起電力の角周波数ω0の成分を第1の∂A/∂t成分として抽出すると共に、第2の励磁状態の合成起電力の角周波数ω2の成分を第2の∂A/∂t成分として抽出し、第1の励磁状態の合成起電力の角周波数ω0の成分を第1の補正対象起電力として、第1の∂A/∂t成分に基づいて第1の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去すると共に、第1の励磁状態の合成起電力の角周波数ω2の成分を第2の補正対象起電力として、第2の∂A/∂t成分に基づいて第2の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去するスパン補正部51と、スパン補正された第1の補正対象起電力とスパン補正された第2の補正対象起電力との差を第3の∂A/∂t成分として抽出し、このスパン補正された2つの補正対象起電力のうちいずれか1つの中から第3の∂A/∂t成分を取り除くことによりv×B成分を抽出する0点補正部52とから構成される。   The signal converter 5 obtains the amplitude and phase of the combined electromotive force detected by the electrodes 2a and 2b in each of the first excitation state and the second excitation state, and performs the second excitation based on these amplitudes and phases. The component of the angular frequency ω0 of the combined electromotive force in the state is extracted as the first ∂A / ∂t component, and the component of the angular frequency ω2 of the combined electromotive force in the second excitation state is extracted as the second ∂A / ∂t. The component of the first excitation target electromotive force based on the first ∂A / ∂t component is extracted as a component, and the component of the angular frequency ω0 of the composite electromotive force in the first excitation state is used as the first correction target electromotive force. In addition, the variation factor of the span included in the v × B component is removed, and the component of the angular frequency ω2 of the composite electromotive force in the first excitation state is used as the second correction target electromotive force, so that the second ∂A / ∂ The variation factor of the span included in the v × B component in the second correction target electromotive force based on the t component The span correction unit 51 to be removed, and the difference between the first correction target electromotive force subjected to span correction and the second correction target electromotive force subjected to span correction are extracted as a third ∂A / ∂t component, and this span is extracted. The zero point correction unit 52 extracts a v × B component by removing the third ∂A / ∂t component from any one of the two corrected electromotive forces that have been corrected.

本実施の形態の電源部4は、第1の角周波数ω0の正弦波成分と第2の角周波数ω2の正弦波成分とを含む第1の励磁電流を第1の励磁コイル3aに供給すると同時に、第1の励磁電流との位相差がΔθ7で、第1の角周波数ω0の正弦波成分と第2の角周波数ω2の正弦波成分とを含む第2の励磁電流を第2の励磁コイル3bに供給する第1の励磁状態をT1秒継続し、この第1の励磁状態に対して第1の励磁電流と第2の励磁電流との位相差をΔθ7+πに変更した第2の励磁状態をT2秒継続することをT秒周期で繰り返す。すなわち、T=T1+T2である。   The power supply unit 4 according to the present embodiment simultaneously supplies a first excitation current including a sine wave component having a first angular frequency ω0 and a sine wave component having a second angular frequency ω2 to the first excitation coil 3a. The second excitation current having a phase difference of Δθ7 from the first excitation current and including the sine wave component of the first angular frequency ω0 and the sine wave component of the second angular frequency ω2 is converted into the second excitation coil 3b. The first excitation state to be supplied to is continued for T1 seconds, and the second excitation state in which the phase difference between the first excitation current and the second excitation current is changed to Δθ7 + π with respect to the first excitation state is T2. Repeat for 2 seconds in a cycle of T seconds. That is, T = T1 + T2.

図18は本実施の形態の信号変換部5と流量出力部6の動作を示すフローチャートである。まず、信号変換部5のスパン補正部51は、第1の励磁状態において、電極2aと2b間の起電力のうち角周波数ω0の成分の起電力E20の振幅r20を求めると共に、実軸と電極間起電力E20との位相差φ20を図示しない位相検波器により求める。また、スパン補正部51は、第1の励磁状態において、電極2aと2b間の起電力のうち角周波数ω2の成分の起電力E22の振幅r22を求めると共に、実軸と電極間起電力E22との位相差φ22を位相検波器により求める(図18ステップ201)。   FIG. 18 is a flowchart showing the operations of the signal conversion unit 5 and the flow rate output unit 6 of the present embodiment. First, the span correction unit 51 of the signal conversion unit 5 obtains the amplitude r20 of the electromotive force E20 of the component of the angular frequency ω0 among the electromotive forces between the electrodes 2a and 2b in the first excitation state, and the real axis and the electrode A phase difference φ20 with respect to the inter-electromotive force E20 is obtained by a phase detector (not shown). Further, in the first excitation state, the span correction unit 51 obtains the amplitude r22 of the electromotive force E22 of the component of the angular frequency ω2 among the electromotive forces between the electrodes 2a and 2b, and the actual axis and the interelectrode electromotive force E22 Is obtained by a phase detector (step 201 in FIG. 18).

続いて、スパン補正部51は、第2の励磁状態において、電極2aと2b間の起電力のうち角周波数ω0の成分の起電力E2π0の振幅r2π0を求めると共に、実軸と電極間起電力E2π0との位相差φ2π0を位相検波器により求める。また、スパン補正部51は、第2の励磁状態において、電極2aと2b間の起電力のうち角周波数ω2の成分の起電力E2π2の振幅r2π2を求めると共に、実軸と電極間起電力E2π2との位相差φ2π2を位相検波器により求める(ステップ202)。電極間起電力E20,E22,E2π0,E2π2は、バンドパスフィルタやコムフィルタによって周波数分離することができる。   Subsequently, in the second excitation state, the span correction unit 51 obtains the amplitude r2π0 of the electromotive force E2π0 of the component of the angular frequency ω0 among the electromotive forces between the electrodes 2a and 2b, and the electromotive force E2π0 between the real axis and the electrode. Is obtained by a phase detector. Further, in the second excitation state, the span correction unit 51 obtains the amplitude r2π2 of the electromotive force E2π2 of the component of the angular frequency ω2 among the electromotive forces between the electrodes 2a and 2b, and the real axis and the interelectrode electromotive force E2π2 Is obtained by a phase detector (step 202). The inter-electrode electromotive forces E20, E22, E2π0, E2π2 can be frequency-separated by a bandpass filter or a comb filter.

次に、スパン補正部51は、電極間起電力E2π0を近似した起電力EdA21の大きさと角度を求める(ステップ203)。このステップ203の処理は、第1の∂A/∂t成分を求めることに対応する処理であり、式(126)の算出に相当する処理である。スパン補正部51は、起電力EdA21の大きさ|EdA21|を次式のように算出する。
|EdA21|=r2π0 ・・・(135)
そして、スパン補正部51は、起電力EdA21の角度∠EdA21を次式のように算出する。
∠EdA21=φ2π0 ・・・(136)
これで、ステップ203の処理が終了する。
Next, the span correction unit 51 obtains the magnitude and angle of the electromotive force EdA21 that approximates the interelectrode electromotive force E2π0 (step 203). The processing of step 203 is processing corresponding to obtaining the first ∂A / ∂t component, and is processing corresponding to the calculation of Expression (126). The span correction unit 51 calculates the magnitude | EdA21 | of the electromotive force EdA21 as the following equation.
| EdA21 | = r2π0 (135)
Then, the span correction unit 51 calculates the angle ∠EdA21 of the electromotive force EdA21 as the following equation.
∠EdA21 = φ2π0 (136)
This completes the process of step 203.

続いて、スパン補正部51は、電極間起電力E20を起電力EdA21で正規化した正規化起電力En20の大きさと角度を求める(ステップ204)。このステップ204の処理は、式(128)の算出に相当する処理である。スパン補正部51は、正規化起電力En20の大きさ|En20|を次式のように算出する。
|En20|=(r20/|EdA21|)・ω0 ・・・(137)
Subsequently, the span correction unit 51 obtains the magnitude and angle of the normalized electromotive force En20 obtained by normalizing the interelectrode electromotive force E20 with the electromotive force EdA21 (step 204). The process of step 204 is a process corresponding to the calculation of equation (128). The span correction unit 51 calculates the magnitude | En20 | of the normalized electromotive force En20 as the following equation.
| En20 | = (r20 / | EdA21 |) · ω0 (137)

そして、スパン補正部51は、正規化起電力En20の角度∠En20を次式のように算出する。
∠En20=φ20−∠EdA21 ・・・(138)
さらに、スパン補正部51は、正規化起電力En20の実軸成分En20xと虚軸成分En20yを次式のように算出する。
En20x=|En20|・cos(∠En20) ・・・(139)
En20y=|En20|・sin(∠En20) ・・・(140)
これで、ステップ204の処理が終了する。
Then, the span correction unit 51 calculates the angle ∠En20 of the normalized electromotive force En20 as the following expression.
∠En20 = φ20−∠EdA21 (138)
Further, the span correction unit 51 calculates the real axis component En20x and the imaginary axis component En20y of the normalized electromotive force En20 as the following expression.
En20x = | En20 | .cos (∠En20) (139)
En20y = | En20 | .sin (∠En20) (140)
This completes the process of step 204.

次に、スパン補正部51は、電極間起電力E2π2を近似した起電力EdA22の大きさと角度を求める(ステップ205)。このステップ205の処理は、第2の∂A/∂t成分を求めることに対応する処理であり、式(130)の算出に相当する処理である。スパン補正部51は、起電力EdA22の大きさ|EdA22|を次式のように算出する。
|EdA22|=r2π2 ・・・(141)
そして、スパン補正部51は、起電力EdA22の角度∠EdA22を次式のように算出する。
∠EdA22=φ2π2 ・・・(142)
これで、ステップ205の処理が終了する。
Next, the span correction unit 51 obtains the magnitude and angle of the electromotive force EdA22 that approximates the interelectrode electromotive force E2π2 (step 205). The process of step 205 is a process corresponding to obtaining the second ∂A / ∂t component, and is a process corresponding to the calculation of Expression (130). The span correction unit 51 calculates the magnitude | EdA22 | of the electromotive force EdA22 as the following equation.
| EdA22 | = r2π2 (141)
Then, the span correction unit 51 calculates the angle ∠EdA22 of the electromotive force EdA22 as the following equation.
∠EdA22 = φ2π2 (142)
This completes the process of step 205.

続いて、スパン補正部51は、電極間起電力E22を起電力EdA22で正規化した正規化起電力En22の大きさと角度を求める(ステップ206)。このステップ206の処理は、式(131)の算出に相当する処理である。スパン補正部51は、正規化起電力En22の大きさ|En22|を次式のように算出する。
|En22|=(r22/|EdA22|)・ω2 ・・・(143)
Subsequently, the span correction unit 51 obtains the magnitude and angle of the normalized electromotive force En22 obtained by normalizing the inter-electrode electromotive force E22 with the electromotive force EdA22 (step 206). The process of step 206 is a process corresponding to the calculation of equation (131). The span correction unit 51 calculates the magnitude | En22 | of the normalized electromotive force En22 as the following expression.
| En22 | = (r22 / | EdA22 |) · ω2 (143)

そして、スパン補正部51は、正規化起電力En22の角度∠En22を次式のように算出する。
∠En22=φ22−∠EdA22 ・・・(144)
さらに、スパン補正部51は、正規化起電力En22の実軸成分En22xと虚軸成分En22yを次式のように算出する。
En22x=|En22|・cos(∠En22) ・・・(145)
En22y=|En22|・sin(∠En22) ・・・(146)
これで、ステップ206の処理が終了する。
Then, the span correction unit 51 calculates the angle ∠En22 of the normalized electromotive force En22 as the following expression.
∠En22 = φ22−∠EdA22 (144)
Further, the span correction unit 51 calculates the real axis component En22x and the imaginary axis component En22y of the normalized electromotive force En22 as the following expression.
En22x = | En22 | .cos (∠En22) (145)
En22y = | En22 | .sin (∠En22) (146)
This completes the process of step 206.

次に、信号変換部5の0点補正部52は、正規化起電力En20とEn22との起電力差EdA23の大きさを求める(ステップ207)。このステップ207の処理は、第3の∂A/∂t成分を求めることに対応する処理であり、式(132)の算出に相当する処理である。0点補正部52は、起電力差EdA23の実軸成分EdA23xと虚軸成分EdA23yを次式のように算出する。
EdA23x=(En20x−En22x)・ω0/(ω0−ω2) ・・(147)
EdA23y=(En20y−En22y)・ω0/(ω0−ω2) ・・(148)
Next, the zero point correction unit 52 of the signal conversion unit 5 obtains the magnitude of the electromotive force difference EdA23 between the normalized electromotive forces En20 and En22 (step 207). The process of step 207 is a process corresponding to obtaining the third ∂A / ∂t component, and is a process corresponding to the calculation of Expression (132). The zero point correction unit 52 calculates the real axis component EdA23x and the imaginary axis component EdA23y of the electromotive force difference EdA23 as follows.
EdA23x = (En20x−En22x) · ω0 / (ω0−ω2) (147)
EdA23y = (En20y−En22y) · ω0 / (ω0−ω2) (148)

そして、0点補正部52は、正規化起電力En20から起電力差EdA23を取り除き、v×B成分EvBn2の大きさを求める(ステップ208)。このステップ208の処理は、式(133)の算出に相当する処理である。0点補正部52は、v×B成分EvBn2の大きさ|EvBn2|を次式のように算出する。
|EvBn2|={(En20x−EdA23x)2
+(En20y−EdA23y)21/2 ・・・(149)
Then, the zero point correction unit 52 removes the electromotive force difference EdA23 from the normalized electromotive force En20, and obtains the magnitude of the v × B component EvBn2 (step 208). The process of step 208 is a process corresponding to the calculation of Expression (133). The zero point correction unit 52 calculates the magnitude | EvBn2 | of the v × B component EvBn2 as follows.
| EvBn2 | = {(En20x−EdA23x) 2
+ (En20y−EdA23y) 2 } 1/2 (149)

流量出力部6は、被測定流体の流速の大きさVを次式のように算出する(ステップ209)。このステップ209の処理は、式(134)の算出に相当する処理である。
V=|EvBn2|/γ ・・・(150)
なお、比例係数γは、校正等により予め求めることができる定数である。信号変換部5と流量出力部6とは、以上のようなステップ201〜209の処理を例えばオペレータによって計測終了が指示されるまで(ステップ210においてYES)、一定周期毎に行う。なお、ステップ202〜209の処理は第2の励磁状態において行われる。
The flow rate output unit 6 calculates the magnitude V of the flow velocity of the fluid to be measured as in the following equation (step 209). The process of step 209 is a process corresponding to the calculation of equation (134).
V = | EvBn2 | / γ (150)
The proportionality coefficient γ is a constant that can be obtained in advance by calibration or the like. The signal conversion unit 5 and the flow rate output unit 6 perform the processing in steps 201 to 209 as described above at regular intervals until, for example, the operator instructs the end of measurement (YES in step 210). Note that the processing in steps 202 to 209 is performed in the second excitation state.

以上のように、本実施の形態では、周波数が異なる2つの成分を含む磁場B6を第1の励磁コイル3aから被測定流体に印加すると同時に、磁場B6との位相差がΔθ7で、周波数が異なる2つの成分を含む磁場B7を第2の励磁コイル3bから被測定流体に印加する第1の励磁状態において、角周波数ω0の成分の起電力E20と角周波数ω2の成分の起電力E22とを求め、磁場B6と磁場B7との位相差を第1の励磁状態から一定値πだけ変化させた第2の励磁状態において、角周波数ω0の成分の起電力E2π0と角周波数ω2の成分の起電力E2π2とを求める。そして、本実施の形態では、磁場B6と磁場B7とが等しくなるように設定しておくと、電極間起電力E2π0が近似的に第1の∂A/∂t成分として抽出でき、また電極間起電力E2π2が近似的に第2の∂A/∂t成分として抽出できることに着眼し、第1の∂A/∂t成分を用いて電極間起電力E20中のv×B成分の流速の大きさVにかかるスパンを正規化すると共に、第2の∂A/∂t成分を用いて電極間起電力E22中のv×B成分の流速の大きさVにかかるスパンを正規化し、正規化起電力En20とEn22とから起電力差EdA23(第3の∂A/∂t成分)を抽出して、正規化起電力En20から第3の∂A/∂t成分を取り除くことによりv×B成分を抽出し、このv×B成分から被測定流体の流量を算出するようにしたので、正確なスパン補正を自動的に行うことができ、かつ被測定流体の流量を0にすることなく電磁流量計の出力の0点を補正することができ、高周波励磁においても0点の安定性を確保することができる。   As described above, in the present embodiment, the magnetic field B6 including two components having different frequencies is applied from the first exciting coil 3a to the fluid to be measured, and at the same time, the phase difference from the magnetic field B6 is Δθ7 and the frequencies are different. In the first excitation state in which the magnetic field B7 including two components is applied from the second excitation coil 3b to the fluid to be measured, the electromotive force E20 having the angular frequency ω0 and the electromotive force E22 having the angular frequency ω2 are obtained. In the second excitation state in which the phase difference between the magnetic field B6 and the magnetic field B7 is changed from the first excitation state by a constant value π, the electromotive force E2π0 of the component of the angular frequency ω0 and the electromotive force E2π2 of the component of the angular frequency ω2 And ask. In this embodiment, if the magnetic field B6 and the magnetic field B7 are set to be equal, the interelectrode electromotive force E2π0 can be approximately extracted as the first ∂A / ∂t component, and between the electrodes Focusing on the fact that the electromotive force E2π2 can be approximately extracted as the second ∂A / ∂t component, the flow velocity of the v × B component in the inter-electrode electromotive force E20 using the first ∂A / ∂t component is large. Normalizing the span for V, and normalizing the span for the magnitude V of the flow velocity of the v × B component in the inter-electrode electromotive force E22 using the second ∂A / ∂t component. The electromotive force difference EdA23 (third ∂A / ∂t component) is extracted from the electric powers En20 and En22, and the third ∂A / ∂t component is removed from the normalized electromotive force En20 to obtain the v × B component. Extracted and calculated the flow rate of the fluid to be measured from this v × B component Therefore, accurate span correction can be automatically performed, and the zero point of the output of the electromagnetic flowmeter can be corrected without setting the flow rate of the fluid to be measured to zero, and the zero point is stable even in high frequency excitation. Sex can be secured.

また、本実施の形態では、周波数による磁場の損失の違いを考慮して、角周波数ω0の起電力E20のv×B成分を同じ角周波数ω0の起電力E2π0から抽出した第1の∂A/∂t成分を用いて正規化すると共に、角周波数ω2の起電力E22のv×B成分を同じ角周波数ω2の起電力E2π2から抽出した第2の∂A/∂t成分を用いて正規化し、それぞれ正規化した起電力En20とEn22との差を基に0補正を行うようにしたので、磁場の損失による影響がある場合でも、正確なスパン補正と0補正を行うことができる。
また、本実施の形態では、第1の実施の形態のように励磁周波数を切り替える必要がないため、より高速に流量を算出することが可能になる。
Further, in the present embodiment, in consideration of the difference in magnetic field loss depending on the frequency, the first ∂A / that is obtained by extracting the v × B component of the electromotive force E20 having the angular frequency ω0 from the electromotive force E2π0 having the same angular frequency ω0. Normalize using the ∂t component, normalize the v × B component of the electromotive force E22 of the angular frequency ω2 using the second ∂A / ∂t component extracted from the electromotive force E2π2 of the same angular frequency ω2, Since zero correction is performed based on the difference between the normalized electromotive forces En20 and En22, accurate span correction and zero correction can be performed even when there is an influence due to the loss of the magnetic field.
Further, in the present embodiment, it is not necessary to switch the excitation frequency as in the first embodiment, so that the flow rate can be calculated at a higher speed.

なお、本実施の形態では、2種類の周波数成分で励磁する例を示したが、3種類以上の周波数成分で励磁すれば、0補正の精度をさらに向上させることができる。3種類以上の周波数成分で励磁する例としては、変調が使用できる。角周波数ω0の搬送波を角周波数ω1の変調波で励磁すれば、振幅変調の場合は角周波数ω0,ω0±ω1の成分の起電力を得ることができ、位相変調又は周波数変調の場合は角周波数ω0,ω0±ζ・ω1(ζは正の整数)の成分の起電力を得ることができる。この場合も、第1の励磁コイル3aから発生する磁場と第2の励磁コイル3bから発生する磁場の位相差を切り換えながら励磁することにより、スパン補正および0補正が可能となる。この変調を使用する例は第4の実施の形態〜第7の実施の形態で示す。   In the present embodiment, an example in which excitation is performed with two types of frequency components has been shown. However, if excitation is performed with three or more types of frequency components, the accuracy of zero correction can be further improved. As an example of excitation with three or more types of frequency components, modulation can be used. If a carrier wave having an angular frequency ω0 is excited by a modulated wave having an angular frequency ω1, an electromotive force having components of angular frequencies ω0 and ω0 ± ω1 can be obtained in the case of amplitude modulation, and an angular frequency in the case of phase modulation or frequency modulation. The electromotive force of the component of ω0, ω0 ± ζ · ω1 (ζ is a positive integer) can be obtained. Also in this case, it is possible to perform span correction and zero correction by performing excitation while switching the phase difference between the magnetic field generated from the first excitation coil 3a and the magnetic field generated from the second excitation coil 3b. Examples using this modulation are shown in the fourth to seventh embodiments.

また、本実施の形態では、角周波数ω0の成分の起電力E20を0補正およびスパン補正の対象としたが、角周波数ω2の成分の起電力E22を0補正およびスパン補正の対象としてもよい。この場合は、次式のように正規化起電力En22とEn20とから起電力差EdA23(第3の∂A/∂t成分)を求める。
EdA23=(En22−En20)・ω2/(ω2−ω0) ・・・(151)
そして、次式のように正規化起電力En22から起電力差EdA23を引くことによりv×B成分EvBn2を求めるようにすればよい。その他の処理は電極間起電力E20を0補正およびスパン補正の対象とする場合と同じである。
|EvBn2|=|En22−EdA23| ・・・(152)
Further, in the present embodiment, the electromotive force E20 of the component of the angular frequency ω0 is the target of 0 correction and span correction, but the electromotive force E22 of the component of the angular frequency ω2 may be the target of 0 correction and span correction. In this case, the electromotive force difference EdA23 (third ∂A / ∂t component) is obtained from the normalized electromotive forces En22 and En20 as in the following equation.
EdA23 = (En22-En20) · ω2 / (ω2-ω0) (151)
Then, the v × B component EvBn2 may be obtained by subtracting the electromotive force difference EdA23 from the normalized electromotive force En22 as in the following equation. The other processing is the same as the case where the interelectrode electromotive force E20 is subjected to 0 correction and span correction.
| EvBn2 | = | En22−EdA23 | (152)

[第3の実施の形態]
次に、本発明の第3の実施の形態について説明する。本実施の形態の電磁流量計は2個の励磁コイルと1対の電極とを有するものであり、信号処理系を除く構成は図1に示した電磁流量計と同様であるので、図1の符号を用いて本実施の形態の原理を説明する。本実施の形態は、正規化の対象となる合成ベクトルVas0+Vbs0を検出する方法として基本原理で説明した第2の検出方法を用い、第1の∂A/∂t成分を抽出する方法として基本原理で説明した第2の抽出方法を用いるものである。まず、最初に第2の抽出方法について説明しておく。
[Third Embodiment]
Next, a third embodiment of the present invention will be described. The electromagnetic flow meter of the present embodiment has two excitation coils and a pair of electrodes, and the configuration excluding the signal processing system is the same as that of the electromagnetic flow meter shown in FIG. The principle of this embodiment will be described using reference numerals. The present embodiment uses the second detection method described in the basic principle as a method for detecting the composite vector Vas0 + Vbs0 to be normalized, and uses the basic principle as a method for extracting the first ∂A / ∂t component. The second extraction method described is used. First, the second extraction method will be described first.

図19は、第1の∂A/∂t成分のベクトルVas0Rを抽出する処理を複素ベクトル表現した図である。励磁コイル3aと3bの両方に角周波数(ω0+Δω)と(ω0−Δω)の成分を含む励磁電流を供給した場合に電極2a,2bで検出される電極間起電力のうち、角周波数(ω0+Δω)の成分の起電力は、以下の∂A/∂t成分のベクトルVaspRとv×B成分のベクトルVbspRの合成ベクトルVaspR+VbspRに相当する。
VaspR=ra・exp(j・θa)
・(B1c[ω0+Δω]+B2c[ω0+Δω])・C・(ω0+Δω)
・・・(153)
VbspR=rb・exp(j・θb)
・(B1c[ω0+Δω]−B2c[ω0+Δω])・C・V
・・・(154)
FIG. 19 is a diagram representing the process of extracting the vector Vas0R of the first ∂A / ∂t component as a complex vector. Of the inter-electrode electromotive forces detected by the electrodes 2a and 2b when an excitation current including angular frequency (ω0 + Δω) and (ω0−Δω) components is supplied to both the excitation coils 3a and 3b, the angular frequency (ω0 + Δω) Is equivalent to a combined vector VaspR + VbspR of a vector VaspR of the following ∂A / 成分 t component and a vector VbspR of the v × B component.
VaspR = ra · exp (j · θa)
(B1c [ω0 + Δω] + B2c [ω0 + Δω]) C (ω0 + Δω)
... (153)
VbspR = rb · exp (j · θb)
(B1c [ω0 + Δω] −B2c [ω0 + Δω]) CV
... (154)

また、励磁コイル3aと3bの両方に角周波数(ω0+Δω)と(ω0−Δω)の成分を含む励磁電流を供給した場合に電極2a,2bで検出される電極間起電力のうち、角周波数(ω0−Δω)の成分の起電力は、以下の∂A/∂t成分のベクトルVasmRとv×B成分のベクトルVbsmRの合成ベクトルVasmR+VbsmRに相当する。
VasmR=ra・exp(j・θa)
・(B1c[ω0−Δω]+B2c[ω0−Δω])・C・(ω0−Δω)
・・・(155)
VbsmR=rb・exp(j・θb)
・(B1c[ω0−Δω]−B2c[ω0−Δω])・C・V
・・・(156)
Of the inter-electrode electromotive forces detected by the electrodes 2a and 2b when an excitation current including angular frequency (ω0 + Δω) and (ω0−Δω) components is supplied to both the excitation coils 3a and 3b, the angular frequency ( The electromotive force of the component of (ω0−Δω) corresponds to a combined vector VasmR + VbsmR of the following vector VasmR of ∂A / ∂t component and vector VbsmR of v × B component.
VasmR = ra · exp (j · θa)
(B1c [ω0−Δω] + B2c [ω0−Δω]) C / (ω0−Δω)
... (155)
VbsmR = rb · exp (j · θb)
(B1c [ω0−Δω] −B2c [ω0−Δω]) CV
... (156)

角周波数(ω0+Δω)における合成ベクトルと角周波数(ω0−Δω)における合成ベクトルから、角周波数ω0で励磁したときと同等な第1の∂A/∂t成分のベクトルVas0Rを次式のように近似的に抽出することができる。
Vas0R≒{(VaspR+VbspR)+(VasmR+VbsmR)}/2
・・・(157)
From the combined vector at the angular frequency (ω0 + Δω) and the combined vector at the angular frequency (ω0−Δω), a vector Vas0R of the first ∂A / ∂t component equivalent to that when excited at the angular frequency ω0 is approximated as follows: Can be extracted.
Vas0R≈ {(VaspR + VbspR) + (VasmR + VbsmR)} / 2
... (157)

このように角周波数(ω0±Δω)で励磁した場合の合成ベクトルから、近似的に第1の∂A/∂t成分のベクトルVas0Rを抽出することが可能で、周波数帯を効率的に使用することができる。ここで、式(157)のように第1の∂A/∂t成分のベクトルVas0Rを近似的に求めることができる理由について説明する。   Thus, it is possible to approximately extract the first ∂A / ∂t component vector Vas0R from the combined vector when excited at the angular frequency (ω0 ± Δω), and efficiently use the frequency band. be able to. Here, the reason why the vector Vas0R of the first ∂A / ∂t component can be approximately obtained as in Expression (157) will be described.

前記の式(42)〜式(45)の関係式を用いれば、角周波数(ω0+Δω)における∂A/∂t成分のベクトルVaspRと角周波数(ω0−Δω)における∂A/∂t成分のベクトルVasmRとを合成したベクトルは、次式のように変形できる。
VaspR+VasmR
=ra・exp(j・θa)・C
・{(ω0+Δω)・(B1c[ω0+Δω]+B2c[ω0+Δω])
+(ω0−Δω)・(B1c[ω0−Δω]+B2c[ω0−Δω])}
=ra・exp(j・θa)・C
・{ω0・(B1c[ω0+Δω]+B1c[ω0−Δω])
+ω0・(B2c[ω0+Δω]+B2c[ω0−Δω])
+Δω・(B1c[ω0+Δω]−B1c[ω0−Δω])
+Δω・(B2c[ω0+Δω]−B2c[ω0−Δω])}
=ra・exp(j・θa)・C
・{2・ω0・B1c[ω0]+2・ω0・B2c[ω0]
+Δω・(−2・B1c・Δω・ec)+Δω・(−2・B2c・Δω・ec)} =2・ra・exp(j・θa)・C
・{ω0・(B1c[ω0]+B2c[ω0])
−(Δω・Δω)・(B1c+B2c)・ec} ・・・(158)
Using the relational expressions (42) to (45), the vector VaspR of ∂A / ∂t component at the angular frequency (ω0 + Δω) and the vector of ∂A / ∂t component at the angular frequency (ω0-Δω). A vector obtained by combining VasmR can be transformed as follows.
VaspR + VasmR
= Ra · exp (j · θa) · C
・ {(Ω0 + Δω) ・ (B1c [ω0 + Δω] + B2c [ω0 + Δω])
+ (Ω0−Δω) · (B1c [ω0−Δω] + B2c [ω0−Δω])}
= Ra · exp (j · θa) · C
・ {Ω0 ・ (B1c [ω0 + Δω] + B1c [ω0−Δω])
+ Ω0 · (B2c [ω0 + Δω] + B2c [ω0−Δω])
+ Δω · (B1c [ω0 + Δω] −B1c [ω0−Δω])
+ Δω · (B2c [ω0 + Δω] −B2c [ω0−Δω])}
= Ra · exp (j · θa) · C
・ {2 ・ ω0 ・ B1c [ω0] +2 ・ ω0 ・ B2c [ω0]
+ Δω · (−2 · B1c · Δω · ec) + Δω · (−2 · B2c · Δω · ec)} = 2 · ra · exp (j · θa) · C
・ {Ω0 ・ (B1c [ω0] + B2c [ω0])
− (Δω · Δω) · (B1c + B2c) · ec} (158)

また、同じく式(42)〜式(45)の関係式を用いれば、角周波数(ω0+Δω)におけるv×B成分のベクトルVbspRと角周波数(ω0−Δω)におけるv×B成分のベクトルVbsmRとを合成したベクトルは、次式のように変形できる。
VbspR+VbsmR
=rb・exp(j・θb)・C・V
・(B1c[ω0+Δω]−B2c[ω0+Δω]
+B1c[ω0−Δω]−B2c[ω0−Δω])
=rb・exp(j・θb)・C・V
・{(B1c[ω0+Δω]+B1c[ω0−Δω])
−(B2c[ω0+Δω]+B2c[ω0−Δω])}
=2・rb・exp(j・θb)・C・V・(B1c[ω0]−B2c[ω0])
・・・(159)
Similarly, if the relational expressions (42) to (45) are used, the v × B component vector VbspR at the angular frequency (ω0 + Δω) and the v × B component vector VbsmR at the angular frequency (ω0−Δω) are obtained. The combined vector can be transformed as follows.
VbspR + VbsmR
= Rb · exp (j · θb) · C · V
(B1c [ω0 + Δω] −B2c [ω0 + Δω]
+ B1c [ω0−Δω] −B2c [ω0−Δω])
= Rb · exp (j · θb) · C · V
・ {(B1c [ω0 + Δω] + B1c [ω0−Δω])
− (B2c [ω0 + Δω] + B2c [ω0−Δω])}
= 2 · rb · exp (j · θb) · C · V · (B1c [ω0] −B2c [ω0])
... (159)

角周波数(ω0+Δω)における∂A/∂t成分とv×B成分の合成ベクトルと、角周波数(ω0−Δω)における∂A/∂t成分とv×B成分の合成ベクトルとを合成したベクトルは、次式で表される。
VaspR+VasmR+VbspR+VbsmR
=2・ra・exp(j・θa)・C・ω0・(B1c[ω0]+B2c[ω0])
−2・ra・exp(j・θa)・C・(Δω・Δω)・(B1c+B2c)・ec}
+2・rb・exp(j・θb)・C・V・(B1c[ω0]−B2c[ω0])
・・・(160)
The combined vector of ∂A / ∂t component and v × B component at the angular frequency (ω0 + Δω) and the combined vector of ∂A / ∂t component and v × B component at the angular frequency (ω0−Δω) is Is expressed by the following equation.
VaspR + VasmR + VbspR + VbsmR
= 2 · ra · exp (j · θa) · C · ω0 · (B1c [ω0] + B2c [ω0])
-2 · ra · exp (j · θa) · C · (Δω · Δω) · (B1c + B2c) · ec}
+ 2 · rb · exp (j · θb) · C · V · (B1c [ω0] −B2c [ω0])
... (160)

式(160)の右辺第1項に対して右辺第2項及び第3項は無視することができ、式(33)を用いれば次式のように近似することができる。
VaspR+VasmR+VbspR+VbsmR
≒2・ra・exp(j・θa)・C・ω0・(B1c[ω0]+B2c[ω0])
=2・Vas0R ・・・(161)
こうして、式(161)より、前記の式(157)を導出することができる。
The second term and the third term on the right side can be ignored with respect to the first term on the right side of the equation (160), and can be approximated as the following equation using the equation (33).
VaspR + VasmR + VbspR + VbsmR
≒ 2 ・ ra ・ exp (j ・ θa) ・ C ・ ω0 ・ (B1c [ω0] + B2c [ω0])
= 2 · Vas0R (161)
Thus, the equation (157) can be derived from the equation (161).

本実施の形態において、第1の励磁コイル3aから発生する磁場Bbのうち、電極2a,2b間を結ぶ電極軸EAX上において電極軸EAXおよび測定管軸PAXの双方と直交する磁場成分(磁束密度)B8と、第2の励磁コイル3bから発生する磁場Bcのうち、電極軸EAX上において電極軸EAXおよび測定管軸PAXの双方と直交する磁場成分(磁束密度)B9は、以下のように与えられるものとする。
B8=b8・cos(ωp・t−θ8)+b8・cos(ωm・t−θ8)
・・・(162)
B9=b9・cos(ωp・t−θ9)+b9・cos(ωm・t−θ9)
・・・(163)
In the present embodiment, among the magnetic field Bb generated from the first exciting coil 3a, a magnetic field component (magnetic flux density) orthogonal to both the electrode axis EAX and the measurement tube axis PAX on the electrode axis EAX connecting the electrodes 2a and 2b. ) Of the magnetic field Bc generated from B8 and the second exciting coil 3b, the magnetic field component (magnetic flux density) B9 orthogonal to both the electrode axis EAX and the measurement tube axis PAX on the electrode axis EAX is given as follows: Shall be.
B8 = b8 · cos (ωp · t−θ8) + b8 · cos (ωm · t−θ8)
... (162)
B9 = b9 · cos (ωp · t−θ9) + b9 · cos (ωm · t−θ9)
... (163)

式(162)、式(163)において、ωp,ωmは異なる角周波数、b8は磁束密度B8の角周波数ωpの成分の振幅および角周波数ωmの成分の振幅、b9は磁束密度B9の角周波数ωpの成分の振幅および角周波数ωmの成分の振幅、θ8は磁束密度B8の角周波数ωpの成分とωp・tとの位相差(位相遅れ)および角周波数ωmの成分とωm・tとの位相差、θ9は磁束密度B9の角周波数ωpの成分とωp・tとの位相差および角周波数ωmの成分とωm・tとの位相差である。以下、磁束密度B8を磁場B8とし、磁束密度B9を磁場B9とする。   In the equations (162) and (163), ωp and ωm are different angular frequencies, b8 is the amplitude of the angular frequency ωp component and the amplitude of the angular frequency ωm component of the magnetic flux density B8, and b9 is the angular frequency ωp of the magnetic flux density B9. And θ8 is the phase difference (phase lag) between the angular frequency ωp component of magnetic flux density B8 and ωp · t, and the phase difference between the angular frequency ωm component and ωm · t. , Θ9 is a phase difference between the angular frequency ωp component of the magnetic flux density B9 and ωp · t, and a phase difference between the angular frequency ωm component and ωm · t. Hereinafter, the magnetic flux density B8 is referred to as a magnetic field B8, and the magnetic flux density B9 is referred to as a magnetic field B9.

それぞれの角周波数における磁場の損失を考慮して、磁場B8,B9の角周波数ωpの成分の振幅b8,b9をそれぞれb8[ωp],b9[ωp]と関数表記に変更し、同様に角周波数ωpの成分の位相差θ8,θ9をそれぞれθ8[ωp],θ9[ωp]と変更する。さらに、磁場B8,B9の角周波数ωmの成分の振幅b8,b9をそれぞれb8[ωm],b9[ωm]と関数表記に変更し、同様に角周波数ωmの成分の位相差θ8,θ9をそれぞれθ8[ωm],θ9[ωm]と変更する。これにより、式(162)、式(163)は式(164)、式(165)に置き換わる。   In consideration of the loss of the magnetic field at each angular frequency, the amplitudes b8 and b9 of the components of the angular frequency ωp of the magnetic fields B8 and B9 are changed to b8 [ωp] and b9 [ωp], respectively, and the angular frequency is similarly changed. The phase differences θ8 and θ9 of the components of ωp are changed to θ8 [ωp] and θ9 [ωp], respectively. Further, the amplitudes b8 and b9 of the components of the angular frequency ωm of the magnetic fields B8 and B9 are changed to function notations b8 [ωm] and b9 [ωm], respectively, and similarly the phase differences θ8 and θ9 of the components of the angular frequency ωm are respectively set. Change to θ8 [ωm] and θ9 [ωm]. Thereby, Formula (162) and Formula (163) are replaced with Formula (164) and Formula (165).

B8=b8[ωp]・cos(θ8[ωp])・cos(ωp・t)
+b8[ωp]・sin(θ8[ωp])・sin(ωp・t)
+b8[ωm]・cos(θ8[ωm])・cos(ωm・t)
+b8[ωm]・sin(θ8[ωm])・sin(ωm・t) ・・・(164)
B9=b9[ωp]・cos(θ9[ωp])・cos(ωp・t)
+b9[ωp]・sin(θ9[ωp])・sin(ωp・t)
+b9[ωm]・cos(θ9[ωm])・cos(ωm・t)
+b9[ωm]・sin(θ9[ωm])・sin(ωm・t) ・・・(165)
B8 = b8 [ωp] · cos (θ8 [ωp]) · cos (ωp · t)
+ B8 [ωp] · sin (θ8 [ωp]) · sin (ωp · t)
+ B8 [ωm] · cos (θ8 [ωm]) · cos (ωm · t)
+ B8 [ωm] · sin (θ8 [ωm]) · sin (ωm · t) (164)
B9 = b9 [ωp] · cos (θ9 [ωp]) · cos (ωp · t)
+ B9 [ωp] · sin (θ9 [ωp]) · sin (ωp · t)
+ B9 [ωm] · cos (θ9 [ωm]) · cos (ωm · t)
+ B9 [ωm] · sin (θ9 [ωm]) · sin (ωm · t) (165)

磁場の変化に起因する起電力は、磁場の時間微分dB/dtによるので、第1の励磁コイル3aから発生する磁場B8と第2の励磁コイル3bから発生する磁場B9を次式のように微分する。
dB8/dt=ωp・cos(ωp・t)・b8[ωp]・{sin(θ8[ωp])}
+ωp・sin(ωp・t)・b8[ωp]・{−cos(θ8[ωp])}
+ωm・cos(ωm・t)・b8[ωm]・{sin(θ8[ωm])}
+ωm・sin(ωm・t)・b8[ωm]・{−cos(θ8[ωm])}
・・・(166)
dB9/dt=ωp・cos(ωp・t)・b9[ωp]・{sin(θ9[ωp])}
+ωp・sin(ωp・t)・b9[ωp]・{−cos(θ9[ωp])}
+ωm・cos(ωm・t)・b9[ωm]・{sin(θ9[ωm])}
+ωm・sin(ωm・t)・b9[ωm]・{−cos(θ9[ωm])}
・・・(167)
Since the electromotive force resulting from the change in the magnetic field is based on the time differential dB / dt of the magnetic field, the magnetic field B8 generated from the first excitation coil 3a and the magnetic field B9 generated from the second excitation coil 3b are differentiated as follows: To do.
dB8 / dt = ωp · cos (ωp · t) · b8 [ωp] · {sin (θ8 [ωp])}
+ Ωp · sin (ωp · t) · b8 [ωp] · {−cos (θ8 [ωp])}
+ Ωm · cos (ωm · t) · b8 [ωm] · {sin (θ8 [ωm])}
+ Ωm · sin (ωm · t) · b8 [ωm] · {−cos (θ8 [ωm])}
... (166)
dB9 / dt = ωp · cos (ωp · t) · b9 [ωp] · {sin (θ9 [ωp])}
+ Ωp · sin (ωp · t) · b9 [ωp] · {−cos (θ9 [ωp])}
+ Ωm · cos (ωm · t) · b9 [ωm] · {sin (θ9 [ωm])}
+ Ωm · sin (ωm · t) · b9 [ωm] · {−cos (θ9 [ωm])}
... (167)

被測定流体の流速が0の場合、電極軸EAXと測定管軸PAXとを含む平面内において、磁場Bbの変化によって発生する、流速と無関係な電極間起電力E1と、磁場Bcの変化によって発生する、流速と無関係な電極間起電力E2は、図2に示すように互いに逆向きとなる。このとき、電極間起電力E1とE2とを足した全体の電極間起電力Eは、次式に示すように、磁場の時間微分dB8/dtとdB9/dtとの差(−dB8/dt+dB9/dt)にωp,ωmそれぞれの角周波数成分における比例係数rkをかけ、位相差θ8,θ9をそれぞれθ8+θ00,θ9+θ00で置き換えたものとなる(rk、θ00は、被測定流体の導電率及び誘電率と電極2a,2bの配置を含む測定管1の構造に関係する)。   When the flow rate of the fluid to be measured is 0, it is generated by the change in the electromotive force E1 between the electrodes that is irrelevant to the flow rate and the change in the magnetic field Bc. The inter-electrode electromotive force E2 irrelevant to the flow velocity is opposite to each other as shown in FIG. At this time, the total inter-electrode electromotive force E obtained by adding the inter-electrode electromotive forces E1 and E2 is the difference between the time derivative of the magnetic field dB8 / dt and dB9 / dt (−dB8 / dt + dB9 / dt) is multiplied by a proportional coefficient rk for each angular frequency component of ωp, ωm, and the phase differences θ8, θ9 are replaced by θ8 + θ00, θ9 + θ00, respectively (rk, θ00 are the conductivity and dielectric constant of the fluid to be measured. (Related to the structure of the measuring tube 1 including the arrangement of the electrodes 2a, 2b).

E=rk・ωp・cos(ωp・t)
・{−b8[ωp]・sin(θ8[ωp]+θ00)
+b9[ωp]・sin(θ9[ωp]+θ00)}
+rk・ωp・sin(ωp・t)
・{b8[ωp]・cos(θ8[ωp]+θ00)
−b9[ωp]・cos(θ9[ωp]+θ00)}
+rk・ωm・cos(ωm・t)
・{−b8[ωm]・sin(θ8[ωm]+θ00)
+b9[ωm]・sin(θ9[ωm]+θ00)}
+rk・ωm・sin(ωm・t)
・{b8[ωm]・cos(θ8[ωm]+θ00)
−b9[ωm]・cos(θ9[ωm]+θ00)} ・・・(168)
E = rk · ωp · cos (ωp · t)
{-B8 [ωp] · sin (θ8 [ωp] + θ00)
+ B9 [ωp] · sin (θ9 [ωp] + θ00)}
+ Rk · ωp · sin (ωp · t)
・ {B8 [ωp] · cos (θ8 [ωp] + θ00)
−b9 [ωp] · cos (θ9 [ωp] + θ00)}
+ Rk · ωm · cos (ωm · t)
・ {-B8 [ωm] · sin (θ8 [ωm] + θ00)
+ B9 [ωm] · sin (θ9 [ωm] + θ00)}
+ Rk · ωm · sin (ωm · t)
・ {B8 [ωm] · cos (θ8 [ωm] + θ00)
−b9 [ωm] · cos (θ9 [ωm] + θ00)} (168)

被測定流体の流速の大きさがV(V≠0)の場合、流速ベクトルvと磁場Bbによって発生する電極間起電力Ev1、流速ベクトルvと磁場Bcによって発生する電極間起電力Ev2は、図3に示すように同じ向きとなる。このとき、電極間起電力Ev1とEv2とを足した全体の電極間起電力Evは、次式に示すように、磁場B8と磁場B9との和にωp,ωmそれぞれの周波数成分における比例係数rkvをかけ、位相差θ8,θ9をそれぞれθ8+θ01,θ9+θ01で置き換えたものとなる(rkv、θ01は、流速の大きさVと被測定流体の導電率及び誘電率と電極2a,2bの配置を含む測定管1の構造に関係する)。   When the magnitude of the flow velocity of the fluid to be measured is V (V ≠ 0), the interelectrode electromotive force Ev1 generated by the flow velocity vector v and the magnetic field Bb, and the interelectrode electromotive force Ev2 generated by the flow velocity vector v and the magnetic field Bc are shown in FIG. As shown in FIG. At this time, the total inter-electrode electromotive force Ev obtained by adding the inter-electrode electromotive forces Ev1 and Ev2 to the sum of the magnetic field B8 and the magnetic field B9 is proportional to the proportional coefficient rkv in each frequency component of ωp and ωm. The phase differences θ8 and θ9 are replaced with θ8 + θ01 and θ9 + θ01, respectively (rkv and θ01 are measurements including the magnitude V of the flow velocity, the conductivity and dielectric constant of the fluid to be measured, and the arrangement of the electrodes 2a and 2b. Related to the structure of the tube 1).

Ev=rkv・cos(ωp・t)
・{b8[ωp]・cos(θ8[ωp]+θ01)
+b9[ωp]・cos(θ9[ωp]+θ01)}
+rkv・sin(ωp・t)
・{b8[ωp]・sin(θ8[ωp]+θ01)
+b9[ωp]・sin(θ9[ωp]+θ01)}
+rkv・cos(ωm・t)
・{b8[ωm]・cos(θ8[ωm]+θ01)
+b9[ωm]・cos(θ9[ωm]+θ01)}
+rkv・sin(ωm・t)
・{b8[ωm]・sin(θ8[ωm]+θ01)
+b9[ωm]・sin(θ9[ωm]+θ01)} ・・・(169)
Ev = rkv · cos (ωp · t)
・ {B8 [ωp] · cos (θ8 [ωp] + θ01)
+ B9 [ωp] · cos (θ9 [ωp] + θ01)}
+ Rkv · sin (ωp · t)
・ {B8 [ωp] · sin (θ8 [ωp] + θ01)
+ B9 [ωp] · sin (θ9 [ωp] + θ01)}
+ Rkv · cos (ωm · t)
・ {B8 [ωm] · cos (θ8 [ωm] + θ01)
+ B9 [ωm] · cos (θ9 [ωm] + θ01)}
+ Rkv · sin (ωm · t)
・ {B8 [ωm] · sin (θ8 [ωm] + θ01)
+ B9 [ωm] · sin (θ9 [ωm] + θ01)} (169)

図2、図3で説明した電極間起電力の向きを考慮すると、磁場の時間変化に起因する電極間起電力を複素ベクトルに変換した起電力と被測定流体の流速に起因する電極間起電力を複素ベクトルに変換した起電力とを合わせた全体の電極間起電力のうち、角周波数ωpの成分の起電力E3pcは、式(168)の第1項および第2項と式(169)の第1項および第2項と式(17)とから次式で表される。
E3pc=rk・ωp・b8[ωp]・exp{j・(π/2+θ8[ωp]+θ00)}
+γ・rk・V・b8[ωp]・exp{j・(θ8[ωp]+θ01)}
+rk・ωp・b9[ωp]
・exp{j・(−π/2+θ9[ωp]+θ00)}
+γ・rk・V・b9[ωp]・exp{j・(θ9[ωp]+θ01)}
・・・(170)
In consideration of the direction of the electromotive force between the electrodes described in FIGS. 2 and 3, the electromotive force obtained by converting the interelectrode electromotive force due to the time change of the magnetic field into a complex vector and the interelectrode electromotive force due to the flow velocity of the fluid to be measured. Of the total inter-electrode electromotive force combined with the electromotive force converted into a complex vector, the electromotive force E3pc of the component of the angular frequency ωp is expressed by the first term and the second term in the equation (168) and the equation (169). From the first term and the second term and the equation (17), it is expressed by the following equation.
E3pc = rk · ωp · b8 [ωp] · exp {j · (π / 2 + θ8 [ωp] + θ00)}
+ Γ · rk · V · b8 [ωp] · exp {j · (θ8 [ωp] + θ01)}
+ Rk · ωp · b9 [ωp]
Exp {j. (− Π / 2 + θ9 [ωp] + θ00)}
+ Γ · rk · V · b9 [ωp] · exp {j · (θ9 [ωp] + θ01)}
... (170)

また、磁場の時間変化に起因する電極間起電力を複素ベクトルに変換した起電力と被測定流体の流速に起因する電極間起電力を複素ベクトルに変換した起電力とを合わせた全体の電極間起電力のうち、角周波数ωmの成分の起電力E3mcは、式(168)の第3項および第4項と式(169)の第3項および第4項と式(17)とから次式で表される。
E3mc=rk・ωm・b8[ωm]・exp{j・(π/2+θ8[ωm]+θ00)}
+γ・rk・V・b8[ωm]・exp{j・(θ8[ωm]+θ01)}
+rk・ωm・b9[ωm]
・exp{j・(−π/2+θ9[ωm]+θ00)}
+γ・rk・V・b9[ωm]・exp{j・(θ9[ωm]+θ01)}
・・・(171)
In addition, the inter-electrode electromotive force obtained by converting the inter-electrode electromotive force caused by the time change of the magnetic field into a complex vector and the electromotive force obtained by converting the inter-electrode electromotive force caused by the flow velocity of the fluid to be measured into the complex vector Among the electromotive forces, the electromotive force E3mc of the component of the angular frequency ωm is expressed by the following equation from the third and fourth terms of the equation (168), the third and fourth terms of the equation (169), and the equation (17). It is represented by
E3mc = rk · ωm · b8 [ωm] · exp {j · (π / 2 + θ8 [ωm] + θ00)}
+ Γ · rk · V · b8 [ωm] · exp {j · (θ8 [ωm] + θ01)}
+ Rk · ωm · b9 [ωm]
• exp {j · (−π / 2 + θ9 [ωm] + θ00)}
+ Γ · rk · V · b9 [ωm] · exp {j · (θ9 [ωm] + θ01)}
... (171)

ここで、ωp=ω0+Δω、ωm=ω0−Δωと定義し、さらに磁場B8の角周波数ω0の成分の位相遅れθ8[ω0]と磁場B9の角周波数ω0の成分の位相遅れθ9[ω0]との関係がθ9[ω0]=θ8[ω0]+Δθ9[ω0]で、かつ虚軸に対する∂A/∂t成分の角度θ00と実軸に対するv×B成分の角度θ01との関係がθ01=θ00+Δθ01である状態を第1の励磁状態とし、この第1の励磁状態における電極間起電力のうち角周波数ωpの成分の起電力E3pcをE3p0とすると、電極間起電力E3p0は次式のようになる。
E3p0=rk・exp(j・θ00))
・[(ω0+Δω)・exp(j・π/2)
・{b8[ω0+Δω]・exp(j・θ8[ω0+Δω])
−b9[ω0+Δω]・exp(j・θ9[ω0+Δω])}
+γ・V・exp(j・Δθ01)
・{b8[ω0+Δω]・exp(j・θ8[ω0+Δω])
+b9[ω0+Δω]・exp(j・θ9[ω0+Δω])}]
・・・(172)
Here, ωp = ω0 + Δω and ωm = ω0−Δω are defined, and further, the phase lag θ8 [ω0] of the component of the angular frequency ω0 of the magnetic field B8 and the phase lag θ9 [ω0] of the component of the angular frequency ω0 of the magnetic field B9. The relationship is θ9 [ω0] = θ8 [ω0] + Δθ9 [ω0], and the relationship between the angle θ00 of the ∂A / ∂t component with respect to the imaginary axis and the angle θ01 of the v × B component with respect to the real axis is θ01 = θ00 + Δθ01. If the state is the first excitation state and the electromotive force E3pc of the component of the angular frequency ωp in the interelectrode electromotive force in the first excitation state is E3p0, the interelectrode electromotive force E3p0 is expressed by the following equation.
E3p0 = rk · exp (j · θ00))
・ [(Ω0 + Δω) · exp (j · π / 2)
・ {B8 [ω0 + Δω] · exp (j · θ8 [ω0 + Δω])
-B9 [ω0 + Δω] · exp (j · θ9 [ω0 + Δω])}
+ Γ · V · exp (j · Δθ01)
・ {B8 [ω0 + Δω] · exp (j · θ8 [ω0 + Δω])
+ B9 [ω0 + Δω] · exp (j · θ9 [ω0 + Δω])}]
... (172)

また、第1の励磁状態における電極間起電力のうち角周波数ωmの成分の起電力E3mcをE3m0とすると、電極間起電力E3m0は次式のようになる。但し、式(172)、式(173)ではθ9[ω0]=θ8[ω0]+Δθ9[ω0]は適用せず、後の式で適用する。
E3m0=rk・exp(j・θ00)
・[(ω0−Δω)・exp(j・π/2)
・{b8[ω0−Δω]・exp(j・θ8[ω0−Δω])
−b9[ω0−Δω]・exp(j・θ9[ω0−Δω])}
+γ・V・exp(j・Δθ01)
・{b8[ω0−Δω]・exp(j・θ8[ω0−Δω])
+b9[ω0−Δω]・exp(j・θ9[ω0−Δω])}]
・・・(173)
Further, when the electromotive force E3mc of the component having the angular frequency ωm in the electromotive force between the electrodes in the first excitation state is E3m0, the interelectrode electromotive force E3m0 is expressed by the following equation. However, θ9 [ω0] = θ8 [ω0] + Δθ9 [ω0] is not applied in the equations (172) and (173), and is applied in the later equations.
E3m0 = rk · exp (j · θ00)
・ [(Ω0−Δω) exp (j · π / 2)
{B8 [ω0-Δω] exp (j · θ8 [ω0-Δω])
−b9 [ω0−Δω] · exp (j · θ9 [ω0−Δω])}
+ Γ · V · exp (j · Δθ01)
{B8 [ω0-Δω] exp (j · θ8 [ω0-Δω])
+ B9 [ω0−Δω] · exp (j · θ9 [ω0−Δω])}]
... (173)

また、同じくωp=ω0+Δω、ωm=ω0−Δωと定義し、磁場B9の角周波数ω0の成分の位相遅れθ9[ω0]がπ+θ9[ω0]に変化し、かつθ01=θ00+Δθ01である状態を第2の励磁状態とし、この第2の励磁状態における電極間起電力のうち角周波数ωpの成分の起電力E3pcをE3πp0とすると、電極間起電力E3πp0は次式のようになる。
E3πp0=rk・exp(j・θ00))
・[(ω0+Δω)・exp(j・π/2)
・{b8[ω0+Δω]・exp(j・θ8[ω0+Δω])
+b9[ω0+Δω]・exp(j・θ9[ω0+Δω])}
+γ・V・exp(j・Δθ01)
・{b8[ω0+Δω]・exp(j・θ8[ω0+Δω])
−b9[ω0+Δω]・exp(j・θ9[ω0+Δω])}]
・・・(174)
Similarly, ωp = ω0 + Δω and ωm = ω0−Δω are defined, the phase delay θ9 [ω0] of the component of the angular frequency ω0 of the magnetic field B9 is changed to π + θ9 [ω0], and θ01 = θ00 + Δθ01 is the second state. When the electromotive force E3pc of the component of the angular frequency ωp in the second electromotive force is E3πp0, the interelectrode electromotive force E3πp0 is expressed by the following equation.
E3πp0 = rk · exp (j · θ00))
・ [(Ω0 + Δω) · exp (j · π / 2)
・ {B8 [ω0 + Δω] · exp (j · θ8 [ω0 + Δω])
+ B9 [ω0 + Δω] · exp (j · θ9 [ω0 + Δω])}
+ Γ · V · exp (j · Δθ01)
・ {B8 [ω0 + Δω] · exp (j · θ8 [ω0 + Δω])
-B9 [ω0 + Δω] · exp (j · θ9 [ω0 + Δω])}]
... (174)

また、第2の励磁状態における電極間起電力のうち角周波数ωmの成分の起電力E3mcをE3πm0とすると、電極間起電力E3πm0は次式のようになる。但し、式(174)、式(175)ではθ9[ω0]=θ8[ω0]+Δθ9[ω0]は適用せず、後の式で適用する。
E3πm0=rk・exp(j・θ00)
・[(ω0−Δω)・exp(j・π/2)
・{b8[ω0−Δω]・exp(j・θ8[ω0−Δω])
+b9[ω0−Δω]・exp(j・θ9[ω0−Δω])}
+γ・V・exp(j・Δθ01)
・{b8[ω0−Δω]・exp(j・θ8[ω0−Δω])
−b9[ω0−Δω]・exp(j・θ9[ω0−Δω])}]
・・・(175)
Further, when the electromotive force E3mc of the component of the angular frequency ωm in the second electromotive force in the second excitation state is E3πm0, the interelectrode electromotive force E3πm0 is expressed by the following equation. However, θ9 [ω0] = θ8 [ω0] + Δθ9 [ω0] is not applied in the equations (174) and (175), and is applied in the later equations.
E3πm0 = rk · exp (j · θ00)
・ [(Ω0−Δω) exp (j · π / 2)
{B8 [ω0-Δω] exp (j · θ8 [ω0-Δω])
+ B9 [ω0−Δω] · exp (j · θ9 [ω0−Δω])}
+ Γ · V · exp (j · Δθ01)
{B8 [ω0-Δω] exp (j · θ8 [ω0-Δω])
−b9 [ω0−Δω] · exp (j · θ9 [ω0−Δω])}]
... (175)

電極間起電力E3p0とE3m0との和をE3s0とすれば、起電力和E3s0は次式で表される。
E3s0=E3p0+E3m0
=rk・exp(j・θ00)
・[ω0・exp(j・π/2)
・{b8[ω0+Δω]・exp(j・θ8[ω0+Δω])
−b9[ω0+Δω]・exp(j・θ9[ω0+Δω])
+b8[ω0−Δω]・exp(j・θ8[ω0−Δω])
−b9[ω0−Δω]・exp(j・θ9[ω0−Δω])}
+Δω・exp(j・π/2)
・{b8[ω0+Δω]・exp(j・θ8[ω0+Δω])
−b9[ω0+Δω]・exp(j・θ9[ω0+Δω])
−b8[ω0−Δω]・exp(j・θ8[ω0−Δω])
+b9[ω0−Δω]・exp(j・θ9[ω0−Δω])}
+γ・V・exp(j・Δθ01)
・{b8[ω0+Δω]・exp(j・θ8[ω0+Δω])
+b9[ω0+Δω]・exp(j・θ9[ω0+Δω])
+b8[ω0−Δω]・exp(j・θ8[ω0−Δω])
+b9[ω0−Δω]・exp(j・θ9[ω0−Δω])}]
・・・(176)
If the sum of the inter-electrode electromotive forces E3p0 and E3m0 is E3s0, the electromotive force sum E3s0 is expressed by the following equation.
E3s0 = E3p0 + E3m0
= Rk · exp (j · θ00)
・ [Ω0 ・ exp (j ・ π / 2)
・ {B8 [ω0 + Δω] · exp (j · θ8 [ω0 + Δω])
-B9 [ω0 + Δω] · exp (j · θ9 [ω0 + Δω])
+ B8 [ω0−Δω] · exp (j · θ8 [ω0−Δω])
−b9 [ω0−Δω] · exp (j · θ9 [ω0−Δω])}
+ Δω · exp (j · π / 2)
・ {B8 [ω0 + Δω] · exp (j · θ8 [ω0 + Δω])
-B9 [ω0 + Δω] · exp (j · θ9 [ω0 + Δω])
−b8 [ω0−Δω] · exp (j · θ8 [ω0−Δω])
+ B9 [ω0−Δω] · exp (j · θ9 [ω0−Δω])}
+ Γ · V · exp (j · Δθ01)
・ {B8 [ω0 + Δω] · exp (j · θ8 [ω0 + Δω])
+ B9 [ω0 + Δω] · exp (j · θ9 [ω0 + Δω])
+ B8 [ω0−Δω] · exp (j · θ8 [ω0−Δω])
+ B9 [ω0−Δω] · exp (j · θ9 [ω0−Δω])}]
... (176)

また、電極間起電力E3πp0とE3πm0との和をE3πs0とすれば、電極間起電力E3πs0は次式で表される。
E3πs0=E3πp0+E3πm0
=rk・exp(j・θ00)
・[ω0・exp(j・π/2)
・{b8[ω0+Δω]・exp(j・θ8[ω0+Δω])
+b9[ω0+Δω]・exp(j・θ9[ω0+Δω])
+b8[ω0−Δω]・exp(j・θ8[ω0−Δω])
+b9[ω0−Δω]・exp(j・θ9[ω0−Δω])}
+Δω・exp(j・π/2)
・{b8[ω0+Δω]・exp(j・θ8[ω0+Δω])
+b9[ω0+Δω]・exp(j・θ9[ω0+Δω])
−b8[ω0−Δω]・exp(j・θ8[ω0−Δω])
−b9[ω0−Δω]・exp(j・θ9[ω0−Δω])}
+γ・V・exp(j・Δθ01)
・{b8[ω0+Δω]・exp(j・θ8[ω0+Δω])
−b9[ω0+Δω]・exp(j・θ9[ω0+Δω])
+b8[ω0−Δω]・exp(j・θ8[ω0−Δω])
−b9[ω0−Δω]・exp(j・θ9[ω0−Δω])}]
・・・(177)
If the sum of the interelectrode electromotive force E3πp0 and E3πm0 is E3πs0, the interelectrode electromotive force E3πs0 is expressed by the following equation.
E3πs0 = E3πp0 + E3πm0
= Rk · exp (j · θ00)
・ [Ω0 ・ exp (j ・ π / 2)
・ {B8 [ω0 + Δω] · exp (j · θ8 [ω0 + Δω])
+ B9 [ω0 + Δω] · exp (j · θ9 [ω0 + Δω])
+ B8 [ω0−Δω] · exp (j · θ8 [ω0−Δω])
+ B9 [ω0−Δω] · exp (j · θ9 [ω0−Δω])}
+ Δω · exp (j · π / 2)
・ {B8 [ω0 + Δω] · exp (j · θ8 [ω0 + Δω])
+ B9 [ω0 + Δω] · exp (j · θ9 [ω0 + Δω])
−b8 [ω0−Δω] · exp (j · θ8 [ω0−Δω])
−b9 [ω0−Δω] · exp (j · θ9 [ω0−Δω])}
+ Γ · V · exp (j · Δθ01)
・ {B8 [ω0 + Δω] · exp (j · θ8 [ω0 + Δω])
-B9 [ω0 + Δω] · exp (j · θ9 [ω0 + Δω])
+ B8 [ω0−Δω] · exp (j · θ8 [ω0−Δω])
−b9 [ω0−Δω] · exp (j · θ9 [ω0−Δω])}]
... (177)

ここで、通常ω0>Δωが成り立つことから式(178)〜式(181)の条件式が成り立つ。
2・b8[ω0]・exp(j・θ8[ω0])
≒b8[ω0+Δω]・exp(j・θ8[ω0+Δω])
+b8[ω0−Δω]・exp(j・θ8[ω0−Δω]) ・・・(178)
2・b9[ω0]・exp(j・θ9[ω0])
≒b9[ω0+Δω]・exp(j・θ9[ω0+Δω])
+b9[ω0−Δω]・exp(j・θ9[ω0−Δω]) ・・・(179)
Here, since ω0> Δω is normally satisfied, the conditional expressions (178) to (181) are satisfied.
2 ・ b8 [ω0] ・ exp (j ・ θ8 [ω0])
≒ b8 [ω0 + Δω] · exp (j · θ8 [ω0 + Δω])
+ B8 [ω0−Δω] · exp (j · θ8 [ω0−Δω]) (178)
2 · b9 [ω0] · exp (j · θ9 [ω0])
≒ b9 [ω0 + Δω] · exp (j · θ9 [ω0 + Δω])
+ B9 [ω0−Δω] · exp (j · θ9 [ω0−Δω]) (179)

|ω0・exp(j・π/2)・{2・b8[ω0]・exp(j・θ8[ω0])}|
≫|±Δω・exp(j・π/2)
・{b8[ω0+Δω]・exp(j・θ8[ω0+Δω])
−b8[ω0−Δω]・exp(j・θ8[ω0−Δω])}| ・・・(180)
|ω0・exp(j・π/2)・{2・b9[ω0]・exp(j・θ9[ω0])}|
≫|±Δω・exp(j・π/2)
・{b9[ω0+Δω]・exp(j・θ9[ω0+Δω])
−b9[ω0−Δω]・exp(j・θ9[ω0−Δω])}| ・・・(181)
| Ω0 · exp (j · π / 2) · {2 · b8 [ω0] · exp (j · θ8 [ω0])} |
>> | ± Δω · exp (j · π / 2)
・ {B8 [ω0 + Δω] · exp (j · θ8 [ω0 + Δω])
−b8 [ω0−Δω] · exp (j · θ8 [ω0−Δω])} | (180)
| Ω0 · exp (j · π / 2) · {2 · b9 [ω0] · exp (j · θ9 [ω0])} |
>> | ± Δω · exp (j · π / 2)
・ {B9 [ω0 + Δω] · exp (j · θ9 [ω0 + Δω])
−b9 [ω0−Δω] · exp (j · θ9 [ω0−Δω])} | (181)

式(178)〜式(181)の条件を式(176)に適用して起電力和E3s0を近似したものをE3s0aとおくと、起電力和E3s0aは次式で表される。
E3s0a≒E3s0 ・・・(182)
E3s0a=rk・exp(j・θ00)
・[ω0・exp(j・π/2)
・{2・b8[ω0]・exp(j・θ8[ω0])
−2・b9[ω0]・exp(j・θ9[ω0])}
+γ・V・exp(j・Δθ01)
・{2・b8[ω0]・exp(j・θ8[ω0])
+2・b9[ω0]・exp(j・θ9[ω0])} ・・・(183)
When E3s0a is an approximation of the electromotive force sum E3s0 by applying the conditions of the equations (178) to (181) to the equation (176), the electromotive force sum E3s0a is expressed by the following equation.
E3s0a≈E3s0 (182)
E3s0a = rk · exp (j · θ00)
・ [Ω0 ・ exp (j ・ π / 2)
・ {2 ・ b8 [ω0] ・ exp (j ・ θ8 [ω0])
-2 · b9 [ω0] · exp (j · θ9 [ω0])}
+ Γ · V · exp (j · Δθ01)
・ {2 ・ b8 [ω0] ・ exp (j ・ θ8 [ω0])
+ 2 · b9 [ω0] · exp (j · θ9 [ω0])} (183)

同様に式(178)〜式(181)の条件を式(177)に適用して起電力和E3πs0を近似したものをE3πs0aとおくと、起電力和E3πs0aは次式で表される。
E3πs0a≒E3πs0 ・・・(184)
E3πs0a=rk・exp(j・θ00)
・[ω0・exp(j・π/2)
・{2・b8[ω0]・exp(j・θ8[ω0])
+2・b9[ω0]・exp(j・θ9[ω0])}
+γ・V・exp(j・Δθ01)
・{2・b8[ω0]・exp(j・θ8[ω0])
−2・b9[ω0]・exp(j・θ9[ω0])}]
・・・(185)
Similarly, when E3πs0a is obtained by applying the conditions of equations (178) to (181) to equation (177) and approximating the electromotive force sum E3πs0, the electromotive force sum E3πs0a is expressed by the following equation.
E3πs0a≈E3πs0 (184)
E3πs0a = rk · exp (j · θ00)
・ [Ω0 ・ exp (j ・ π / 2)
・ {2 ・ b8 [ω0] ・ exp (j ・ θ8 [ω0])
+ 2 · b9 [ω0] · exp (j · θ9 [ω0])}
+ Γ · V · exp (j · Δθ01)
・ {2 ・ b8 [ω0] ・ exp (j ・ θ8 [ω0])
-2 · b9 [ω0] · exp (j · θ9 [ω0])}]
... (185)

θ9[ω0]=θ8[ω0]+Δθ9[ω0]を起電力和E3s0aに代入したものをE3s0bとすれば、起電力和E3s0bは次式で表される。
E3s0b=2・rk・exp{j・(θ8[ω0]+θ00)}
・[ω0・exp(j・π/2)
・{b8[ω0]−b9[ω0]・exp(j・Δθ9[ω0])}
+γ・V・exp(j・Δθ01)
・{b8[ω0]+b9[ω0]・exp(j・Δθ9[ω0])}]
・・・(186)
If E3s0b is obtained by substituting θ9 [ω0] = θ8 [ω0] + Δθ9 [ω0] into the electromotive force sum E3s0a, the electromotive force sum E3s0b is expressed by the following equation.
E3s0b = 2 · rk · exp {j · (θ8 [ω0] + θ00)}
・ [Ω0 ・ exp (j ・ π / 2)
{B8 [ω0] −b9 [ω0] · exp (j · Δθ9 [ω0])}
+ Γ · V · exp (j · Δθ01)
{B8 [ω0] + b9 [ω0] · exp (j · Δθ9 [ω0])}]
... (186)

また、θ9[ω0]=θ8[ω0]+Δθ9[ω0]を起電力和E3πs0aに代入したものをE3πs0bとすれば、起電力和E3πs0bは次式で表される。
E3πs0b=2・rk・exp{j・(θ8[ω0]+θ00)}
・[ω0・exp(j・π/2)
・{b8[ω0]+b9[ω0]・exp(j・Δθ9[ω0])}
+γ・V・exp(j・Δθ01)
・{b8[ω0]−b9[ω0]・exp(j・Δθ9[ω0])}]
・・・(187)
Further, if E3πs0b is obtained by substituting θ9 [ω0] = θ8 [ω0] + Δθ9 [ω0] into the electromotive force sum E3πs0a, the electromotive force sum E3πs0b is expressed by the following equation.
E3πs0b = 2 · rk · exp {j · (θ8 [ω0] + θ00)}
・ [Ω0 ・ exp (j ・ π / 2)
{B8 [ω0] + b9 [ω0] · exp (j · Δθ9 [ω0])}
+ Γ · V · exp (j · Δθ01)
{B8 [ω0] −b9 [ω0] · exp (j · Δθ9 [ω0])}]
... (187)

ここで、初期状態(校正時の状態)の磁場B8、B9おいて、b8[ω0]=b9[ω0]、Δθ9[ω0]=0と設定しておくと、その後のずれを考慮してもb8[ω0]≒b9[ω0]、Δθ9[ω0]≒0であり、次の条件式が成り立つ。
|b8[ω0]+b9[ω0]・exp(j・Δθ9[ω0])|
≫|b8[ω0]−b9[ω0]・exp(j・Δθ9[ω0])| ・・・(188)
Here, if b8 [ω0] = b9 [ω0] and Δθ9 [ω0] = 0 are set in the magnetic fields B8 and B9 in the initial state (the state at the time of calibration), even if the subsequent deviation is taken into consideration. b8 [ω0] ≈b9 [ω0] and Δθ9 [ω0] ≈0, and the following conditional expression holds.
| B8 [ω0] + b9 [ω0] · exp (j · Δθ9 [ω0]) |
>> | b8 [ω0] −b9 [ω0] · exp (j · Δθ9 [ω0]) | (188)

また、通常ω0>γ・Vが成り立つことから、式(188)の条件を考慮すると、式(187)において次式の条件が成り立つ。
|ω0・exp(j・π/2)
・{b8[ω0]+b9[ω0]・exp(j・Δθ9[ω0])}|
≫|γ・V・exp(j・Δθ01)
・b8[ω0] −b9[ω0]・exp(j・Δθ9[ω0])| ・・・(189)
Since ω0> γ · V is normally satisfied, the following condition is satisfied in Expression (187) in consideration of the condition of Expression (188).
| Ω0 · exp (j · π / 2)
{B8 [ω0] + b9 [ω0] · exp (j · Δθ9 [ω0])} |
≫ | γ ・ V ・ exp (j ・ Δθ01)
B8 [ω0] −b9 [ω0] · exp (j · Δθ9 [ω0]) | (189)

式(189)の条件を用いて、式(187)の起電力和E3πs0bを近似した起電力和EdA31は次式で表される。この起電力和EdA31は基本原理における第1の∂A/∂t成分に相当する。
EdA31≒E3πs0b≒E3πs0 ・・・(190)
EdA31=2・rk・exp{j・(θ8[ω0]+θ00)}
・ω0・exp(j・π/2)
・{b8[ω0]+b9[ω0]・exp(j・Δθ9[ω0])}
・・・(191)
An electromotive force sum EdA31 obtained by approximating the electromotive force sum E3πs0b of the equation (187) using the condition of the equation (189) is expressed by the following equation. This electromotive force sum EdA31 corresponds to the first ∂A / ∂t component in the basic principle.
EdA31≈E3πs0b≈E3πs0 (190)
EdA31 = 2 · rk · exp {j · (θ8 [ω0] + θ00)}
・ Ω0 ・ exp (j ・ π / 2)
{B8 [ω0] + b9 [ω0] · exp (j · Δθ9 [ω0])}
... (191)

起電力和EdA31は、流速の大きさVに関係しないので、∂A/∂tによって発生する成分のみとなる。この起電力和EdA31を用いて起電力和E3s0b(合成ベクトルVas0+Vbs0)中のv×B成分の流速の大きさVにかかる係数(スパン)を正規化する。起電力和E3s0bを起電力和EdA31で正規化し、ω0倍した結果をEn30とすれば、正規化起電力和En30は次式で表される。
En30=(E3s0b/EdA31)・ω0
=2・rk・exp{j・(θ8[ω0]+θ00)}
・[ ω0・exp(j・π/2)
・{b8[ω0]−b9[ω0]・exp(j・Δθ9[ω0])}
+γ・V・exp(j・Δθ01)
・{b8[ω0]+b9[ω0]・exp(j・Δθ9[ω0])}]
/[2・rk・exp{j・(θ8[ω0]+θ00)}
・ω0・exp(j・π/2)
・{b8[ω0]+b9[ω0]・exp(j・Δθ9[ω0])}]・ω0
=ω0・{b8[ω0]−b9[ω0]・exp(j・Δθ9[ω0])}
/{b8[ω0]+b9[ω0]・exp(j・Δθ9[ω0])}
+[γ・exp{j・(−π/2+Δθ01)}]・V ・・・(192)
Since the electromotive force sum EdA31 is not related to the magnitude V of the flow velocity, it becomes only the component generated by ∂A / ∂t. Using this electromotive force sum EdA31, the coefficient (span) applied to the magnitude V of the flow velocity of the v × B component in the electromotive force sum E3s0b (synthesis vector Vas0 + Vbs0) is normalized. If the electromotive force sum E3s0b is normalized by the electromotive force sum EdA31 and multiplied by ω0 is En30, the normalized electromotive force sum En30 is expressed by the following equation.
En30 = (E3s0b / EdA31) · ω0
= 2 · rk · exp {j · (θ8 [ω0] + θ00)}
・ [Ω0 ・ exp (j ・ π / 2)
{B8 [ω0] −b9 [ω0] · exp (j · Δθ9 [ω0])}
+ Γ · V · exp (j · Δθ01)
{B8 [ω0] + b9 [ω0] · exp (j · Δθ9 [ω0])}]
/ [2 · rk · exp {j · (θ8 [ω0] + θ00)}
・ Ω0 ・ exp (j ・ π / 2)
{B8 [ω0] + b9 [ω0] · exp (j · Δθ9 [ω0])}] · ω0
= Ω0 · {b8 [ω0] −b9 [ω0] · exp (j · Δθ9 [ω0])}
/ {B8 [ω0] + b9 [ω0] · exp (j · Δθ9 [ω0])}
+ [Γ · exp {j · (−π / 2 + Δθ01)}] · V (192)

式(52)を用いると、式(192)の右辺第1項の角周波数ω0にかかる係数{b8[ω0]−b9[ω0]・exp(j・Δθ9[ω0])}/{b8[ω0]+b9[ω0]・exp(j・Δθ9[ω0])}を、角周波数ω0に関係しない値{b8−b9・exp(j・Δθ9)}/{b8+b9・exp(j・Δθ9)}で表すことができる。したがって、式(192)を次式のように置き換えることができる。
En30=ω0・{b8−b9・exp(j・Δθ9)}
/{b8+b9・exp(j・Δθ9)}
+[γ・exp{j・(−π/2+Δθ01)}]・V ・・・(193)
Using the equation (52), the coefficient {b8 [ω0] −b9 [ω0] · exp (j · Δθ9 [ω0])} / {b8 [ω0] applied to the angular frequency ω0 of the first term on the right side of the equation (192) ] + B9 [ω0] · exp (j · Δθ9 [ω0])} is represented by a value {b8−b9 · exp (j · Δθ9)} / {b8 + b9 · exp (j · Δθ9)} not related to the angular frequency ω0. be able to. Therefore, equation (192) can be replaced by the following equation.
En30 = ω0 · {b8−b9 · exp (j · Δθ9)}
/ {B8 + b9 · exp (j · Δθ9)}
+ [Γ · exp {j · (−π / 2 + Δθ01)}] · V (193)

式(193)の右辺第2項が、v×Bにより発生する成分を正規化した項となる。なお、起電力和E3s0bを起電力和EdA31で正規化した結果をω0倍した理由は、流速の大きさVに係る右辺第2項から励磁角周波数ω0を消去するためである。式(193)によれば、流速の大きさVにかかる複素係数は、γの大きさ、−π/2+Δθ01の実軸からの角度をもつ。係数γおよび角度Δθ01は校正等により予め求めることができる定数であり、式(193)の右辺第2項は被測定流体の流速が変化しないかぎり一定となる。したがって、∂A/∂tの成分をもちいてv×B成分の正規化を行うことにより、磁場のシフトや位相変化による誤差を自動的に補正するスパン補正を実現することができる。   The second term on the right side of Equation (193) is a term obtained by normalizing the component generated by v × B. The reason why the result obtained by normalizing the electromotive force sum E3s0b with the electromotive force sum EdA31 is multiplied by ω0 is to eliminate the excitation angular frequency ω0 from the second term on the right side of the magnitude V of the flow velocity. According to the equation (193), the complex coefficient related to the magnitude V of the flow velocity has a magnitude of γ and an angle from the real axis of −π / 2 + Δθ01. The coefficient γ and the angle Δθ01 are constants that can be obtained in advance by calibration or the like, and the second term on the right side of the equation (193) is constant as long as the flow velocity of the fluid to be measured does not change. Therefore, by performing the normalization of the v × B component using the component ∂A / ∂t, it is possible to realize span correction that automatically corrects errors due to magnetic field shifts and phase changes.

次に、0点の変動要因である、式(193)の右辺第1項を除去する方法について説明する。式(164)、式(165)において励磁角周波数ωp,ωmの代わりに、ωc,ωdを用いると磁場B8、B9は次式で表される。
B8=b8[ωc]・cos(θ8[ωc])・cos(ωc・t)
+b8[ωc]・sin(θ8[ωc])・sin(ωc・t)
+b8[ωd]・cos(θ8[ωd])・cos(ωd・t)
+b8[ωd]・sin(θ8[ωd])・sin(ωd・t) ・・・(194)
B9=b9[ωc]・cos(θ9[ωc])・cos(ωc・t)
+b9[ωc]・sin(θ9[ωc])・sin(ωc・t)
+b9[ωd]・cos(θ9[ωd])・cos(ωd・t)
+b9[ωd]・sin(θ9[ωd])・sin(ωd・t) ・・・(195)
Next, a method for removing the first term on the right side of the equation (193), which is a variation factor of 0 point, will be described. When ωc and ωd are used instead of the excitation angular frequencies ωp and ωm in the equations (164) and (165), the magnetic fields B8 and B9 are expressed by the following equations.
B8 = b8 [ωc] · cos (θ8 [ωc]) · cos (ωc · t)
+ B8 [ωc] · sin (θ8 [ωc]) · sin (ωc · t)
+ B8 [ωd] · cos (θ8 [ωd]) · cos (ωd · t)
+ B8 [ωd] · sin (θ8 [ωd]) · sin (ωd · t) (194)
B9 = b9 [ωc] · cos (θ9 [ωc]) · cos (ωc · t)
+ B9 [ωc] · sin (θ9 [ωc]) · sin (ωc · t)
+ B9 [ωd] · cos (θ9 [ωd]) · cos (ωd · t)
+ B9 [ωd] · sin (θ9 [ωd]) · sin (ωd · t) (195)

ここで、角周波数ωc,ωdは、ωc=ω2+Δω、ωd=ω2−Δωの関係になるように設定しておく。角周波数ω0での正規化と同様に角周波数ω2において正規化を行う。角周波数ω2においてスパン補正の対象となる起電力和E3s2は、式(172)において角周波数ω0をω2で置き換えた電極間起電力E3p2と、式(173)において角周波数ω0をω2で置き換えた電極間起電力E3m2との和E3p2+E3m2で表される。また、第2の∂A/∂t成分の基となる起電力和E3πs2は、式(174)において角周波数ω0をω2で置き換えた電極間起電力E3πp2と、式(175)において角周波数ω0をω2で置き換えた電極間起電力E3πm2との和E3πp2+E3πm2で表される。さらに、第2の∂A/∂t成分となる起電力和EdA32は、式(191)において角周波数ω0をω2で置き換えたものとなる。   Here, the angular frequencies ωc and ωd are set to have a relationship of ωc = ω2 + Δω and ωd = ω2−Δω. Normalization is performed at the angular frequency ω2 as in the normalization at the angular frequency ω0. The electromotive force sum E3s2 to be subjected to span correction at the angular frequency ω2 is the inter-electrode electromotive force E3p2 in which the angular frequency ω0 is replaced with ω2 in the equation (172), and the electrode in which the angular frequency ω0 is replaced with ω2 in the equation (173). It is represented by the sum E3p2 + E3m2 with the inter-electromotive force E3m2. Further, the electromotive force sum E3πs2 which is the basis of the second ∂A / ∂t component is obtained by calculating the interelectrode electromotive force E3πp2 obtained by replacing the angular frequency ω0 with ω2 in the equation (174) and the angular frequency ω0 in the equation (175). It is represented by the sum E3πp2 + E3πm2 with the interelectrode electromotive force E3πm2 replaced by ω2. Furthermore, the electromotive force sum EdA32 that is the second ∂A / ∂t component is obtained by replacing the angular frequency ω0 with ω2 in the equation (191).

起電力和E3s2を起電力和EdA32で正規化し、ω2倍した結果をEn32とすれば、正規化起電力和En32は式(193)より次式で表される。
En32=ω2・{b8−b9・exp(j・Δθ9)}
/{b8+b9・exp(j・Δθ9)}
+[γ・exp{j・(−π/2+Δθ01)}]・V ・・・(196)
If the result obtained by normalizing the electromotive force sum E3s2 by the electromotive force sum EdA32 and multiplying it by ω2 is denoted by En32, the normalized electromotive force sum En32 is expressed by the following equation from the equation (193).
En32 = ω2 · {b8−b9 · exp (j · Δθ9)}
/ {B8 + b9 · exp (j · Δθ9)}
+ [Γ · exp {j · (−π / 2 + Δθ01)}] · V (196)

正規化起電力和En30とEn32との差をとり、求めた差分をω0/(ω0−ω2)倍した結果をEdA33とすれば、差分EdA33は次式で表される。この起電力和の差分EdA33は基本原理における第3の∂A/∂t成分に相当する。
EdA33=(En30−En32)・ω0/(ω0−ω2)
=[{b8−b9・exp(j・Δθ9)}
/{b8+b9・exp(j・Δθ9)}
・ω0+γ・exp{j・(−π/2+Δθ01)}・V
−{b8−b9・exp(j・Δθ9)}
/{b8+b9・exp(j・Δθ9)}
・ω2−γ・exp{j・(−π/2+Δθ01)}・V]
・ω0/(ω0−ω2)
={b8−b9・exp(j・Δθ9)}
/{b8+b9・exp(j・Δθ9)}・ω0 ・・・(197)
Taking the difference between the normalized electromotive force sums En30 and En32 and multiplying the obtained difference by ω0 / (ω0−ω2) as EdA33, the difference EdA33 is expressed by the following equation. This electromotive force sum difference EdA33 corresponds to the third ∂A / ∂t component in the basic principle.
EdA33 = (En30−En32) · ω0 / (ω0−ω2)
= [{B8−b9 · exp (j · Δθ9)}
/ {B8 + b9 · exp (j · Δθ9)}
.Omega.0 + .gamma.exp {j. (-. Pi./2+.DELTA..theta.01)}.V
− {B8−b9 · exp (j · Δθ9)}
/ {B8 + b9 · exp (j · Δθ9)}
.Omega.2-.gamma.exp {j. (-. Pi./2+.DELTA..theta.01)}.V]
・ Ω0 / (ω0−ω2)
= {B8-b9 · exp (j · Δθ9)}
/ {B8 + b9 · exp (j · Δθ9)} · ω0 (197)

差分EdA33は正規化された∂A/∂t成分を表し、式(193)の右辺第1項と等しくなるので、この差分EdA33を使用すれば、正規化されたv×B成分を正規化起電力和En30から取り出すことができる。式(193)の正規化起電力和En30から式(197)の差分EdA33を引いたときに得られるv×B成分をEvBn3とすると、v×B成分EvBn3は次式で表される。
EvBn3=En30−EdA33
={b8−b9・exp(j・Δθ9)}
/{b8+b9・exp(j・Δθ9)}・ω0
+[γ・exp{j・(−π/2+Δθ01)}]・V
−{b8−b9・exp(j・Δθ9)}
/{b8+b9・exp(j・Δθ9)}・ω0
=[γ・exp{j・(−π/2+Δθ01)}]・V ・・・(198)
The difference EdA33 represents the normalized ∂A / ∂t component and is equal to the first term on the right side of the equation (193). Therefore, if this difference EdA33 is used, the normalized v × B component is normalized. It can be taken out from the power sum En30. When the v × B component obtained by subtracting the difference EdA33 of the equation (197) from the normalized electromotive force sum En30 of the equation (193) is EvBn3, the v × B component EvBn3 is expressed by the following equation.
EvBn3 = En30-EdA33
= {B8-b9 · exp (j · Δθ9)}
/ {B8 + b9 · exp (j · Δθ9)} · ω0
+ [Γ · exp {j · (−π / 2 + Δθ01)}] · V
− {B8−b9 · exp (j · Δθ9)}
/ {B8 + b9 · exp (j · Δθ9)} · ω0
= [Γ · exp {j · (−π / 2 + Δθ01)}] · V (198)

v×B成分EvBn3は角周波数ωに関係しない。流速の大きさVが0のときv×B成分EvBn3も0となることから分かるように、v×B成分EvBn3より、スパンが補正され、かつ0点が補正された出力を得ることができる。式(198)より、流速の大きさVは次式のように表される。
V=|EvBn3/[γ・exp{j・(−π/2+Δθ01)}]|
=|EvBn3|/γ ・・・(199)
The v × B component EvBn3 is not related to the angular frequency ω. As can be seen from the fact that the v × B component EvBn3 becomes 0 when the magnitude V of the flow velocity is 0, an output in which the span is corrected and the zero point is corrected can be obtained from the v × B component EvBn3. From the equation (198), the magnitude V of the flow velocity is expressed as the following equation.
V = | EvBn3 / [γ · exp {j · (−π / 2 + Δθ01)}] |
= | EvBn3 | / γ (199)

なお、基本原理で用いた定数および変数と、本実施の形態の定数および変数との対応関係は以下の表3のとおりである。本実施の形態は、表3から明らかなように、前述の基本原理を具体的に実現する1つの例である。   Table 3 below shows the correspondence between the constants and variables used in the basic principle and the constants and variables of the present embodiment. As is apparent from Table 3, this embodiment is one example that specifically realizes the basic principle described above.

Figure 2006058175
Figure 2006058175

次に、本実施の形態の電磁流量計の具体的な構成とその動作について説明する。本実施の形態の電磁流量計の構成は第1の実施の形態と同様であるので、図16の符号を用いて説明する。本実施の形態の電磁流量計は、測定管1と、電極2a,2bと、第1、第2の励磁コイル3a,3bと、電源部4と、信号変換部5と、流量出力部6とを有する。   Next, a specific configuration and operation of the electromagnetic flow meter of the present embodiment will be described. Since the configuration of the electromagnetic flowmeter of the present embodiment is the same as that of the first embodiment, description will be made using the reference numerals in FIG. The electromagnetic flowmeter of the present embodiment includes a measuring tube 1, electrodes 2a and 2b, first and second exciting coils 3a and 3b, a power supply unit 4, a signal conversion unit 5, and a flow rate output unit 6. Have

信号変換部5は、第1の励磁状態〜第4の励磁状態の各々において電極2a,2bで検出される合成起電力の振幅と位相を求め、これらの振幅と位相に基づいて第2の励磁状態の合成起電力の角周波数ω0+Δωの成分と角周波数ω0−Δωの成分との起電力和を第1の∂A/∂t成分として抽出すると共に、第4の励磁状態の合成起電力の角周波数ω2+Δωの成分と角周波数ω2−Δωの成分との起電力和を第2の∂A/∂t成分として抽出し、第1の励磁状態の合成起電力の角周波数ω0+Δωの成分と角周波数ω0−Δωの成分との起電力和を第1の補正対象起電力として、第1の∂A/∂t成分に基づいて第1の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去すると共に、第3の励磁状態の合成起電力の角周波数ω2+Δωの成分と角周波数ω2−Δωの成分との起電力和を第2の補正対象起電力として、第2の∂A/∂t成分に基づいて第2の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去するスパン補正部51と、スパン補正された第1の補正対象起電力とスパン補正された第2の補正対象起電力との差を第3の∂A/∂t成分として抽出し、このスパン補正された2つの補正対象起電力のうちいずれか1つの中から第3の∂A/∂t成分を取り除くことによりv×B成分を抽出する0点補正部52とから構成される。   The signal conversion unit 5 obtains the amplitude and phase of the combined electromotive force detected by the electrodes 2a and 2b in each of the first to fourth excitation states, and performs the second excitation based on these amplitudes and phases. The sum of electromotive forces of the component of the angular frequency ω0 + Δω and the component of the angular frequency ω0-Δω of the combined electromotive force in the state is extracted as the first ∂A / ∂t component, and the angle of the combined electromotive force in the fourth excitation state The sum of electromotive forces of the component of frequency ω2 + Δω and the component of angular frequency ω2-Δω is extracted as the second ∂A / ∂t component, and the component of angular frequency ω0 + Δω and the angular frequency ω0 of the composite electromotive force in the first excitation state are extracted. The sum of electromotive forces with the component of -Δω is used as the first correction target electromotive force, and the span included in the v × B component in the first correction target electromotive force based on the first ∂A / ∂t component While removing the fluctuation factor, the angular frequency ω2 + Δω of the composite electromotive force in the third excitation state The v × B component in the second correction target electromotive force based on the second ∂A / ∂t component with the electromotive force sum of the component and the component of the angular frequency ω2−Δω as the second correction target electromotive force The span correction unit 51 that removes the variation factor of the span included in the first correction target electromotive force that has been subjected to the span correction and the second correction target electromotive force that has been subjected to the span correction is calculated as a third ∂A / ∂. A zero-point correction unit 52 that extracts the v × B component by extracting the third ∂A / ∂t component from either one of the two correction target electromotive forces that have been subjected to span correction and extracted as the t component. It consists of.

本実施の形態の電源部4は、角周波数(ω0+Δω)の正弦波成分と角周波数(ω0−Δω)の正弦波成分とを含む第1の励磁電流を第1の励磁コイル3aに供給すると同時に、第1の励磁電流との位相差がΔθ9で、角周波数(ω0+Δω)の正弦波成分と角周波数(ω0−Δω)の正弦波成分とを含む第2の励磁電流を第2の励磁コイル3bに供給する第1の励磁状態をT1秒継続し、この第1の励磁状態に対して第1の励磁電流と第2の励磁電流との位相差をΔθ9+πに変更した第2の励磁状態をT2秒継続し、角周波数(ω2+Δω)の正弦波成分と角周波数(ω2−Δω)の正弦波成分とを含む第3の励磁電流を第1の励磁コイル3aに供給すると同時に、第3の励磁電流との位相差がΔθ9で、角周波数(ω2+Δω)の正弦波成分と角周波数(ω2−Δω)の正弦波成分とを含む第4の励磁電流を第2の励磁コイル3bに供給する第3の励磁状態をT3秒継続し、この第3の励磁状態に対して第3の励磁電流と第4の励磁電流との位相差をΔθ9+πに変更した第4の励磁状態をT4秒継続することをT秒周期で繰り返す。すなわち、T=T1+T2+T3+T4である。   The power supply unit 4 of the present embodiment simultaneously supplies the first excitation current including the sine wave component of the angular frequency (ω0 + Δω) and the sine wave component of the angular frequency (ω0−Δω) to the first excitation coil 3a. The second excitation current having a phase difference of Δθ9 from the first excitation current and including a sine wave component of the angular frequency (ω0 + Δω) and a sine wave component of the angular frequency (ω0−Δω) is supplied to the second excitation coil 3b. The first excitation state to be supplied to is continued for T1 seconds, and the second excitation state in which the phase difference between the first excitation current and the second excitation current is changed to Δθ9 + π with respect to the first excitation state is T2. The second exciting current is supplied to the first exciting coil 3a at the same time as the third exciting current including the sine wave component of the angular frequency (ω2 + Δω) and the sine wave component of the angular frequency (ω2−Δω). Is the phase difference Δθ9, the sine wave component of the angular frequency (ω2 + Δω) and the angular frequency (ω The third excitation state in which the fourth excitation current including the sine wave component of 2-Δω) is supplied to the second excitation coil 3b is continued for T3 seconds, and the third excitation state is applied to the third excitation state. The fourth excitation state in which the phase difference between the current and the fourth excitation current is changed to Δθ9 + π is repeated for T4 seconds at a cycle of T seconds. That is, T = T1 + T2 + T3 + T4.

図20は本実施の形態の信号変換部5と流量出力部6の動作を示すフローチャートである。まず、信号変換部5のスパン補正部51は、第1の励磁状態において、電極2aと2b間の起電力のうち角周波数(ω0+Δω)の成分と角周波数(ω0−Δω)の成分との起電力和E3s0の振幅r3s0を求めると共に、実軸と起電力和E3s0との位相差φ3s0を図示しない位相検波器により求める(図20ステップ301)。続いて、スパン補正部51は、第2の励磁状態において、電極2aと2b間の起電力のうち角周波数(ω0+Δω)の成分と角周波数(ω0−Δω)の成分との起電力和E3πs0の振幅r3πs0を求めると共に、実軸と起電力和E3πs0との位相差φ3πs0を位相検波器により求める(ステップ302)。   FIG. 20 is a flowchart showing the operations of the signal conversion unit 5 and the flow rate output unit 6 of the present embodiment. First, the span correction unit 51 of the signal conversion unit 5 generates an angular frequency (ω0 + Δω) component and an angular frequency (ω0−Δω) component of the electromotive force between the electrodes 2a and 2b in the first excitation state. The amplitude r3s0 of the power sum E3s0 is obtained, and the phase difference φ3s0 between the real axis and the electromotive force sum E3s0 is obtained by a phase detector (not shown) (step 301 in FIG. 20). Subsequently, in the second excitation state, the span correction unit 51 has an electromotive force sum E3πs0 of the angular frequency (ω0 + Δω) component and the angular frequency (ω0−Δω) component of the electromotive force between the electrodes 2a and 2b. The amplitude r3πs0 is obtained, and the phase difference φ3πs0 between the real axis and the electromotive force sum E3πs0 is obtained by the phase detector (step 302).

また、スパン補正部51は、第3の励磁状態において、電極2aと2b間の起電力のうち角周波数(ω2+Δω)の成分と角周波数(ω2−Δω)の成分との起電力和E3s2の振幅r3s2を求めると共に、実軸と起電力和E3s2との位相差φ3s2を位相検波器により求める(ステップ303)。さらに、スパン補正部51は、第4の励磁状態において、電極2aと2b間の起電力のうち角周波数(ω2+Δω)の成分と角周波数(ω2−Δω)の成分との起電力和E3πs2の振幅r3πs2を求めると共に、実軸と起電力和E3πs2との位相差φ3πs2を位相検波器により求める(ステップ304)。起電力和E3s0,E3πs0,E3s2,E3πs2は、バンドパスフィルタやコムフィルタによって周波数分離することができる。   Further, in the third excitation state, the span correction unit 51 has an amplitude of the electromotive force sum E3s2 of the angular frequency (ω2 + Δω) component and the angular frequency (ω2-Δω) component of the electromotive force between the electrodes 2a and 2b. In addition to obtaining r3s2, the phase difference φ3s2 between the real axis and the electromotive force sum E3s2 is obtained by the phase detector (step 303). Furthermore, in the fourth excitation state, the span correction unit 51 has an amplitude of an electromotive force sum E3πs2 of the angular frequency (ω2 + Δω) component and the angular frequency (ω2-Δω) component of the electromotive force between the electrodes 2a and 2b. While obtaining r3πs2, the phase difference φ3πs2 between the real axis and the electromotive force sum E3πs2 is obtained by the phase detector (step 304). The electromotive force sums E3s0, E3πs0, E3s2, and E3πs2 can be frequency-separated by a bandpass filter or a comb filter.

次に、スパン補正部51は、起電力和E3πs0を近似した起電力和EdA31の大きさと角度を求める(ステップ305)。このステップ305の処理は、第1の∂A/∂t成分を求めることに対応する処理であり、式(191)の算出に相当する処理である。スパン補正部51は、起電力和EdA31の大きさ|EdA31|を次式のように算出する。
|EdA31|=r3πs0 ・・・(200)
そして、スパン補正部51は、起電力和EdA31の角度∠EdA31を次式のように算出する。
∠EdA31=φ3πs0 ・・・(201)
これで、ステップ305の処理が終了する。
Next, the span correction unit 51 obtains the magnitude and angle of the electromotive force sum EdA31 that approximates the electromotive force sum E3πs0 (step 305). The process of step 305 is a process corresponding to obtaining the first ∂A / ∂t component, and is a process corresponding to the calculation of equation (191). The span correction unit 51 calculates the magnitude | EdA31 | of the electromotive force sum EdA31 as follows.
| EdA31 | = r3πs0 (200)
Then, the span correction unit 51 calculates the angle ∠EdA31 of the electromotive force sum EdA31 as the following equation.
∠EdA31 = φ3πs0 (201)
This completes the process of step 305.

続いて、スパン補正部51は、起電力和E3s0を起電力和EdA31で正規化した正規化起電力和En30の大きさと角度を求める(ステップ306)。このステップ306の処理は、式(193)の算出に相当する処理である。スパン補正部51は、正規化起電力和En30の大きさ|En30|を次式のように算出する。
|En30|=(r3s0/|EdA31|)・ω0 ・・・(202)
Subsequently, the span correction unit 51 obtains the magnitude and angle of the normalized electromotive force sum En30 obtained by normalizing the electromotive force sum E3s0 with the electromotive force sum EdA31 (step 306). The process of step 306 is a process corresponding to the calculation of equation (193). The span correction unit 51 calculates the magnitude | En30 | of the normalized electromotive force sum En30 as the following equation.
| En30 | = (r3s0 / | EdA31 |) · ω0 (202)

そして、スパン補正部51は、正規化起電力和En30の角度∠En30を次式のように算出する。
∠En30=φ3s0−∠EdA31 ・・・(203)
さらに、スパン補正部51は、正規化起電力和En30の実軸成分En30xと虚軸成分En30yを次式のように算出する。
En30x=|En30|・cos(∠En30) ・・・(204)
En30y=|En30|・sin(∠En30) ・・・(205)
これで、ステップ306の処理が終了する。
Then, the span correction unit 51 calculates the angle ∠En30 of the normalized electromotive force sum En30 as the following expression.
∠En30 = φ3s0−∠EdA31 (203)
Further, the span correction unit 51 calculates the real axis component En30x and the imaginary axis component En30y of the normalized electromotive force sum En30 as in the following equation.
En30x = | En30 | .cos (∠En30) (204)
En30y = | En30 | .sin (∠En30) (205)
This completes the process of step 306.

次に、スパン補正部51は、起電力和E3πs2を近似した起電力和EdA32の大きさと角度を求める(ステップ307)。このステップ307の処理は、第2の∂A/∂t成分を求めることに対応する処理である。スパン補正部51は、起電力和EdA32の大きさ|EdA32|を次式のように算出する。
|EdA32|=r3πs2 ・・・(206)
そして、スパン補正部51は、起電力和EdA32の角度∠EdA32を次式のように算出する。
∠EdA32=φ3πs2 ・・・(207)
これで、ステップ307の処理が終了する。
Next, the span correction unit 51 obtains the magnitude and angle of the electromotive force sum EdA32 that approximates the electromotive force sum E3πs2 (step 307). The processing of step 307 is processing corresponding to obtaining the second ∂A / ∂t component. The span correction unit 51 calculates the magnitude | EdA32 | of the electromotive force sum EdA32 as follows.
| EdA32 | = r3πs2 (206)
Then, the span correction unit 51 calculates the angle ∠EdA32 of the electromotive force sum EdA32 as the following equation.
∠EdA32 = φ3πs2 (207)
This completes the process of step 307.

続いて、スパン補正部51は、起電力和E3s2を起電力和EdA32で正規化した正規化起電力和En32の大きさと角度を求める(ステップ308)。このステップ308の処理は、式(196)の算出に相当する処理である。スパン補正部51は、正規化起電力和En32の大きさ|En32|を次式のように算出する。
|En32|=(r3s2/|EdA32|)・ω2 ・・・(208)
Subsequently, the span correction unit 51 obtains the magnitude and angle of the normalized electromotive force sum En32 obtained by normalizing the electromotive force sum E3s2 with the electromotive force sum EdA32 (step 308). The process of step 308 is a process corresponding to the calculation of equation (196). The span correction unit 51 calculates the magnitude | En32 | of the normalized electromotive force sum En32 as the following equation.
| En32 | = (r3s2 / | EdA32 |) · ω2 (208)

そして、スパン補正部51は、正規化起電力和En32の角度∠En32を次式のように算出する。
∠En32=φ3s2−∠EdA32 ・・・(209)
さらに、スパン補正部51は、正規化起電力和En32の実軸成分En32xと虚軸成分En32yを次式のように算出する。
En32x=|En32|・cos(∠En32) ・・・(210)
En32y=|En32|・sin(∠En32) ・・・(211)
これで、ステップ308の処理が終了する。
Then, the span correction unit 51 calculates the angle ∠En32 of the normalized electromotive force sum En32 as the following equation.
∠En32 = φ3s2-∠EdA32 (209)
Further, the span correction unit 51 calculates the real axis component En32x and the imaginary axis component En32y of the normalized electromotive force sum En32 as in the following equation.
En32x = | En32 | .cos (∠En32) (210)
En32y = | En32 | .sin (∠En32) (211)
This completes the processing in step 308.

次に、信号変換部5の0点補正部52は、正規化起電力和En30とEn32との差分EdA33の大きさを求める(ステップ309)。このステップ309の処理は、第3の∂A/∂t成分を求めることに対応する処理であり、式(197)の算出に相当する処理である。0点補正部52は、差分EdA33の実軸成分EdA33xと虚軸成分EdA33yを次式のように算出する。
EdA33x=(En30x−En32x)・ω0/(ω0−ω2) ・・(212)
EdA33y=(En30y−En32y)・ω0/(ω0−ω2) ・・(213)
Next, the zero point correction unit 52 of the signal conversion unit 5 obtains the magnitude of the difference EdA33 between the normalized electromotive force sums En30 and En32 (step 309). The process of step 309 is a process corresponding to obtaining the third ∂A / ∂t component, and is a process corresponding to the calculation of Expression (197). The zero point correction unit 52 calculates the real axis component EdA33x and the imaginary axis component EdA33y of the difference EdA33 as in the following equation.
EdA33x = (En30x−En32x) · ω0 / (ω0−ω2) (212)
EdA33y = (En30y−En32y) · ω0 / (ω0−ω2) (213)

そして、0点補正部52は、正規化起電力和En30から差分EdA33を取り除き、v×B成分EvBn3の大きさを求める(ステップ310)。このステップ310の処理は、式(198)の算出に相当する処理である。0点補正部52は、v×B成分EvBn3の大きさ|EvBn3|を次式のように算出する。
|EvBn3|={(En30x−EdA33x)2
+(En30y−EdA33y)21/2 ・・・(214)
Then, the zero point correction unit 52 removes the difference EdA33 from the normalized electromotive force sum En30 and obtains the magnitude of the v × B component EvBn3 (step 310). The process of step 310 is a process corresponding to the calculation of equation (198). The zero point correction unit 52 calculates the magnitude | EvBn3 | of the v × B component EvBn3 as the following equation.
| EvBn3 | = {(En30x−EdA33x) 2
+ (En30y−EdA33y) 2 } 1/2 (214)

流量出力部6は、被測定流体の流速の大きさVを次式のように算出する(ステップ311)。このステップ311の処理は、式(199)の算出に相当する処理である。
V=|EvBn3|/γ ・・・(215)
なお、比例係数γは、校正等により予め求めることができる定数である。信号変換部5と流量出力部6とは、以上のようなステップ301〜311の処理を例えばオペレータによって計測終了が指示されるまで(ステップ312においてYES)、一定周期毎に行う。なお、ステップ304〜311の処理は第4の励磁状態において行われる。
The flow rate output unit 6 calculates the magnitude V of the flow velocity of the fluid to be measured as in the following equation (step 311). The process of step 311 is a process corresponding to the calculation of equation (199).
V = | EvBn3 | / γ (215)
The proportionality coefficient γ is a constant that can be obtained in advance by calibration or the like. The signal conversion unit 5 and the flow rate output unit 6 perform the processing in steps 301 to 311 as described above at regular intervals until the operator instructs the end of measurement (YES in step 312). Note that the processing of steps 304 to 311 is performed in the fourth excitation state.

以上のように、本実施の形態では、第1の励磁状態において角周波数(ω0+Δω)の成分と角周波数(ω0−Δω)の成分との起電力和E3s0を求め、第2の励磁状態において角周波数(ω0+Δω)の成分と角周波数(ω0−Δω)の成分との起電力和E3πs0を求め、第3の励磁状態において角周波数(ω2+Δω)の成分と角周波数(ω2−Δω)の成分との起電力和E3s2を求め、第4の励磁状態において角周波数(ω2+Δω)の成分と角周波数(ω2−Δω)の成分との起電力和E3πs2を求める。そして、本実施の形態では、第1の励磁コイル3aから発生する磁場B8と第2の励磁コイル3bから発生する磁場B9とが等しくなるように設定しておくと、起電力和E3πs0が近似的に第1の∂A/∂t成分として抽出でき、また起電力和E3πs2が近似的に第2の∂A/∂t成分として抽出できることに着眼し、第1の∂A/∂t成分を用いて起電力和E3s0中のv×B成分の流速の大きさVにかかるスパンを正規化すると共に、第2の∂A/∂t成分を用いて起電力和E3s2中のv×B成分の流速の大きさVにかかるスパンを正規化し、正規化起電力和En30とEn32とから差分EdA33(第3の∂A/∂t成分)を抽出して、正規化起電力和En30から第3の∂A/∂t成分を取り除くことによりv×B成分を抽出し、このv×B成分から被測定流体の流量を算出するようにしたので、正確なスパン補正を自動的に行うことができ、かつ被測定流体の流量を0にすることなく電磁流量計の出力の0点を補正することができ、高周波励磁においても0点の安定性を確保することができる。   As described above, in the present embodiment, the electromotive force sum E3s0 of the component of the angular frequency (ω0 + Δω) and the component of the angular frequency (ω0−Δω) is obtained in the first excitation state, and the angle is calculated in the second excitation state. An electromotive force sum E3πs0 of the frequency (ω0 + Δω) component and the angular frequency (ω0−Δω) component is obtained, and the angular frequency (ω2 + Δω) component and the angular frequency (ω2−Δω) component in the third excitation state are obtained. An electromotive force sum E3s2 is obtained, and an electromotive force sum E3πs2 of the angular frequency (ω2 + Δω) component and the angular frequency (ω2-Δω) component is obtained in the fourth excitation state. In this embodiment, if the magnetic field B8 generated from the first excitation coil 3a is set to be equal to the magnetic field B9 generated from the second excitation coil 3b, the electromotive force sum E3πs0 is approximate. Can be extracted as the first ∂A / ∂t component, and the electromotive force sum E3πs2 can be approximately extracted as the second ∂A / ∂t component, and the first ∂A / ∂t component is used. Normalizing the span of the velocity V of the v × B component in the electromotive force sum E3s0 and using the second ∂A / ∂t component, the flow velocity of the v × B component in the electromotive force sum E3s2 Is normalized, the difference EdA33 (third ∂A / ∂t component) is extracted from the normalized electromotive force sums En30 and En32, and the third ∂ is calculated from the normalized electromotive force sum En30. Extract v / B component by removing A / ∂t component Since the flow rate of the fluid to be measured is calculated from the v × B component, accurate span correction can be automatically performed, and the output of the electromagnetic flowmeter can be output without setting the flow rate of the fluid to be measured to zero. The zero point can be corrected, and the stability of the zero point can be secured even in high-frequency excitation.

また、本実施の形態では、周波数による磁場の損失の違いを考慮して、起電力和E3s0のv×B成分を同じ角周波数の起電力和E3πs0から抽出した第1の∂A/∂t成分を用いて正規化すると共に、起電力和E3s2のv×B成分を同じ角周波数の起電力和E3πs2から抽出した第2の∂A/∂t成分を用いて正規化し、それぞれ正規化した起電力和En30とEn32との差を基に0補正を行うようにしたので、磁場の損失による影響がある場合でも、正確なスパン補正と0補正を行うことができる。また、本実施の形態では、周波数を分散させて励磁するので、周波数帯の効率的な使用が可能になる。   In the present embodiment, the first ∂A / ∂t component obtained by extracting the v × B component of the electromotive force sum E3s0 from the electromotive force sum E3πs0 of the same angular frequency in consideration of the difference in magnetic field loss depending on the frequency. , And the v × B component of the electromotive force sum E3s2 is normalized using the second ∂A / 角 t component extracted from the electromotive force sum E3πs2 of the same angular frequency, and the normalized electromotive force, respectively. Since zero correction is performed based on the difference between the sums En30 and En32, accurate span correction and zero correction can be performed even when there is an influence due to the loss of the magnetic field. Further, in the present embodiment, since excitation is performed with the frequencies dispersed, the frequency band can be used efficiently.

なお、本実施の形態の別の例として、変調が使用できる。角周波数ω0の搬送波を角周波数ω1の変調波で励磁すれば、振幅変調の場合は角周波数ω0,ω0±ω1の成分の起電力を得ることができ、位相変調又は周波数変調の場合は角周波数ω0,ω0±ζ・ω1(ζは正の整数)の成分の起電力を得ることができる。この場合も、第1の励磁コイル3aから発生する磁場と第2の励磁コイル3bから発生する磁場の位相差を切り換えながら励磁することにより、スパン補正および0補正が可能となる。この変調を使用する例は第4の実施の形態〜第7の実施の形態で示す。   Note that modulation can be used as another example of the present embodiment. If a carrier wave having an angular frequency ω0 is excited by a modulated wave having an angular frequency ω1, an electromotive force having components of angular frequencies ω0 and ω0 ± ω1 can be obtained in the case of amplitude modulation, and an angular frequency in the case of phase modulation or frequency modulation. The electromotive force of the component of ω0, ω0 ± ζ · ω1 (ζ is a positive integer) can be obtained. Also in this case, it is possible to perform span correction and zero correction by performing excitation while switching the phase difference between the magnetic field generated from the first excitation coil 3a and the magnetic field generated from the second excitation coil 3b. Examples using this modulation are shown in the fourth to seventh embodiments.

また、本実施の形態では、起電力和E3s0を0補正およびスパン補正の対象としたが、起電力和E3s2を0補正およびスパン補正の対象としてもよい。この場合は、次式のように正規化起電力和En32とEn30とから差分EdA33(第3の∂A/∂t成分)を求める。
EdA33=(En32−En30)・ω2/(ω2−ω0) ・・・(216)
そして、次式のように正規化起電力和En32から差分EdA33を引くことによりv×B成分EvBn3を求めるようにすればよい。その他の処理は起電力和E3s0を0補正およびスパン補正の対象とする場合と同じである。
|EvBn3|=|En32−EdA33| ・・・(217)
Further, in the present embodiment, the electromotive force sum E3s0 is set as an object of 0 correction and span correction, but the electromotive force sum E3s2 may be set as an object of 0 correction and span correction. In this case, the difference EdA33 (third ∂A / ∂t component) is obtained from the normalized electromotive force sums En32 and En30 as in the following equation.
EdA33 = (En32-En30) · ω2 / (ω2-ω0) (216)
Then, the v × B component EvBn3 may be obtained by subtracting the difference EdA33 from the normalized electromotive force sum En32 as in the following equation. The other processes are the same as the case where the electromotive force sum E3s0 is the target of 0 correction and span correction.
| EvBn3 | = | En32-EdA33 | (217)

[第4の実施の形態]
次に、本発明の第4の実施の形態について説明する。本実施の形態の電磁流量計は2個の励磁コイルと1対の電極とを有するものであり、信号処理系を除く構成は図1に示した電磁流量計と同様であるので、図1の符号を用いて本実施の形態の原理を説明する。本実施の形態は、正規化の対象となる合成ベクトルVas0+Vbs0を検出する方法として基本原理で説明した第2の検出方法を用い、第1の∂A/∂t成分を抽出する方法として基本原理で説明した第2の抽出方法を用いるものである。
[Fourth Embodiment]
Next, a fourth embodiment of the present invention will be described. The electromagnetic flow meter of the present embodiment has two excitation coils and a pair of electrodes, and the configuration excluding the signal processing system is the same as that of the electromagnetic flow meter shown in FIG. The principle of this embodiment will be described using reference numerals. The present embodiment uses the second detection method described in the basic principle as a method for detecting the composite vector Vas0 + Vbs0 to be normalized, and uses the basic principle as a method for extracting the first ∂A / ∂t component. The second extraction method described is used.

第1の励磁コイル3aから発生する磁場Bbのうち、電極2a,2b間を結ぶ電極軸EAX上において電極軸EAXおよび測定管軸PAXの双方と直交する磁場成分(磁束密度)B10と、第2の励磁コイル3bから発生する磁場Bcのうち、電極軸EAX上において電極軸EAXおよび測定管軸PAXの双方と直交する磁場成分(磁束密度)B11は、以下のように与えられるものとする。
B10=b10・{1+ma・cos(ω1・t)}・cos(ω0・t−θ10) ・・・(218)
B11=b11・{1−ma・cos(ω1・t)}・cos(ω0・t−θ11) ・・・(219)
Of the magnetic field Bb generated from the first exciting coil 3a, a magnetic field component (magnetic flux density) B10 orthogonal to both the electrode axis EAX and the measurement tube axis PAX on the electrode axis EAX connecting the electrodes 2a and 2b, Of the magnetic field Bc generated from the excitation coil 3b, a magnetic field component (magnetic flux density) B11 orthogonal to both the electrode axis EAX and the measurement tube axis PAX on the electrode axis EAX is given as follows.
B10 = b10 · {1 + ma · cos (ω1 · t)} · cos (ω0 · t−θ10) (218)
B11 = b11 · {1-ma · cos (ω1 · t)} · cos (ω0 · t−θ11) (219)

式(218)、式(219)において、b10、b11はそれぞれ磁束密度B10,B11の振幅、ω0は搬送波の角周波数、ω1は変調波の角周波数、θ10は磁束密度B10とω0・tとの位相差(位相遅れ)、θ11は磁束密度B11とω0・tとの位相差、maは振幅変調指数である。以下、磁束密度B10を磁場B10とし、磁束密度B11を磁場B11とする。式(218)、式(219)は次式のように変形できる。   In equations (218) and (219), b10 and b11 are the amplitudes of the magnetic flux densities B10 and B11, respectively, ω0 is the angular frequency of the carrier wave, ω1 is the angular frequency of the modulation wave, and θ10 is the magnetic flux density B10 and ω0 · t. The phase difference (phase lag), θ11 is the phase difference between the magnetic flux density B11 and ω0 · t, and ma is the amplitude modulation index. Hereinafter, the magnetic flux density B10 is referred to as a magnetic field B10, and the magnetic flux density B11 is referred to as a magnetic field B11. Expressions (218) and (219) can be transformed as follows.

B10=b10・{1+ma・cos(ω1・t)}・cos(ω0・t−θ10)
=b10・cos(θ10)・cos(ω0・t)
+b10・sin(θ10)・sin(ω0・t)
+(1/2)・ma・b10・cos(θ10)・cos{(ω0+ω1)・t}
+(1/2)・ma・b10・sin(θ10)・sin{(ω0+ω1)・t}
+(1/2)・ma・b10・cos(θ10)・cos{(ω0−ω1)・t}
+(1/2)・ma・b10・sin(θ10)・sin{(ω0−ω1)・t}
・・・(220)
B10 = b10 · {1 + ma · cos (ω1 · t)} · cos (ω0 · t−θ10)
= B10 · cos (θ10) · cos (ω0 · t)
+ B10 · sin (θ10) · sin (ω0 · t)
+ (1/2) · ma · b10 · cos (θ10) · cos {(ω0 + ω1) · t}
+ (1/2) · ma · b10 · sin (θ10) · sin {(ω0 + ω1) · t}
+ (1/2) · ma · b10 · cos (θ10) · cos {(ω0−ω1) · t}
+ (1/2) · ma · b10 · sin (θ10) · sin {(ω0−ω1) · t}
... (220)

B11=b11・{1−ma・cos(ω1・t)}・cos(ω0・t−θ11)
=b11・cos(θ11)・cos(ω0・t)
+b11・sin(θ11)・sin(ω0・t)
+(1/2)・ma・b11・{−cos(θ11)}
・cos{(ω0+ω1)・t}
+(1/2)・ma・b11・{−sin(θ11)}
・sin{(ω0+ω1)・t}
+(1/2)・ma・b11・{−cos(θ11)}
・cos{(ω0−ω1)・t}
+(1/2)・ma・b11・{−sin(θ11)}
・sin{(ω0−ω1)・t} ・・・(221)
B11 = b11 · {1-ma · cos (ω1 · t)} · cos (ω0 · t−θ11)
= B11 · cos (θ11) · cos (ω0 · t)
+ B11 · sin (θ11) · sin (ω0 · t)
+ (1/2) · ma · b11 · {−cos (θ11)}
Cos {(ω0 + ω1) · t}
+ (1/2) · ma · b11 · {−sin (θ11)}
Sin {(ω0 + ω1) · t}
+ (1/2) · ma · b11 · {−cos (θ11)}
Cos {(ω0−ω1) · t}
+ (1/2) · ma · b11 · {−sin (θ11)}
Sin {(ω0−ω1) · t} (221)

それぞれの角周波数における磁場の損失を考慮して、磁場B10,B11の角周波数ω0の成分の振幅b10,b11をそれぞれb10[ω0],b11[ω0]と関数表記に変更し、同様に角周波数ω0の成分の位相差θ10,θ11をそれぞれθ10[ω0],θ11[ω0]と変更する。また、磁場B10,B11の角周波数(ω0+ω1)の成分の振幅b10,b11をそれぞれb10[ω0+ω1],b11[ω0+ω1]と関数表記に変更し、同様に角周波数(ω0+ω1)の成分の位相差θ10,θ11をそれぞれθ10[ω0+ω1],θ11[ω0+ω1]と変更する。さらに、磁場B10,B11の角周波数(ω0−ω1)の成分の振幅b10,b11をそれぞれb10[ω0−ω1],b11[ω0−ω1]と関数表記に変更し、同様に角周波数(ω0−ω1)の成分の位相差θ10,θ11をそれぞれθ10[ω0−ω1],θ11[ω0−ω1]と変更する。これにより、式(220)、式(221)は式(222)、式(223)に置き換わる。   Considering the loss of the magnetic field at each angular frequency, the amplitudes b10 and b11 of the components of the angular frequency ω0 of the magnetic fields B10 and B11 are changed to function notations b10 [ω0] and b11 [ω0], respectively. The phase differences θ10 and θ11 of the component of ω0 are changed to θ10 [ω0] and θ11 [ω0], respectively. In addition, the amplitudes b10 and b11 of the components of the angular frequency (ω0 + ω1) of the magnetic fields B10 and B11 are changed to b10 [ω0 + ω1] and b11 [ω0 + ω1], respectively, and the phase difference θ10 of the components of the angular frequency (ω0 + ω1) is similarly changed. , Θ11 are changed to θ10 [ω0 + ω1] and θ11 [ω0 + ω1], respectively. Further, the amplitudes b10 and b11 of the components of the angular frequencies (ω0−ω1) of the magnetic fields B10 and B11 are changed to b10 [ω0−ω1] and b11 [ω0−ω1], respectively, and the angular frequencies (ω0− The phase differences θ10 and θ11 of the components of ω1) are changed to θ10 [ω0−ω1] and θ11 [ω0−ω1], respectively. Thereby, Formula (220) and Formula (221) are replaced with Formula (222) and Formula (223).

B10=b10・{1+ma・cos(ω1・t)}・cos(ω0・t−θ10)
=b10[ω0]・cos(θ10[ω0])・cos(ω0・t)
+b10[ω0]・sin(θ10[ω0])・sin(ω0・t)
+(1/2)・ma・b10[ω0+ω1]・cos(θ10[ω0+ω1])
・cos{(ω0+ω1)・t}
+(1/2)・ma・b10[ω0+ω1]・sin(θ10[ω0+ω1])
・sin{(ω0+ω1)・t}
+(1/2)・ma・b10[ω0−ω1]・cos(θ10[ω0−ω1])
・cos{(ω0−ω1)・t}
+(1/2)・ma・b10[ω0−ω1]・sin(θ10[ω0−ω1])
・sin{(ω0−ω1)・t} ・・・(222)
B10 = b10 · {1 + ma · cos (ω1 · t)} · cos (ω0 · t−θ10)
= B10 [ω0] · cos (θ10 [ω0]) · cos (ω0 · t)
+ B10 [ω0] · sin (θ10 [ω0]) · sin (ω0 · t)
+ (1/2) · ma · b10 [ω0 + ω1] · cos (θ10 [ω0 + ω1])
Cos {(ω0 + ω1) · t}
+ (1/2) · ma · b10 [ω0 + ω1] · sin (θ10 [ω0 + ω1])
Sin {(ω0 + ω1) · t}
+ (1/2) · ma · b10 [ω0−ω1] · cos (θ10 [ω0−ω1])
Cos {(ω0−ω1) · t}
+ (1/2) · ma · b10 [ω0−ω1] · sin (θ10 [ω0−ω1])
Sin {(ω0−ω1) · t} (222)

B11=b11・{1−ma・cos(ω1・t)}・cos(ω0・t−θ11)
=b11[ω0]・cos(θ11[ω0])・cos(ω0・t)
+b11[ω0]・sin(θ11[ω0])・sin(ω0・t)
+(1/2)・ma・b11[ω0+ω1]・{−cos(θ11[ω0+ω1])}
・cos{(ω0+ω1)・t}
+(1/2)・ma・b11[ω0+ω1]・{−sin(θ11[ω0+ω1])}
・sin{(ω0+ω1)・t}
+(1/2)・ma・b11[ω0−ω1]・{−cos(θ11[ω0−ω1])}
・cos{(ω0−ω1)・t}
+(1/2)・ma・b11[ω0−ω1]・{−sin(θ11[ω0−ω1])}
・sin{(ω0−ω1)・t} ・・・(223)
B11 = b11 · {1-ma · cos (ω1 · t)} · cos (ω0 · t−θ11)
= B11 [ω0] · cos (θ11 [ω0]) · cos (ω0 · t)
+ B11 [ω0] · sin (θ11 [ω0]) · sin (ω0 · t)
+ (1/2) · ma · b11 [ω0 + ω1] · {−cos (θ11 [ω0 + ω1])}
Cos {(ω0 + ω1) · t}
+ (1/2) · ma · b11 [ω0 + ω1] · {−sin (θ11 [ω0 + ω1])}
Sin {(ω0 + ω1) · t}
+ (1/2) · ma · b11 [ω0−ω1] · {−cos (θ11 [ω0−ω1])}
Cos {(ω0−ω1) · t}
+ (1/2) · ma · b11 [ω0−ω1] · {−sin (θ11 [ω0−ω1])}
Sin {(ω0−ω1) · t} (223)

磁場の変化に起因する起電力は、磁場の時間微分dB/dtによるので、第1の励磁コイル3aから発生する磁場B10と第2の励磁コイル3bから発生する磁場B11を次式のように微分する。
dB10/dt=ω0・cos(ω0・t)
・b10[ω0]・{sin(θ10[ω0])}
+ω0・sin(ω0・t)
・b10[ω0]・{−cos(θ10[ω0])}
+(1/2)・ma・(ω0+ω1)・cos{(ω0+ω1)・t}
・b10[ω0+ω1]・{sin(θ10[ω0+ω1])}
+(1/2)・ma・(ω0+ω1)・sin{(ω0+ω1)・t
・b10[ω0+ω1]・{−cos(θ10[ω0+ω1])}
+(1/2)・ma・(ω0−ω1)・cos{(ω0−ω1)・t}
・b10[ω0−ω1]・{sin(θ10[ω0−ω1])}
+(1/2)・ma・(ω0−ω1)・sin{(ω0−ω1)・t}
・b10[ω0−ω1]・{−cos(θ10[ω0−ω1])}
・・・(224)
Since the electromotive force resulting from the change of the magnetic field is based on the time differential dB / dt of the magnetic field, the magnetic field B10 generated from the first excitation coil 3a and the magnetic field B11 generated from the second excitation coil 3b are differentiated as follows: To do.
dB10 / dt = ω0 · cos (ω0 · t)
B10 [ω0] · {sin (θ10 [ω0])}
+ Ω0 · sin (ω0 · t)
B10 [ω0] · {−cos (θ10 [ω0])}
+ (1/2) · ma · (ω0 + ω1) · cos {(ω0 + ω1) · t}
B10 [ω0 + ω1] • {sin (θ10 [ω0 + ω1])}
+ (1/2) · ma · (ω0 + ω1) · sin {(ω0 + ω1) · t
B10 [ω0 + ω1] · {−cos (θ10 [ω0 + ω1])}
+ (1/2) · ma · (ω0−ω1) · cos {(ω0−ω1) · t}
B10 [ω0−ω1] • {sin (θ10 [ω0−ω1])}
+ (1/2) · ma · (ω0−ω1) · sin {(ω0−ω1) · t}
B10 [ω0−ω1] • {−cos (θ10 [ω0−ω1])}
... (224)

dB11/dt=ω0・cos(ω0・t)
・b11[ω0]・{sin(θ11[ω0])}
+ω0・sin(ω0・t)
・b11[ω0]・{−cos(θ11[ω0])}
+(1/2)・ma・(ω0+ω1)・cos{(ω0+ω1)・t}
・b11[ω0+ω1]・{−sin(θ11[ω0+ω1])}
+(1/2)・ma・(ω0+ω1)・sin{(ω0+ω1)・t}
・b11[ω0+ω1]・{cos(θ11[ω0+ω1])}
+(1/2)・ma・(ω0−ω1)・cos{(ω0−ω1)・t}
・b11[ω0−ω1]・{−sin(θ11[ω0−ω1])}
+(1/2)・ma・(ω0−ω1)・sin{(ω0−ω1)・t}
・b11[ω0−ω1]・{cos(θ11[ω0−ω1])}
・・・(225)
dB11 / dt = ω0 · cos (ω0 · t)
B11 [ω0] · {sin (θ11 [ω0])}
+ Ω0 · sin (ω0 · t)
B11 [ω0] · {−cos (θ11 [ω0])}
+ (1/2) · ma · (ω0 + ω1) · cos {(ω0 + ω1) · t}
B11 [ω0 + ω1] · {−sin (θ11 [ω0 + ω1])}
+ (1/2) · ma · (ω0 + ω1) · sin {(ω0 + ω1) · t}
B11 [ω0 + ω1] · {cos (θ11 [ω0 + ω1])}
+ (1/2) · ma · (ω0−ω1) · cos {(ω0−ω1) · t}
B11 [ω0−ω1] • {−sin (θ11 [ω0−ω1])}
+ (1/2) · ma · (ω0−ω1) · sin {(ω0−ω1) · t}
B11 [ω0−ω1] • {cos (θ11 [ω0−ω1])}
... (225)

被測定流体の流速が0の場合、電極軸EAXと測定管軸PAXとを含む平面内において、磁場Bbの変化によって発生する、流速と無関係な電極間起電力E1と、磁場Bcの変化によって発生する、流速と無関係な電極間起電力E2は、図2に示すように互いに逆向きとなる。このとき、電極間起電力E1とE2とを足した全体の電極間起電力Eは、次式に示すように、磁場の時間微分dB10/dtとdB11/dtとの差(−dB10/dt+dB11/dt)にω0,(ω0−ω1),(ω0+ω1)それぞれの角周波数成分における比例係数rkをかけ、位相差θ10,θ11をそれぞれθ10+θ00,θ11+θ00で置き換えたものとなる(rk、θ00は、被測定流体の導電率及び誘電率と電極2a,2bの配置を含む測定管1の構造に関係する)。   When the flow rate of the fluid to be measured is 0, it is generated by the change in the electromotive force E1 between the electrodes that is irrelevant to the flow rate and the change in the magnetic field Bc. The inter-electrode electromotive force E2 irrelevant to the flow velocity is opposite to each other as shown in FIG. At this time, the total inter-electrode electromotive force E obtained by adding the inter-electrode electromotive forces E1 and E2 is the difference between the time derivative of the magnetic field dB10 / dt and dB11 / dt (−dB10 / dt + dB11 / dt) is multiplied by the proportional coefficient rk for each angular frequency component of ω0, (ω0−ω1), (ω0 + ω1), and the phase differences θ10 and θ11 are replaced by θ10 + θ00 and θ11 + θ00, respectively (rk and θ00 are measured). (Related to the structure of the measuring tube 1 including the conductivity and dielectric constant of the fluid and the arrangement of the electrodes 2a, 2b).

E=rk・ω0・cos(ω0・t)
・{−b10[ω0]・sin(θ10[ω0]+θ00)
+b11[ω0]・sin(θ11[ω0]+θ00)}
+rk・ω0・sin(ω0・t)
・{b10[ω0]・cos(θ10[ω0]+θ00)
−b11[ω0]・cos(θ11[ω0]+θ00)}
+(1/2)・ma・rk・(ω0+ω1)・cos{(ω0+ω1)・t}
・{−b10[ω0+ω1]・sin(θ10[ω0+ω1]+θ00)
−b11[ω0+ω1]・sin(θ11[ω0+ω1]+θ00)}
+(1/2)・ma・rk・(ω0+ω1)・sin{(ω0+ω1)・t}
・{b10[ω0+ω1]・cos(θ10[ω0+ω1]+θ00)
+b11[ω0+ω1]・cos(θ11[ω0+ω1]+θ00)}
+(1/2)・ma・rk・(ω0−ω1)・cos{(ω0−ω1)・t}
・{−b10[ω0−ω1]・sin(θ10[ω0−ω1]+θ00)
−b11[ω0−ω1]・sin(θ11[ω0−ω1]+θ00)}
+(1/2)・ma・rk・(ω0−ω1)・sin{(ω0−ω1)・t}
・{b10[ω0−ω1]・cos(θ10[ω0−ω1]+θ00)
+b11[ω0−ω1]・cos(θ11[ω0−ω1]+θ00)}
・・・(226)
E = rk · ω0 · cos (ω0 · t)
・ {−b10 [ω0] · sin (θ10 [ω0] + θ00)
+ B11 [ω0] · sin (θ11 [ω0] + θ00)}
+ Rk · ω0 · sin (ω0 · t)
・ {B10 [ω0] · cos (θ10 [ω0] + θ00)
−b11 [ω0] · cos (θ11 [ω0] + θ00)}
+ (1/2) · ma · rk · (ω0 + ω1) · cos {(ω0 + ω1) · t}
・ {−b10 [ω0 + ω1] · sin (θ10 [ω0 + ω1] + θ00)
-B11 [ω0 + ω1] · sin (θ11 [ω0 + ω1] + θ00)}
+ (1/2) · ma · rk · (ω0 + ω1) · sin {(ω0 + ω1) · t}
・ {B10 [ω0 + ω1] · cos (θ10 [ω0 + ω1] + θ00)
+ B11 [ω0 + ω1] · cos (θ11 [ω0 + ω1] + θ00)}
+ (1/2) · ma · rk · (ω0−ω1) · cos {(ω0−ω1) · t}
{-B10 [ω0−ω1] · sin (θ10 [ω0−ω1] + θ00)
−b11 [ω0−ω1] · sin (θ11 [ω0−ω1] + θ00)}
+ (1/2) · ma · rk · (ω0−ω1) · sin {(ω0−ω1) · t}
{B10 [ω0−ω1] · cos (θ10 [ω0−ω1] + θ00)
+ B11 [ω0−ω1] · cos (θ11 [ω0−ω1] + θ00)}
... (226)

被測定流体の流速の大きさがV(V≠0)の場合、流速ベクトルvと磁場Bbによって発生する電極間起電力Ev1、流速ベクトルvと磁場Bcによって発生する電極間起電力Ev2は、図3に示すように同じ向きとなる。このとき、電極間起電力Ev1とEv2とを足した全体の電極間起電力Evは、次式に示すように、磁場B10と磁場B11との和にω0,(ω0−ω1),(ω0+ω1)それぞれの角周波数成分における比例係数rkvをかけ、位相差θ10,θ11をそれぞれθ10+θ01,θ11+θ01で置き換えたものとなる(rkv、θ01は、流速の大きさVと被測定流体の導電率及び誘電率と電極2a,2bの配置を含む測定管1の構造に関係する)。   When the magnitude of the flow velocity of the fluid to be measured is V (V ≠ 0), the interelectrode electromotive force Ev1 generated by the flow velocity vector v and the magnetic field Bb, and the interelectrode electromotive force Ev2 generated by the flow velocity vector v and the magnetic field Bc are shown in FIG. As shown in FIG. At this time, the total inter-electrode electromotive force Ev obtained by adding the inter-electrode electromotive forces Ev1 and Ev2 is ω0, (ω0−ω1), (ω0 + ω1) as the sum of the magnetic field B10 and the magnetic field B11 as shown in the following equation. The proportional coefficient rkv is applied to each angular frequency component, and the phase differences θ10 and θ11 are replaced by θ10 + θ01 and θ11 + θ01, respectively (rkv and θ01 are the flow velocity magnitude V, the conductivity and dielectric constant of the fluid to be measured, (Related to the structure of the measuring tube 1 including the arrangement of the electrodes 2a, 2b).

Ev=rkv・cos(ω0・t)
・{b10[ω0]・cos(θ10[ω0]+θ01)
+b11[ω0]・cos(θ11[ω0]+θ01)}
+ rkv・sin(ω0・t)
・{b10[ω0]・sin(θ10[ω0]+θ01)
+b11[ω0]・sin(θ11[ω0]+θ01)}
+(1/2)・ma・rkv・cos{(ω0+ω1)・t}
・{b10[ω0+ω1]・cos(θ10[ω0+ω1]+θ01)
−b11[ω0+ω1]・cos(θ11[ω0+ω1]+θ01)}
+(1/2)・ma・rkv・sin{(ω0+ω1)・t}
・{b10[ω0+ω1]・sin(θ10[ω0+ω1]+θ01)
−b11[ω0+ω1]・sin(θ11[ω0+ω1]+θ01)}
+(1/2)・ma・rkv・cos{(ω0−ω1)・t}
・{b10[ω0−ω1]・cos(θ10[ω0−ω1]+θ01)
−b11[ω0−ω1]・cos(θ11[ω0−ω1]+θ01)}
+(1/2)・ma・rkv・sin{(ω0−ω1)・t}
・{b10[ω0−ω1]・sin(θ10[ω0−ω1]+θ01)
−b11[ω0−ω1]・sin(θ11[ω0−ω1]+θ01)}
・・・(227)
Ev = rkv · cos (ω0 · t)
・ {B10 [ω0] · cos (θ10 [ω0] + θ01)
+ B11 [ω0] · cos (θ11 [ω0] + θ01)}
+ Rkv · sin (ω0 · t)
・ {B10 [ω0] · sin (θ10 [ω0] + θ01)
+ B11 [ω0] · sin (θ11 [ω0] + θ01)}
+ (1/2) · ma · rkv · cos {(ω0 + ω1) · t}
{B10 [ω0 + ω1] · cos (θ10 [ω0 + ω1] + θ01)
−b11 [ω0 + ω1] · cos (θ11 [ω0 + ω1] + θ01)}
+ (1/2) · ma · rkv · sin {(ω0 + ω1) · t}
{B10 [ω0 + ω1] · sin (θ10 [ω0 + ω1] + θ01)
-B11 [ω0 + ω1] · sin (θ11 [ω0 + ω1] + θ01)}
+ (1/2) · ma · rkv · cos {(ω0−ω1) · t}
{B10 [ω0−ω1] · cos (θ10 [ω0−ω1] + θ01)
−b11 [ω0−ω1] · cos (θ11 [ω0−ω1] + θ01)}
+ (1/2) · ma · rkv · sin {(ω0−ω1) · t}
{B10 [ω0−ω1] · sin (θ10 [ω0−ω1] + θ01)
−b11 [ω0−ω1] · sin (θ11 [ω0−ω1] + θ01)}
... (227)

図2、図3で説明した電極間起電力の向きを考慮すると、磁場の時間変化に起因する電極間起電力を複素ベクトルに変換した起電力と被測定流体の流速に起因する電極間起電力を複素ベクトルに変換した起電力とを合わせた全体の電極間起電力のうち、角周波数ω0の成分の起電力E40cは、式(226)の第1項および第2項と式(227)の第1項および第2項と式(17)とから次式で表される。
E40c=rk・ω0・b10[ω0]
・exp{j・(π/2+θ10[ω0]+θ00)}
+γ・rk・V・b10[ω0]・exp{j・(θ10[ω0]+θ01)}
+rk・ω0・b11[ω0]
・exp{j・(−π/2+θ11[ω0]+θ00)}
+γ・rk・V・b11[ω0]・exp{j・(θ11[ω0]+θ01)}
・・・(228)
In consideration of the direction of the electromotive force between the electrodes described in FIGS. 2 and 3, the electromotive force obtained by converting the interelectrode electromotive force due to the time change of the magnetic field into a complex vector and the interelectrode electromotive force due to the flow velocity of the fluid to be measured. The electromotive force E40c of the component of the angular frequency ω0 out of the total inter-electrode electromotive force combined with the electromotive force converted into a complex vector is expressed by the first term, the second term of the equation (226), and the equation (227). From the first term and the second term and the equation (17), it is expressed by the following equation.
E40c = rk · ω0 · b10 [ω0]
Exp {j. (Π / 2 + θ10 [ω0] + θ00)}
+ Γ · rk · V · b10 [ω0] · exp {j · (θ10 [ω0] + θ01)}
+ Rk · ω0 · b11 [ω0]
Exp {j · (−π / 2 + θ11 [ω0] + θ00)}
+ Γ · rk · V · b11 [ω0] · exp {j · (θ11 [ω0] + θ01)}
... (228)

また、磁場の時間変化に起因する電極間起電力を複素ベクトルに変換した起電力と被測定流体の流速に起因する電極間起電力を複素ベクトルに変換した起電力とを合わせた全体の電極間起電力のうち、角周波数(ω0+ω1)の成分の起電力E4pcは、式(226)の第3項および第4項と式(227)の第3項および第4項と式(17)とから次式で表される。
E4pc=(1/2)・ma・rk・(ω0+ω1)・b10[ω0+ω1]
・exp{j・(π/2+θ10[ω0+ω1]+θ00)}
+(1/2)・ma・γ・rk・V・b10[ω0+ω1]
・exp{j・(θ10[ω0+ω1]+θ01)}
+(1/2)・ma・rk・(ω0+ω1)・b11[ω0+ω1]
・exp{j・(π/2+θ11[ω0+ω1]+θ00)}
+(1/2)・ma・γ・rk・V・b11[ω0+ω1]
・exp{j・(π+θ11[ω0+ω1]+θ01)} ・・・(229)
In addition, the inter-electrode electromotive force obtained by converting the inter-electrode electromotive force caused by the time change of the magnetic field into a complex vector and the electromotive force obtained by converting the inter-electrode electromotive force caused by the flow velocity of the fluid to be measured into the complex vector Among the electromotive forces, the electromotive force E4pc of the component of the angular frequency (ω0 + ω1) is obtained from the third and fourth terms of Equation (226), the third and fourth terms of Equation (227), and Equation (17). It is expressed by the following formula.
E4pc = (1/2) · ma · rk · (ω0 + ω1) · b10 [ω0 + ω1]
Exp {j · (π / 2 + θ10 [ω0 + ω1] + θ00)}
+ (1/2) · ma · γ · rk · V · b10 [ω0 + ω1]
Exp {j · (θ10 [ω0 + ω1] + θ01)}
+ (1/2) · ma · rk · (ω0 + ω1) · b11 [ω0 + ω1]
Exp {j · (π / 2 + θ11 [ω0 + ω1] + θ00)}
+ (1/2) · ma · γ · rk · V · b11 [ω0 + ω1]
Exp {j · (π + θ11 [ω0 + ω1] + θ01)} (229)

また、磁場の時間変化に起因する電極間起電力を複素ベクトルに変換した起電力と被測定流体の流速に起因する電極間起電力を複素ベクトルに変換した起電力とを合わせた全体の電極間起電力のうち、角周波数(ω0−ω1)の成分の起電力E4mcは、式(226)の第5項および第6項と式(227)の第5項および第6項と式(17)とから次式で表される。
E4mc=(1/2)・ma・rk・(ω0−ω1)・b10[ω0−ω1]
・exp{j・(π/2+θ10[ω0−ω1]+θ00)}
+(1/2)・ma・γ・rk・V・b10[ω0−ω1]
・exp{j・(θ10[ω0−ω1]+θ01)}
+(1/2)・ma・rk・(ω0−ω1)・b11[ω0−ω1]
・exp{j・(π/2+θ11[ω0−ω1]+θ00)}
+(1/2)・ma・γ・rk・V・b10[ω0−ω1]
・exp{j・(π+θ11[ω0−ω1]+θ01)} ・・・(230)
In addition, the inter-electrode electromotive force obtained by converting the inter-electrode electromotive force caused by the time change of the magnetic field into a complex vector and the electromotive force obtained by converting the inter-electrode electromotive force caused by the flow velocity of the fluid to be measured into the complex vector Among the electromotive forces, the electromotive force E4mc of the component of the angular frequency (ω0−ω1) is the fifth term and the sixth term of the equation (226) and the fifth term, the sixth term of the equation (227), and the equation (17). And is expressed by the following equation.
E4mc = (1/2) · ma · rk · (ω0−ω1) · b10 [ω0−ω1]
Exp {j · (π / 2 + θ10 [ω0−ω1] + θ00)}
+ (1/2) · ma · γ · rk · V · b10 [ω0−ω1]
Exp {j. (Θ10 [ω0−ω1] + θ01)}
+ (1/2) · ma · rk · (ω0−ω1) · b11 [ω0−ω1]
Exp {j · (π / 2 + θ11 [ω0−ω1] + θ00)}
+ (1/2) · ma · γ · rk · V · b10 [ω0−ω1]
Exp {j · (π + θ11 [ω0−ω1] + θ01)} (230)

ここで、磁場B10の角周波数ω0の成分の位相遅れθ10[ω0]と磁場B11の角周波数ω0の成分の位相遅れθ11[ω0]との関係がθ11[ω0]=θ10[ω0]+Δθ11[ω0]で、かつ虚軸に対する∂A/∂t成分の角度θ00と実軸に対するv×B成分の角度θ01との関係がθ01=θ00+Δθ01であるとき、式(228)にθ01=θ00+Δθ01及びθ11[ω0]=θ10[ω0]+Δθ11[ω0]を代入したときの電極間起電力E40は次式で表される。
E40=rk・exp{j・(θ10[ω0]+θ00)}
・[ ω0・exp(j・π/2)
・{b10[ω0]−b11[ω0]・exp(j・Δθ11[ω0])}
+γ・V・exp(j・Δθ01)
・{b10[ω0]+b11[ω0]・exp(j・Δθ11[ω0])}]
・・・(231)
Here, the relationship between the phase delay θ10 [ω0] of the component of the angular frequency ω0 of the magnetic field B10 and the phase delay θ11 [ω0] of the component of the angular frequency ω0 of the magnetic field B11 is θ11 [ω0] = θ10 [ω0] + Δθ11 [ω0. ], And the relationship between the angle θ00 of the ∂A / 成分 t component with respect to the imaginary axis and the angle θ01 of the v × B component with respect to the real axis is θ01 = θ00 + Δθ01, θ01 = θ00 + Δθ01 and θ11 [ω0 in equation (228) ] = Θ10 [ω0] + Δθ11 [ω0] is substituted, and the inter-electrode electromotive force E40 is expressed by the following equation.
E40 = rk · exp {j · (θ10 [ω0] + θ00)}
・ [Ω0 ・ exp (j ・ π / 2)
{B10 [ω0] −b11 [ω0] · exp (j · Δθ11 [ω0])}
+ Γ · V · exp (j · Δθ01)
{B10 [ω0] + b11 [ω0] · exp (j · Δθ11 [ω0])}]
... (231)

式(229)にθ01=θ00+Δθ01を代入したときの電極間起電力E4p0は次式で表される。
E4p0=(1/2)・ma・rk・exp(j・θ00)
・[(ω0+ω1)・exp(j・π/2)
・{b10[ω0+ω1]・exp(j・θ10[ω0+ω1])
+b11[ω0+ω1]・exp(j・θ11[ω0+ω1])}
+γ・V・exp(j・Δθ01)
・{b10[ω0+ω1]・exp(j・θ10[ω0+ω1])
−b11[ω0+ω1]・exp(j・θ11[ω0+ω1])}]
・・・(232)
The inter-electrode electromotive force E4p0 when θ01 = θ00 + Δθ01 is substituted into the equation (229) is expressed by the following equation.
E4p0 = (1/2) · ma · rk · exp (j · θ00)
・ [(Ω0 + ω1) · exp (j · π / 2)
・ {B10 [ω0 + ω1] · exp (j · θ10 [ω0 + ω1])
+ B11 [ω0 + ω1] · exp (j · θ11 [ω0 + ω1])}
+ Γ · V · exp (j · Δθ01)
・ {B10 [ω0 + ω1] · exp (j · θ10 [ω0 + ω1])
−b11 [ω0 + ω1] · exp (j · θ11 [ω0 + ω1])}]
... (232)

式(230)にθ01=θ00+Δθ01を代入したときの電極間起電力E4m0は次式で表される。
E4m0=(1/2)・ma・rk・exp(j・θ00)
・[(ω0−ω1)・exp(j・π/2)
・{b10[ω0−ω1]・exp(j・θ10[ω0−ω1])
+b11[ω0−ω1]・exp(j・θ11[ω0−ω1])}
+γ・V・exp(j・Δθ01)
・{b10[ω0−ω1]・exp(j・θ10[ω0−ω1])
−b11[ω0−ω1]・exp(j・θ11[ω0−ω1])}]
・・・(233)
The inter-electrode electromotive force E4m0 when θ01 = θ00 + Δθ01 is substituted into the equation (230) is expressed by the following equation.
E4m0 = (1/2) · ma · rk · exp (j · θ00)
・ [(Ω0−ω1) · exp (j · π / 2)
{B10 [ω0-ω1] exp (j · θ10 [ω0-ω1])
+ B11 [ω0−ω1] · exp (j · θ11 [ω0−ω1])}
+ Γ · V · exp (j · Δθ01)
{B10 [ω0-ω1] exp (j · θ10 [ω0-ω1])
−b11 [ω0−ω1] · exp (j · θ11 [ω0−ω1])}]
... (233)

ここで、電極間起電力E4p0とE4m0との和をE4s0とすると、起電力和E4s0は次式で表される。
E4s0=E4p0+E4m0
=(1/2)・ma・rk・exp(j・θ00)
・[(ω0+ω1)・exp(j・π/2)
・{b10[ω0+ω1]・exp(j・θ10[ω0+ω1])
+b11[ω0+ω1]・exp(j・θ11[ω0+ω1])}
+γ・V・exp(j・Δθ01)
・{b10[ω0+ω1]・exp(j・θ10[ω0+ω1])
−b11[ω0+ω1]・exp(j・θ11[ω0+ω1])}]
+(1/2)・ma・rk・exp(j・θ00)
・[(ω0−ω1)・exp(j・π/2)
・{b10[ω0−ω1]・exp(j・θ10[ω0−ω1])
+b11[ω0−ω1]・exp(j・θ11[ω0−ω1])}
+γ・V・exp(j・Δθ01)
・{b10[ω0−ω1]・exp(j・θ10[ω0−ω1])
−b11[ω0−ω1]・exp(j・θ11[ω0−ω1])}]
=(1/2)・ma・rk・exp(j・θ00)
・[ω0・exp(j・π/2)
・{b10[ω0+ω1]・exp(j・θ10[ω0+ω1])
+b11[ω0+ω1]・exp(j・θ11[ω0+ω1])
+b10[ω0−ω1]・exp(j・θ10[ω0−ω1])
+b11[ω0−ω1]・exp(j・θ11[ω0−ω1])}
+ω1・exp(j・π/2)
・{b10[ω0+ω1]・exp(j・θ10[ω0+ω1])
+b11[ω0+ω1]・exp(j・θ11[ω0+ω1])
−b10[ω0−ω1]・exp(j・θ10[ω0−ω1])
−b11[ω0−ω1]・exp(j・θ11[ω0−ω1])}
+γ・V・exp(j・Δθ01)
・{b10[ω0+ω1]・exp(j・θ10[ω0+ω1])
−b11[ω0+ω1]・exp(j・θ11[ω0+ω1])
+b10[ω0−ω1]・exp(j・θ10[ω0−ω1])
−b11[ω0−ω1]・exp(j・θ11[ω0−ω1])}]
・・・(234)
Here, when the sum of the inter-electrode electromotive forces E4p0 and E4m0 is E4s0, the electromotive force sum E4s0 is expressed by the following equation.
E4s0 = E4p0 + E4m0
= (1/2) · ma · rk · exp (j · θ00)
・ [(Ω0 + ω1) · exp (j · π / 2)
・ {B10 [ω0 + ω1] · exp (j · θ10 [ω0 + ω1])
+ B11 [ω0 + ω1] · exp (j · θ11 [ω0 + ω1])}
+ Γ · V · exp (j · Δθ01)
・ {B10 [ω0 + ω1] · exp (j · θ10 [ω0 + ω1])
−b11 [ω0 + ω1] · exp (j · θ11 [ω0 + ω1])}]
+ (1/2) · ma · rk · exp (j · θ00)
・ [(Ω0−ω1) · exp (j · π / 2)
{B10 [ω0-ω1] exp (j · θ10 [ω0-ω1])
+ B11 [ω0−ω1] · exp (j · θ11 [ω0−ω1])}
+ Γ · V · exp (j · Δθ01)
{B10 [ω0-ω1] exp (j · θ10 [ω0-ω1])
−b11 [ω0−ω1] · exp (j · θ11 [ω0−ω1])}]
= (1/2) · ma · rk · exp (j · θ00)
・ [Ω0 ・ exp (j ・ π / 2)
・ {B10 [ω0 + ω1] · exp (j · θ10 [ω0 + ω1])
+ B11 [ω0 + ω1] · exp (j · θ11 [ω0 + ω1])
+ B10 [ω0−ω1] · exp (j · θ10 [ω0−ω1])
+ B11 [ω0−ω1] · exp (j · θ11 [ω0−ω1])}
+ Ω1 · exp (j · π / 2)
・ {B10 [ω0 + ω1] · exp (j · θ10 [ω0 + ω1])
+ B11 [ω0 + ω1] · exp (j · θ11 [ω0 + ω1])
−b10 [ω0−ω1] · exp (j · θ10 [ω0−ω1])
−b11 [ω0−ω1] · exp (j · θ11 [ω0−ω1])}
+ Γ · V · exp (j · Δθ01)
・ {B10 [ω0 + ω1] · exp (j · θ10 [ω0 + ω1])
-B11 [ω0 + ω1] · exp (j · θ11 [ω0 + ω1])
+ B10 [ω0−ω1] · exp (j · θ10 [ω0−ω1])
−b11 [ω0−ω1] · exp (j · θ11 [ω0−ω1])}]
... (234)

ここで、通常ω0>ω1が成り立つことから式(235)〜式(238)の条件式が成り立つ。
2・b10[ω0]・exp(j・θ10[ω0])
≒b10[ω0+ω1]・exp(j・θ10[ω0+ω1])
+b10[ω0−ω1]・exp(j・θ10[ω0−ω1]) ・・・(235)
2・b11[ω0]・exp(j・θ11[ω0])
≒b11[ω0+ω1]・exp(j・θ11[ω0+ω1])
+b11[ω0−ω1]・exp(j・θ11[ω0−ω1]) ・・・(236)
Here, since ω0> ω1 is normally satisfied, the conditional expressions (235) to (238) are satisfied.
2 · b10 [ω0] · exp (j · θ10 [ω0])
≒ b10 [ω0 + ω1] · exp (j · θ10 [ω0 + ω1])
+ B10 [ω0−ω1] · exp (j · θ10 [ω0−ω1]) (235)
2 · b11 [ω0] · exp (j · θ11 [ω0])
≒ b11 [ω0 + ω1] · exp (j · θ11 [ω0 + ω1])
+ B11 [ω0−ω1] · exp (j · θ11 [ω0−ω1]) (236)

|ω0・exp(j・π/2)・{2・b10[ω0]
・exp(j・θ10[ω0])}|
≫|ω1・exp(j・π/2)
・{b10[ω0+ω1]・exp(j・θ10[ω0+ω1])
−b10[ω0−ω1]・exp(j・θ10[ω0−ω1])}|
・・・(237)
|ω0・exp(j・π/2)・{2・b11[ω0]
・exp(j・θ11[ω0])}|
≫|ω1・exp(j・π/2)
・{b11[ω0+ω1]・exp(j・θ11[ω0+ω1])
−b11[ω0−ω1]・exp(j・θ11[ω0−ω1])}|
・・・(238)
| Ω0 · exp (j · π / 2) · {2 · b10 [ω0]
Exp (j · θ10 [ω0])} |
>> | ω1 · exp (j · π / 2)
・ {B10 [ω0 + ω1] · exp (j · θ10 [ω0 + ω1])
−b10 [ω0−ω1] · exp (j · θ10 [ω0−ω1])} |
... (237)
| Ω0 · exp (j · π / 2) · {2 · b11 [ω0]
Exp (j · θ11 [ω0])} |
>> | ω1 · exp (j · π / 2)
・ {B11 [ω0 + ω1] · exp (j · θ11 [ω0 + ω1])
−b11 [ω0−ω1] · exp (j · θ11 [ω0−ω1])} |
... (238)

式(235)〜式(238)の条件を式(234)に適用して起電力和E4s0を近似したものをE4s0aとおくと、起電力和E4s0aは式(239)、式(240)で表される。
E4s0a≒E4s0 ・・・(239)
E4s0a=(1/2)・ma・rk・exp(j・θ00)
・[ω0・exp(j・π/2)
・{2・b10[ω0]・exp(j・θ10[ω0])
+2・b11[ω0]・exp(j・θ11[ω0])}
+γ・V・exp(j・Δθ01)
・{2・b10[ω0]・exp(j・θ10[ω0])
−2・b11[ω0]・exp(j・θ11[ω0])} ・・(240)
When E4s0a is obtained by approximating the electromotive force sum E4s0 by applying the conditions of the equations (235) to (238) to the equation (234), the electromotive force sum E4s0a is expressed by the equations (239) and (240). Is done.
E4s0a≈E4s0 (239)
E4s0a = (1/2) · ma · rk · exp (j · θ00)
・ [Ω0 ・ exp (j ・ π / 2)
・ {2 ・ b10 [ω0] ・ exp (j ・ θ10 [ω0])
+ 2 · b11 [ω0] · exp (j · θ11 [ω0])}
+ Γ · V · exp (j · Δθ01)
・ {2 ・ b10 [ω0] ・ exp (j ・ θ10 [ω0])
-2 · b11 [ω0] · exp (j · θ11 [ω0])} (240)

式(231)と同じくθ11[ω0]=θ10[ω0]+Δθ11[ω0]を式(240)の起電力和E4s0aに代入したものをE4s0bとすれば、起電力和E4s0bは次式で表される。
E4s0b=ma・rk・exp{j・(θ10[ω0]+θ00)}
・[ω0・exp(j・π/2)
・{b10[ω0]+b11[ω0]・exp(j・Δθ11[ω0])}
+γ・V・exp(j・Δθ01)
・{b10[ω0]−b11[ω0]・exp(j・Δθ11[ω0])}]
・・・(241)
As in equation (231), if θ11 [ω0] = θ10 [ω0] + Δθ11 [ω0] is substituted into the electromotive force sum E4s0a in equation (240), E4s0b is obtained, and the electromotive force sum E4s0b is expressed by the following equation: .
E4s0b = ma · rk · exp {j · (θ10 [ω0] + θ00)}
・ [Ω0 ・ exp (j ・ π / 2)
{B10 [ω0] + b11 [ω0] · exp (j · Δθ11 [ω0])}
+ Γ · V · exp (j · Δθ01)
{B10 [ω0] −b11 [ω0] · exp (j · Δθ11 [ω0])}]
... (241)

さらに、初期状態(校正時の状態)の磁場B10、B11おいて、b10[ω0]=b11[ω0]、Δθ11[ω]=0と設定しておくと、その後のずれを考慮してもb10[ω0]≒b11[ω0]、Δθ11[ω]≒0であり、次の条件式が成り立つ。
|b10[ω0]+b11[ω0]・exp(j・Δθ11[ω0])|
≫|b10[ω0] −b11[ω0]・exp(j・Δθ11[ω0])|
・・・(242)
Further, if b10 [ω0] = b11 [ω0] and Δθ11 [ω] = 0 are set in the magnetic fields B10 and B11 in the initial state (the state at the time of calibration), even if the subsequent deviation is considered, b10 [ω0] ≈b11 [ω0] and Δθ11 [ω] ≈0, and the following conditional expression holds.
| B10 [ω0] + b11 [ω0] · exp (j · Δθ11 [ω0]) |
»| B10 [ω0] −b11 [ω0] · exp (j · Δθ11 [ω0]) |
... (242)

また、通常ω0>γ・Vが成り立つことから、式(242)の条件を考慮すると、式(241)において次式の条件が成り立つ。
|ω0・exp(j・π/2)
・{b10[ω0]+b11[ω0]・exp(j・Δθ11[ω0])}|
≫|γ・V・exp(j・Δθ01)・b10[ω0]
−b11[ω0]・exp(j・Δθ11[ω0])| ・・・(243)
Further, since ω0> γ · V is normally satisfied, when the condition of the equation (242) is considered, the following equation is satisfied in the equation (241).
| Ω0 · exp (j · π / 2)
{B10 [ω0] + b11 [ω0] · exp (j · Δθ11 [ω0])} |
»| Γ · V · exp (j · Δθ01) · b10 [ω0]
−b11 [ω0] · exp (j · Δθ11 [ω0]) | (243)

式(243)の条件を用いて、式(241)の起電力和E4s0bを近似したものを(1/ma)倍した起電力和EdA41は次式で表される。この起電力和EdA41は基本原理における第1の∂A/∂t成分に相当する。
EdA41≒E4s0b・(1/ma)≒E4s0・(1/ma) ・・・(244)
EdA41=rk・exp{j・(θ10[ω0]+θ00)}
・ω0・exp(j・π/2)
・{b10[ω0]+b11[ω0]・exp(j・Δθ11[ω0])}
・・・(245)
An electromotive force sum EdA41 obtained by multiplying an approximation of the electromotive force sum E4s0b of the equation (241) by (1 / ma) using the condition of the equation (243) is expressed by the following equation. This electromotive force sum EdA41 corresponds to the first ∂A / ∂t component in the basic principle.
EdA41≈E4s0b · (1 / ma) ≈E4s0 · (1 / ma) (244)
EdA41 = rk · exp {j · (θ10 [ω0] + θ00)}
・ Ω0 ・ exp (j ・ π / 2)
{B10 [ω0] + b11 [ω0] · exp (j · Δθ11 [ω0])}
... (245)

起電力和EdA41は、流速の大きさVに関係しないので、∂A/∂tによって発生する成分のみとなる。この起電力和EdA41を用いて電極間起電力E40(合成ベクトルVas0+Vbs0)中のv×B成分の流速の大きさVにかかる係数(スパン)を正規化する。電極間起電力E40を起電力和EdA41で正規化し、ω0倍した結果をEn40とすれば、正規化起電力En40は次式で表される。
En40=(E40/EdA41)・ω0
=rk・exp{j・(θ10[ω0]+θ00)}
・[ ω0・exp(j・π/2)
・{b10[ω0]−b11[ω0]・exp(j・Δθ11[ω0])}
+γ・V・exp(j・Δθ01)
・{b10[ω0]+b11[ω0]・exp(j・Δθ11[ω0])}]
/[rk・exp{j・(θ10[ω0]+θ00)}・ω0・exp(j・π/2)
・{b10[ω0]+b11[ω0]・exp(j・Δθ11[ω0])}]・ω0
=ω0・{b10[ω0]−b11[ω0]・exp(j・Δθ11[ω0])}
/{b10[ω0]+b11[ω0]・exp(j・Δθ11[ω0])}
+[γ・exp{j・(−π/2+Δθ01)}]・V ・・・(246)
Since the electromotive force sum EdA41 is not related to the magnitude V of the flow velocity, it becomes only the component generated by ∂A / ∂t. Using this electromotive force sum EdA41, the coefficient (span) applied to the magnitude V of the flow velocity of the v × B component in the interelectrode electromotive force E40 (the combined vector Vas0 + Vbs0) is normalized. If the inter-electrode electromotive force E40 is normalized by the electromotive force sum EdA41 and multiplied by ω0 to be En40, the normalized electromotive force En40 is expressed by the following equation.
En40 = (E40 / EdA41) · ω0
= Rk · exp {j · (θ10 [ω0] + θ00)}
・ [Ω0 ・ exp (j ・ π / 2)
{B10 [ω0] −b11 [ω0] · exp (j · Δθ11 [ω0])}
+ Γ · V · exp (j · Δθ01)
{B10 [ω0] + b11 [ω0] · exp (j · Δθ11 [ω0])}]
/ [Rk · exp {j · (θ10 [ω0] + θ00)} · ω0 · exp (j · π / 2)
{B10 [ω0] + b11 [ω0] · exp (j · Δθ11 [ω0])}] · ω0
= Ω0 · {b10 [ω0] −b11 [ω0] · exp (j · Δθ11 [ω0])}
/ {B10 [ω0] + b11 [ω0] · exp (j · Δθ11 [ω0])}
+ [Γ · exp {j · (−π / 2 + Δθ01)}] · V (246)

式(52)を用いると、式(246)の右辺第1項の角周波数ω0にかかる係数{b10[ω0]−b11[ω0]・exp(j・Δθ11[ω0])}/{b10[ω0]+b11[ω0]・exp(j・Δθ11[ω0])}を、角周波数ω0に関係しない値{b10−b11・exp(j・Δθ11)}/{b10+b11・exp(j・Δθ11)}で表すことができる。したがって、式(246)を次式のように置き換えることができる。
En40=ω0・{b10−b11・exp(j・Δθ11)}
/{b10+b11・exp(j・Δθ11)}
+[γ・exp{j・(−π/2+Δθ01)}]・V ・・・(247)
Using equation (52), the coefficient {b10 [ω0] −b11 [ω0] · exp (j · Δθ11 [ω0])} / {b10 [ω0] applied to the angular frequency ω0 of the first term on the right-hand side of equation (246) ] + B11 [ω0] · exp (j · Δθ11 [ω0])} is represented by a value {b10−b11 · exp (j · Δθ11)} / {b10 + b11 · exp (j · Δθ11)} not related to the angular frequency ω0. be able to. Therefore, the equation (246) can be replaced by the following equation.
En40 = ω0 · {b10−b11 · exp (j · Δθ11)}
/ {B10 + b11 · exp (j · Δθ11)}
+ [Γ · exp {j · (−π / 2 + Δθ01)}] · V (247)

式(247)の右辺第2項が、v×Bにより発生する成分を正規化した項となる。なお、電極間起電力E40を起電力和EdA41で正規化した結果をω0倍した理由は、流速の大きさVに係る右辺第2項から励磁角周波数ω0を消去するためである。流速の大きさVにかかる複素係数は、γの大きさ、−π/2+Δθ01の実軸からの角度をもつ。係数γおよび角度Δθ01は校正等により予め求めることができる定数であり、式(247)の右辺第2項は被測定流体の流速が変化しないかぎり一定となる。したがって、∂A/∂tの成分をもちいてv×B成分の正規化を行うことにより、磁場のシフトや位相変化による誤差を自動的に補正するスパン補正を実現することができる。   The second term on the right side of Equation (247) is a term obtained by normalizing the component generated by v × B. The reason why the result obtained by normalizing the inter-electrode electromotive force E40 with the electromotive force sum EdA41 is multiplied by ω0 is to eliminate the excitation angular frequency ω0 from the second term on the right side of the magnitude V of the flow velocity. The complex coefficient relating to the magnitude V of the flow velocity has an angle from the real axis of the magnitude of γ, −π / 2 + Δθ01. The coefficient γ and the angle Δθ01 are constants that can be obtained in advance by calibration or the like, and the second term on the right side of the equation (247) is constant as long as the flow velocity of the fluid to be measured does not change. Therefore, by performing the normalization of the v × B component using the component ∂A / ∂t, it is possible to realize span correction that automatically corrects errors due to magnetic field shifts and phase changes.

次に、0点の変動要因である、式(247)の右辺第1項を除去する方法について説明する。式(218)、式(228)において搬送波の角周波数をω0の代わりにω2とすると、磁場B10,B11は次式で表される。
B10=b10・{1+ma・cos(ω1・t)}・cos(ω2・t−θ10) ・・・(248)
B11=b11・{1−ma・cos(ω1・t)}・cos(ω2・t−θ11) ・・・(249)
Next, a method for removing the first term on the right side of the equation (247), which is a factor of variation at 0 point, will be described. If the angular frequency of the carrier wave is ω2 instead of ω0 in equations (218) and (228), the magnetic fields B10 and B11 are expressed by the following equations.
B10 = b10 · {1 + ma · cos (ω1 · t)} · cos (ω2 · t−θ10) (248)
B11 = b11 · {1−ma · cos (ω1 · t)} · cos (ω2 · t−θ11) (249)

角周波数ω0での正規化と同様に角周波数ω2において正規化を行う。角周波数ω2においてスパン補正の対象となる電極間起電力E42は、式(231)において角周波数ω0をω2で置き換えたものとなる。第2の∂A/∂t成分の基となる起電力和E4s2は、式(232)において角周波数ω0をω2で置き換えた電極間起電力E4p2と、式(233)において角周波数ω0をω2で置き換えた電極間起電力E4m2との和E4p2+E4m2で表される。第2の∂A/∂t成分となる起電力和EdA42は、式(245)において角周波数ω0をω2で置き換えたものとなる。   Normalization is performed at the angular frequency ω2 as in the normalization at the angular frequency ω0. The inter-electrode electromotive force E42 subjected to span correction at the angular frequency ω2 is obtained by replacing the angular frequency ω0 with ω2 in the equation (231). The electromotive force sum E4s2 that is the basis of the second ∂A / ∂t component is the interelectrode electromotive force E4p2 in which the angular frequency ω0 is replaced with ω2 in Equation (232), and the angular frequency ω0 in ω2 in Equation (233). It is represented by the sum E4p2 + E4m2 with the interelectrode electromotive force E4m2. The electromotive force sum EdA42 as the second ∂A / ∂t component is obtained by replacing the angular frequency ω0 with ω2 in the equation (245).

電極間起電力E42を起電力和EdA42で正規化し、ω2倍した結果をEn42とすれば、正規化起電力En42は式(247)より次式で表される。
En42=ω2・{b10−b11・exp(j・Δθ11)}
/{b10+b11・exp(j・Δθ11)}
+[γ・exp{j・(−π/2+Δθ01)}]・V ・・・(250)
If the result obtained by normalizing the inter-electrode electromotive force E42 by the electromotive force sum EdA42 and multiplying it by ω2 is taken as En42, the normalized electromotive force En42 is expressed by the following equation from the equation (247).
En42 = ω2 · {b10−b11 · exp (j · Δθ11)}
/ {B10 + b11 · exp (j · Δθ11)}
+ [Γ · exp {j · (−π / 2 + Δθ01)}] · V (250)

正規化起電力En40とEn42との差をとり、求めた差分をω0/(ω0−ω2)倍した結果をEdA43とすれば、起電力差EdA43は次式で表される。この起電力差EdA43は基本原理における第3の∂A/∂t成分に相当する。
EdA43=(En40−En42)・ω0/(ω0−ω2)
=[{b10−b11・exp(j・Δθ11)}
/{b10+b11・exp(j・Δθ11)}
・ω0+γ・exp{j・(−π/2+Δθ01)}・V
−{b10−b11・exp(j・Δθ11)}
/{b10+b11・exp(j・Δθ11)}
・ω2−γ・exp{j・(−π/2+Δθ01)}・V]
・ω0/(ω0−ω2)
={b10−b11・exp(j・Δθ11)}
/{b10+b11・exp(j・Δθ11)}・ω0 ・・(251)
Taking the difference between the normalized electromotive forces En40 and En42 and multiplying the obtained difference by ω0 / (ω0−ω2) as EdA43, the electromotive force difference EdA43 is expressed by the following equation. This electromotive force difference EdA43 corresponds to the third ∂A / ∂t component in the basic principle.
EdA43 = (En40−En42) · ω0 / (ω0−ω2)
= [{B10−b11 · exp (j · Δθ11)}
/ {B10 + b11 · exp (j · Δθ11)}
.Omega.0 + .gamma.exp {j. (-. Pi./2+.DELTA..theta.01)}.V
-{B10-b11 · exp (j · Δθ11)}
/ {B10 + b11 · exp (j · Δθ11)}
.Omega.2-.gamma.exp {j. (-. Pi./2+.DELTA..theta.01)}.V]
・ Ω0 / (ω0−ω2)
= {B10-b11 · exp (j · Δθ11)}
/ {B10 + b11 · exp (j · Δθ11)} · ω0 ·· (251)

起電力差EdA43は正規化された∂A/∂t成分を表し、式(247)の右辺第1項と等しくなるので、この起電力差EdA43を使用すれば、正規化されたv×B成分を正規化起電力En40から取り出すことができる。式(247)の正規化起電力En40から式(251)の起電力差EdA43を引いたときに得られるv×B成分をEvBn4とすると、v×B成分EvBn4は次式で表される。
EvBn4=En40−EdA43
={b10−b11・exp(j・Δθ11)}
/{b10+b11・exp(j・Δθ11)}・ω0
+[γ・exp{j・(−π/2+Δθ01)}]・V
−{b10−b11・exp(j・Δθ11)}
/{b10+b11・exp(j・Δθ11)}・ω0
=[γ・exp{j・(−π/2+Δθ01)}]・V ・・・(252)
The electromotive force difference EdA43 represents a normalized ∂A / ∂t component and is equal to the first term on the right side of the equation (247). Therefore, if this electromotive force difference EdA43 is used, the normalized v × B component Can be extracted from the normalized electromotive force En40. When the v × B component obtained by subtracting the electromotive force difference EdA43 of the equation (251) from the normalized electromotive force En40 of the equation (247) is EvBn4, the v × B component EvBn4 is expressed by the following equation.
EvBn4 = En40-EdA43
= {B10-b11 · exp (j · Δθ11)}
/ {B10 + b11 · exp (j · Δθ11)} · ω0
+ [Γ · exp {j · (−π / 2 + Δθ01)}] · V
-{B10-b11 · exp (j · Δθ11)}
/ {B10 + b11 · exp (j · Δθ11)} · ω0
= [Γ · exp {j · (−π / 2 + Δθ01)}] · V (252)

v×B成分EvBn4は角周波数ω0,ω2に関係しない。流速の大きさVが0のときv×B成分EvBn4も0となることから分かるように、v×B成分EvBn4より、スパンが補正され、かつ0点が補正された出力を得ることができる。式(252)より、流速の大きさVは次式のように表される。
V=|EvBn4/[γ・exp{j・(−π/2+Δθ01)}]|
=|EvBn4|/γ ・・・(253)
The v × B component EvBn4 is not related to the angular frequencies ω0 and ω2. As can be seen from the fact that the v × B component EvBn4 becomes 0 when the magnitude V of the flow velocity is 0, an output in which the span is corrected and the zero point is corrected can be obtained from the v × B component EvBn4. From the equation (252), the magnitude V of the flow velocity is expressed as the following equation.
V = | EvBn4 / [γ · exp {j · (−π / 2 + Δθ01)}] |
= | EvBn4 | / γ (253)

なお、基本原理で用いた定数および変数と、本実施の形態の定数および変数との対応関係は以下の表4のとおりである。本実施の形態は、表4から明らかなように、前述の基本原理を具体的に実現する1つの例である。   The correspondence between the constants and variables used in the basic principle and the constants and variables of the present embodiment is as shown in Table 4 below. As is apparent from Table 4, this embodiment is an example that specifically realizes the basic principle described above.

Figure 2006058175
Figure 2006058175

次に、本実施の形態の電磁流量計の具体的な構成とその動作について説明する。本実施の形態の電磁流量計の構成は第1の実施の形態と同様であるので、図16の符号を用いて説明する。本実施の形態の電磁流量計は、測定管1と、電極2a,2bと、第1、第2の励磁コイル3a,3bと、電源部4と、信号変換部5と、流量出力部6とを有する。   Next, a specific configuration and operation of the electromagnetic flow meter of the present embodiment will be described. Since the configuration of the electromagnetic flowmeter of the present embodiment is the same as that of the first embodiment, description will be made using the reference numerals in FIG. The electromagnetic flowmeter of the present embodiment includes a measuring tube 1, electrodes 2a and 2b, first and second exciting coils 3a and 3b, a power supply unit 4, a signal conversion unit 5, and a flow rate output unit 6. Have

信号変換部5は、第1の励磁状態と第2の励磁状態の各々において電極2a,2bで検出される合成起電力の振幅と位相を求め、これらの振幅と位相に基づいて第1の励磁状態の合成起電力の角周波数ω0+ω1の成分と角周波数ω0−ω1の成分との起電力和を第1の∂A/∂t成分として抽出すると共に、第2の励磁状態の合成起電力の角周波数ω2+ω1の成分と角周波数ω2−ω1の成分との起電力和を第2の∂A/∂t成分として抽出し、第1の励磁状態の合成起電力の角周波数ω0の成分を第1の補正対象起電力として、第1の∂A/∂t成分に基づいて第1の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去すると共に、第2の励磁状態の合成起電力の角周波数ω2の成分を第2の補正対象起電力として、第2の∂A/∂t成分に基づいて第2の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去するスパン補正部51と、スパン補正された第1の補正対象起電力とスパン補正された第2の補正対象起電力との差を第3の∂A/∂t成分として抽出し、このスパン補正された2つの補正対象起電力のうちいずれか1つの中から第3の∂A/∂t成分を取り除くことによりv×B成分を抽出する0点補正部52とから構成される。   The signal conversion unit 5 obtains the amplitude and phase of the combined electromotive force detected by the electrodes 2a and 2b in each of the first excitation state and the second excitation state, and performs the first excitation based on these amplitudes and phases. The sum of electromotive forces of the component of the angular frequency ω0 + ω1 and the component of the angular frequency ω0−ω1 of the combined electromotive force in the state is extracted as the first ∂A / ∂t component, and the angle of the combined electromotive force in the second excitation state The sum of electromotive forces of the component of frequency ω2 + ω1 and the component of angular frequency ω2-ω1 is extracted as the second ∂A / ∂t component, and the component of angular frequency ω0 of the composite electromotive force in the first excitation state is the first. As a correction target electromotive force, based on the first ∂A / ∂t component, the variation factor of the span included in the v × B component in the first correction target electromotive force is removed, and the second excitation state Using the component of the angular frequency ω2 of the combined electromotive force as the second correction target electromotive force, A span correction unit 51 that removes a variation factor of the span included in the v × B component in the second correction target electromotive force based on the A / ∂t component, and the first correction target electromotive force that has been subjected to span correction A difference from the second correction target electromotive force subjected to the span correction is extracted as a third ∂A / ∂t component, and the third one of the two correction target electromotive forces subjected to the span correction is extracted. The zero point correction unit 52 extracts the v × B component by removing the ∂A / ∂t component.

本実施の形態の電源部4は、角周波数ω0の正弦波搬送波を角周波数ω1の正弦波変調波によって振幅変調した第1の励磁電流を第1の励磁コイル3aに供給すると同時に、前記角周波数ω0の正弦波搬送波を前記第1の励磁電流の変調波に対して同一角周波数で逆位相の変調波によって振幅変調した第2の励磁電流を第2の励磁コイル3bに供給する第1の励磁状態をT1秒継続し、角周波数ω2の正弦波搬送波を角周波数ω1の正弦波変調波によって振幅変調した第3の励磁電流を第1の励磁コイル3aに供給すると同時に、前記角周波数ω2の正弦波搬送波を前記第3の励磁電流の変調波に対して同一角周波数で逆位相の変調波によって振幅変調した第4の励磁電流を第2の励磁コイル3bに供給する第2の励磁状態をT2秒継続することをT秒周期で繰り返す。すなわち、T=T1+T2である。振幅変調指数maは任意の値とする。   The power supply unit 4 according to the present embodiment supplies a first excitation current obtained by amplitude-modulating a sine wave carrier wave having an angular frequency ω0 with a sine wave modulation wave having an angular frequency ω1 to the first excitation coil 3a, and at the same time, the angular frequency. First excitation for supplying a second excitation current obtained by amplitude-modulating a sine wave carrier wave of ω0 with a modulated wave having the same angular frequency and opposite phase to the modulated wave of the first excitation current to the second excitation coil 3b. The state continues for T1 seconds, and a third excitation current obtained by amplitude-modulating a sine wave carrier wave having an angular frequency ω2 with a sine wave modulation wave having an angular frequency ω1 is supplied to the first excitation coil 3a, and at the same time, the sine wave having the angular frequency ω2 is supplied. A second excitation state in which a fourth excitation current obtained by amplitude-modulating a wave carrier wave with a modulation wave having the same angular frequency and an opposite phase with respect to the modulation wave of the third excitation current is supplied to the second excitation coil 3b. To last seconds Repeated at T second period. That is, T = T1 + T2. The amplitude modulation index ma is an arbitrary value.

図21は本実施の形態の信号変換部5と流量出力部6の動作を示すフローチャートである。まず、信号変換部5のスパン補正部51は、第1の励磁状態において、電極2aと2b間の起電力のうち角周波数ω0の成分の起電力E40の振幅r40を求めると共に、実軸と電極間起電力E40との位相差φ40を図示しない位相検波器により求める(図21ステップ401)。また、スパン補正部51は、第1の励磁状態において、電極2aと2b間の起電力のうち角周波数(ω0+ω1)の成分と角周波数(ω0−ω1)成分との和E4s0の振幅r4s0を求めると共に、実軸と起電力和E4s0との位相差φ4s0を位相検波器により求める(ステップ402)。   FIG. 21 is a flowchart showing the operations of the signal conversion unit 5 and the flow rate output unit 6 of the present embodiment. First, the span correction unit 51 of the signal conversion unit 5 obtains the amplitude r40 of the electromotive force E40 of the component of the angular frequency ω0 among the electromotive forces between the electrodes 2a and 2b in the first excitation state, and the real axis and the electrode A phase difference φ40 with respect to the inter-electromotive force E40 is obtained by a phase detector (not shown) (step 401 in FIG. 21). Further, the span correction unit 51 obtains the amplitude r4s0 of the sum E4s0 of the angular frequency (ω0 + ω1) component and the angular frequency (ω0−ω1) component of the electromotive force between the electrodes 2a and 2b in the first excitation state. At the same time, a phase difference φ4s0 between the real axis and the electromotive force sum E4s0 is obtained by the phase detector (step 402).

続いて、スパン補正部51は、第2の励磁状態において、電極2aと2b間の起電力のうち角周波数ω2の成分の起電力E42の振幅r42を求めると共に、実軸と電極間起電力E42との位相差φ42を位相検波器により求める(ステップ403)。また、スパン補正部51は、第2の励磁状態において、電極2aと2b間の起電力のうち角周波数(ω2+ω1)の成分と角周波数(ω2−ω1)成分との和E4s2の振幅r4s2を求めると共に、実軸と起電力和E4s2との位相差φ4s2を位相検波器により求める(ステップ404)。電極間起電力E40,E42と電極間起電力の角周波数(ω0+ω1),(ω0−ω1),(ω2+ω1),(ω2−ω1)の成分は、バンドパスフィルタやコムフィルタによって周波数分離することができる。   Subsequently, in the second excitation state, the span correction unit 51 obtains the amplitude r42 of the electromotive force E42 of the component of the angular frequency ω2 among the electromotive forces between the electrodes 2a and 2b, and at the same time, the real axis and the interelectrode electromotive force E42. Is obtained by a phase detector (step 403). Further, the span correction unit 51 obtains the amplitude r4s2 of the sum E4s2 of the angular frequency (ω2 + ω1) component and the angular frequency (ω2−ω1) component of the electromotive force between the electrodes 2a and 2b in the second excitation state. At the same time, a phase difference φ4s2 between the real axis and the electromotive force sum E4s2 is obtained by the phase detector (step 404). The components of the inter-electrode electromotive force E40, E42 and the inter-electrode electromotive force angular frequency (ω0 + ω1), (ω0-ω1), (ω2 + ω1), (ω2-ω1) may be frequency separated by a bandpass filter or a comb filter. it can.

次に、スパン補正部51は、起電力和E4s0を近似した起電力和EdA41の大きさと角度を求める(ステップ405)。このステップ405の処理は、第1の∂A/∂t成分を求めることに対応する処理であり、式(245)の算出に相当する処理である。スパン補正部51は、起電力和EdA41の大きさ|EdA41|を次式のように算出する。
|EdA41|=r4s0 ・・・(254)
そして、スパン補正部51は、起電力和EdA41の角度∠EdA41を次式のように算出する。
∠EdA41=φ4s0 ・・・(255)
これで、ステップ405の処理が終了する。
Next, the span correction unit 51 obtains the magnitude and angle of the electromotive force sum EdA41 that approximates the electromotive force sum E4s0 (step 405). The process of step 405 is a process corresponding to obtaining the first ∂A / ∂t component, and is a process corresponding to the calculation of Expression (245). The span correction unit 51 calculates the magnitude | EdA41 | of the electromotive force sum EdA41 as follows.
| EdA41 | = r4s0 (254)
Then, the span correction unit 51 calculates the angle ∠EdA41 of the electromotive force sum EdA41 as the following equation.
∠EdA41 = φ4s0 (255)
This completes the process of step 405.

続いて、スパン補正部51は、電極間起電力E40を起電力和EdA41で正規化した正規化起電力En40の大きさと角度を求める(ステップ406)。このステップ406の処理は、式(247)の算出に相当する処理である。スパン補正部51は、正規化起電力En40の大きさ|En40|を次式のように算出する。
|En40|=(r40/|EdA41|)・ω0 ・・・(256)
Subsequently, the span correction unit 51 obtains the magnitude and angle of the normalized electromotive force En40 obtained by normalizing the inter-electrode electromotive force E40 with the electromotive force sum EdA41 (step 406). The process of step 406 is a process corresponding to the calculation of equation (247). The span correction unit 51 calculates the magnitude | En40 | of the normalized electromotive force En40 as the following equation.
| En40 | = (r40 / | EdA41 |) · ω0 (256)

そして、スパン補正部51は、正規化起電力En40の角度∠En40を次式のように算出する。
∠En40=φ40−∠EdA41 ・・・(257)
さらに、スパン補正部51は、正規化起電力En40の実軸成分En40xと虚軸成分En40yを次式のように算出する。
En40x=|En40|・cos(∠En40) ・・・(258)
En40y=|En40|・sin(∠En40) ・・・(259)
これで、ステップ406の処理が終了する。
Then, the span correction unit 51 calculates the angle ∠En40 of the normalized electromotive force En40 as the following expression.
∠En40 = φ40−∠EdA41 (257)
Further, the span correction unit 51 calculates the real axis component En40x and the imaginary axis component En40y of the normalized electromotive force En40 as the following expression.
En40x = | En40 | .cos (∠En40) (258)
En40y = | En40 | .sin (∠En40) (259)
This completes the process of step 406.

次に、スパン補正部51は、起電力和E4s2を近似した起電力和EdA42の大きさと角度を求める(ステップ407)。このステップ407の処理は、第2の∂A/∂t成分を求めることに対応する処理である。スパン補正部51は、起電力和EdA42の大きさ|EdA42|を次式のように算出する。
|EdA42|=r4s2 ・・・(260)
そして、スパン補正部51は、起電力和EdA42の角度∠EdA42を次式のように算出する。
∠EdA42=φ4s2 ・・・(261)
これで、ステップ407の処理が終了する。
Next, the span correction unit 51 obtains the magnitude and angle of the electromotive force sum EdA42 that approximates the electromotive force sum E4s2 (step 407). The processing in step 407 is processing corresponding to obtaining the second ∂A / ∂t component. The span correction unit 51 calculates the magnitude | EdA42 | of the electromotive force sum EdA42 as follows.
| EdA42 | = r4s2 (260)
Then, the span correction unit 51 calculates the angle ∠EdA42 of the electromotive force sum EdA42 as the following equation.
∠EdA42 = φ4s2 (261)
This completes the process of step 407.

続いて、スパン補正部51は、電極間起電力E42を起電力和EdA42で正規化した正規化起電力En42の大きさと角度を求める(ステップ408)。このステップ408の処理は、式(250)の算出に相当する処理である。スパン補正部51は、正規化起電力En42の大きさ|En42|を次式のように算出する。
|En42|=(r42/|EdA42|)・ω2 ・・・(262)
Subsequently, the span correction unit 51 obtains the magnitude and angle of the normalized electromotive force En42 obtained by normalizing the interelectrode electromotive force E42 with the electromotive force sum EdA42 (step 408). The process of step 408 is a process corresponding to the calculation of Expression (250). The span correction unit 51 calculates the magnitude | En42 | of the normalized electromotive force En42 as the following expression.
| En42 | = (r42 / | EdA42 |) · ω2 (262)

そして、スパン補正部51は、正規化起電力En42の角度∠En42を次式のように算出する。
∠En42=φ42−∠EdA42 ・・・(263)
さらに、スパン補正部51は、正規化起電力En42の実軸成分En42xと虚軸成分En42yを次式のように算出する。
En42x=|En42|・cos(∠En42) ・・・(264)
En42y=|En42|・sin(∠En42) ・・・(265)
これで、ステップ408の処理が終了する。
Then, the span correction unit 51 calculates the angle ∠En42 of the normalized electromotive force En42 as the following expression.
∠En42 = φ42−∠EdA42 (263)
Further, the span correction unit 51 calculates the real axis component En42x and the imaginary axis component En42y of the normalized electromotive force En42 as the following expression.
En42x = | En42 | .cos (∠En42) (264)
En42y = | En42 | .sin (∠En42) (265)
This completes the process of step 408.

次に、信号変換部5の0点補正部52は、正規化起電力En40とEn42との起電力差EdA43の大きさを求める(ステップ409)。このステップ409の処理は、第3の∂A/∂t成分を求めることに対応する処理であり、式(251)の算出に相当する処理である。0点補正部52は、起電力差EdA43の実軸成分EdA43xと虚軸成分EdA43yを次式のように算出する。
EdA43x=(En40x−En42x)・ω0/(ω0−ω2) ・・(266)
EdA43y=(En40y−En42y)・ω0/(ω0−ω2) ・・(267)
Next, the zero point correction unit 52 of the signal conversion unit 5 obtains the magnitude of the electromotive force difference EdA43 between the normalized electromotive forces En40 and En42 (step 409). The process of step 409 is a process corresponding to obtaining the third ∂A / ∂t component, and is a process corresponding to the calculation of Expression (251). The zero point correction unit 52 calculates the real axis component EdA43x and the imaginary axis component EdA43y of the electromotive force difference EdA43 as follows.
EdA43x = (En40x−En42x) · ω0 / (ω0−ω2) (266)
EdA43y = (En40y−En42y) · ω0 / (ω0−ω2) (267)

そして、0点補正部52は、正規化起電力En40から起電力差EdA43を取り除き、v×B成分EvBn4の大きさを求める(ステップ410)。このステップ410の処理は、式(252)の算出に相当する処理である。0点補正部52は、v×B成分EvBn4の大きさ|EvBn4|を次式のように算出する。
|EvBn4|={(En40x−EdA43x)2
+(En40y−EdA43y)21/2 ・・・(268)
Then, the zero point correction unit 52 removes the electromotive force difference EdA43 from the normalized electromotive force En40 and obtains the magnitude of the v × B component EvBn4 (step 410). The process of step 410 is a process corresponding to the calculation of equation (252). The zero point correction unit 52 calculates the magnitude | EvBn4 | of the v × B component EvBn4 as follows.
| EvBn4 | = {(En40x−EdA43x) 2
+ (En40y−EdA43y) 2 } 1/2 (268)

流量出力部6は、被測定流体の流速の大きさVを次式のように算出する(ステップ411)。このステップ411の処理は、式(253)の算出に相当する処理である。
V=|EvBn4|/γ ・・・(269)
なお、比例係数γは、校正等により予め求めることができる定数である。信号変換部5と流量出力部6とは、以上のようなステップ401〜411の処理を例えばオペレータによって計測終了が指示されるまで(ステップ412においてYES)、一定周期毎に行う。なお、ステップ403〜411の処理は第2の励磁状態において行われる。
The flow rate output unit 6 calculates the magnitude V of the flow velocity of the fluid to be measured as in the following equation (step 411). The process of step 411 is a process corresponding to the calculation of Expression (253).
V = | EvBn4 | / γ (269)
The proportionality coefficient γ is a constant that can be obtained in advance by calibration or the like. The signal conversion unit 5 and the flow rate output unit 6 perform the processes in steps 401 to 411 as described above at regular intervals until the operator instructs the end of measurement (YES in step 412). Note that the processing in steps 403 to 411 is performed in the second excitation state.

以上のように、本実施の形態では、第1の励磁状態において、角周波数ω0の成分の起電力E40と、角周波数(ω0+ω1)の成分と角周波数(ω0−ω1)成分との起電力和E4s0を求め、第2の励磁状態において、角周波数ω2の成分の起電力E42と、角周波数(ω2+ω1)の成分と角周波数(ω2−ω1)成分との起電力和E4s2を求める。そして、本実施の形態では、第1の励磁コイル3aから発生する磁場B10と第2の励磁コイル3bから発生する磁場B11とが等しくなるように設定しておくと、起電力和E4s0が近似的に第1の∂A/∂t成分として抽出でき、また起電力和E4s2が近似的に第2の∂A/∂t成分として抽出できることに着眼し、第1の∂A/∂t成分を用いて電極間起電力E40中のv×B成分の流速の大きさVにかかるスパンを正規化すると共に、第2の∂A/∂t成分を用いて電極間起電力E42中のv×B成分の流速の大きさVにかかるスパンを正規化し、正規化起電力En40とEn42とから起電力差EdA43(第3の∂A/∂t成分)を抽出して、正規化起電力En40から第3の∂A/∂t成分を取り除くことによりv×B成分を抽出し、このv×B成分から被測定流体の流量を算出するようにしたので、正確なスパン補正を自動的に行うことができ、かつ被測定流体の流量を0にすることなく電磁流量計の出力の0点を補正することができ、高周波励磁においても0点の安定性を確保することができる。   As described above, in the present embodiment, in the first excitation state, the electromotive force E40 of the component of the angular frequency ω0, the electromotive force sum of the component of the angular frequency (ω0 + ω1) and the angular frequency (ω0−ω1) component. E4s0 is obtained, and in the second excitation state, an electromotive force E42 of the component of the angular frequency ω2, and an electromotive force sum E4s2 of the angular frequency (ω2 + ω1) component and the angular frequency (ω2-ω1) component are obtained. In this embodiment, if the magnetic field B10 generated from the first excitation coil 3a is set to be equal to the magnetic field B11 generated from the second excitation coil 3b, the electromotive force sum E4s0 is approximate. The first 抽出 A / 起 t component can be extracted as the first ∂A / ∂t component, and the electromotive force sum E4s2 can be approximately extracted as the second 、 A / ∂t component. Normalizing the span of the flow velocity V of the v × B component in the interelectrode electromotive force E40 and using the second ∂A / ∂t component, the v × B component in the interelectrode electromotive force E42 Normalization is performed on the span of the flow velocity V, the electromotive force difference EdA43 (third ∂A / ∂t component) is extracted from the normalized electromotive forces En40 and En42, and the normalized electromotive force En40 is used as the third. By removing the ∂A / ∂t component of Since the flow rate of the fluid to be measured is calculated from the v × B component, accurate span correction can be automatically performed, and the flow rate of the electromagnetic flow meter can be reduced without reducing the flow rate of the fluid to be measured to zero. The zero point of the output can be corrected, and the stability of the zero point can be ensured even in high frequency excitation.

また、本実施の形態では、周波数による磁場の損失の違いを考慮して、角周波数ω0の起電力E40のv×B成分を起電力和E4s0から抽出した同じ角周波数の第1の∂A/∂t成分を用いて正規化すると共に、角周波数ω2の起電力E42のv×B成分を起電力和E4s2から抽出した同じ角周波数の第2の∂A/∂t成分を用いて正規化し、それぞれ正規化した起電力En40とEn42との差を基に0補正を行うようにしたので、磁場の損失による影響がある場合でも、正確なスパン補正と0補正を行うことができる。
また、本実施の形態では、搬送波の周波数を切り換えるだけで、磁場の位相差を切り換える必要がなく、第1の実施の形態のように4つの励磁状態を用いる必要がないので、より高速に流量を算出することが可能になる。
In the present embodiment, in consideration of the difference in magnetic field loss depending on the frequency, the first ∂A / of the same angular frequency obtained by extracting the v × B component of the electromotive force E40 having the angular frequency ω0 from the electromotive force sum E4s0. Normalize using the ∂t component and normalize the v × B component of the electromotive force E42 of the angular frequency ω2 using the second ∂A / ∂t component of the same angular frequency extracted from the electromotive force sum E4s2. Since zero correction is performed based on the difference between the normalized electromotive forces En40 and En42, accurate span correction and zero correction can be performed even when there is an influence of magnetic field loss.
In the present embodiment, it is not necessary to switch the phase difference of the magnetic field only by switching the frequency of the carrier wave, and it is not necessary to use the four excitation states as in the first embodiment. Can be calculated.

なお、本実施の形態では、角周波数ω0の成分の起電力E40を0補正およびスパン補正の対象としたが、角周波数ω2の成分の起電力E42を0補正およびスパン補正の対象としてもよい。この場合は、次式のように正規化起電力En42とEn40とから起電力差EdA43(第3の∂A/∂t成分)を求める。
EdA43=(En42−En40)・ω2/(ω2−ω0) ・・・(270)
そして、次式のように正規化起電力En42から起電力差EdA43を引くことによりv×B成分EvBn4を求めるようにすればよい。その他の処理は電極間起電力E40を0補正およびスパン補正の対象とする場合と同じである。
|EvBn4|=|En42−EdA43| ・・・(271)
In the present embodiment, the electromotive force E40 of the component of the angular frequency ω0 is the target of 0 correction and span correction, but the electromotive force E42 of the component of the angular frequency ω2 may be the target of 0 correction and span correction. In this case, the electromotive force difference EdA43 (third ∂A / ∂t component) is obtained from the normalized electromotive forces En42 and En40 as in the following equation.
EdA43 = (En42−En40) · ω2 / (ω2−ω0) (270)
Then, the v × B component EvBn4 may be obtained by subtracting the electromotive force difference EdA43 from the normalized electromotive force En42 as in the following equation. The other processes are the same as those in the case where the interelectrode electromotive force E40 is subjected to 0 correction and span correction.
| EvBn4 | = | En42−EdA43 | (271)

[第5の実施の形態]
次に、本発明の第5の実施の形態について説明する。本実施の形態の電磁流量計は2個の励磁コイルと1対の電極とを有するものであり、信号処理系を除く構成は図1に示した電磁流量計と同様であるので、図1の符号を用いて本実施の形態の原理を説明する。本実施の形態は、正規化の対象となる合成ベクトルVas0+Vbs0を検出する方法として基本原理で説明した第2の検出方法を用い、第1の∂A/∂t成分を抽出する方法として基本原理で説明した第2の抽出方法を用いるものである。
[Fifth Embodiment]
Next, a fifth embodiment of the present invention will be described. The electromagnetic flow meter of the present embodiment has two excitation coils and a pair of electrodes, and the configuration excluding the signal processing system is the same as that of the electromagnetic flow meter shown in FIG. The principle of this embodiment will be described using reference numerals. The present embodiment uses the second detection method described in the basic principle as a method for detecting the composite vector Vas0 + Vbs0 to be normalized, and uses the basic principle as a method for extracting the first ∂A / ∂t component. The second extraction method described is used.

本実施の形態における励磁条件は第4の実施の形態と同様である。前記の式(228)において、磁場B11の角周波数ω0の成分の位相差θ11[ω0]をπ+θ11[ω0]で置き換え、θ01=θ00+Δθ01を代入したときの電極間起電力E5π0は次式で表される。
E5π0=rk・exp{j・(θ10[ω0]+θ00)}
・[ ω0・exp(j・π/2)
・{b10[ω0]+b11[ω0]・exp(j・Δθ11[ω0])}
+γ・V・exp(j・Δθ01)
・{b10[ω0]−b11[ω0]・exp(j・Δθ11[ω0])}]
・・・(272)
The excitation conditions in the present embodiment are the same as those in the fourth embodiment. In the equation (228), the phase difference θ11 [ω0] of the component of the angular frequency ω0 of the magnetic field B11 is replaced with π + θ11 [ω0], and the inter-electrode electromotive force E5π0 when θ01 = θ00 + Δθ01 is substituted is expressed by the following equation. The
E5π0 = rk · exp {j · (θ10 [ω0] + θ00)}
・ [Ω0 ・ exp (j ・ π / 2)
{B10 [ω0] + b11 [ω0] · exp (j · Δθ11 [ω0])}
+ Γ · V · exp (j · Δθ01)
{B10 [ω0] −b11 [ω0] · exp (j · Δθ11 [ω0])}]
... (272)

また、式(229)において、位相差θ11[ω0]をπ+θ11[ω0]で置き換え、θ01=θ00+Δθ01を代入したときの電極間起電力E5πp0は次式で表される。
E5πp0=(1/2)・ma・rk・exp(j・θ00)
・[(ω0+ω1)・exp(j・π/2)
・{b10[ω0+ω1]・exp(j・θ10[ω0+ω1])
−b11[ω0+ω1]・exp(j・θ11[ω0+ω1])}
+γ・V・exp(j・Δθ01)
・{b10[ω0+ω1]・exp(j・θ10[ω0+ω1])
+b11[ω0+ω1]・exp(j・θ11[ω0+ω1])}]
・・・(273)
In the equation (229), the inter-electrode electromotive force E5πp0 when the phase difference θ11 [ω0] is replaced by π + θ11 [ω0] and θ01 = θ00 + Δθ01 is substituted is expressed by the following equation.
E5πp0 = (1/2) · ma · rk · exp (j · θ00)
・ [(Ω0 + ω1) · exp (j · π / 2)
・ {B10 [ω0 + ω1] · exp (j · θ10 [ω0 + ω1])
-B11 [ω0 + ω1] · exp (j · θ11 [ω0 + ω1])}
+ Γ · V · exp (j · Δθ01)
・ {B10 [ω0 + ω1] · exp (j · θ10 [ω0 + ω1])
+ B11 [ω0 + ω1] · exp (j · θ11 [ω0 + ω1])}]
... (273)

また、式(230)において、位相差θ11[ω0]をπ+θ11[ω0]で置き換え、θ01=θ00+Δθ01を代入したときの電極間起電力E5πm0は次式で表される。但し、式(272)、式(273)、式(274)ではθ11[ω0]=θ10[ω0]+Δθ11[ω0]は適用せず、後の式で適用する。また、変調部分の位相差はもともと逆位相であったので同位相となることに注意が必要である。
E5πm0=(1/2)・ma・rk・exp(j・θ00)
・[(ω0−ω1)・exp(j・π/2)
・{b10[ω0−ω1]・exp(j・θ10[ω0−ω1])
−b11[ω0−ω1]・exp(j・θ11[ω0−ω1])}
+γ・V・exp(j・Δθ01)
・{b10[ω0−ω1]・exp(j・θ10[ω0−ω1])
+b11[ω0−ω1]・exp(j・θ11[ω0−ω1])}]
・・・(274)
In the equation (230), the inter-electrode electromotive force E5πm0 when the phase difference θ11 [ω0] is replaced by π + θ11 [ω0] and θ01 = θ00 + Δθ01 is substituted is expressed by the following equation. However, in the equations (272), (273), and (274), θ11 [ω0] = θ10 [ω0] + Δθ11 [ω0] is not applied, and is applied in the later equations. Also, it should be noted that the phase difference of the modulation part is originally opposite, so that it is the same phase.
E5πm0 = (1/2) · ma · rk · exp (j · θ00)
・ [(Ω0−ω1) · exp (j · π / 2)
{B10 [ω0-ω1] exp (j · θ10 [ω0-ω1])
−b11 [ω0−ω1] · exp (j · θ11 [ω0−ω1])}
+ Γ · V · exp (j · Δθ01)
{B10 [ω0-ω1] exp (j · θ10 [ω0-ω1])
+ B11 [ω0−ω1] · exp (j · θ11 [ω0−ω1])}]
... (274)

電極間起電力E5πp0とE5πm0との和をE5πs0とすれば、起電力和E5πs0は次式で表される。
E5πs0=E5πp0+E5πm0
=(1/2)・ma・rk・exp(j・θ00)
・[(ω0+ω1)・exp(j・π/2)
・{b10[ω0+ω1]・exp(j・θ10[ω0+ω1])
−b11[ω0+ω1]・exp(j・θ11[ω0+ω1])}
+γ・V・exp(j・Δθ01)
・{b10[ω0+ω1]・exp(j・θ10[ω0+ω1])
+b11[ω0+ω1]・exp(j・θ11[ω0+ω1])}]
+(1/2)・ma・rk・exp(j・θ00)
・[(ω0−ω1)・exp(j・π/2)
・{b10[ω0−ω1]・exp(j・θ10[ω0−ω1])
−b11[ω0−ω1]・exp(j・θ11[ω0−ω1])}
+γ・V・exp(j・Δθ01)
・{b10[ω0−ω1]・exp(j・θ10[ω0−ω1])
+b11[ω0−ω1]・exp(j・θ11[ω0−ω1])}]
=(1/2)・ma・rk・exp(j・θ00)
・[ω0・exp(j・π/2)
・{b10[ω0+ω1]・exp(j・θ10[ω0+ω1])
−b11[ω0+ω1]・exp(j・θ11[ω0+ω1])
+b10[ω0−ω1]・exp(j・θ10[ω0−ω1])
−b11[ω0−ω1]・exp(j・θ11[ω0−ω1])}
+ω1・exp(j・π/2)
・{b10[ω0+ω1]・exp(j・θ10[ω0+ω1])
−b11[ω0+ω1]・exp(j・θ11[ω0+ω1])
−b10[ω0−ω1]・exp(j・θ10[ω0−ω1])
+b11[ω0−ω1]・exp(j・θ11[ω0−ω1])}
+γ・V・exp(j・Δθ01)
・{b10[ω0+ω1]・exp(j・θ10[ω0+ω1])
+b11[ω0+ω1]・exp(j・θ11[ω0+ω1])
+b10[ω0−ω1]・exp(j・θ10[ω0−ω1])
+b11[ω0−ω1]・exp(j・θ11[ω0−ω1])}]
・・・(275)
If the sum of the interelectrode electromotive forces E5πp0 and E5πm0 is E5πs0, the electromotive force sum E5πs0 is expressed by the following equation.
E5πs0 = E5πp0 + E5πm0
= (1/2) · ma · rk · exp (j · θ00)
・ [(Ω0 + ω1) · exp (j · π / 2)
・ {B10 [ω0 + ω1] · exp (j · θ10 [ω0 + ω1])
-B11 [ω0 + ω1] · exp (j · θ11 [ω0 + ω1])}
+ Γ · V · exp (j · Δθ01)
・ {B10 [ω0 + ω1] · exp (j · θ10 [ω0 + ω1])
+ B11 [ω0 + ω1] · exp (j · θ11 [ω0 + ω1])}]
+ (1/2) · ma · rk · exp (j · θ00)
・ [(Ω0−ω1) · exp (j · π / 2)
{B10 [ω0-ω1] exp (j · θ10 [ω0-ω1])
−b11 [ω0−ω1] · exp (j · θ11 [ω0−ω1])}
+ Γ · V · exp (j · Δθ01)
{B10 [ω0-ω1] exp (j · θ10 [ω0-ω1])
+ B11 [ω0−ω1] · exp (j · θ11 [ω0−ω1])}]
= (1/2) · ma · rk · exp (j · θ00)
・ [Ω0 ・ exp (j ・ π / 2)
・ {B10 [ω0 + ω1] · exp (j · θ10 [ω0 + ω1])
-B11 [ω0 + ω1] · exp (j · θ11 [ω0 + ω1])
+ B10 [ω0−ω1] · exp (j · θ10 [ω0−ω1])
−b11 [ω0−ω1] · exp (j · θ11 [ω0−ω1])}
+ Ω1 · exp (j · π / 2)
・ {B10 [ω0 + ω1] · exp (j · θ10 [ω0 + ω1])
-B11 [ω0 + ω1] · exp (j · θ11 [ω0 + ω1])
−b10 [ω0−ω1] · exp (j · θ10 [ω0−ω1])
+ B11 [ω0−ω1] · exp (j · θ11 [ω0−ω1])}
+ Γ · V · exp (j · Δθ01)
・ {B10 [ω0 + ω1] · exp (j · θ10 [ω0 + ω1])
+ B11 [ω0 + ω1] · exp (j · θ11 [ω0 + ω1])
+ B10 [ω0−ω1] · exp (j · θ10 [ω0−ω1])
+ B11 [ω0−ω1] · exp (j · θ11 [ω0−ω1])}]
... (275)

式(235)〜式(238)の条件を式(275)に適用して起電力和E5πs0を近似したものをE5πs0aとおくと、起電力和E5πs0aは式(276)、式(277)で表される。
E5πs0a≒E5πs0 ・・・(276)
E5πs0a=(1/2)・ma・rk・exp(j・θ00)
・[ω0・exp(j・π/2)
・{2・b10[ω0]・exp(j・θ10[ω0])
−2・b11[ω0]・exp(j・θ11[ω0])}
+γ・V・exp(j・Δθ01)
・{2・b10[ω0]・exp(j・θ10[ω0])
+2・b11[ω0]・exp(j・θ11[ω0])}
・・・(277)
When E5πs0a is obtained by approximating the electromotive force sum E5πs0 by applying the conditions of the equations (235) to (238) to the equation (275), the electromotive force sum E5πs0a is expressed by the equations (276) and (277). Is done.
E5πs0a≈E5πs0 (276)
E5πs0a = (1/2) · ma · rk · exp (j · θ00)
・ [Ω0 ・ exp (j ・ π / 2)
・ {2 ・ b10 [ω0] ・ exp (j ・ θ10 [ω0])
-2 · b11 [ω0] · exp (j · θ11 [ω0])}
+ Γ · V · exp (j · Δθ01)
・ {2 ・ b10 [ω0] ・ exp (j ・ θ10 [ω0])
+ 2 · b11 [ω0] · exp (j · θ11 [ω0])}
... (277)

ここで、θ11[ω0]=θ10[ω0]+Δθ11[ω0]を式(277)の起電力和E5πs0aに代入したものをE5πs0bとすれば、起電力和E5πs0bは次式で表される。
E5πs0b=ma・rk・exp{j・(θ10[ω0]+θ00)}
・[ω0・exp(j・π/2)
・{b10[ω0]−b11[ω0]・exp(j・Δθ11[ω0])}
+γ・V・exp(j・Δθ01)
・{b10[ω0]+b11[ω0]・exp(j・Δθ11[ω0])}]
・・・(278)
Here, if the value obtained by substituting θ11 [ω0] = θ10 [ω0] + Δθ11 [ω0] into the electromotive force sum E5πs0a of the equation (277) is E5πs0b, the electromotive force sum E5πs0b is expressed by the following equation.
E5πs0b = ma · rk · exp {j · (θ10 [ω0] + θ00)}
・ [Ω0 ・ exp (j ・ π / 2)
{B10 [ω0] −b11 [ω0] · exp (j · Δθ11 [ω0])}
+ Γ · V · exp (j · Δθ01)
{B10 [ω0] + b11 [ω0] · exp (j · Δθ11 [ω0])}]
... (278)

初期状態(校正時の状態)の磁場B10,B11おいて、b10[ω0]=b11[ω0]、Δθ11[ω0]=0と設定しておくと、その後のずれを考慮してもb10[ω0]≒b11[ω0]、Δθ11[ω0]≒0であり、第3の実施の形態で示した式(243)の条件式が成り立つ。
式(243)の条件を用いて、式(272)の電極間起電力E5π0を近似したものをma倍した起電力EdA51は次式で表される。この起電力EdA51は基本原理における第1の∂A/∂t成分に相当する。
EdA51≒E5π0・ma ・・・(279)
EdA51=ma・rk・exp{j・(θ10[ω0]+θ00)}
・ω0・exp(j・π/2)
・{b10[ω0]+b11[ω0]・exp(j・Δθ11[ω0])}
・・・(280)
In the initial state (calibration state) of the magnetic fields B10 and B11, if b10 [ω0] = b11 [ω0] and Δθ11 [ω0] = 0 are set, b10 [ω0 ] ≈b11 [ω0], Δθ11 [ω0] ≈0, and the conditional expression (243) shown in the third embodiment holds.
An electromotive force EdA51 obtained by multiplying an approximation of the interelectrode electromotive force E5π0 of the equation (272) using the condition of the equation (243) is expressed by the following equation. This electromotive force EdA51 corresponds to the first ∂A / ∂t component in the basic principle.
EdA51≈E5π0 · ma (279)
EdA51 = ma · rk · exp {j · (θ10 [ω0] + θ00)}
・ Ω0 ・ exp (j ・ π / 2)
{B10 [ω0] + b11 [ω0] · exp (j · Δθ11 [ω0])}
... (280)

起電力EdA51は、流速の大きさVに関係しないので、∂A/∂tによって発生する成分のみとなる。この起電力EdA51を用いて起電力和E5πs0b(合成ベクトルVas0+Vbs0)中のv×B成分の流速の大きさVにかかる係数(スパン)を正規化する。起電力和E5πs0bを起電力EdA51で正規化し、ω0倍した結果をEn50とすれば、正規化起電力和En50は次式で表される。
En50=(E5πs0b/EdA51)・ω0
=ma・rk・exp{j・(θ10[ω0]+θ00)}
・[ ω0・exp(j・π/2)
・{b10[ω0]−b11[ω0]・exp(j・Δθ11[ω0])}
+γ・V・exp(j・Δθ01)
・{b10[ω0]+b11[ω0]・exp(j・Δθ11[ω0])}]
/[ma・rk・exp{j・(θ10[ω0]+θ00)}
・ω0・exp(j・π/2)
・{b10[ω0]+b11[ω0]・exp(j・Δθ11[ω0])}]・ω0
=ω0・{b10[ω0]−b11[ω0]・exp(j・Δθ11[ω0])}
/{b10[ω0]+b11[ω0]・exp(j・Δθ11[ω0])}
+[γ・exp{j・(−π/2+Δθ01)}]・V ・・・(281)
Since the electromotive force EdA51 is not related to the magnitude V of the flow velocity, only the component generated by ∂A / ∂t is included. Using this electromotive force EdA51, the coefficient (span) applied to the magnitude V of the flow velocity of the v × B component in the electromotive force sum E5πs0b (combined vector Vas0 + Vbs0) is normalized. When the electromotive force sum E5πs0b is normalized by the electromotive force EdA51 and multiplied by ω0 is En50, the normalized electromotive force sum En50 is expressed by the following equation.
En50 = (E5πs0b / EdA51) · ω0
= Ma · rk · exp {j · (θ10 [ω0] + θ00)}
・ [Ω0 ・ exp (j ・ π / 2)
{B10 [ω0] −b11 [ω0] · exp (j · Δθ11 [ω0])}
+ Γ · V · exp (j · Δθ01)
{B10 [ω0] + b11 [ω0] · exp (j · Δθ11 [ω0])}]
/ [Ma · rk · exp {j · (θ10 [ω0] + θ00)}
・ Ω0 ・ exp (j ・ π / 2)
{B10 [ω0] + b11 [ω0] · exp (j · Δθ11 [ω0])}] · ω0
= Ω0 · {b10 [ω0] −b11 [ω0] · exp (j · Δθ11 [ω0])}
/ {B10 [ω0] + b11 [ω0] · exp (j · Δθ11 [ω0])}
+ [Γ · exp {j · (−π / 2 + Δθ01)}] · V (281)

式(52)を用いると、式(281)の右辺第1項の角周波数ω0にかかる係数{b10[ω0]−b11[ω0]・exp(j・Δθ11[ω0])}/{b10[ω0]+b11[ω0]・exp(j・Δθ11[ω0])}を、角周波数ω0に関係しない値{b10−b11・exp(j・Δθ11)}/{b10+b11・exp(j・Δθ11)}で表すことができる。したがって、式(281)を次式のように置き換えることができる。
En50=ω0・{b10−b11・exp(j・Δθ11)}
/{b10+b11・exp(j・Δθ11)}
+[γ・exp{j・(−π/2+Δθ01)}]・V ・・・(282)
Using the equation (52), the coefficient {b10 [ω0] −b11 [ω0] · exp (j · Δθ11 [ω0])} / {b10 [ω0] applied to the angular frequency ω0 of the first term on the right side of the equation (281). ] + B11 [ω0] · exp (j · Δθ11 [ω0])} is represented by a value {b10−b11 · exp (j · Δθ11)} / {b10 + b11 · exp (j · Δθ11)} not related to the angular frequency ω0. be able to. Therefore, the equation (281) can be replaced by the following equation.
En50 = ω0 · {b10−b11 · exp (j · Δθ11)}
/ {B10 + b11 · exp (j · Δθ11)}
+ [Γ · exp {j · (−π / 2 + Δθ01)}] · V (282)

式(282)の右辺第2項が、v×Bにより発生する成分を正規化した項となる。なお、起電力和E5πs0bを起電力EdA51で正規化した結果をω0倍した理由は、流速の大きさVに係る右辺第2項から励磁角周波数ω0を消去するためである。流速の大きさVにかかる複素係数は、γの大きさ、−π/2+Δθ01の実軸からの角度をもつ。係数γおよび角度Δθ01は校正等により予め求めることができる定数であり、式(282)の右辺第2項は被測定流体の流速が変化しないかぎり一定となる。したがって、∂A/∂tの成分をもちいてv×B成分の正規化を行うことにより、磁場のシフトや位相変化による誤差を自動的に補正するスパン補正を実現することができる。   The second term on the right side of Expression (282) is a term obtained by normalizing the component generated by v × B. The reason why the result obtained by normalizing the electromotive force sum E5πs0b with the electromotive force EdA51 is multiplied by ω0 is to eliminate the excitation angular frequency ω0 from the second term on the right side of the magnitude V of the flow velocity. The complex coefficient relating to the magnitude V of the flow velocity has an angle from the real axis of the magnitude of γ, −π / 2 + Δθ01. The coefficient γ and the angle Δθ01 are constants that can be obtained in advance by calibration or the like, and the second term on the right side of the equation (282) is constant as long as the flow velocity of the fluid to be measured does not change. Therefore, by performing the normalization of the v × B component using the component ∂A / ∂t, it is possible to realize span correction that automatically corrects errors due to magnetic field shifts and phase changes.

次に、0点の変動要因である、式(282)の右辺第1項を除去する方法について説明する。搬送波の角周波数をω0の代わりにω2とする場合、前記の式(248)、式(249)においてθ11をπ+θ11で置き換えた式で磁場B10,B11が表される。角周波数ω0での正規化と同様に角周波数ω2において正規化を行う。角周波数ω2においてスパン補正の対象となる起電力和E5πs2は、式(273)において角周波数ω0をω2で置き換えた電極間起電力E5πp2と式(274)において角周波数ω0をω2で置き換えた電極間起電力E5πm2との和E5πp2+E5πm2で表される。第2の∂A/∂t成分の基となる電極間起電力E5π2は、式(272)において角周波数ω0をω2で置き換えたもので表される。第2の∂A/∂t成分となる起電力EdA52は、式(280)において角周波数ω0をω2で置き換えたものとなる。   Next, a method for removing the first term on the right side of the equation (282), which is a variation factor of the zero point, will be described. When the angular frequency of the carrier wave is ω2 instead of ω0, the magnetic fields B10 and B11 are expressed by the equations in which θ11 is replaced by π + θ11 in the equations (248) and (249). Normalization is performed at the angular frequency ω2 as in the normalization at the angular frequency ω0. The electromotive force sum E5πs2 to be subjected to span correction at the angular frequency ω2 is the inter-electrode electromotive force E5πp2 in which the angular frequency ω0 is replaced with ω2 in the equation (273) and the interelectrode between the electrodes in which the angular frequency ω0 is replaced with ω2 in the equation (274). It is represented by the sum E5πp2 + E5πm2 with the electromotive force E5πm2. The interelectrode electromotive force E5π2 that is the basis of the second ∂A / ∂t component is expressed by the equation (272) in which the angular frequency ω0 is replaced with ω2. The electromotive force EdA52 serving as the second ∂A / ∂t component is obtained by replacing the angular frequency ω0 with ω2 in the equation (280).

起電力和E5πs2を起電力EdA52で正規化し、ω2倍した結果をEn52とすれば、正規化起電力和En52は式(282)より次式で表される。
En52=ω2・{b10−b11・exp(j・Δθ11)}
/{b10+b11・exp(j・Δθ11)}
+[γ・exp{j・(−π/2+Δθ01)}]・V ・・・(283)
If the result of normalizing the electromotive force sum E5πs2 with the electromotive force EdA52 and multiplying it by ω2 is En52, the normalized electromotive force sum En52 is expressed by the following equation from the equation (282).
En52 = ω2 · {b10−b11 · exp (j · Δθ11)}
/ {B10 + b11 · exp (j · Δθ11)}
+ [Γ · exp {j · (−π / 2 + Δθ01)}] · V (283)

正規化起電力和En50とEn52との差をとり、求めた差分をω0/(ω0−ω2)倍した結果をEdA53とすれば、差分EdA53は次式で表される。この差分EdA53は基本原理における第3の∂A/∂t成分に相当する。
EdA53=(En50−En52)・ω0/(ω0−ω2)
=[{b10−b11・exp(j・Δθ11)}
/{b10+b11・exp(j・Δθ11)}
・ω0+γ・exp{j・(−π/2+Δθ01)}・V
−{b10−b11・exp(j・Δθ11)}
/{b10+b11・exp(j・Δθ11)}
・ω2−γ・exp{j・(−π/2+Δθ01)}・V]
・ω0/(ω0−ω2)
={b10−b11・exp(j・Δθ11)}
/{b10+b11・exp(j・Δθ11)}・ω0 ・・(284)
Taking the difference between the normalized electromotive force sums En50 and En52 and multiplying the obtained difference by ω0 / (ω0−ω2) as EdA53, the difference EdA53 is expressed by the following equation. This difference EdA53 corresponds to the third ∂A / ∂t component in the basic principle.
EdA53 = (En50−En52) · ω0 / (ω0−ω2)
= [{B10−b11 · exp (j · Δθ11)}
/ {B10 + b11 · exp (j · Δθ11)}
.Omega.0 + .gamma.exp {j. (-. Pi./2+.DELTA..theta.01)}.V
-{B10-b11 · exp (j · Δθ11)}
/ {B10 + b11 · exp (j · Δθ11)}
.Omega.2-.gamma.exp {j. (-. Pi./2+.DELTA..theta.01)}.V]
・ Ω0 / (ω0−ω2)
= {B10-b11 · exp (j · Δθ11)}
/ {B10 + b11 · exp (j · Δθ11)} · ω0 ·· (284)

差分EdA53は正規化された∂A/∂t成分を表し、式(282)の右辺第1項と等しくなるので、この差分EdA53を使用すれば、正規化されたv×B成分を正規化起電力和En50から取り出すことができる。式(282)の正規化起電力和En50から式(284)の差分EdA53を引いたときに得られるv×B成分をEvBn5とすると、v×B成分EvBn5は次式で表される。
EvBn5=En50−EdA53
={b10−b11・exp(j・Δθ11)}
/{b10+b11・exp(j・Δθ11)}・ω0
+[γ・exp{j・(−π/2+Δθ01)}]・V
−{b10−b11・exp(j・Δθ11)}
/{b10+b11・exp(j・Δθ11)}・ω0
=[γ・exp{j・(−π/2+Δθ01)}]・V ・・・(285)
The difference EdA53 represents the normalized ∂A / ∂t component and is equal to the first term on the right side of the equation (282). Therefore, if this difference EdA53 is used, the normalized v × B component is normalized. It can be taken out from the power sum En50. When the v × B component obtained by subtracting the difference EdA53 of the equation (284) from the normalized electromotive force sum En50 of the equation (282) is EvBn5, the v × B component EvBn5 is expressed by the following equation.
EvBn5 = En50-EdA53
= {B10-b11 · exp (j · Δθ11)}
/ {B10 + b11 · exp (j · Δθ11)} · ω0
+ [Γ · exp {j · (−π / 2 + Δθ01)}] · V
-{B10-b11 · exp (j · Δθ11)}
/ {B10 + b11 · exp (j · Δθ11)} · ω0
= [Γ · exp {j · (−π / 2 + Δθ01)}] · V (285)

v×B成分EvBn5は角周波数ω0,ω2に関係しない。流速の大きさVが0のときv×B成分EvBn5も0となることから分かるように、v×B成分EvBn5より、スパンが補正され、かつ0点が補正された出力を得ることができる。式(285)より、流速の大きさVは次式のように表される。
V=|EvBn5/[γ・exp{j・(−π/2+Δθ01)}]|
=|EvBn5|/γ ・・・(286)
The v × B component EvBn5 is not related to the angular frequencies ω0 and ω2. As can be seen from the fact that the v × B component EvBn5 becomes 0 when the magnitude V of the flow velocity is 0, an output in which the span is corrected and the zero point is corrected can be obtained from the v × B component EvBn5. From the equation (285), the magnitude V of the flow velocity is expressed as the following equation.
V = | EvBn5 / [γ · exp {j · (−π / 2 + Δθ01)}] |
= | EvBn5 | / γ (286)

なお、基本原理で用いた定数および変数と、本実施の形態の定数および変数との対応関係は以下の表5のとおりである。本実施の形態は、表5から明らかなように、前述の基本原理を具体的に実現する1つの例である。   Table 5 below shows the correspondence between the constants and variables used in the basic principle and the constants and variables in the present embodiment. As is apparent from Table 5, this embodiment is one example that specifically realizes the basic principle described above.

Figure 2006058175
Figure 2006058175

次に、本実施の形態の電磁流量計の具体的な構成とその動作について説明する。本実施の形態の電磁流量計の構成は第1の実施の形態と同様であるので、図16の符号を用いて説明する。本実施の形態の電磁流量計は、測定管1と、電極2a,2bと、第1、第2の励磁コイル3a,3bと、電源部4と、信号変換部5と、流量出力部6とを有する。   Next, a specific configuration and operation of the electromagnetic flow meter of the present embodiment will be described. Since the configuration of the electromagnetic flowmeter of the present embodiment is the same as that of the first embodiment, description will be made using the reference numerals in FIG. The electromagnetic flowmeter of the present embodiment includes a measuring tube 1, electrodes 2a and 2b, first and second exciting coils 3a and 3b, a power supply unit 4, a signal conversion unit 5, and a flow rate output unit 6. Have

信号変換部5は、第1の励磁状態と第2の励磁状態の各々において電極2a,2bで検出される合成起電力の振幅と位相を求め、これらの振幅と位相に基づいて第1の励磁状態の合成起電力の角周波数ω0の成分を第1の∂A/∂t成分として抽出すると共に、第2の励磁状態の合成起電力の角周波数ω2の成分を第2の∂A/∂t成分として抽出し、第1の励磁状態の合成起電力の角周波数ω0+ω1の成分と角周波数ω0−ω1の成分との起電力和を第1の補正対象起電力として、第1の∂A/∂t成分に基づいて第1の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去すると共に、第2の励磁状態の合成起電力の角周波数ω2+ω1の成分と角周波数ω2−ω1の成分との起電力和を第2の補正対象起電力として、第2の∂A/∂t成分に基づいて第2の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去するスパン補正部51と、スパン補正された第1の補正対象起電力とスパン補正された第2の補正対象起電力との差を第3の∂A/∂t成分として抽出し、このスパン補正された2つの補正対象起電力のうちいずれか1つの中から第3の∂A/∂t成分を取り除くことによりv×B成分を抽出する0点補正部52とから構成される。   The signal conversion unit 5 obtains the amplitude and phase of the combined electromotive force detected by the electrodes 2a and 2b in each of the first excitation state and the second excitation state, and performs the first excitation based on these amplitudes and phases. The component of the angular frequency ω0 of the combined electromotive force in the state is extracted as the first ∂A / ∂t component, and the component of the angular frequency ω2 of the combined electromotive force in the second excitation state is extracted as the second ∂A / ∂t. The first electromotive force sum of the component of the angular frequency ω0 + ω1 and the component of the angular frequency ω0−ω1 of the composite electromotive force in the first excitation state is extracted as a first correction target electromotive force. Based on the t component, the variation factor of the span included in the v × B component in the first correction target electromotive force is removed, and the angular frequency ω2 + ω1 component and the angular frequency ω2 of the composite electromotive force in the second excitation state are removed. The sum of the electromotive force with the component of −ω1 is set as the second correction target electromotive force, and the second power A span correction unit 51 that removes a variation factor of the span included in the v × B component in the second correction target electromotive force based on the A / ∂t component, and the first correction target electromotive force that has been subjected to span correction A difference from the second correction target electromotive force subjected to the span correction is extracted as a third ∂A / ∂t component, and the third one of the two correction target electromotive forces subjected to the span correction is extracted. The zero point correction unit 52 extracts the v × B component by removing the ∂A / ∂t component.

電源部4の動作は第4の実施の形態と同じである。図22は本実施の形態の信号変換部5と流量出力部6の動作を示すフローチャートである。まず、信号変換部5のスパン補正部51は、第4の実施の形態で説明した第1の励磁状態において、電極2aと2b間の起電力のうち角周波数ω0の成分の起電力E5π0の振幅r5π0を求めると共に、実軸と電極間起電力E5π0との位相差φ5π0を図示しない位相検波器により求める(図22ステップ501)。また、スパン補正部51は、第1の励磁状態において、電極2aと2b間の起電力のうち角周波数(ω0+ω1)の成分と角周波数(ω0−ω1)成分との和E5πs0の振幅r5πs0を求めると共に、実軸と起電力和E5πs0との位相差φ5πs0を位相検波器により求める(ステップ502)。   The operation of the power supply unit 4 is the same as that of the fourth embodiment. FIG. 22 is a flowchart showing the operations of the signal conversion unit 5 and the flow rate output unit 6 of the present embodiment. First, the span correction unit 51 of the signal conversion unit 5 has the amplitude of the electromotive force E5π0 of the component of the angular frequency ω0 in the electromotive force between the electrodes 2a and 2b in the first excitation state described in the fourth embodiment. In addition to obtaining r5π0, a phase difference φ5π0 between the real axis and the interelectrode electromotive force E5π0 is obtained by a phase detector (not shown) (step 501 in FIG. 22). Further, the span correction unit 51 obtains the amplitude r5πs0 of the sum E5πs0 of the angular frequency (ω0 + ω1) component and the angular frequency (ω0−ω1) component of the electromotive force between the electrodes 2a and 2b in the first excitation state. At the same time, a phase difference φ5πs0 between the real axis and the electromotive force sum E5πs0 is obtained by the phase detector (step 502).

続いて、スパン補正部51は、第4の実施の形態で説明した第2の励磁状態において、電極2aと2b間の起電力のうち角周波数ω2の成分の起電力E5π2の振幅r5π2を求めると共に、実軸と電極間起電力E5π2との位相差φ5π2を位相検波器により求める(ステップ503)。また、スパン補正部51は、第2の励磁状態において、電極2aと2b間の起電力のうち角周波数(ω2+ω1)の成分と角周波数(ω2−ω1)成分との和E5πs2の振幅r5πs2を求めると共に、実軸と起電力和E5πs2との位相差φ5πs2を位相検波器により求める(ステップ504)。   Subsequently, the span correction unit 51 obtains the amplitude r5π2 of the electromotive force E5π2 of the component of the angular frequency ω2 among the electromotive forces between the electrodes 2a and 2b in the second excitation state described in the fourth embodiment. Then, a phase difference φ5π2 between the real axis and the inter-electrode electromotive force E5π2 is obtained by a phase detector (step 503). The span correction unit 51 obtains the amplitude r5πs2 of the sum E5πs2 of the angular frequency (ω2 + ω1) component and the angular frequency (ω2-ω1) component of the electromotive force between the electrodes 2a and 2b in the second excitation state. At the same time, a phase difference φ5πs2 between the real axis and the electromotive force sum E5πs2 is obtained by the phase detector (step 504).

次に、スパン補正部51は、電極間起電力E5π0を近似した起電力EdA51の大きさと角度を求める(ステップ505)。このステップ505の処理は、第1の∂A/∂t成分を求めることに対応する処理であり、式(280)の算出に相当する処理である。スパン補正部51は、起電力EdA51の大きさ|EdA51|を次式のように算出する。
|EdA51|=r5π0 ・・・(287)
そして、スパン補正部51は、起電力EdA51の角度∠EdA51を次式のように算出する。
∠EdA51=φ5π0 ・・・(288)
これで、ステップ505の処理が終了する。
Next, the span correction unit 51 obtains the magnitude and angle of the electromotive force EdA51 that approximates the interelectrode electromotive force E5π0 (step 505). The process of step 505 is a process corresponding to obtaining the first ∂A / ∂t component, and is a process corresponding to the calculation of Expression (280). The span correction unit 51 calculates the magnitude | EdA51 | of the electromotive force EdA51 as the following equation.
| EdA51 | = r5π0 (287)
Then, the span correction unit 51 calculates the angle ∠EdA51 of the electromotive force EdA51 as the following equation.
∠EdA51 = φ5π0 (288)
This completes the process of step 505.

続いて、スパン補正部51は、起電力和E5πs0を起電力EdA51で正規化した正規化起電力和En50の大きさと角度を求める(ステップ506)。このステップ506の処理は、式(282)の算出に相当する処理である。スパン補正部51は、正規化起電力和En50の大きさ|En50|を次式のように算出する。
|En50|=(r5πs0/|EdA51|)・ω0 ・・・(289)
Subsequently, the span correction unit 51 obtains the magnitude and angle of the normalized electromotive force sum En50 obtained by normalizing the electromotive force sum E5πs0 with the electromotive force EdA51 (step 506). The process of step 506 is a process corresponding to the calculation of equation (282). The span correction unit 51 calculates the magnitude | En50 | of the normalized electromotive force sum En50 as the following equation.
| En50 | = (r5πs0 / | EdA51 |) · ω0 (289)

そして、スパン補正部51は、正規化起電力和En50の角度∠En50を次式のように算出する。
∠En50=φ5πs0−∠EdA51 ・・・(290)
さらに、スパン補正部51は、正規化起電力和En50の実軸成分En50xと虚軸成分En50yを次式のように算出する。
En50x=|En50|・cos(∠En50) ・・・(291)
En50y=|En50|・sin(∠En50) ・・・(292)
これで、ステップ506の処理が終了する。
Then, the span correction unit 51 calculates the angle ∠En50 of the normalized electromotive force sum En50 as the following expression.
∠En50 = φ5πs0−∠EdA51 (290)
Further, the span correction unit 51 calculates the real axis component En50x and the imaginary axis component En50y of the normalized electromotive force sum En50 as the following equation.
En50x = | En50 | .cos (∠En50) (291)
En50y = | En50 | .sin (∠En50) (292)
This completes the processing in step 506.

次に、スパン補正部51は、電極間起電力E5π2を近似した起電力EdA52の大きさと角度を求める(ステップ507)。このステップ507の処理は、第2の∂A/∂t成分を求めることに対応する処理である。スパン補正部51は、起電力EdA52の大きさ|EdA52|を次式のように算出する。
|EdA52|=r5π2 ・・・(293)
そして、スパン補正部51は、起電力EdA52の角度∠EdA52を次式のように算出する。
∠EdA52=φ5π2 ・・・(294)
これで、ステップ507の処理が終了する。
Next, the span correction unit 51 obtains the magnitude and angle of the electromotive force EdA52 that approximates the interelectrode electromotive force E5π2 (step 507). The processing in this step 507 is processing corresponding to obtaining the second ∂A / ∂t component. The span correction unit 51 calculates the magnitude | EdA52 | of the electromotive force EdA52 as follows.
| EdA52 | = r5π2 (293)
Then, the span correction unit 51 calculates the angle ∠EdA52 of the electromotive force EdA52 as the following equation.
∠EdA52 = φ5π2 (294)
This completes the processing in step 507.

続いて、スパン補正部51は、起電力和E5πs2を起電力EdA52で正規化した正規化起電力和En52の大きさと角度を求める(ステップ508)。このステップ508の処理は、式(283)の算出に相当する処理である。スパン補正部51は、正規化起電力和En52の大きさ|En52|を次式のように算出する。
|En52|=(r5πs2/|EdA52|)・ω2 ・・・(295)
Subsequently, the span correction unit 51 obtains the magnitude and angle of the normalized electromotive force sum En52 obtained by normalizing the electromotive force sum E5πs2 with the electromotive force EdA52 (step 508). The process of step 508 is a process corresponding to the calculation of Expression (283). The span correction unit 51 calculates the magnitude | En52 | of the normalized electromotive force sum En52 as follows.
| En52 | = (r5πs2 / | EdA52 |) · ω2 (295)

そして、スパン補正部51は、正規化起電力和En52の角度∠En52を次式のように算出する。
∠En52=φ5πs2−∠EdA52 ・・・(296)
さらに、スパン補正部51は、正規化起電力和En52の実軸成分En52xと虚軸成分En52yを次式のように算出する。
En52x=|En52|・cos(∠En52) ・・・(297)
En52y=|En52|・sin(∠En52) ・・・(298)
これで、ステップ508の処理が終了する。
Then, the span correction unit 51 calculates the angle ∠En52 of the normalized electromotive force sum En52 as the following equation.
∠En52 = φ5πs2-∠EdA52 (296)
Further, the span correction unit 51 calculates the real axis component En52x and the imaginary axis component En52y of the normalized electromotive force sum En52 as the following expression.
En52x = | En52 | .cos (∠En52) (297)
En52y = | En52 | .sin (∠En52) (298)
This completes the processing in step 508.

次に、信号変換部5の0点補正部52は、正規化起電力和En50とEn52との差分EdA53の大きさを求める(ステップ509)。このステップ509の処理は、第3の∂A/∂t成分を求めることに対応する処理であり、式(284)の算出に相当する処理である。0点補正部52は、差分EdA53の実軸成分EdA53xと虚軸成分EdA53yを次式のように算出する。
EdA53x=(En50x−En52x)・ω0/(ω0−ω2) ・・(299)
EdA53y=(En50y−En52y)・ω0/(ω0−ω2) ・・(300)
Next, the zero point correction unit 52 of the signal conversion unit 5 obtains the magnitude of the difference EdA53 between the normalized electromotive force sums En50 and En52 (step 509). The process of step 509 is a process corresponding to obtaining the third ∂A / ∂t component, and is a process corresponding to the calculation of Expression (284). The zero point correction unit 52 calculates the real axis component EdA53x and the imaginary axis component EdA53y of the difference EdA53 as in the following equation.
EdA53x = (En50x−En52x) · ω0 / (ω0−ω2) (299)
EdA53y = (En50y−En52y) · ω0 / (ω0−ω2) (300)

そして、0点補正部52は、正規化起電力和En50から差分EdA53を取り除き、v×B成分EvBn5の大きさを求める(ステップ510)。このステップ510の処理は、式(285)の算出に相当する処理である。0点補正部52は、v×B成分EvBn5の大きさ|EvBn5|を次式のように算出する。
|EvBn5|={(En50x−EdA53x)2
+(En50y−EdA53y)21/2 ・・・(301)
Then, the zero point correction unit 52 removes the difference EdA53 from the normalized electromotive force sum En50 and obtains the magnitude of the v × B component EvBn5 (step 510). The process of step 510 is a process corresponding to the calculation of equation (285). The zero point correction unit 52 calculates the magnitude | EvBn5 | of the v × B component EvBn5 as the following equation.
| EvBn5 | = {(En50x−EdA53x) 2
+ (En50y−EdA53y) 2 } 1/2 (301)

流量出力部6は、被測定流体の流速の大きさVを次式のように算出する(ステップ511)。このステップ511の処理は、式(286)の算出に相当する処理である。
V=|EvBn5|/γ ・・・(302)
なお、比例係数γは、校正等により予め求めることができる定数である。信号変換部5と流量出力部6とは、以上のようなステップ501〜511の処理を例えばオペレータによって計測終了が指示されるまで(ステップ512においてYES)、一定周期毎に行う。なお、ステップ503〜511の処理は第2の励磁状態において行われる。
The flow rate output unit 6 calculates the magnitude V of the flow velocity of the fluid to be measured as in the following equation (step 511). The process of step 511 is a process corresponding to the calculation of equation (286).
V = | EvBn5 | / γ (302)
The proportionality coefficient γ is a constant that can be obtained in advance by calibration or the like. The signal conversion unit 5 and the flow rate output unit 6 perform the processing in steps 501 to 511 as described above at regular intervals until, for example, the operator instructs the end of measurement (YES in step 512). Note that the processing in steps 503 to 511 is performed in the second excitation state.

以上のように、本実施の形態では、第1の励磁状態において、角周波数ω0の成分の起電力E5π0と、角周波数(ω0+ω1)の成分と角周波数(ω0−ω1)成分との起電力和E5πs0を求め、第2の励磁状態において、角周波数ω2の成分の起電力E5π2と、角周波数(ω2+ω1)の成分と角周波数(ω2−ω1)成分との起電力和E5πs2を求める。そして、本実施の形態では、第1の励磁コイル3aから発生する磁場B10と第2の励磁コイル3bから発生する磁場B11とが等しくなるように設定しておくと、電極間起電力E5π0が近似的に第1の∂A/∂t成分として抽出でき、また電極間起電力E5π2が近似的に第2の∂A/∂t成分として抽出できることに着眼し、第1の∂A/∂t成分を用いて起電力和E5πs0中のv×B成分の流速の大きさVにかかるスパンを正規化すると共に、第2の∂A/∂t成分を用いて起電力和E5πs2中のv×B成分の流速の大きさVにかかるスパンを正規化し、正規化起電力和En50とEn52とから差分EdA53(第3の∂A/∂t成分)を抽出して、正規化起電力和En50から第3の∂A/∂t成分を取り除くことによりv×B成分を抽出し、このv×B成分から被測定流体の流量を算出するようにしたので、正確なスパン補正を自動的に行うことができ、かつ被測定流体の流量を0にすることなく電磁流量計の出力の0点を補正することができ、高周波励磁においても0点の安定性を確保することができる。   As described above, in the present embodiment, in the first excitation state, the electromotive force E5π0 of the component of the angular frequency ω0, the electromotive force sum of the component of the angular frequency (ω0 + ω1) and the angular frequency (ω0−ω1) component. E5πs0 is obtained, and in the second excitation state, the electromotive force E5π2 of the component of the angular frequency ω2, and the electromotive force sum E5πs2 of the component of the angular frequency (ω2 + ω1) and the angular frequency (ω2-ω1) component are obtained. In this embodiment, if the magnetic field B10 generated from the first excitation coil 3a is set to be equal to the magnetic field B11 generated from the second excitation coil 3b, the interelectrode electromotive force E5π0 is approximated. Focusing on the fact that the first ∂A / ∂t component can be extracted, and the interelectrode electromotive force E5π2 can be approximately extracted as the second ∂A / ∂t component, the first ∂A / ∂t component Is used to normalize the span of the velocity V of the v × B component in the electromotive force sum E5πs0 and v × B component in the electromotive force sum E5πs2 using the second ∂A / ∂t component. Normalization is performed on the span of the flow velocity magnitude V, and a difference EdA53 (third ∂A / ∂t component) is extracted from the normalized electromotive force sums En50 and En52 to obtain a third from the normalized electromotive force sum En50. V × B by removing the ∂A / ∂t component of Since the flow rate of the fluid to be measured is calculated from this v × B component, accurate span correction can be automatically performed, and the electromagnetic flow can be obtained without reducing the flow rate of the fluid to be measured to zero. The zero point of the output of the flow meter can be corrected, and the stability of the zero point can be ensured even in high frequency excitation.

また、本実施の形態では、周波数による磁場の損失の違いを考慮して、起電力和E5πs0のv×B成分を起電力E5π0から抽出した同じ角周波数の第1の∂A/∂t成分を用いて正規化すると共に、起電力和E5πs2のv×B成分を起電力E5π2から抽出した同じ角周波数の第2の∂A/∂t成分を用いて正規化し、それぞれ正規化した起電力和En50とEn52との差を基に0補正を行うようにしたので、磁場の損失による影響がある場合でも、正確なスパン補正と0補正を行うことができる。
また、本実施の形態では、搬送波の周波数を切り換えるだけで、磁場の位相差を切り換える必要がなく、第1の実施の形態のように4つの励磁状態を用いる必要がないので、より高速に流量を算出することが可能になる。
In the present embodiment, the first ∂A / ∂t component having the same angular frequency obtained by extracting the v × B component of the electromotive force sum E5πs0 from the electromotive force E5π0 in consideration of the difference in magnetic field loss depending on the frequency. And normalizing the v × B component of the electromotive force sum E5πs2 using the second ∂A / ∂t component of the same angular frequency extracted from the electromotive force E5π2, and respectively normalizing the electromotive force sum En50. Since the zero correction is performed based on the difference between En and 52, accurate span correction and zero correction can be performed even when there is an influence due to the loss of the magnetic field.
In the present embodiment, it is not necessary to switch the phase difference of the magnetic field only by switching the frequency of the carrier wave, and it is not necessary to use the four excitation states as in the first embodiment. Can be calculated.

なお、本実施の形態では、起電力和E5πs0を0補正およびスパン補正の対象としたが、起電力和E5πs2を0補正およびスパン補正の対象としてもよい。この場合は、次式のように正規化起電力和En52とEn50とから差分EdA53(第3の∂A/∂t成分)を求める。
EdA53=(En52−En50)・ω2/(ω2−ω0) ・・・(303)
そして、次式のように正規化起電力和En52から差分EdA53を引くことによりv×B成分EvBn5を求めるようにすればよい。その他の処理は起電力和E5πs0を0補正およびスパン補正の対象とする場合と同じである。
|EvBn5|=|En52−EdA53| ・・・(304)
In the present embodiment, the electromotive force sum E5πs0 is the target of 0 correction and span correction, but the electromotive force sum E5πs2 may be the target of 0 correction and span correction. In this case, the difference EdA53 (third ∂A / ∂t component) is obtained from the normalized electromotive force sums En52 and En50 as in the following equation.
EdA53 = (En52-En50) · ω2 / (ω2-ω0) (303)
Then, the v × B component EvBn5 may be obtained by subtracting the difference EdA53 from the normalized electromotive force sum En52 as in the following equation. The other processes are the same as those in the case where the electromotive force sum E5πs0 is the target of 0 correction and span correction.
| EvBn5 | = | En52-EdA53 | (304)

[第6の実施の形態]
次に、本発明の第6の実施の形態について説明する。本実施の形態の電磁流量計は2個の励磁コイルと1対の電極とを有するものであり、信号処理系を除く構成は図1に示した電磁流量計と同様であるので、図1の符号を用いて本実施の形態の原理を説明する。本実施の形態は、正規化の対象となる合成ベクトルVas0+Vbs0を検出する方法として基本原理で説明した第2の検出方法を用い、第1の∂A/∂t成分を抽出する方法として基本原理で説明した第2の抽出方法を用いるものである。
[Sixth Embodiment]
Next, a sixth embodiment of the present invention will be described. The electromagnetic flow meter of the present embodiment has two excitation coils and a pair of electrodes, and the configuration excluding the signal processing system is the same as that of the electromagnetic flow meter shown in FIG. The principle of this embodiment will be described using reference numerals. The present embodiment uses the second detection method described in the basic principle as a method for detecting the composite vector Vas0 + Vbs0 to be normalized, and uses the basic principle as a method for extracting the first ∂A / ∂t component. The second extraction method described is used.

第1の励磁コイル3aから発生する磁場Bbのうち、電極2a,2b間を結ぶ電極軸EAX上において電極軸EAXおよび測定管軸PAXの双方と直交する磁場成分(磁束密度)B12と、第2の励磁コイル3bから発生する磁場Bcのうち、電極軸EAX上において電極軸EAXおよび測定管軸PAXの双方と直交する磁場成分(磁束密度)B13は、以下のように与えられるものとする。
B12=b12・cos{ω0・t−mp・cos(ω1・t)−θ12} ・・・(305)
B13=b13・cos{ω0・t+mp・cos(ω1・t)−θ13} ・・・(306)
Of the magnetic field Bb generated from the first exciting coil 3a, a magnetic field component (magnetic flux density) B12 orthogonal to both the electrode axis EAX and the measurement tube axis PAX on the electrode axis EAX connecting the electrodes 2a and 2b, The magnetic field component (magnetic flux density) B13 orthogonal to both the electrode axis EAX and the measurement tube axis PAX on the electrode axis EAX among the magnetic field Bc generated from the excitation coil 3b is given as follows.
B12 = b12 · cos {ω0 · t-mp · cos (ω1 · t) −θ12} (305)
B13 = b13 · cos {ω0 · t + mp · cos (ω1 · t) −θ13} (306)

式(305)、式(306)において、b12,b13は磁束密度B12,B13の振幅、ω0は搬送波の角周波数、ω1は変調波の角周波数、θ12は磁束密度B12とω0・t−mp・cos(ω1・t)との位相差(位相遅れ)、θ13は磁束密度B13とω0・t−mp・cos(ω1・t)との位相差、mpは位相変調指数である。以下、磁束密度B12を磁場B12とし、磁束密度B13を磁場B13とする。式(305)、式(306)は次式のように変形できる。   In equations (305) and (306), b12 and b13 are the amplitudes of the magnetic flux densities B12 and B13, ω0 is the angular frequency of the carrier wave, ω1 is the angular frequency of the modulated wave, and θ12 is the magnetic flux density B12 and ω0 · t-mp ·. The phase difference (phase lag) from cos (ω1 · t), θ13 is the phase difference between the magnetic flux density B13 and ω0 · t-mp · cos (ω1 · t), and mp is the phase modulation index. Hereinafter, the magnetic flux density B12 is referred to as a magnetic field B12, and the magnetic flux density B13 is referred to as a magnetic field B13. Expressions (305) and (306) can be transformed as follows.

B12=b12・cos{ω0・t−mp・cos(ω1・t)−θ12}
=b12・cos(ω0・t−θ12)・cos{−mp・cos(ω1・t)}
−b12・sin(ω0・t−θ12)・sin{−mp・cos(ω1・t)}
=b12・cos{ mp・cos(ω1・t)}
・{cos(ω0・t)・cos(−θ12)
−sin(ω0・t)・sin(−θ12)}
+b12・sin{ mp・cos(ω1・t)}
・{sin(ω0・t)・cos(−θ12)
+cos(ω0・t)・sin(−θ12)} ・・・(307)
B12 = b12 · cos {ω0 · t-mp · cos (ω1 · t) −θ12}
= B12 · cos (ω0 · t−θ12) · cos {−mp · cos (ω1 · t)}
−b12 · sin (ω0 · t−θ12) · sin {−mp · cos (ω1 · t)}
= B12 · cos {mp · cos (ω1 · t)}
・ {Cos (ω0 · t) ・ cos (−θ12)
-Sin (ω0 · t) · sin (-θ12)}
+ B12 · sin {mp · cos (ω1 · t)}
・ {Sin (ω0 · t) ・ cos (−θ12)
+ Cos (ω0 · t) · sin (−θ12)} (307)

B13=b13・cos{ω0・t+mp・cos(ω1・t)−θ13}
=b13・cos(ω0・t−θ13)・cos{mp・cos(ω1・t)}
−b13・sin(ω0・t−θ13)・sin{mp・cos(ω1・t)}
=−b13・cos{mp・cos(ω1・t)}
・{cos(ω0・t)・cos(−θ13)
−sin(ω0・t)・sin(−θ13)}
−b13・sin{mp・cos(ω1・t)}
・{sin(ω0・t)・cos(−θ13)
+cos(ω0・t)・sin(−θ13)} ・・・(308)
B13 = b13 · cos {ω0 · t + mp · cos (ω1 · t) −θ13}
= B13 · cos (ω0 · t−θ13) · cos {mp · cos (ω1 · t)}
−b13 · sin (ω0 · t−θ13) · sin {mp · cos (ω1 · t)}
= −b13 · cos {mp · cos (ω1 · t)}
・ {Cos (ω0 · t) ・ cos (−θ13)
-Sin (ω0 · t) · sin (-θ13)}
-B13 · sin {mp · cos (ω1 · t)}
・ {Sin (ω0 ・ t) ・ cos (−θ13)
+ Cos (ω0 · t) · sin (−θ13)} (308)

ここで、式(307)、式(308)のcos{mp・cos(ω1・t)}、sin{mp・cos(ω1・t)}は次式のように変換できる。   Here, cos {mp · cos (ω1 · t)} and sin {mp · cos (ω1 · t)} in the equations (307) and (308) can be converted as the following equations.

Figure 2006058175
Figure 2006058175

式(309)、式(310)においてJn(mp) (n=0,1,2,・・・・)は第1種ベッセル関数として知られており、この第1種ベッセル関数Jn(mp) は次式で与えられる。 In the expressions (309) and (310), J n (mp) (n = 0, 1, 2,...) Is known as a first kind Bessel function, and this first kind Bessel function J n ( mp) is given by:

Figure 2006058175
Figure 2006058175

なお、式(311)においてk!はkの階乗を意味する。式(309)、式(310)においてn=0,1の場合のみ採用すると、式(307)、式(308)は以下のように変形できる。
B12=J0(mp)・b12・{cos(θ12)}・cos(ω0・t)
+J0(mp)・b12・{sin(θ12)}・sin(ω0・t)
+J1(mp)・b12・{−sin(θ12)}・cos{(ω0+ω1)・t}
+J1(mp)・b12・{cos(θ12)}・sin{(ω0+ω1)・t}
+J1(mp)・b12・{−sin(θ12)}・cos{(ω0−ω1)・t}
+J1(mp)・b12・{cos(θ12)}・sin{(ω0−ω1)・t}
・・・(312)
In equation (311), k! Means the factorial of k. If only n = 0 and 1 are employed in the equations (309) and (310), the equations (307) and (308) can be modified as follows.
B12 = J 0 (mp) · b12 · {cos (θ12)} · cos (ω0 · t)
+ J 0 (mp) · b12 · {sin (θ12)} · sin (ω0 · t)
+ J 1 (mp) · b12 · {−sin (θ12)} · cos {(ω0 + ω1) · t}
+ J 1 (mp) · b12 · {cos (θ12)} · sin {(ω0 + ω1) · t}
+ J 1 (mp) · b12 · {−sin (θ12)} · cos {(ω0−ω1) · t}
+ J 1 (mp) · b12 · {cos (θ12)} · sin {(ω0−ω1) · t}
... (312)

B13=J0(mp)・b13・{cos(θ13)}・cos(ω0・t)
+J0(mp)・b13・{sin(θ13)}・sin(ω0・t)
+J1(mp)・b13・{sin(θ13)}・cos{(ω0+ω1)・t}
+J1(mp)・b13・{−cos(θ13)}・sin{(ω0+ω1)・t}
+J1(mp)・b13・{sin(θ13)}・cos{(ω0−ω1)・t}
+J1(mp)・b13・{−cos(θ13)}・sin{(ω0−ω1)・t}
・・・(313)
B13 = J 0 (mp) · b13 · {cos (θ13)} · cos (ω0 · t)
+ J 0 (mp) · b13 · {sin (θ13)} · sin (ω0 · t)
+ J 1 (mp) · b13 · {sin (θ13)} · cos {(ω0 + ω1) · t}
+ J 1 (mp) · b13 · {−cos (θ13)} · sin {(ω0 + ω1) · t}
+ J 1 (mp) · b13 · {sin (θ13)} · cos {(ω0−ω1) · t}
+ J 1 (mp) · b13 · {−cos (θ13)} · sin {(ω0−ω1) · t}
... (313)

それぞれの角周波数における磁場の損失を考慮して、磁場B12,B13の角周波数ω0の成分の振幅b12,b13をそれぞれb12[ω0],b13[ω0]と関数表記に変更し、同様に角周波数ω0の成分の位相差θ12,θ13をそれぞれθ12[ω0],θ13[ω0]と変更する。また、磁場B12,B13の角周波数(ω0+ω1)の成分の振幅b12,b13をそれぞれb12[ω0+ω1],b13[ω0+ω1]と関数表記に変更し、同様に角周波数(ω0+ω1)の成分の位相差θ12,θ13をそれぞれθ12[ω0+ω1],θ13[ω0+ω1]と変更する。さらに、磁場B12,B13の角周波数(ω0−ω1)の成分の振幅b12,b13をそれぞれb12[ω0−ω1],b13[ω0−ω1]と関数表記に変更し、同様に角周波数(ω0−ω1)の成分の位相差θ12,θ13をそれぞれθ12[ω0−ω1],θ13[ω0−ω1]と変更する。これにより、式(312)、式(313)は式(314)、式(315)に置き換わる。   Considering the loss of the magnetic field at each angular frequency, the amplitudes b12 and b13 of the components of the angular frequency ω0 of the magnetic fields B12 and B13 are changed to function notations b12 [ω0] and b13 [ω0], respectively. The phase differences θ12 and θ13 of the component of ω0 are changed to θ12 [ω0] and θ13 [ω0], respectively. In addition, the amplitudes b12 and b13 of the components of the angular frequencies (ω0 + ω1) of the magnetic fields B12 and B13 are changed to b12 [ω0 + ω1] and b13 [ω0 + ω1], respectively, in the function notation. , Θ13 are changed to θ12 [ω0 + ω1] and θ13 [ω0 + ω1], respectively. Further, the amplitudes b12 and b13 of the components of the angular frequencies (ω0−ω1) of the magnetic fields B12 and B13 are changed to b12 [ω0−ω1] and b13 [ω0−ω1], respectively, and the angular frequencies (ω0− The phase differences θ12 and θ13 of the components of ω1) are changed to θ12 [ω0−ω1] and θ13 [ω0−ω1], respectively. As a result, Expression (312) and Expression (313) are replaced with Expression (314) and Expression (315).

B12=J0(mp)・b12[ω0]
・{cos(θ12[ω0])}・cos(ω0・t)
+J0(mp)・b12[ω0]・{sin(θ12[ω0])}・sin(ω0・t)
+J1(mp)・b12[ω0+ω1]・{−sin(θ12[ω0+ω1])}
・cos{(ω0+ω1)・t}
+J1(mp)・b12[ω0+ω1]・{cos(θ12[ω0+ω1])}
・sin{(ω0+ω1)・t}
+J1(mp)・b12[ω0−ω1]・{−sin(θ12[ω0−ω1])}
・cos{(ω0−ω1)・t}
+J1(mp)・b12[ω0−ω1]・{cos(θ12[ω0−ω1])}
・sin{(ω0−ω1)・t} ・・・(314)
B12 = J 0 (mp) · b12 [ω0]
{Cos (θ12 [ω0])} · cos (ω0 · t)
+ J 0 (mp) · b12 [ω0] · {sin (θ12 [ω0])} · sin (ω0 · t)
+ J 1 (mp) · b12 [ω0 + ω1] · {−sin (θ12 [ω0 + ω1])}
Cos {(ω0 + ω1) · t}
+ J 1 (mp) · b12 [ω0 + ω1] · {cos (θ12 [ω0 + ω1])}
Sin {(ω0 + ω1) · t}
+ J 1 (mp) · b12 [ω0−ω1] · {−sin (θ12 [ω0−ω1])}
Cos {(ω0−ω1) · t}
+ J 1 (mp) · b12 [ω0−ω1] · {cos (θ12 [ω0−ω1])}
Sin {(ω0−ω1) · t} (314)

B13=J0(mp)・b13[ω0]
・{cos(θ13[ω0])}・cos(ω0・t)
+J0(mp)・b13[ω0]・{sin(θ13[ω0])}・sin(ω0・t)
+J1(mp)・b13[ω0+ω1]・{sin(θ13[ω0+ω1])}
・cos{(ω0+ω1)・t}
+J1(mp)・b13[ω0+ω1]・{−cos(θ13[ω0+ω1])}
・sin{(ω0+ω1)・t}
+J1(mp)・b13[ω0−ω1]・{sin(θ13[ω0−ω1])}
・cos{(ω0−ω1)・t}
+J1(mp)・b13[ω0−ω1]・{−cos(θ13[ω0−ω1])}
・sin{(ω0−ω1)・t} ・・・(315)
B13 = J 0 (mp) · b13 [ω0]
{Cos (θ13 [ω0])} · cos (ω0 · t)
+ J 0 (mp) · b13 [ω0] · {sin (θ13 [ω0])} · sin (ω0 · t)
+ J 1 (mp) · b13 [ω0 + ω1] · {sin (θ13 [ω0 + ω1])}
Cos {(ω0 + ω1) · t}
+ J 1 (mp) · b13 [ω0 + ω1] · {−cos (θ13 [ω0 + ω1])}
Sin {(ω0 + ω1) · t}
+ J 1 (mp) · b13 [ω0−ω1] · {sin (θ13 [ω0−ω1])}
Cos {(ω0−ω1) · t}
+ J 1 (mp) · b13 [ω0−ω1] · {−cos (θ13 [ω0−ω1])}
Sin {(ω0−ω1) · t} (315)

磁場の変化に起因する起電力は、磁場の時間微分dB/dtによるので、第1の励磁コイル3aから発生する磁場B12と第2の励磁コイル3bから発生する磁場B13を次式のように微分する。
dB12/dt=J0(mp)・ω0・cos(ω0・t)
・b12[ω0]・{sin(θ12[ω0])}
+J0(mp)・ω0・sin(ω0・t)
・b12[ω0]・{−cos(θ12[ω0])}
+J1(mp)・(ω0+ω1)・cos{(ω0+ω1)・t}
・b12[ω0+ω1]・{cos(θ12[ω0+ω1])}
+J1(mp)・(ω0+ω1)・sin{(ω0+ω1)・t}
・b12[ω0+ω1]・{sin(θ12[ω0+ω1])}
+J1(mp)・(ω0−ω1)・cos{(ω0−ω1)・t}
・b12[ω0−ω1]・{cos(θ12[ω0−ω1])}
+J1(mp)・(ω0−ω1)・sin{(ω0−ω1)・t}
・b12[ω0−ω1]・{sin(θ12[ω0−ω1])}
・・・(316)
Since the electromotive force resulting from the change in the magnetic field is based on the time derivative dB / dt of the magnetic field, the magnetic field B12 generated from the first excitation coil 3a and the magnetic field B13 generated from the second excitation coil 3b are differentiated as follows: To do.
dB12 / dt = J 0 (mp) · ω0 · cos (ω0 · t)
B12 [ω0] · {sin (θ12 [ω0])}
+ J 0 (mp) · ω0 · sin (ω0 · t)
B12 [ω0] • {−cos (θ12 [ω0])}
+ J 1 (mp) · (ω0 + ω1) · cos {(ω0 + ω1) · t}
B12 [ω0 + ω1] · {cos (θ12 [ω0 + ω1])}
+ J 1 (mp) · (ω0 + ω1) · sin {(ω0 + ω1) · t}
B12 [ω0 + ω1] · {sin (θ12 [ω0 + ω1])}
+ J 1 (mp) · (ω0−ω1) · cos {(ω0−ω1) · t}
B12 [ω0−ω1] • {cos (θ12 [ω0−ω1])}
+ J 1 (mp) · (ω 0 −ω 1) · sin {(ω 0 −ω 1) · t}
B12 [ω0−ω1] • {sin (θ12 [ω0−ω1])}
... (316)

dB13/dt=J0(mp)・ω0・cos(ω0・t)
・b13[ω0]・{sin(θ13[ω0])}
+J0(mp)・ω0・sin(ω0・t)
・b13[ω0]・{−cos(θ13[ω0])}
+J1(mp)・(ω0+ω1)・cos{(ω0+ω1)・t}
・b13[ω0+ω1]・{−cos(θ13[ω0+ω1])}
+J1(mp)・(ω0+ω1)・sin{(ω0+ω1)・t}
・b13[ω0+ω1]・{−sin(θ13[ω0+ω1])}
+J1(mp)・(ω0−ω1)・cos{(ω0−ω1)・t}
・b13[ω0−ω1]・{−cos(θ13[ω0−ω1])}
+J1(mp)・(ω0−ω1)・sin{(ω0−ω1)・t}
・b13[ω0−ω1]・{−sin(θ13[ω0−ω1])}
・・・(317)
dB13 / dt = J 0 (mp) · ω0 · cos (ω0 · t)
B13 [ω0] · {sin (θ13 [ω0])}
+ J 0 (mp) · ω0 · sin (ω0 · t)
B13 [ω0] · {−cos (θ13 [ω0])}
+ J 1 (mp) · (ω0 + ω1) · cos {(ω0 + ω1) · t}
B13 [ω0 + ω1] • {−cos (θ13 [ω0 + ω1])}
+ J 1 (mp) · (ω0 + ω1) · sin {(ω0 + ω1) · t}
B13 [ω0 + ω1] • {−sin (θ13 [ω0 + ω1])}
+ J 1 (mp) · (ω0−ω1) · cos {(ω0−ω1) · t}
B13 [ω0−ω1] • {−cos (θ13 [ω0−ω1])}
+ J 1 (mp) · (ω 0 −ω 1) · sin {(ω 0 −ω 1) · t}
B13 [ω0−ω1] • {−sin (θ13 [ω0−ω1])}
... (317)

被測定流体の流速が0の場合、電極軸EAXと測定管軸PAXとを含む平面内において、磁場Bbの変化によって発生する、流速と無関係な電極間起電力E1と、磁場Bcの変化によって発生する、流速と無関係な電極間起電力E2は、図2に示すように互いに逆向きとなる。このとき、電極間起電力E1とE2とを足した全体の電極間起電力Eは、次式に示すように、磁場の時間微分dB12/dtとdB13/dtとの差(−dB12/dt+dB13/dt)にω0,(ω0−ω1),(ω0+ω1)それぞれの角周波数成分における比例係数rkをかけ、位相差θ12,θ13をそれぞれθ12+θ00,θ13+θ00で置き換えたものとなる(rk、θ00は、被測定流体の導電率及び誘電率と電極2a,2bの配置を含む測定管1の構造に関係する)。   When the flow rate of the fluid to be measured is 0, it is generated by the change in the electromotive force E1 between the electrodes that is irrelevant to the flow rate and the change in the magnetic field Bc. The inter-electrode electromotive force E2 irrelevant to the flow velocity is opposite to each other as shown in FIG. At this time, the total inter-electrode electromotive force E obtained by adding the inter-electrode electromotive forces E1 and E2 is the difference (−dB12 / dt + dB13 / dt) is multiplied by the proportional coefficient rk for each angular frequency component of ω0, (ω0−ω1), (ω0 + ω1), and the phase differences θ12 and θ13 are replaced by θ12 + θ00 and θ13 + θ00, respectively (rk and θ00 are measured). (Related to the structure of the measuring tube 1 including the conductivity and dielectric constant of the fluid and the arrangement of the electrodes 2a, 2b).

E=J0(mp)・rk・ω0・cos(ω0・t)
・{−b12[ω0]・sin(θ12[ω0]+θ00)
+b13[ω0]・sin(θ13[ω0]+θ00)}
+J0(mp)・rk・ω0・sin(ω0・t)
・{b12[ω0]・cos(θ12[ω0]+θ00)
−b13[ω0]・cos(θ13[ω0]+θ00)}
+J1(mp)・rk・(ω0+ω1)・cos{(ω0+ω1)・t}
・{−b12[ω0+ω1]・cos(θ12[ω0+ω1]+θ00)
−b13[ω0+ω1]・cos(θ13[ω0+ω1]+θ00)}
+J1(mp)・rk・(ω0+ω1)・sin{(ω0+ω1)・t}
・{−b12[ω0+ω1]・sin(θ12[ω0+ω1]+θ00)
−b13[ω0+ω1]・sin(θ13[ω0+ω1]+θ00)}
+J1(mp)・rk・(ω0−ω1)・cos{(ω0−ω1)・t}
・{−b12[ω0−ω1]・cos(θ12[ω0−ω1]+θ00)
−b13[ω0−ω1]・cos(θ13[ω0−ω1]+θ00)}
+J1(mp)・rk・(ω0−ω1)・sin{(ω0−ω1)・t}
・{−b12[ω0−ω1]・sin(θ12[ω0−ω1]+θ00)
−b13[ω0−ω1]・sin(θ13[ω0−ω1]+θ00)}
・・・(318)
E = J 0 (mp) · rk · ω0 · cos (ω0 · t)
{-B12 [ω0] · sin (θ12 [ω0] + θ00)
+ B13 [ω0] · sin (θ13 [ω0] + θ00)}
+ J 0 (mp) · rk · ω0 · sin (ω0 · t)
・ {B12 [ω0] · cos (θ12 [ω0] + θ00)
−b13 [ω0] · cos (θ13 [ω0] + θ00)}
+ J 1 (mp) · rk · (ω0 + ω1) · cos {(ω0 + ω1) · t}
・ {−b12 [ω0 + ω1] · cos (θ12 [ω0 + ω1] + θ00)
-B13 [ω0 + ω1] · cos (θ13 [ω0 + ω1] + θ00)}
+ J 1 (mp) · rk · (ω0 + ω1) · sin {(ω0 + ω1) · t}
{-B12 [ω0 + ω1] · sin (θ12 [ω0 + ω1] + θ00)
-B13 [ω0 + ω1] · sin (θ13 [ω0 + ω1] + θ00)}
+ J 1 (mp) · rk · (ω0−ω1) · cos {(ω0−ω1) · t}
{-B12 [ω0-ω1] · cos (θ12 [ω0-ω1] + θ00)
−b13 [ω0−ω1] · cos (θ13 [ω0−ω1] + θ00)}
+ J 1 (mp) · rk · (ω0−ω1) · sin {(ω0−ω1) · t}
{-B12 [ω0−ω1] · sin (θ12 [ω0−ω1] + θ00)
−b13 [ω0−ω1] · sin (θ13 [ω0−ω1] + θ00)}
... (318)

被測定流体の流速の大きさがV(V≠0)の場合、流速ベクトルvと磁場Bbによって発生する電極間起電力Ev1、流速ベクトルvと磁場Bcによって発生する電極間起電力Ev2は、図3に示すように同じ向きとなる。このとき、電極間起電力Ev1とEv2とを足した全体の電極間起電力Evは、次式に示すように、磁場B12と磁場B13との和にω0,(ω0−ω1),(ω0+ω1)それぞれの角周波数成分における比例係数rkvをかけ、位相差θ12,θ13をそれぞれθ12+θ01,θ13+θ01で置き換えたものとなる(rkv、θ01は、流速の大きさVと被測定流体の導電率及び誘電率と電極2a,2bの配置を含む測定管1の構造に関係する)。   When the magnitude of the flow velocity of the fluid to be measured is V (V ≠ 0), the interelectrode electromotive force Ev1 generated by the flow velocity vector v and the magnetic field Bb, and the interelectrode electromotive force Ev2 generated by the flow velocity vector v and the magnetic field Bc are shown in FIG. As shown in FIG. At this time, the total inter-electrode electromotive force Ev obtained by adding the inter-electrode electromotive forces Ev1 and Ev2 is ω0, (ω0−ω1), (ω0 + ω1) as the sum of the magnetic field B12 and the magnetic field B13, as shown in the following equation. The proportional coefficient rkv is applied to each angular frequency component, and the phase differences θ12 and θ13 are replaced with θ12 + θ01 and θ13 + θ01, respectively (rkv and θ01 are the flow velocity magnitude V, the conductivity and dielectric constant of the fluid to be measured, (Related to the structure of the measuring tube 1 including the arrangement of the electrodes 2a, 2b).

Ev=J0(mp)・rkv・cos(ω0・t)
・{b12[ω0]・cos(θ12[ω0]+θ01)
+b13[ω0]・cos(θ13[ω0]+θ01)}
+J0(mp)・rkv・sin(ω0・t)
・{b12[ω0]・sin(θ12[ω0]+θ01)
+b13[ω0]・sin(θ13[ω0]+θ01)}
+J1(mp)・rkv・cos{(ω0+ω1)・t}
・{−b12[ω0+ω1]・sin(θ12[ω0+ω1]+θ01)
+b13[ω0+ω1]・sin(θ13[ω0+ω1]+θ01)}
+J1(mp)・rkv・sin{(ω0+ω1)・t}
・{b12[ω0+ω1]・cos(θ12[ω0+ω1]+θ01)
−b13[ω0+ω1]・cos(θ13[ω0+ω1]+θ01)}
+J1(mp)・rkv・cos{(ω0−ω1)・t}
・{−b12[ω0−ω1]・sin(θ12[ω0−ω1]+θ01)
+b13[ω0−ω1]・sin(θ13[ω0−ω1]+θ01)}
+J1(mp)・rkv・sin{(ω0−ω1)・t}
・{b12[ω0−ω1]・cos(θ12[ω0−ω1]+θ01)
−b13[ω0−ω1]・cos(θ13[ω0−ω1]+θ01)}
・・・(319)
Ev = J 0 (mp) · rkv · cos (ω0 · t)
・ {B12 [ω0] · cos (θ12 [ω0] + θ01)
+ B13 [ω0] · cos (θ13 [ω0] + θ01)}
+ J 0 (mp) · rkv · sin (ω0 · t)
・ {B12 [ω0] · sin (θ12 [ω0] + θ01)
+ B13 [ω0] · sin (θ13 [ω0] + θ01)}
+ J 1 (mp) · rkv · cos {(ω0 + ω1) · t}
{-B12 [ω0 + ω1] · sin (θ12 [ω0 + ω1] + θ01)
+ B13 [ω0 + ω1] · sin (θ13 [ω0 + ω1] + θ01)}
+ J 1 (mp) · rkv · sin {(ω0 + ω1) · t}
・ {B12 [ω0 + ω1] · cos (θ12 [ω0 + ω1] + θ01)
-B13 [ω0 + ω1] · cos (θ13 [ω0 + ω1] + θ01)}
+ J 1 (mp) · rkv · cos {(ω0−ω1) · t}
{-B12 [ω0−ω1] · sin (θ12 [ω0−ω1] + θ01)
+ B13 [ω0−ω1] · sin (θ13 [ω0−ω1] + θ01)}
+ J 1 (mp) · rkv · sin {(ω0−ω1) · t}
{B12 [ω0−ω1] · cos (θ12 [ω0−ω1] + θ01)
−b13 [ω0−ω1] · cos (θ13 [ω0−ω1] + θ01)}
... (319)

図2、図3で説明した電極間起電力の向きを考慮すると、磁場の時間変化に起因する電極間起電力を複素ベクトルに変換した起電力と被測定流体の流速に起因する電極間起電力を複素ベクトルに変換した起電力とを合わせた全体の電極間起電力のうち、角周波数ω0の成分の起電力E60cは、式(318)の第1項および第2項と式(319)の第1項および第2項と式(17)とから次式で表される。
E60c=J0(mp)・rk・ω0・b12[ω0]
・exp{j・(π/2+θ12[ω0]+θ00)}
+J0(mp)・γ・rk・V・b12[ω0]
・exp{j・(θ12[ω0]+θ01)}
+J0(mp)・rk・ω0・b13[ω0]
・exp{j・(−π/2+θ13[ω0]+θ00)}
+J0(mp)・γ・rk・V・b13[ω0]
・exp{j・(θ13[ω0]+θ01)} ・・・(320)
In consideration of the direction of the electromotive force between the electrodes described in FIGS. 2 and 3, the electromotive force obtained by converting the interelectrode electromotive force due to the time change of the magnetic field into a complex vector and the interelectrode electromotive force due to the flow velocity of the fluid under measurement Of the total inter-electrode electromotive force obtained by combining the electromotive force converted into a complex vector, the electromotive force E60c of the component of the angular frequency ω0 is expressed by the first term and the second term of the equation (318) and the equation (319). From the first term and the second term and the equation (17), it is expressed by the following equation.
E60c = J 0 (mp) · rk · ω0 · b12 [ω0]
Exp {j · (π / 2 + θ12 [ω0] + θ00)}
+ J 0 (mp) · γ · rk · V · b12 [ω0]
Exp {j. (Θ12 [ω0] + θ01)}
+ J 0 (mp) · rk · ω0 · b13 [ω0]
Exp {j · (−π / 2 + θ13 [ω0] + θ00)}
+ J 0 (mp) · γ · rk · V · b13 [ω0]
Exp {j. (Θ13 [ω0] + θ01)} (320)

また、磁場の時間変化に起因する電極間起電力を複素ベクトルに変換した起電力と被測定流体の流速に起因する電極間起電力を複素ベクトルに変換した起電力とを合わせた全体の電極間起電力のうち、角周波数(ω0+ω1)の成分の起電力E6pcは、式(318)の第3項および第4項と式(319)の第3項および第4項と式(17)とから次式で表される。
E6pc=J1(mp)・rk・(ω0+ω1)・b12[ω0+ω1]
・exp{j・(π+θ12[ω0+ω1]+θ00)}
+J1(mp)・γ・rk・V・b12[ω0+ω1]
・exp{j・(π/2+θ12[ω0+ω1]+θ01)}
+J1(mp)・rk・(ω0+ω1)・b13[ω0+ω1]
・exp{j・(π+θ13[ω0+ω1]+θ00)}
+J1(mp)・γ・rk・V・b13[ω0+ω1]
・exp{j・(−π/2+θ13[ω0+ω1]+θ01)}
・・・(321)
In addition, the inter-electrode electromotive force obtained by converting the inter-electrode electromotive force caused by the time change of the magnetic field into a complex vector and the electromotive force obtained by converting the inter-electrode electromotive force caused by the flow velocity of the fluid to be measured into the complex vector Among the electromotive forces, the electromotive force E6pc of the component of the angular frequency (ω0 + ω1) is obtained from the third and fourth terms of Equation (318), the third and fourth terms of Equation (319), and Equation (17). It is expressed by the following formula.
E6pc = J 1 (mp) · rk · (ω0 + ω1) · b12 [ω0 + ω1]
Exp {j · (π + θ12 [ω0 + ω1] + θ00)}
+ J 1 (mp) · γ · rk · V · b12 [ω0 + ω1]
Exp {j · (π / 2 + θ12 [ω0 + ω1] + θ01)}
+ J 1 (mp) · rk · (ω0 + ω1) · b13 [ω0 + ω1]
• exp {j · (π + θ13 [ω0 + ω1] + θ00)}
+ J 1 (mp) · γ · rk · V · b13 [ω0 + ω1]
Exp {j. (− Π / 2 + θ13 [ω0 + ω1] + θ01)}
... (321)

また、磁場の時間変化に起因する電極間起電力を複素ベクトルに変換した起電力と被測定流体の流速に起因する電極間起電力を複素ベクトルに変換した起電力とを合わせた全体の電極間起電力のうち、角周波数(ω0−ω1)の成分の起電力E6mcは、式(318)の第5項および第6項と式(319)の第5項および第6項と式(17)とから次式で表される。
E6mc=J1(mp)・rk・(ω0−ω1)・b12[ω0−ω1]
・exp{j・(π+θ12[ω0−ω1]+θ00)}
+J1(mp)・γ・rk・V・b12[ω0−ω1]
・exp{j・(π/2+θ12[ω0−ω1]+θ01)}
+J1(mp)・rk・(ω0−ω1)・b13[ω0−ω1]
・exp{j・(π+θ13[ω0−ω1]+θ00)}
+J1(mp)・γ・rk・V・b12[ω0−ω1]
・exp{j・(−π/2+θ13[ω0−ω1]+θ01)}
・・・(322)
In addition, the inter-electrode electromotive force obtained by converting the inter-electrode electromotive force caused by the time change of the magnetic field into a complex vector and the electromotive force obtained by converting the inter-electrode electromotive force caused by the flow velocity of the fluid to be measured into the complex vector Among the electromotive forces, the electromotive force E6mc of the component of the angular frequency (ω0−ω1) is the fifth term and the sixth term of the equation (318) and the fifth term, the sixth term of the equation (319), and the equation (17). And is expressed by the following equation.
E6mc = J 1 (mp) · rk · (ω0−ω1) · b12 [ω0−ω1]
Exp {j · (π + θ12 [ω0−ω1] + θ00)}
+ J 1 (mp) · γ · rk · V · b12 [ω0−ω1]
Exp {j. (Π / 2 + θ12 [ω0−ω1] + θ01)}
+ J 1 (mp) · rk · (ω0−ω1) · b13 [ω0−ω1]
Exp {j. (Π + θ13 [ω0−ω1] + θ00)}
+ J 1 (mp) · γ · rk · V · b12 [ω0−ω1]
Exp {j · (−π / 2 + θ13 [ω0−ω1] + θ01)}
... (322)

ここで、磁場B12の角周波数ω0の成分の位相遅れθ12[ω0]と磁場B13の角周波数ω0の成分の位相遅れθ13[ω0]との関係がθ13[ω0]=θ12[ω0]+Δθ13[ω0]で、かつ虚軸に対する∂A/∂t成分の角度θ00と実軸に対するv×B成分の角度θ01との関係がθ01=θ00+Δθ01であるとき、式(320)にθ01=θ00+Δθ01及びθ13[ω0]=θ12[ω0]+Δθ13[ω0]を代入したときの電極間起電力E60は次式で表される。
E60=J0(mp)・rk・exp{j・(θ12[ω0]+θ00)}
・[ ω0・exp(j・π/2)
・{b12[ω0]−b13[ω0]・exp(j・Δθ13[ω0])}
+γ・V・exp(j・Δθ01)
・{b12[ω0]+b13[ω0]・exp(j・Δθ13[ω0])}]
・・・(323)
Here, the relationship between the phase delay θ12 [ω0] of the component of the angular frequency ω0 of the magnetic field B12 and the phase delay θ13 [ω0] of the component of the angular frequency ω0 of the magnetic field B13 is θ13 [ω0] = θ12 [ω0] + Δθ13 [ω0. ], And the relationship between the angle θ00 of the ∂A / ∂t component with respect to the imaginary axis and the angle θ01 of the v × B component with respect to the real axis is θ01 = θ00 + Δθ01, θ01 = θ00 + Δθ01 and θ13 [ω0 in Equation (320) ] = Θ12 [ω0] + Δθ13 [ω0] is substituted, and the inter-electrode electromotive force E60 is expressed by the following equation.
E60 = J 0 (mp) · rk · exp {j · (θ12 [ω0] + θ00)}
・ [Ω0 ・ exp (j ・ π / 2)
{B12 [ω0] −b13 [ω0] · exp (j · Δθ13 [ω0])}
+ Γ · V · exp (j · Δθ01)
{B12 [ω0] + b13 [ω0] · exp (j · Δθ13 [ω0])}]
... (323)

式(321)にθ01=θ00+Δθ01を代入したときの電極間起電力E6p0は次式で表される。
E6p0=J1(mp)・rk・exp{j・(π/2+θ00)}
・[(ω0+ω1)・exp(j・π/2)
・{b12[ω0+ω1]・exp(j・θ12[ω0+ω1])
+b13[ω0+ω1]・exp(j・θ13[ω0+ω1])}
+γ・V・exp(j・Δθ01)
・{b12[ω0+ω1]・exp(j・θ12[ω0+ω1])
−b13[ω0+ω1]・exp(j・θ13[ω0+ω1])}]
・・・(324)
The interelectrode electromotive force E6p0 when θ01 = θ00 + Δθ01 is substituted into the equation (321) is expressed by the following equation.
E6p0 = J 1 (mp) · rk · exp {j · (π / 2 + θ00)}
・ [(Ω0 + ω1) · exp (j · π / 2)
・ {B12 [ω0 + ω1] · exp (j · θ12 [ω0 + ω1])
+ B13 [ω0 + ω1] · exp (j · θ13 [ω0 + ω1])}
+ Γ · V · exp (j · Δθ01)
・ {B12 [ω0 + ω1] · exp (j · θ12 [ω0 + ω1])
−b13 [ω0 + ω1] · exp (j · θ13 [ω0 + ω1])}]
... (324)

式(322)にθ01=θ00+Δθ01を代入したときの電極間起電力E6m0は次式で表される。
E6m0=J1(mp)・rk・exp{j・(π/2+θ00)}
・[(ω0−ω1)・exp(j・π/2)
・{b12[ω0−ω1]・exp(j・θ12[ω0−ω1])
+b13[ω0−ω1]・exp(j・θ13[ω0−ω1])}
+γ・V・exp(j・Δθ01)
・{b12[ω0−ω1]・exp(j・θ12[ω0−ω1])
−b13[ω0−ω1]・exp(j・θ13[ω0−ω1])}]
・・・(325)
The inter-electrode electromotive force E6m0 when θ01 = θ00 + Δθ01 is substituted into the equation (322) is expressed by the following equation.
E6m0 = J 1 (mp) · rk · exp {j · (π / 2 + θ00)}
・ [(Ω0−ω1) · exp (j · π / 2)
{B12 [ω0-ω1] · exp (j · θ12 [ω0-ω1])
+ B13 [ω0−ω1] · exp (j · θ13 [ω0−ω1])}
+ Γ · V · exp (j · Δθ01)
{B12 [ω0-ω1] · exp (j · θ12 [ω0-ω1])
−b13 [ω0−ω1] · exp (j · θ13 [ω0−ω1])}]
... (325)

電極間起電力E6p0とE6m0との和をE6s0とすると、起電力和E6s0は次式で表される。
E6s0=E6p0+E6m0
=J1(mp)・rk・exp{j・(π/2+θ00)}
・[(ω0+ω1)・exp(j・π/2)
・{b12[ω0+ω1]・exp(j・θ12[ω0+ω1])
+b13[ω0+ω1]・exp(j・θ13[ω0+ω1])}
+γ・V・exp(j・Δθ01)
・{b12[ω0+ω1]・exp(j・θ12[ω0+ω1])
−b13[ω0+ω1]・exp(j・θ13[ω0+ω1])}]
+J1(mp)・rk・exp{j・(π/2+θ00)}
・[(ω0−ω1)・exp(j・π/2)
・{b12[ω0−ω1]・exp(j・θ12[ω0−ω1])
+b13[ω0−ω1]・exp(j・θ13[ω0−ω1])}
+γ・V・exp(j・Δθ01)
・{b12[ω0−ω1]・exp(j・θ12[ω0−ω1])
−b13[ω0−ω1]・exp(j・θ13[ω0−ω1])}]
=J1(mp)・rk・exp{j・(π/2+θ00)}
・[ω0・exp(j・π/2)
・{b12[ω0+ω1]・exp(j・θ12[ω0+ω1])
+b13[ω0+ω1]・exp(j・θ13[ω0+ω1])
+b12[ω0−ω1]・exp(j・θ12[ω0−ω1])
+b13[ω0−ω1]・exp(j・θ13[ω0−ω1])}
+ω1・exp(j・π/2)
・{b12[ω0+ω1]・exp(j・θ12[ω0+ω1])
+b13[ω0+ω1]・exp(j・θ13[ω0+ω1])
−b12[ω0−ω1]・exp(j・θ12[ω0−ω1])
−b13[ω0−ω1]・exp(j・θ13[ω0−ω1])}
+γ・V・exp(j・Δθ01)
・{b12[ω0+ω1]・exp(j・θ12[ω0+ω1])
−b13[ω0+ω1]・exp(j・θ13[ω0+ω1])
+b12[ω0−ω1]・exp(j・θ12[ω0−ω1])
−b13[ω0−ω1]・exp(j・θ13[ω0−ω1])}]
・・・(326)
When the sum of the inter-electrode electromotive forces E6p0 and E6m0 is E6s0, the electromotive force sum E6s0 is expressed by the following equation.
E6s0 = E6p0 + E6m0
= J 1 (mp) · rk · exp {j · (π / 2 + θ00)}
・ [(Ω0 + ω1) · exp (j · π / 2)
・ {B12 [ω0 + ω1] · exp (j · θ12 [ω0 + ω1])
+ B13 [ω0 + ω1] · exp (j · θ13 [ω0 + ω1])}
+ Γ · V · exp (j · Δθ01)
・ {B12 [ω0 + ω1] · exp (j · θ12 [ω0 + ω1])
−b13 [ω0 + ω1] · exp (j · θ13 [ω0 + ω1])}]
+ J 1 (mp) · rk · exp {j · (π / 2 + θ00)}
・ [(Ω0−ω1) · exp (j · π / 2)
{B12 [ω0-ω1] · exp (j · θ12 [ω0-ω1])
+ B13 [ω0−ω1] · exp (j · θ13 [ω0−ω1])}
+ Γ · V · exp (j · Δθ01)
{B12 [ω0-ω1] · exp (j · θ12 [ω0-ω1])
−b13 [ω0−ω1] · exp (j · θ13 [ω0−ω1])}]
= J 1 (mp) · rk · exp {j · (π / 2 + θ00)}
・ [Ω0 ・ exp (j ・ π / 2)
・ {B12 [ω0 + ω1] · exp (j · θ12 [ω0 + ω1])
+ B13 [ω0 + ω1] · exp (j · θ13 [ω0 + ω1])
+ B12 [ω0−ω1] · exp (j · θ12 [ω0−ω1])
+ B13 [ω0−ω1] · exp (j · θ13 [ω0−ω1])}
+ Ω1 · exp (j · π / 2)
・ {B12 [ω0 + ω1] · exp (j · θ12 [ω0 + ω1])
+ B13 [ω0 + ω1] · exp (j · θ13 [ω0 + ω1])
−b12 [ω0−ω1] · exp (j · θ12 [ω0−ω1])
−b13 [ω0−ω1] · exp (j · θ13 [ω0−ω1])}
+ Γ · V · exp (j · Δθ01)
・ {B12 [ω0 + ω1] · exp (j · θ12 [ω0 + ω1])
-B13 [ω0 + ω1] · exp (j · θ13 [ω0 + ω1])
+ B12 [ω0−ω1] · exp (j · θ12 [ω0−ω1])
−b13 [ω0−ω1] · exp (j · θ13 [ω0−ω1])}]
... (326)

ここで、通常ω0>ω1が成り立つことから式(327)〜式(330)の条件式が成り立つ。
2・b12[ω0]・exp(j・θ12[ω0])
≒b12[ω0+ω1]・exp(j・θ12[ω0+ω1])
+b12[ω0−ω1]・exp(j・θ12[ω0−ω1]) ・・・(327)
2・b13[ω0]・exp(j・θ13[ω0])
≒b13[ω0+ω1]・exp(j・θ13[ω0+ω1])
+b13[ω0−ω1]・exp(j・θ13[ω0−ω1]) ・・・(328)
Here, since ω0> ω1 is normally satisfied, the conditional expressions (327) to (330) are satisfied.
2 · b12 [ω0] · exp (j · θ12 [ω0])
≒ b12 [ω0 + ω1] · exp (j · θ12 [ω0 + ω1])
+ B12 [ω0−ω1] · exp (j · θ12 [ω0−ω1]) (327)
2 · b13 [ω0] · exp (j · θ13 [ω0])
≒ b13 [ω0 + ω1] · exp (j · θ13 [ω0 + ω1])
+ B13 [ω0−ω1] · exp (j · θ13 [ω0−ω1]) (328)

|ω0・exp(j・π/2)
・{2・b12[ω0]・exp(j・θ12[ω0])}|
≫|ω1・exp(j・π/2)
・{b12[ω0+ω1]・exp(j・θ12[ω0+ω1])
−b12[ω0−ω1]・exp(j・θ12[ω0−ω1])}|
・・・(329)
|ω0・exp(j・π/2)
・{2・b13[ω0]・exp(j・θ13[ω0])}|
≫|ω1・exp(j・π/2)
・{b13[ω0+ω1]・exp(j・θ13[ω0+ω1])
−b13[ω0−ω1]・exp(j・θ13[ω0−ω1])}|
・・・(330)
| Ω0 · exp (j · π / 2)
{2 · b12 [ω0] · exp (j · θ12 [ω0])} |
>> | ω1 · exp (j · π / 2)
・ {B12 [ω0 + ω1] · exp (j · θ12 [ω0 + ω1])
−b12 [ω0−ω1] · exp (j · θ12 [ω0−ω1])} |
... (329)
| Ω0 · exp (j · π / 2)
{2 · b13 [ω0] · exp (j · θ13 [ω0])} |
>> | ω1 · exp (j · π / 2)
· {B13 [ω0 + ω1] · exp (j · θ13 [ω0 + ω1])
−b13 [ω0−ω1] · exp (j · θ13 [ω0−ω1])} |
... (330)

式(327)〜式(330)の条件を式(326)に適用して起電力和E6s0を近似したものをE6s0aとおくと、起電力和E6s0aは式(331)、式(332)で表される。
E6s0a≒E6s0 ・・・(331)
E6s0a=J1(mp)・rk・exp{j・(π/2+θ00)}
・[ω0・exp(j・π/2)
・{2・b12[ω0]・exp(j・θ12[ω0])
+2・b13[ω0]・exp(j・θ13[ω0])}
+γ・V・exp(j・Δθ01)
・{2・b12[ω0]・exp(j・θ12[ω0])
−2・b13[ω0]・exp(j・θ13[ω0])} ・・(332)
When E6s0a is obtained by approximating the electromotive force sum E6s0 by applying the conditions of Equations (327) to (330) to Equation (326), the electromotive force sum E6s0a is expressed by Equations (331) and (332). Is done.
E6s0a≈E6s0 (331)
E6s0a = J 1 (mp) · rk · exp {j · (π / 2 + θ00)}
・ [Ω0 ・ exp (j ・ π / 2)
・ {2 ・ b12 [ω0] ・ exp (j ・ θ12 [ω0])
+ 2 · b13 [ω0] · exp (j · θ13 [ω0])}
+ Γ · V · exp (j · Δθ01)
・ {2 ・ b12 [ω0] ・ exp (j ・ θ12 [ω0])
-2 · b13 [ω0] · exp (j · θ13 [ω0])} (332)

式(323)と同じくθ13[ω0]=θ12[ω0]+Δθ13[ω0]を式(332)の起電力和E6s0aに代入したものをE6s0bとすれば、起電力和E6s0bは次式で表される。
E6s0b=2・J1(mp)・rk
・exp{j・(π/2+θ12[ω0]+θ00)}
・[ω0・exp(j・π/2)
・{b12[ω0]+b13[ω0]・exp(j・Δθ13[ω0])}
+γ・V・exp(j・Δθ01)
・{b12[ω0]−b13[ω0]・exp(j・Δθ13[ω0])}]
・・・(333)
As in equation (323), if θ13 [ω0] = θ12 [ω0] + Δθ13 [ω0] is substituted for the electromotive force sum E6s0a in equation (332), E6s0b, the electromotive force sum E6s0b is expressed by the following equation: .
E6s0b = 2 · J 1 (mp) · rk
Exp {j · (π / 2 + θ12 [ω0] + θ00)}
・ [Ω0 ・ exp (j ・ π / 2)
{B12 [ω0] + b13 [ω0] · exp (j · Δθ13 [ω0])}
+ Γ · V · exp (j · Δθ01)
{B12 [ω0] −b13 [ω0] · exp (j · Δθ13 [ω0])}]
... (333)

さらに、初期状態(校正時の状態)の磁場B12,B13おいて、b12[ω0]=b13[ω0]、Δθ13[ω]=0と設定しておくと、その後のずれを考慮してもb12[ω0]≒b13[ω0]、Δθ13[ω]≒0であり、次の条件式が成り立つ。
|b12[ω0]+b13[ω0]・exp(j・Δθ13[ω0])|
≫|b12[ω0] −b13[ω0]・exp(j・Δθ13[ω0])|
・・・(334)
Further, if b12 [ω0] = b13 [ω0] and Δθ13 [ω] = 0 are set in the magnetic fields B12 and B13 in the initial state (the state at the time of calibration), b12 [ω0] = b13 [ω0] = 0. [ω0] ≈b13 [ω0] and Δθ13 [ω] ≈0, and the following conditional expression holds.
| B12 [ω0] + b13 [ω0] · exp (j · Δθ13 [ω0]) |
»| B12 [ω0] −b13 [ω0] · exp (j · Δθ13 [ω0]) |
... (334)

また、通常ω0>γ・Vが成り立つことから、式(334)の条件を考慮すると、式(333)において次式の条件が成り立つ。
|ω0・exp(j・π/2)
・{b12[ω0]+b13[ω0]・exp(j・Δθ13[ω0])}|
≫|γ・V・exp(j・Δθ01)・b12[ω0]
−b13[ω0]・exp(j・Δθ13[ω0])| ・・・(335)
Further, since ω0> γ · V is normally satisfied, when the condition of the equation (334) is considered, the following equation is satisfied in the equation (333).
| Ω0 · exp (j · π / 2)
{B12 [ω0] + b13 [ω0] · exp (j · Δθ13 [ω0])} |
»| Γ · V · exp (j · Δθ01) · b12 [ω0]
−b13 [ω0] · exp (j · Δθ13 [ω0]) | (335)

式(335)の条件を用いて、式(333)の起電力和E6s0bを近似したものをJ0(mp)/{2・J1(mp)・exp(j・π/2)}倍した起電力和EdA61は次式で表される。この起電力和EdA61は基本原理における第1の∂A/∂t成分に相当する。
EdA61≒E6s0b・[J0(mp)
/{2・J1(mp)・exp(j・π/2)}] ・・・(336)
EdA61=J0(mp)・rk・exp{j・(θ12[ω0]+θ00)}
・ω0・exp(j・π/2)
・{b12[ω0]+b13[ω0]・exp(j・Δθ13[ω0])}
・・・(337)
Using the condition of Expression (335), the approximation of the electromotive force sum E6s0b of Expression (333) was multiplied by J 0 (mp) / {2 · J 1 (mp) · exp (j · π / 2)}. The electromotive force sum EdA61 is expressed by the following equation. This electromotive force sum EdA61 corresponds to the first ∂A / ∂t component in the basic principle.
EdA61≈E6s0b · [J 0 (mp)
/ {2 · J 1 (mp) · exp (j · π / 2)}] (336)
EdA61 = J 0 (mp) · rk · exp {j · (θ12 [ω0] + θ00)}
・ Ω0 ・ exp (j ・ π / 2)
{B12 [ω0] + b13 [ω0] · exp (j · Δθ13 [ω0])}
... (337)

起電力和EdA61は、流速の大きさVに関係しないので、∂A/∂tによって発生する成分のみとなる。この起電力和EdA61を用いて電極間起電力E60(合成ベクトルVas0+Vbs0)中のv×B成分の流速の大きさVにかかる係数(スパン)を正規化する。式(323)の電極間起電力E60を式(337)の起電力和EdA61で正規化し、ω0倍した結果をEn60とすれば、正規化起電力En60は次式で表される。
En60=(E60/EdA61)・ω0
=J0(mp)・rk・exp{j・(θ12[ω0]+θ00)}
・[ ω0・exp(j・π/2)
・{b12[ω0]−b13[ω0]・exp(j・Δθ13[ω0])}
+γ・V・exp(j・Δθ01)
・{b12[ω0]+b13[ω0]・exp(j・Δθ13[ω0])}]
/[J0(mp)・rk・exp{j・(θ12[ω0]+θ00)}
・ω0・exp(j・π/2)
・{b12[ω0]+b13[ω0]・exp(j・Δθ13[ω0])}]・ω0
=ω0・{b12[ω0]−b13[ω0]・exp(j・Δθ13[ω0])}
/{b12[ω0]+b13[ω0]・exp(j・Δθ13[ω0])}
+[γ・exp{j・(−π/2+Δθ01)}]・V ・・・(338)
Since the electromotive force sum EdA61 is not related to the magnitude V of the flow velocity, it becomes only a component generated by ∂A / ∂t. Using this electromotive force sum EdA61, the coefficient (span) applied to the magnitude V of the flow velocity of the v × B component in the interelectrode electromotive force E60 (the combined vector Vas0 + Vbs0) is normalized. When the inter-electrode electromotive force E60 in the equation (323) is normalized by the electromotive force sum EdA61 in the equation (337) and multiplied by ω0 is represented as En60, the normalized electromotive force En60 is expressed by the following equation.
En60 = (E60 / EdA61) · ω0
= J 0 (mp) · rk · exp {j · (θ12 [ω0] + θ00)}
・ [Ω0 ・ exp (j ・ π / 2)
{B12 [ω0] −b13 [ω0] · exp (j · Δθ13 [ω0])}
+ Γ · V · exp (j · Δθ01)
{B12 [ω0] + b13 [ω0] · exp (j · Δθ13 [ω0])}]
/ [J 0 (mp) · rk · exp {j · (θ12 [ω0] + θ00)}
・ Ω0 ・ exp (j ・ π / 2)
{B12 [ω0] + b13 [ω0] · exp (j · Δθ13 [ω0])}] · ω0
= Ω0 · {b12 [ω0] −b13 [ω0] · exp (j · Δθ13 [ω0])}
/ {B12 [ω0] + b13 [ω0] · exp (j · Δθ13 [ω0])}
+ [Γ · exp {j · (−π / 2 + Δθ01)}] · V (338)

式(52)を用いると、式(338)の右辺第1項の角周波数ω0にかかる係数{b12[ω0]−b13[ω0]・exp(j・Δθ13[ω0])}/{b12[ω0]+b13[ω0]・exp(j・Δθ13[ω0])}を、角周波数ω0に関係しない値{b12−b13・exp(j・Δθ13)}/{b12+b13・exp(j・Δθ13)}で表すことができる。したがって、式(338)を次式のように置き換えることができる。
En60=ω0・{b12−b13・exp(j・Δθ13)}
/{b12+b13・exp(j・Δθ13)}
+[γ・exp{j・(−π/2+Δθ01)}]・V ・・・(339)
Using equation (52), the coefficient {b12 [ω0] −b13 [ω0] · exp (j · Δθ13 [ω0])} / {b12 [ω0] applied to the angular frequency ω0 of the first term on the right side of equation (338). ] + B13 [ω0] · exp (j · Δθ13 [ω0])} is represented by a value {b12−b13 · exp (j · Δθ13)} / {b12 + b13 · exp (j · Δθ13)} not related to the angular frequency ω0. be able to. Therefore, equation (338) can be replaced as:
En60 = ω0 · {b12−b13 · exp (j · Δθ13)}
/ {B12 + b13 · exp (j · Δθ13)}
+ [Γ · exp {j · (−π / 2 + Δθ01)}] · V (339)

式(339)の右辺第2項が、v×Bにより発生する成分を正規化した項となる。なお、電極間起電力E60を起電力和EdA61で正規化した結果をω0倍した理由は、流速の大きさVに係る右辺第2項から励磁角周波数ω0を消去するためである。流速の大きさVにかかる複素係数は、γの大きさ、−π/2+Δθ01の実軸からの角度をもつ。係数γおよび角度Δθ01は校正等により予め求めることができる定数であり、式(339)の右辺第2項は被測定流体の流速が変化しないかぎり一定となる。したがって、∂A/∂tの成分をもちいてv×B成分の正規化を行うことにより、磁場のシフトや位相変化による誤差を自動的に補正するスパン補正を実現することができる。   The second term on the right side of Equation (339) is a term obtained by normalizing the component generated by v × B. The reason why the result obtained by normalizing the inter-electrode electromotive force E60 with the electromotive force sum EdA61 is multiplied by ω0 is to eliminate the excitation angular frequency ω0 from the second term on the right side related to the magnitude V of the flow velocity. The complex coefficient relating to the magnitude V of the flow velocity has an angle from the real axis of the magnitude of γ, −π / 2 + Δθ01. The coefficient γ and the angle Δθ01 are constants that can be obtained in advance by calibration or the like, and the second term on the right side of the equation (339) is constant as long as the flow velocity of the fluid to be measured does not change. Therefore, by performing the normalization of the v × B component using the component ∂A / ∂t, it is possible to realize span correction that automatically corrects errors due to magnetic field shifts and phase changes.

次に、0点の変動要因である、式(339)の右辺第1項を除去する方法について説明する。式(305)、式(306)において搬送波の角周波数をω0の代わりにω2とすると、磁場B12,B13は次式で表される。
B12=b12・cos{ω2・t−mp・cos(ω1・t)−θ12} ・・・(340)
B13=b13・cos{ω2・t+mp・cos(ω1・t)−θ13} ・・・(341)
Next, a method for removing the first term on the right side of the equation (339), which is a variation factor of 0 point, will be described. When the angular frequency of the carrier wave is ω2 instead of ω0 in equations (305) and (306), the magnetic fields B12 and B13 are expressed by the following equations.
B12 = b12 · cos {ω2 · t-mp · cos (ω1 · t) −θ12} (340)
B13 = b13 · cos {ω2 · t + mp · cos (ω1 · t) −θ13} (341)

角周波数ω0での正規化と同様に角周波数ω2において正規化を行う。角周波数ω2においてスパン補正の対象となる電極間起電力E62は、式(323)において角周波数ω0をω2で置き換えたものとなる。第2の∂A/∂t成分の基となる起電力和E6s2は、式(324)において角周波数ω0をω2で置き換えた電極間起電力E6p2と式(325)において角周波数ω0をω2で置き換えた電極間起電力E6m2との和E6p2+E6m2で表される。第2の∂A/∂t成分となる起電力和EdA62は、式(337)において角周波数ω0をω2で置き換えたものとなる。   Normalization is performed at the angular frequency ω2 as in the normalization at the angular frequency ω0. The inter-electrode electromotive force E62 subjected to span correction at the angular frequency ω2 is obtained by replacing the angular frequency ω0 with ω2 in the equation (323). The electromotive force sum E6s2 that is the basis of the second ∂A / ∂t component is the interelectrode electromotive force E6p2 in which the angular frequency ω0 is replaced with ω2 in the equation (324) and the angular frequency ω0 in ω2 in the equation (325). It is expressed as the sum E6p2 + E6m2 with the inter-electrode electromotive force E6m2. The electromotive force sum EdA62 as the second ∂A / ∂t component is obtained by replacing the angular frequency ω0 with ω2 in the equation (337).

電極間起電力E62を起電力和EdA62で正規化し、ω2倍した結果をEn62とすれば、正規化起電力En62は式(339)より次式で表される。
En62=ω2・{b12−b13・exp(j・Δθ13)}
/{b12+b13・exp(j・Δθ13)}
+[γ・exp{j・(−π/2+Δθ01)}]・V ・・・(342)
If the inter-electrode electromotive force E62 is normalized by the electromotive force sum EdA62 and the result obtained by multiplying by ω2 is En62, the normalized electromotive force En62 is expressed by the following equation from the equation (339).
En62 = ω2 · {b12−b13 · exp (j · Δθ13)}
/ {B12 + b13 · exp (j · Δθ13)}
+ [Γ · exp {j · (−π / 2 + Δθ01)}] · V (342)

正規化起電力En60とEn62との差をとり、求めた差分をω0/(ω0−ω2)倍した結果をEdA63とすれば、起電力差EdA63は次式で表される。この起電力差EdA63は基本原理における第3の∂A/∂t成分に相当する。
EdA63=(En60−En62)・ω0/(ω0−ω2)
=[{b12−b13・exp(j・Δθ13)}
/{b12+b13・exp(j・Δθ13)}
・ω0+γ・exp{j・(−π/2+Δθ01)}・V
−{b12−b13・exp(j・Δθ13)}
/{b12+b13・exp(j・Δθ13)}
・ω2−γ・exp{j・(−π/2+Δθ01)}・V]
・ω0/(ω0−ω2)
={b12−b13・exp(j・Δθ13)}
/{b12+b13・exp(j・Δθ13)}・ω0 ・・(343)
Taking the difference between the normalized electromotive forces En60 and En62 and multiplying the obtained difference by ω0 / (ω0−ω2) as EdA63, the electromotive force difference EdA63 is expressed by the following equation. This electromotive force difference EdA63 corresponds to the third ∂A / ∂t component in the basic principle.
EdA63 = (En60−En62) · ω0 / (ω0−ω2)
= [{B12-b13 · exp (j · Δθ13)}
/ {B12 + b13 · exp (j · Δθ13)}
.Omega.0 + .gamma.exp {j. (-. Pi./2+.DELTA..theta.01)}.V
-{B12-b13 · exp (j · Δθ13)}
/ {B12 + b13 · exp (j · Δθ13)}
.Omega.2-.gamma.exp {j. (-. Pi./2+.DELTA..theta.01)}.V]
・ Ω0 / (ω0−ω2)
= {B12-b13 · exp (j · Δθ13)}
/ {B12 + b13 · exp (j · Δθ13)} · ω0 ·· (343)

起電力差EdA63は正規化された∂A/∂t成分を表し、式(339)の右辺第1項と等しくなるので、この起電力差EdA63を使用すれば、正規化されたv×B成分を正規化起電力En60から取り出すことができる。式(339)の正規化起電力En60から式(343)の起電力差EdA63を引いたときに得られるv×B成分をEvBn6とすると、v×B成分EvBn6は次式で表される。
EvBn6=En60−EdA63
={b12−b13・exp(j・Δθ13)}
/{b12+b13・exp(j・Δθ13)}・ω0
+[γ・exp{j・(−π/2+Δθ01)}]・V
−{b12−b13・exp(j・Δθ13)}
/{b12+b13・exp(j・Δθ13)}・ω0
=[γ・exp{j・(−π/2+Δθ01)}]・V ・・・(344)
The electromotive force difference EdA63 represents a normalized ∂A / ∂t component and is equal to the first term on the right side of the equation (339). Therefore, if this electromotive force difference EdA63 is used, the normalized v × B component Can be extracted from the normalized electromotive force En60. When the v × B component obtained by subtracting the electromotive force difference EdA63 of equation (343) from the normalized electromotive force En60 of equation (339) is EvBn6, the v × B component EvBn6 is expressed by the following equation.
EvBn6 = En60-EdA63
= {B12-b13 · exp (j · Δθ13)}
/ {B12 + b13 · exp (j · Δθ13)} · ω0
+ [Γ · exp {j · (−π / 2 + Δθ01)}] · V
-{B12-b13 · exp (j · Δθ13)}
/ {B12 + b13 · exp (j · Δθ13)} · ω0
= [Γ · exp {j · (−π / 2 + Δθ01)}] · V (344)

v×B成分EvBn6は角周波数ω0,ω2に関係しない。流速の大きさVが0のときv×B成分EvBn6も0となることから分かるように、v×B成分EvBn6より、スパンが補正され、かつ0点が補正された出力を得ることができる。式(344)より、流速の大きさVは次式のように表される。
V=|EvBn6/[γ・exp{j・(−π/2+Δθ01)}]|
=|EvBn6|/γ ・・・(345)
The v × B component EvBn6 is not related to the angular frequencies ω0 and ω2. As can be seen from the fact that the v × B component EvBn6 becomes 0 when the magnitude V of the flow velocity is 0, an output in which the span is corrected and the zero point is corrected can be obtained from the v × B component EvBn6. From the equation (344), the magnitude V of the flow velocity is expressed as the following equation.
V = | EvBn6 / [γ · exp {j · (−π / 2 + Δθ01)}] |
= | EvBn6 | / γ (345)

なお、基本原理で用いた定数および変数と、本実施の形態の定数および変数との対応関係は以下の表6のとおりである。本実施の形態は、表6から明らかなように、前述の基本原理を具体的に実現する1つの例である。   Table 6 below shows the correspondence between the constants and variables used in the basic principle and the constants and variables of the present embodiment. As is apparent from Table 6, this embodiment is an example that specifically realizes the basic principle described above.

Figure 2006058175
Figure 2006058175

次に、本実施の形態の電磁流量計の具体的な構成とその動作について説明する。本実施の形態の電磁流量計の構成は第1の実施の形態と同様であるので、図16の符号を用いて説明する。本実施の形態の電磁流量計は、測定管1と、電極2a,2bと、第1、第2の励磁コイル3a,3bと、電源部4と、信号変換部5と、流量出力部6とを有する。   Next, a specific configuration and operation of the electromagnetic flow meter of the present embodiment will be described. Since the configuration of the electromagnetic flowmeter of the present embodiment is the same as that of the first embodiment, description will be made using the reference numerals in FIG. The electromagnetic flowmeter of the present embodiment includes a measuring tube 1, electrodes 2a and 2b, first and second exciting coils 3a and 3b, a power supply unit 4, a signal conversion unit 5, and a flow rate output unit 6. Have

信号変換部5は、第1の励磁状態と第2の励磁状態の各々において電極2a,2bで検出される合成起電力の振幅と位相を求め、これらの振幅と位相に基づいて第1の励磁状態の合成起電力の角周波数ω0+ω1の成分と角周波数ω0−ω1の成分との起電力和を第1の∂A/∂t成分として抽出すると共に、第2の励磁状態の合成起電力の角周波数ω2+ω1の成分と角周波数ω2−ω1の成分との起電力和を第2の∂A/∂t成分として抽出し、第1の励磁状態の合成起電力の角周波数ω0の成分を第1の補正対象起電力として、第1の∂A/∂t成分に基づいて第1の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去すると共に、第2の励磁状態の合成起電力の角周波数ω2の成分を第2の補正対象起電力として、第2の∂A/∂t成分に基づいて第2の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去するスパン補正部51と、スパン補正された第1の補正対象起電力とスパン補正された第2の補正対象起電力との差を第3の∂A/∂t成分として抽出し、このスパン補正された2つの補正対象起電力のうちいずれか1つの中から第3の∂A/∂t成分を取り除くことによりv×B成分を抽出する0点補正部52とから構成される。   The signal conversion unit 5 obtains the amplitude and phase of the combined electromotive force detected by the electrodes 2a and 2b in each of the first excitation state and the second excitation state, and performs the first excitation based on these amplitudes and phases. The sum of electromotive forces of the component of the angular frequency ω0 + ω1 and the component of the angular frequency ω0−ω1 of the combined electromotive force in the state is extracted as the first ∂A / ∂t component, and the angle of the combined electromotive force in the second excitation state The sum of electromotive forces of the component of frequency ω2 + ω1 and the component of angular frequency ω2-ω1 is extracted as the second ∂A / ∂t component, and the component of angular frequency ω0 of the composite electromotive force in the first excitation state is the first. As a correction target electromotive force, based on the first ∂A / ∂t component, the variation factor of the span included in the v × B component in the first correction target electromotive force is removed, and the second excitation state Using the component of the angular frequency ω2 of the combined electromotive force as the second correction target electromotive force, A span correction unit 51 that removes a variation factor of the span included in the v × B component in the second correction target electromotive force based on the A / ∂t component, and the first correction target electromotive force that has been subjected to span correction A difference from the second correction target electromotive force subjected to the span correction is extracted as a third ∂A / ∂t component, and the third one of the two correction target electromotive forces subjected to the span correction is extracted. The zero point correction unit 52 extracts the v × B component by removing the ∂A / ∂t component.

本実施の形態の電源部4は、角周波数ω0の正弦波搬送波を角周波数ω1の正弦波変調波によって位相変調した第1の励磁電流を第1の励磁コイル3aに供給すると同時に、前記角周波数ω0の正弦波搬送波を前記第1の励磁電流の変調波に対して同一角周波数で逆位相の変調波によって位相変調した第2の励磁電流を第2の励磁コイル3bに供給する第1の励磁状態をT1秒継続し、角周波数ω2の正弦波搬送波を角周波数ω1の正弦波変調波によって位相変調した第3の励磁電流を第1の励磁コイル3aに供給すると同時に、前記角周波数ω2の正弦波搬送波を前記第3の励磁電流の変調波に対して同一角周波数で逆位相の変調波によって位相変調した第4の励磁電流を第2の励磁コイル3bに供給する第2の励磁状態をT2秒継続することをT秒周期で繰り返す。すなわち、T=T1+T2である。位相変調指数mpは任意の値とする。   The power supply unit 4 of the present embodiment supplies a first excitation current obtained by phase-modulating a sine wave carrier wave having an angular frequency ω0 with a sine wave modulation wave having an angular frequency ω1 to the first excitation coil 3a, and at the same time, the angular frequency First excitation that supplies a second excitation current obtained by phase-modulating a sine wave carrier wave of ω0 with a modulation wave having the same angular frequency and an opposite phase with respect to the modulation wave of the first excitation current to the second excitation coil 3b. The state continues for T1 seconds, and a third excitation current obtained by phase-modulating a sine wave carrier wave having an angular frequency ω2 with a sine wave modulation wave having an angular frequency ω1 is supplied to the first excitation coil 3a, and at the same time, the sine wave having the angular frequency ω2 is supplied. A second excitation state in which a fourth excitation current obtained by phase-modulating a wave carrier wave with a modulation wave having the same angular frequency and an opposite phase with respect to the modulation wave of the third excitation current is supplied to the second excitation coil 3b. To last seconds Repeated at T second period. That is, T = T1 + T2. The phase modulation index mp is an arbitrary value.

本実施の形態の信号変換部5と流量出力部6の処理の流れは第4の実施の形態と同様であるので、図21の符号を用いて信号変換部5と流量出力部6の動作を説明する。まず、信号変換部5のスパン補正部51は、第1の励磁状態において、電極2aと2b間の起電力のうち角周波数ω0の成分の起電力E60の振幅r60を求めると共に、実軸と電極間起電力E60との位相差φ60を図示しない位相検波器により求める(図21ステップ401)。また、スパン補正部51は、第1の励磁状態において、電極2aと2b間の起電力のうち角周波数(ω0+ω1)の成分と角周波数(ω0−ω1)成分との和E6s0の振幅r6s0を求めると共に、実軸と起電力和E6s0との位相差φ6s0を位相検波器により求める(ステップ402)。   Since the processing flow of the signal conversion unit 5 and the flow rate output unit 6 of this embodiment is the same as that of the fourth embodiment, the operations of the signal conversion unit 5 and the flow rate output unit 6 will be described using the reference numerals in FIG. explain. First, the span correction unit 51 of the signal conversion unit 5 obtains the amplitude r60 of the electromotive force E60 of the component of the angular frequency ω0 out of the electromotive force between the electrodes 2a and 2b in the first excitation state, and the real axis and the electrode A phase difference φ60 with respect to the inter-electromotive force E60 is obtained by a phase detector (not shown) (step 401 in FIG. 21). Further, the span correction unit 51 obtains the amplitude r6s0 of the sum E6s0 of the angular frequency (ω0 + ω1) component and the angular frequency (ω0−ω1) component of the electromotive force between the electrodes 2a and 2b in the first excitation state. At the same time, a phase difference φ6s0 between the real axis and the electromotive force sum E6s0 is obtained by the phase detector (step 402).

続いて、スパン補正部51は、第2の励磁状態において、電極2aと2b間の起電力のうち角周波数ω2の成分の起電力E62の振幅r62を求めると共に、実軸と電極間起電力E62との位相差φ62を位相検波器により求める(ステップ403)。また、スパン補正部51は、第2の励磁状態において、電極2aと2b間の起電力のうち角周波数(ω2+ω1)の成分と角周波数(ω2−ω1)成分との和E6s2の振幅r6s2を求めると共に、実軸と起電力和E6s2との位相差φ6s2を位相検波器により求める(ステップ404)。電極間起電力E60,E62と電極間起電力の角周波数(ω0+ω1),(ω0−ω1),(ω2+ω1),(ω2−ω1)の成分は、バンドパスフィルタやコムフィルタによって周波数分離することができる。   Subsequently, in the second excitation state, the span correction unit 51 obtains the amplitude r62 of the electromotive force E62 of the component of the angular frequency ω2 among the electromotive forces between the electrodes 2a and 2b, and at the same time the inter-electrode electromotive force E62. Is obtained by a phase detector (step 403). Further, the span correction unit 51 obtains the amplitude r6s2 of the sum E6s2 of the angular frequency (ω2 + ω1) component and the angular frequency (ω2-ω1) component of the electromotive force between the electrodes 2a and 2b in the second excitation state. At the same time, the phase difference φ6s2 between the real axis and the electromotive force sum E6s2 is obtained by the phase detector (step 404). The components of the interelectrode electromotive forces E60 and E62 and the angular frequencies (ω0 + ω1), (ω0−ω1), (ω2 + ω1), and (ω2−ω1) of the interelectrode electromotive force may be frequency separated by a bandpass filter or a comb filter. it can.

次に、スパン補正部51は、起電力和E6s0を近似した起電力和EdA61の大きさと角度を求める(ステップ405)。このステップ405の処理は、第1の∂A/∂t成分を求めることに対応する処理であり、式(337)の算出に相当する処理である。スパン補正部51は、起電力和EdA61の大きさ|EdA61|を次式のように算出する。
|EdA61|=r6s0 ・・・(346)
そして、スパン補正部51は、起電力和EdA61の角度∠EdA61を次式のように算出する。
∠EdA61=φ6s0 ・・・(347)
これで、ステップ405の処理が終了する。
Next, the span correction unit 51 obtains the magnitude and angle of the electromotive force sum EdA61 that approximates the electromotive force sum E6s0 (step 405). The process of step 405 is a process corresponding to obtaining the first ∂A / ∂t component, and is a process corresponding to the calculation of Expression (337). The span correction unit 51 calculates the magnitude | EdA61 | of the electromotive force sum EdA61 as follows.
| EdA61 | = r6s0 (346)
Then, the span correction unit 51 calculates the angle ∠EdA61 of the electromotive force sum EdA61 as the following equation.
∠EdA61 = φ6s0 (347)
This completes the process of step 405.

続いて、スパン補正部51は、電極間起電力E60を起電力和EdA61で正規化した正規化起電力En60の大きさと角度を求める(ステップ406)。このステップ406の処理は、式(339)の算出に相当する処理である。スパン補正部51は、正規化起電力En60の大きさ|En60|を次式のように算出する。
|En60|=(r60/|EdA61|)・ω0 ・・・(348)
Subsequently, the span correction unit 51 obtains the magnitude and angle of the normalized electromotive force En60 obtained by normalizing the interelectrode electromotive force E60 with the electromotive force sum EdA61 (step 406). The process of step 406 is a process corresponding to the calculation of equation (339). The span correction unit 51 calculates the magnitude | En60 | of the normalized electromotive force En60 as the following expression.
| En60 | = (r60 / | EdA61 |) · ω0 (348)

そして、スパン補正部51は、正規化起電力En60の角度∠En60を次式のように算出する。
∠En60=φ60−∠EdA61 ・・・(349)
さらに、スパン補正部51は、正規化起電力En60の実軸成分En60xと虚軸成分En60yを次式のように算出する。
En60x=|En60|・cos(∠En60) ・・・(350)
En60y=|En60|・sin(∠En60) ・・・(351)
これで、ステップ406の処理が終了する。
Then, the span correction unit 51 calculates the angle ∠En60 of the normalized electromotive force En60 as the following equation.
∠En60 = φ60−∠EdA61 (349)
Further, the span correction unit 51 calculates the real axis component En60x and the imaginary axis component En60y of the normalized electromotive force En60 as the following expression.
En60x = | En60 | .cos (∠En60) (350)
En60y = | En60 | .sin (∠En60) (351)
This completes the process of step 406.

次に、スパン補正部51は、起電力和E6s2を近似した起電力和EdA62の大きさと角度を求める(ステップ407)。このステップ407の処理は、第2の∂A/∂t成分を求めることに対応する処理である。スパン補正部51は、起電力和EdA62の大きさ|EdA62|を次式のように算出する。
|EdA62|=r6s2 ・・・(352)
そして、スパン補正部51は、起電力和EdA62の角度∠EdA62を次式のように算出する。
∠EdA62=φ6s2 ・・・(353)
これで、ステップ407の処理が終了する。
Next, the span correction unit 51 obtains the magnitude and angle of the electromotive force sum EdA62 that approximates the electromotive force sum E6s2 (step 407). The processing in step 407 is processing corresponding to obtaining the second ∂A / ∂t component. The span correction unit 51 calculates the magnitude | EdA62 | of the electromotive force sum EdA62 as follows.
| EdA62 | = r6s2 (352)
Then, the span correction unit 51 calculates the angle ∠EdA62 of the electromotive force sum EdA62 as the following equation.
∠EdA62 = φ6s2 (353)
This completes the process of step 407.

続いて、スパン補正部51は、電極間起電力E62を起電力和EdA62で正規化した正規化起電力En62の大きさと角度を求める(ステップ408)。このステップ408の処理は、式(342)の算出に相当する処理である。スパン補正部51は、正規化起電力En62の大きさ|En62|を次式のように算出する。
|En62|=(r62/|EdA62|)・ω2 ・・・(354)
Subsequently, the span correction unit 51 obtains the magnitude and angle of the normalized electromotive force En62 obtained by normalizing the interelectrode electromotive force E62 with the electromotive force sum EdA62 (step 408). The process of step 408 is a process corresponding to the calculation of equation (342). The span correction unit 51 calculates the magnitude | En62 | of the normalized electromotive force En62 as the following equation.
| En62 | = (r62 / | EdA62 |) · ω2 (354)

そして、スパン補正部51は、正規化起電力En62の角度∠En62を次式のように算出する。
∠En62=φ62−∠EdA62 ・・・(355)
さらに、スパン補正部51は、正規化起電力En62の実軸成分En62xと虚軸成分En62yを次式のように算出する。
En62x=|En62|・cos(∠En62) ・・・(356)
En62y=|En62|・sin(∠En62) ・・・(357)
これで、ステップ408の処理が終了する。
Then, the span correction unit 51 calculates the angle ∠En62 of the normalized electromotive force En62 as the following expression.
∠En62 = φ62−∠EdA62 (355)
Further, the span correction unit 51 calculates the real axis component En62x and the imaginary axis component En62y of the normalized electromotive force En62 as the following expression.
En62x = | En62 | .cos (∠En62) (356)
En62y = | En62 | .sin (∠En62) (357)
This completes the process of step 408.

次に、信号変換部5の0点補正部52は、正規化起電力En60とEn62との起電力差EdA63の大きさを求める(ステップ409)。このステップ409の処理は、第3の∂A/∂t成分を求めることに対応する処理であり、式(343)の算出に相当する処理である。0点補正部52は、起電力差EdA63の実軸成分EdA63xと虚軸成分EdA63yを次式のように算出する。
EdA63x=(En60x−En62x)・ω0/(ω0−ω2) ・・(358)
EdA63y=(En60y−En62y)・ω0/(ω0−ω2) ・・(359)
Next, the zero point correction unit 52 of the signal conversion unit 5 obtains the magnitude of the electromotive force difference EdA63 between the normalized electromotive forces En60 and En62 (step 409). The process of step 409 is a process corresponding to obtaining the third ∂A / ∂t component, and is a process corresponding to the calculation of Expression (343). The zero point correction unit 52 calculates the real axis component EdA63x and the imaginary axis component EdA63y of the electromotive force difference EdA63 as follows.
EdA63x = (En60x−En62x) · ω0 / (ω0−ω2) (358)
EdA63y = (En60y−En62y) · ω0 / (ω0−ω2) (359)

そして、0点補正部52は、正規化起電力En60から起電力差EdA63を取り除き、v×B成分EvBn6の大きさを求める(ステップ410)。このステップ410の処理は、式(344)の算出に相当する処理である。0点補正部52は、v×B成分EvBn6の大きさ|EvBn6|を次式のように算出する。
|EvBn6|={(En60x−EdA63x)2
+(En60y−EdA63y)21/2 ・・・(360)
Then, the zero point correction unit 52 removes the electromotive force difference EdA63 from the normalized electromotive force En60 and obtains the magnitude of the v × B component EvBn6 (step 410). The process of step 410 is a process corresponding to the calculation of equation (344). The zero point correction unit 52 calculates the magnitude | EvBn6 | of the v × B component EvBn6 as the following equation.
| EvBn6 | = {(En60x−EdA63x) 2
+ (En60y−EdA63y) 2 } 1/2 (360)

流量出力部6は、被測定流体の流速の大きさVを次式のように算出する(ステップ411)。このステップ411の処理は、式(345)の算出に相当する処理である。
V=|EvBn6|/γ ・・・(361)
なお、比例係数γは、校正等により予め求めることができる定数である。信号変換部5と流量出力部6とは、以上のようなステップ401〜411の処理を例えばオペレータによって計測終了が指示されるまで(ステップ412においてYES)、一定周期毎に行う。なお、ステップ403〜411の処理は第2の励磁状態において行われる。
The flow rate output unit 6 calculates the magnitude V of the flow velocity of the fluid to be measured as in the following equation (step 411). The process of step 411 is a process corresponding to the calculation of Expression (345).
V = | EvBn6 | / γ (361)
The proportionality coefficient γ is a constant that can be obtained in advance by calibration or the like. The signal conversion unit 5 and the flow rate output unit 6 perform the processes in steps 401 to 411 as described above at regular intervals until the operator instructs the end of measurement (YES in step 412). Note that the processing in steps 403 to 411 is performed in the second excitation state.

以上のように、本実施の形態では、第1の励磁状態において、角周波数ω0の成分の起電力E60と、角周波数(ω0+ω1)の成分と角周波数(ω0−ω1)成分との起電力和E6s0を求め、第2の励磁状態において、角周波数ω2の成分の起電力E62と、角周波数(ω2+ω1)の成分と角周波数(ω2−ω1)成分との起電力和E6s2を求める。そして、本実施の形態では、第1の励磁コイル3aから発生する磁場B12と第2の励磁コイル3bから発生する磁場B13とが等しくなるように設定しておくと、起電力和E6s0が近似的に第1の∂A/∂t成分として抽出でき、また起電力和E6s2が近似的に第2の∂A/∂t成分として抽出できることに着眼し、第1の∂A/∂t成分を用いて電極間起電力E60中のv×B成分の流速の大きさVにかかるスパンを正規化すると共に、第2の∂A/∂t成分を用いて電極間起電力E62中のv×B成分の流速の大きさVにかかるスパンを正規化し、正規化起電力En60とEn62とから起電力差EdA63(第3の∂A/∂t成分)を抽出して、正規化起電力En60から第3の∂A/∂t成分を取り除くことによりv×B成分を抽出し、このv×B成分から被測定流体の流量を算出するようにしたので、正確なスパン補正を自動的に行うことができ、かつ被測定流体の流量を0にすることなく電磁流量計の出力の0点を補正することができ、高周波励磁においても0点の安定性を確保することができる。   As described above, in the present embodiment, in the first excitation state, the electromotive force E60 of the component of the angular frequency ω0, the sum of the electromotive forces of the component of the angular frequency (ω0 + ω1) and the component of the angular frequency (ω0−ω1). E6s0 is obtained, and in the second excitation state, an electromotive force E62 of the component of the angular frequency ω2, and an electromotive force sum E6s2 of the angular frequency (ω2 + ω1) component and the angular frequency (ω2-ω1) component are obtained. In this embodiment, if the magnetic field B12 generated from the first excitation coil 3a is set to be equal to the magnetic field B13 generated from the second excitation coil 3b, the electromotive force sum E6s0 is approximate. The first で き る A / 起 t component can be extracted as the first ∂A / ∂t component, and the electromotive force sum E6s2 can be approximately extracted as the second ∂A / ∂t component. Normalizing the span of the velocity V of the v × B component in the interelectrode electromotive force E60 and using the second ∂A / ∂t component, the v × B component in the interelectrode electromotive force E62 Normalization is performed on the span of the flow velocity V, and the electromotive force difference EdA63 (third ∂A / ∂t component) is extracted from the normalized electromotive forces En60 and En62. By removing the ∂A / ∂t component of Since the flow rate of the fluid to be measured is calculated from the v × B component, accurate span correction can be automatically performed, and the flow rate of the electromagnetic flow meter can be reduced without reducing the flow rate of the fluid to be measured to zero. The zero point of the output can be corrected, and the stability of the zero point can be ensured even in high frequency excitation.

また、本実施の形態では、周波数による磁場の損失の違いを考慮して、角周波数ω0の起電力E60のv×B成分を起電力和E6s0から抽出した同じ角周波数の第1の∂A/∂t成分を用いて正規化すると共に、角周波数ω2の起電力E62のv×B成分を起電力和E6s2から抽出した同じ角周波数の第2の∂A/∂t成分を用いて正規化し、それぞれ正規化した起電力En60とEn62との差を基に0補正を行うようにしたので、磁場の損失による影響がある場合でも、正確なスパン補正と0補正を行うことができる。
また、本実施の形態では、搬送波の周波数を切り換えるだけで、磁場の位相差を切り換える必要がなく、第1の実施の形態のように4つの励磁状態を用いる必要がないので、より高速に流量を算出することが可能になる。
In the present embodiment, in consideration of the difference in magnetic field loss depending on the frequency, the first ∂A / of the same angular frequency obtained by extracting the v × B component of the electromotive force E60 of the angular frequency ω0 from the electromotive force sum E6s0. Normalize using the ∂t component and normalize the v × B component of the electromotive force E62 of the angular frequency ω2 using the second ∂A / ∂t component of the same angular frequency extracted from the electromotive force sum E6s2. Since zero correction is performed based on the difference between the normalized electromotive forces En60 and En62, accurate span correction and zero correction can be performed even when there is an influence due to magnetic field loss.
In the present embodiment, it is not necessary to switch the phase difference of the magnetic field only by switching the frequency of the carrier wave, and it is not necessary to use the four excitation states as in the first embodiment. Can be calculated.

なお、本実施の形態では、角周波数ω0の成分の起電力E60を0補正およびスパン補正の対象としたが、角周波数ω2の成分の起電力E62を0補正およびスパン補正の対象としてもよい。この場合は、次式のように正規化起電力En62とEn60とから起電力差EdA63(第3の∂A/∂t成分)を求める。
EdA63=(En62−En60)・ω2/(ω2−ω0) ・・・(362)
そして、次式のように正規化起電力En62から起電力差EdA63を引くことによりv×B成分EvBn6を求めるようにすればよい。その他の処理は電極間起電力E60を0補正およびスパン補正の対象とする場合と同じである。
|EvBn6|=|En62−EdA63| ・・・(363)
In the present embodiment, the electromotive force E60 of the component of the angular frequency ω0 is the target of 0 correction and span correction, but the electromotive force E62 of the component of the angular frequency ω2 may be the target of 0 correction and span correction. In this case, the electromotive force difference EdA63 (third ∂A / ∂t component) is obtained from the normalized electromotive forces En62 and En60 as in the following equation.
EdA63 = (En62−En60) · ω2 / (ω2−ω0) (362)
Then, the v × B component EvBn6 may be obtained by subtracting the electromotive force difference EdA63 from the normalized electromotive force En62 as in the following equation. The other processes are the same as those in the case where the interelectrode electromotive force E60 is subjected to 0 correction and span correction.
| EvBn6 | = | En62−EdA63 | (363)

また、本実施の形態では、搬送波を変調波によって位相変調した励磁電流を励磁コイル3a,3bに供給しているが、これに限るものではなく、搬送波を変調波によって周波数変調した励磁電流を励磁コイル3a,3bに供給するようにしてもよい。   In this embodiment, the exciting current obtained by phase-modulating the carrier wave with the modulated wave is supplied to the exciting coils 3a and 3b. However, the present invention is not limited to this. You may make it supply to coil 3a, 3b.

以下、周波数変調が位相変調と同等に扱えることについて説明する。図1において、第1の励磁コイル3aから発生する磁場Bbのうち、電極2a,2b間を結ぶ電極軸EAX上において電極軸EAXおよび測定管軸PAXの双方と直交する磁場成分(磁束密度)B12は、以下のように与えられるものとする。
B12=b12・cos{ω0・t−mf・sin(ω1・t)−θ12}
・・・(364)
式(364)において、b12は磁場B12の振幅、ω0は搬送波の角周波数、ω1は変調波の角周波数、θ12は磁場B12の搬送波とω0・t−mf・sin(ω1・t)との位相差(位相遅れ)、mfは周波数変調指数である。
Hereinafter, the fact that frequency modulation can be handled in the same way as phase modulation will be described. In FIG. 1, of the magnetic field Bb generated from the first exciting coil 3a, the magnetic field component (magnetic flux density) B12 orthogonal to both the electrode axis EAX and the measurement tube axis PAX on the electrode axis EAX connecting the electrodes 2a and 2b. Is given as follows.
B12 = b12 · cos {ω0 · t-mf · sin (ω1 · t) −θ12}
... (364)
In Expression (364), b12 is the amplitude of the magnetic field B12, ω0 is the angular frequency of the carrier wave, ω1 is the angular frequency of the modulated wave, and θ12 is the position of the carrier wave of the magnetic field B12 and ω0 · t−mf · sin (ω1 · t). Phase difference (phase lag), mf is a frequency modulation index.

また、周波数変調指数mfは次式で表される。
mf=Δω1/ω1 ・・・(365)
式(365)において、Δω1は角周波数帯域を表し、変調波の最大振幅のときの周波数偏移量をΔFとすると、Δω1=2π・ΔFである。式(364)は次式のように変形できる。
The frequency modulation index mf is expressed by the following equation.
mf = Δω1 / ω1 (365)
In Expression (365), Δω1 represents an angular frequency band, and Δω1 = 2π · ΔF, where ΔF is a frequency shift amount at the maximum amplitude of the modulated wave. Equation (364) can be transformed as:

B12=b12・cos{ω0・t−mf・sin(ω1・t)−θ12}
=b12・cos(ω0・t−θ12)・cos{−mf・sin(ω1・t)}
−b12・sin(ω0・t−θ12)・sin{−mf・sin(ω1・t)}
=b12・cos{ mf・sin(ω1・t)}
・{cos(ω0・t)・cos(−θ12)
−sin(ω0・t)・sin(−θ12)}
+b12・sin{ mf・sin(ω1・t)}
・{sin(ω0・t)・cos(−θ12)
+cos(ω0・t)・sin(−θ12)} ・・・(366)
B12 = b12 · cos {ω0 · t-mf · sin (ω1 · t) −θ12}
= B12 · cos (ω0 · t−θ12) · cos {−mf · sin (ω1 · t)}
−b12 · sin (ω0 · t−θ12) · sin {−mf · sin (ω1 · t)}
= B12 · cos {mf · sin (ω1 · t)}
・ {Cos (ω0 · t) ・ cos (−θ12)
-Sin (ω0 · t) · sin (-θ12)}
+ B12 · sin {mf · sin (ω1 · t)}
・ {Sin (ω0 · t) ・ cos (−θ12)
+ Cos (ω0 · t) · sin (−θ12)} (366)

ここで、式(366)のcos{mf・sin(ω1・t)}、sin{mf・sin(ω1・t)}は次式のように変換できる。   Here, cos {mf · sin (ω1 · t)} and sin {mf · sin (ω1 · t)} in the equation (366) can be converted as follows.

Figure 2006058175
Figure 2006058175

式(367)、式(368)においてJn(mf) (n=0,1,2,・・・・)は第1種ベッセル関数として知られており、この第1種ベッセル関数Jn(mf) は次式で与えられる。 In the expressions (367) and (368), J n (mf) (n = 0, 1, 2,...) Is known as a first kind Bessel function, and this first kind Bessel function J n ( mf) is given by:

Figure 2006058175
Figure 2006058175

なお、式(369)においてk!はkの階乗を意味する。式(367)、式(368)においてn=0,1の場合のみ採用すると、式(366)は以下のように変形できる。
B12=b12・J0(mf)
・{cos(ω0・t)・cos(−θ12)
−sin(ω0・t)・sin(−θ12)}
+b12・2・J1(mf)・cos(ω1・t)
・{sin(ω0・t)・cos(−θ12)
+cos(ω0・t)・sin(−θ12)}
=J0(mf)・b12・{cos(θ12)}・cos(ω0・t)
+J0(mf)・b12・{sin(θ12)}・sin(ω0・t)
+J1(mf)・b12・{−sin(θ12)}・cos{(ω0+ω1)・t}
+J1(mf)・b12・{cos(θ12)}・sin{(ω0+ω1)・t}
+J1(mf)・b12・{−sin(θ12)}・cos{(ω0−ω1)・t}
+J1(mf)・b12・{cos(θ12)}・sin{(ω0−ω1)・t}
・・・(370)
In formula (369), k! Means the factorial of k. When only n = 0 and 1 are employed in Expression (367) and Expression (368), Expression (366) can be modified as follows.
B12 = b12 · J 0 (mf)
・ {Cos (ω0 · t) ・ cos (−θ12)
-Sin (ω0 · t) · sin (-θ12)}
+ B12 · 2 · J 1 (mf) · cos (ω1 · t)
・ {Sin (ω0 · t) ・ cos (−θ12)
+ Cos (ω0 · t) · sin (−θ12)}
= J 0 (mf) · b12 · {cos (θ12)} · cos (ω0 · t)
+ J 0 (mf) · b12 · {sin (θ12)} · sin (ω0 · t)
+ J 1 (mf) · b12 · {−sin (θ12)} · cos {(ω0 + ω1) · t}
+ J 1 (mf) · b12 · {cos (θ12)} · sin {(ω0 + ω1) · t}
+ J 1 (mf) · b12 · {−sin (θ12)} · cos {(ω0−ω1) · t}
+ J 1 (mf) · b12 · {cos (θ12)} · sin {(ω0−ω1) · t}
... (370)

式(370)においてmf=mpとおけば式(312)とまったく同じ式になるので、周波数変調を位相変調と同等に扱えることが分かる。搬送波を位相変調した励磁電流を励磁コイルに供給する以下の実施の形態においても、周波数変調は位相変調の場合と同じに扱うことができるので、周波数変調の説明は省略する。   If mf = mp in equation (370), the equation is exactly the same as equation (312), and it can be seen that frequency modulation can be handled equivalent to phase modulation. Also in the following embodiments in which an excitation current obtained by phase-modulating a carrier wave is supplied to the excitation coil, frequency modulation can be handled in the same manner as in the case of phase modulation, and thus description of frequency modulation is omitted.

[第7の実施の形態]
次に、本発明の第7の実施の形態について説明する。本実施の形態の電磁流量計は2個の励磁コイルと1対の電極とを有するものであり、信号処理系を除く構成は図1に示した電磁流量計と同様であるので、図1の符号を用いて本実施の形態の原理を説明する。本実施の形態は、正規化の対象となる合成ベクトルVas0+Vbs0を検出する方法として基本原理で説明した第2の検出方法を用い、第1の∂A/∂t成分を抽出する方法として基本原理で説明した第2の抽出方法を用いるものである。
[Seventh Embodiment]
Next, a seventh embodiment of the present invention will be described. The electromagnetic flow meter of the present embodiment has two excitation coils and a pair of electrodes, and the configuration excluding the signal processing system is the same as that of the electromagnetic flow meter shown in FIG. The principle of this embodiment will be described using reference numerals. The present embodiment uses the second detection method described in the basic principle as a method for detecting the composite vector Vas0 + Vbs0 to be normalized, and uses the basic principle as a method for extracting the first ∂A / ∂t component. The second extraction method described is used.

本実施の形態における励磁条件は第6の実施の形態と同様である。前記の式(320)において、磁場B13の角周波数ω0の成分の位相差θ13[ω0]をπ+θ13[ω0]で置き換え、θ01=θ00+Δθ01を代入したときの電極間起電力E7π0は次式で表される。
E7π0=J0(mp)・rk・exp{j・(θ12[ω0]+θ00)}
・[ ω0・exp(j・π/2)
・{b12[ω0]+b13[ω0]・exp(j・Δθ13[ω0])}
+γ・V・exp(j・Δθ01)
・{b12[ω0]−b13[ω0]・exp(j・Δθ13[ω0])}]
・・・(371)
The excitation conditions in this embodiment are the same as those in the sixth embodiment. In the above equation (320), when the phase difference θ13 [ω0] of the component of the angular frequency ω0 of the magnetic field B13 is replaced with π + θ13 [ω0] and θ01 = θ00 + Δθ01 is substituted, the interelectrode electromotive force E7π0 is expressed by the following equation. The
E7π0 = J 0 (mp) · rk · exp {j · (θ12 [ω0] + θ00)}
・ [Ω0 ・ exp (j ・ π / 2)
{B12 [ω0] + b13 [ω0] · exp (j · Δθ13 [ω0])}
+ Γ · V · exp (j · Δθ01)
{B12 [ω0] −b13 [ω0] · exp (j · Δθ13 [ω0])}]
... (371)

また、式(321)において、位相差θ13[ω0]をπ+θ13[ω0]で置き換え、θ01=θ00+Δθ01を代入したときの電極間起電力E7πp0は次式で表される。
E7πp0=J1(mp)・rk・exp{j・(π/2+θ00)}
・[(ω0+ω1)・exp(j・π/2)
・{b12[ω0+ω1]・exp(j・θ12[ω0+ω1])
−b13[ω0+ω1]・exp(j・θ13[ω0+ω1])}
+γ・V・exp(j・Δθ01)
・{b12[ω0+ω1]・exp(j・θ12[ω0+ω1])
+b13[ω0+ω1]・exp(j・θ13[ω0+ω1])}]
・・・(372)
In the equation (321), the interelectrode electromotive force E7πp0 when the phase difference θ13 [ω0] is replaced by π + θ13 [ω0] and θ01 = θ00 + Δθ01 is substituted is expressed by the following equation.
E7πp0 = J 1 (mp) · rk · exp {j · (π / 2 + θ00)}
・ [(Ω0 + ω1) · exp (j · π / 2)
・ {B12 [ω0 + ω1] · exp (j · θ12 [ω0 + ω1])
-B13 [ω0 + ω1] · exp (j · θ13 [ω0 + ω1])}
+ Γ · V · exp (j · Δθ01)
・ {B12 [ω0 + ω1] · exp (j · θ12 [ω0 + ω1])
+ B13 [ω0 + ω1] · exp (j · θ13 [ω0 + ω1])}]
... (372)

また、式(322)において、位相差θ13[ω0]をπ+θ13[ω0]で置き換え、θ01=θ00+Δθ01を代入したときの電極間起電力E7πm0は次式で表される。但し、式(371)、式(372)、式(373)ではθ13[ω0]=θ12[ω0]+Δθ13[ω0]は適用せず、後の式で適用する。また、変調部分の位相差はもともと逆位相であったので同位相となることに注意が必要である。
E7πm0=J1(mp)・rk・exp{j・(π/2+θ00)}
・[(ω0−ω1)・exp(j・π/2)
・{b12[ω0−ω1]・exp(j・θ12[ω0−ω1])
−b13[ω0−ω1]・exp(j・θ13[ω0−ω1])}
+γ・V・exp(j・Δθ01)
・{b12[ω0−ω1]・exp(j・θ12[ω0−ω1])
+b13[ω0−ω1]・exp(j・θ13[ω0−ω1])}]
・・・(373)
In the equation (322), the inter-electrode electromotive force E7πm0 when the phase difference θ13 [ω0] is replaced by π + θ13 [ω0] and θ01 = θ00 + Δθ01 is substituted is expressed by the following equation. However, θ13 [ω0] = θ12 [ω0] + Δθ13 [ω0] is not applied in the equations (371), (372), and (373), and is applied in the later equations. Also, it should be noted that the phase difference of the modulation part is originally opposite, so that it is the same phase.
E7πm0 = J 1 (mp) · rk · exp {j · (π / 2 + θ00)}
・ [(Ω0−ω1) · exp (j · π / 2)
{B12 [ω0-ω1] · exp (j · θ12 [ω0-ω1])
−b13 [ω0−ω1] · exp (j · θ13 [ω0−ω1])}
+ Γ · V · exp (j · Δθ01)
{B12 [ω0-ω1] · exp (j · θ12 [ω0-ω1])
+ B13 [ω0−ω1] · exp (j · θ13 [ω0−ω1])}]
... (373)

電極間起電力E7πp0とE7πm0との和をE7πs0とすれば、起電力和E7πs0は次式で表される。
E7πs0=E7πp0+E7πm0
=J1(mp)・rk・exp{j・(π/2+θ00)}
・[(ω0+ω1)・exp(j・π/2)
・{b12[ω0+ω1]・exp(j・θ12[ω0+ω1])
−b13[ω0+ω1]・exp(j・θ13[ω0+ω1])}
+γ・V・exp(j・Δθ01)
・{b12[ω0+ω1]・exp(j・θ12[ω0+ω1])
+b13[ω0+ω1]・exp(j・θ13[ω0+ω1])}]
+J1(mp)・rk・exp{j・(π/2+θ00)}
・[(ω0−ω1)・exp(j・π/2)
・{b12[ω0−ω1]・exp(j・θ12[ω0−ω1])
−b13[ω0−ω1]・exp(j・θ13[ω0−ω1])}
+γ・V・exp(j・Δθ01)
・{b12[ω0−ω1]・exp(j・θ12[ω0−ω1])
+b13[ω0−ω1]・exp(j・θ13[ω0−ω1])}]
=J1(mp)・rk・exp{j・(π/2+θ00)}
・[ω0・exp(j・π/2)
・{b12[ω0+ω1]・exp(j・θ12[ω0+ω1])
−b13[ω0+ω1]・exp(j・θ13[ω0+ω1])
+b12[ω0−ω1]・exp(j・θ12[ω0−ω1])
−b13[ω0−ω1]・exp(j・θ13[ω0−ω1])}
+ω1・exp(j・π/2)
・{b12[ω0+ω1]・exp(j・θ12[ω0+ω1])
−b13[ω0+ω1]・exp(j・θ13[ω0+ω1])
−b12[ω0−ω1]・exp(j・θ12[ω0−ω1])
+b13[ω0−ω1]・exp(j・θ13[ω0−ω1])}
+γ・V・exp(j・Δθ01)
・{b12[ω0+ω1]・exp(j・θ12[ω0+ω1])
+b13[ω0+ω1]・exp(j・θ13[ω0+ω1])
+b12[ω0−ω1]・exp(j・θ12[ω0−ω1])
+b13[ω0−ω1]・exp(j・θ13[ω0−ω1])}]
・・・(374)
If the sum of the interelectrode electromotive forces E7πp0 and E7πm0 is E7πs0, the electromotive force sum E7πs0 is expressed by the following equation.
E7πs0 = E7πp0 + E7πm0
= J 1 (mp) · rk · exp {j · (π / 2 + θ00)}
・ [(Ω0 + ω1) · exp (j · π / 2)
・ {B12 [ω0 + ω1] · exp (j · θ12 [ω0 + ω1])
-B13 [ω0 + ω1] · exp (j · θ13 [ω0 + ω1])}
+ Γ · V · exp (j · Δθ01)
・ {B12 [ω0 + ω1] · exp (j · θ12 [ω0 + ω1])
+ B13 [ω0 + ω1] · exp (j · θ13 [ω0 + ω1])}]
+ J 1 (mp) · rk · exp {j · (π / 2 + θ00)}
・ [(Ω0−ω1) · exp (j · π / 2)
{B12 [ω0-ω1] · exp (j · θ12 [ω0-ω1])
−b13 [ω0−ω1] · exp (j · θ13 [ω0−ω1])}
+ Γ · V · exp (j · Δθ01)
{B12 [ω0-ω1] · exp (j · θ12 [ω0-ω1])
+ B13 [ω0−ω1] · exp (j · θ13 [ω0−ω1])}]
= J 1 (mp) · rk · exp {j · (π / 2 + θ00)}
・ [Ω0 ・ exp (j ・ π / 2)
・ {B12 [ω0 + ω1] · exp (j · θ12 [ω0 + ω1])
-B13 [ω0 + ω1] · exp (j · θ13 [ω0 + ω1])
+ B12 [ω0−ω1] · exp (j · θ12 [ω0−ω1])
−b13 [ω0−ω1] · exp (j · θ13 [ω0−ω1])}
+ Ω1 · exp (j · π / 2)
・ {B12 [ω0 + ω1] · exp (j · θ12 [ω0 + ω1])
-B13 [ω0 + ω1] · exp (j · θ13 [ω0 + ω1])
−b12 [ω0−ω1] · exp (j · θ12 [ω0−ω1])
+ B13 [ω0−ω1] · exp (j · θ13 [ω0−ω1])}
+ Γ · V · exp (j · Δθ01)
・ {B12 [ω0 + ω1] · exp (j · θ12 [ω0 + ω1])
+ B13 [ω0 + ω1] · exp (j · θ13 [ω0 + ω1])
+ B12 [ω0−ω1] · exp (j · θ12 [ω0−ω1])
+ B13 [ω0−ω1] · exp (j · θ13 [ω0−ω1])}]
... (374)

ここで、通常ω0>ω1が成り立つことから式(375)〜式(378)の条件式が成り立つ。
2・b12[ω0]・exp(j・θ12[ω0])
≒b12[ω0+ω1]・exp(j・θ12[ω0+ω1])
+b12[ω0−ω1]・exp(j・θ12[ω0−ω1]) ・・・(375)
2・b13[ω0]・exp(j・θ13[ω0])
≒b13[ω0+ω1]・exp(j・θ13[ω0+ω1])
+b13[ω0−ω1]・exp(j・θ13[ω0−ω1]) ・・・(376)
Here, since ω0> ω1 is normally satisfied, the conditional expressions of Expressions (375) to (378) are satisfied.
2 · b12 [ω0] · exp (j · θ12 [ω0])
≒ b12 [ω0 + ω1] · exp (j · θ12 [ω0 + ω1])
+ B12 [ω0−ω1] · exp (j · θ12 [ω0−ω1]) (375)
2 · b13 [ω0] · exp (j · θ13 [ω0])
≒ b13 [ω0 + ω1] · exp (j · θ13 [ω0 + ω1])
+ B13 [ω0−ω1] · exp (j · θ13 [ω0−ω1]) (376)

|ω0・exp(j・π/2)
・{2・b12[ω0]・exp(j・θ12[ω0])}|
≫|ω1・exp(j・π/2)
・{b12[ω0+ω1]・exp(j・θ12[ω0+ω1])
−b12[ω0−ω1]・exp(j・θ12[ω0−ω1])}|
・・・(377)
|ω0・exp(j・π/2)
・{2・b13[ω0]・exp(j・θ13[ω0])}|
≫|ω1・exp(j・π/2)
・{b13[ω0+ω1]・exp(j・θ13[ω0+ω1])
−b13[ω0−ω1]・exp(j・θ13[ω0−ω1])}|
・・・(378)
| Ω0 · exp (j · π / 2)
{2 · b12 [ω0] · exp (j · θ12 [ω0])} |
>> | ω1 · exp (j · π / 2)
・ {B12 [ω0 + ω1] · exp (j · θ12 [ω0 + ω1])
−b12 [ω0−ω1] · exp (j · θ12 [ω0−ω1])} |
... (377)
| Ω0 · exp (j · π / 2)
{2 · b13 [ω0] · exp (j · θ13 [ω0])} |
>> | ω1 · exp (j · π / 2)
· {B13 [ω0 + ω1] · exp (j · θ13 [ω0 + ω1])
−b13 [ω0−ω1] · exp (j · θ13 [ω0−ω1])} |
... (378)

式(375)〜式(378)の条件を式(374)に適用して起電力和E7πs0を近似したものをE7πs0aとおくと、起電力和E7πs0aは式(379)、式(380)で表される。
E7πs0a≒E7πs0 ・・・(379)
E7πs0a=J1(mp)・rk・exp{j・(π/2+θ00)}
・[ω0・exp(j・π/2)
・{2・b12[ω0]・exp(j・θ12[ω0])
−2・b13[ω0]・exp(j・θ13[ω0])}
+γ・V・exp(j・Δθ01)
・{2・b12[ω0]・exp(j・θ12[ω0])
+2・b13[ω0]・exp(j・θ13[ω0])}
・・・(380)
When E7πs0a is obtained by approximating the electromotive force sum E7πs0 by applying the conditions of the equations (375) to (378) to the equation (374), the electromotive force sum E7πs0a is expressed by the equations (379) and (380). Is done.
E7πs0a≈E7πs0 (379)
E7πs0a = J 1 (mp) · rk · exp {j · (π / 2 + θ00)}
・ [Ω0 ・ exp (j ・ π / 2)
・ {2 ・ b12 [ω0] ・ exp (j ・ θ12 [ω0])
-2 · b13 [ω0] · exp (j · θ13 [ω0])}
+ Γ · V · exp (j · Δθ01)
・ {2 ・ b12 [ω0] ・ exp (j ・ θ12 [ω0])
+ 2 · b13 [ω0] · exp (j · θ13 [ω0])}
... (380)

ここで、θ13[ω0]=θ12[ω0]+Δθ13[ω0]を式(380)の起電力和E7πs0aに代入したものをE7πs0bとすれば、起電力和E7πs0bは次式で表される。
E7πs0b=2・J1(mp)・rk
・exp{j・(π/2+θ12[ω0]+θ00)}
・[ω0・exp(j・π/2)
・{b12[ω0]−b13[ω0]・exp(j・Δθ13[ω0])}
+γ・V・exp(j・Δθ01)
・{b12[ω0]+b13[ω0]・exp(j・Δθ13[ω0])}]
・・・(381)
Here, if the value obtained by substituting θ13 [ω0] = θ12 [ω0] + Δθ13 [ω0] into the electromotive force sum E7πs0a of the equation (380) is E7πs0b, the electromotive force sum E7πs0b is expressed by the following equation.
E7πs0b = 2 · J 1 (mp) · rk
Exp {j · (π / 2 + θ12 [ω0] + θ00)}
・ [Ω0 ・ exp (j ・ π / 2)
{B12 [ω0] −b13 [ω0] · exp (j · Δθ13 [ω0])}
+ Γ · V · exp (j · Δθ01)
{B12 [ω0] + b13 [ω0] · exp (j · Δθ13 [ω0])}]
... (381)

初期状態(校正時の状態)の磁場B12,B13おいて、b12[ω0]=b13[ω0]、Δθ13[ω0]=0と設定しておくと、その後のずれを考慮してもb12[ω0]≒b13[ω0]、Δθ13[ω0]≒0であり、次の条件式が成り立つ。
|b12[ω0]+b13[ω0]・exp(j・Δθ13[ω0])|
≫|b12[ω0] −b13[ω0]・exp(j・Δθ13[ω0])|
・・・(382)
In the initial state (calibration state) of magnetic fields B12 and B13, if b12 [ω0] = b13 [ω0] and Δθ13 [ω0] = 0 are set, b12 [ω0 ] ≈b13 [ω0], Δθ13 [ω0] ≈0, and the following conditional expression holds.
| B12 [ω0] + b13 [ω0] · exp (j · Δθ13 [ω0]) |
»| B12 [ω0] −b13 [ω0] · exp (j · Δθ13 [ω0]) |
... (382)

また、通常ω0>γ・Vが成り立つことから、式(382)の条件を考慮すると、式(371)において次式の条件が成り立つ。
|ω0・exp(j・π/2)
・{b12[ω0]+b13[ω0]・exp(j・Δθ13[ω0])}|
≫|γ・V・exp(j・Δθ01)・b12[ω0]
−b13[ω0]・exp(j・Δθ13[ω0])| ・・・(383)
Since ω0> γ · V is normally satisfied, the following condition is satisfied in Expression (371) when the condition of Expression (382) is taken into consideration.
| Ω0 · exp (j · π / 2)
{B12 [ω0] + b13 [ω0] · exp (j · Δθ13 [ω0])} |
»| Γ · V · exp (j · Δθ01) · b12 [ω0]
−b13 [ω0] · exp (j · Δθ13 [ω0]) | (383)

式(383)の条件を用いて、式(371)の電極間起電力E7π0を近似したものを2・{J1(mp)/J0(mp)}・exp(j・π/2)倍した起電力EdA71は次式で表される。この起電力EdA71は基本原理における第1の∂A/∂t成分に相当する。
EdA71≒E7π0・2・{J1(mp)/J0(mp)}・exp(j・π/2)
・・・(384)
EdA71=2・J1(mp)・rk
・exp{j・(π/2+θ12[ω0]+θ00)}
・ω0・exp(j・π/2)
・{b12[ω0]+b13[ω0]・exp(j・Δθ13[ω0])}
・・・(385)
Using the condition of the equation (383), the approximation of the interelectrode electromotive force E7π0 of the equation (371) is multiplied by 2 · {J 1 (mp) / J 0 (mp)} · exp (j · π / 2) times. The electromotive force EdA71 is expressed by the following equation. This electromotive force EdA71 corresponds to the first ∂A / ∂t component in the basic principle.
EdA71≈E7π0 · 2 · {J 1 (mp) / J 0 (mp)} · exp (j · π / 2)
... (384)
EdA71 = 2 · J 1 (mp) · rk
Exp {j · (π / 2 + θ12 [ω0] + θ00)}
・ Ω0 ・ exp (j ・ π / 2)
{B12 [ω0] + b13 [ω0] · exp (j · Δθ13 [ω0])}
... (385)

起電力EdA71は、流速の大きさVに関係しないので、∂A/∂tによって発生する成分のみとなる。この起電力EdA71を用いて起電力和E7πs0b(合成ベクトルVas0+Vbs0)中のv×B成分の流速の大きさVにかかる係数(スパン)を正規化する。式(381)の起電力和E7πs0bを式(385)の起電力EdA71で正規化し、ω0倍した結果をEn70とすれば、正規化起電力和En70は次式で表される。
En70=(E7πs0b/EdA71)・ω0
=2・J1(mp)・rk・exp{j・(π/2+θ12[ω0]+θ00)}
・[ ω0・exp(j・π/2)
・{b12[ω0]−b13[ω0]・exp(j・Δθ13[ω0])}
+γ・V・exp(j・Δθ01)
・{b12[ω0]+b13[ω0]・exp(j・Δθ13[ω0])}]
/[2・J1(mp)・rk・exp{j・(π/2+θ12[ω0]+θ00)}
・ω0・exp(j・π/2)
・{b12[ω0]+b13[ω0]・exp(j・Δθ13[ω0])}]・ω0
=ω0・{b12[ω0]−b13[ω0]・exp(j・Δθ13[ω0])}
/{b12[ω0]+b13[ω0]・exp(j・Δθ13[ω0])}
+[γ・exp{j・(−π/2+Δθ01)}]・V ・・・(386)
Since the electromotive force EdA71 is not related to the magnitude V of the flow velocity, only the component generated by ∂A / ∂t is included. Using this electromotive force EdA71, the coefficient (span) applied to the magnitude V of the flow velocity of the v × B component in the electromotive force sum E7πs0b (combined vector Vas0 + Vbs0) is normalized. If the electromotive force sum E7πs0b in the equation (381) is normalized by the electromotive force EdA71 in the equation (385) and multiplied by ω0 is En70, the normalized electromotive force sum En70 is expressed by the following equation.
En70 = (E7πs0b / EdA71) · ω0
= 2 · J 1 (mp) · rk · exp {j · (π / 2 + θ12 [ω0] + θ00)}
・ [Ω0 ・ exp (j ・ π / 2)
{B12 [ω0] −b13 [ω0] · exp (j · Δθ13 [ω0])}
+ Γ · V · exp (j · Δθ01)
{B12 [ω0] + b13 [ω0] · exp (j · Δθ13 [ω0])}]
/ [2 · J 1 (mp) · rk · exp {j · (π / 2 + θ12 [ω0] + θ00)}
・ Ω0 ・ exp (j ・ π / 2)
{B12 [ω0] + b13 [ω0] · exp (j · Δθ13 [ω0])}] · ω0
= Ω0 · {b12 [ω0] −b13 [ω0] · exp (j · Δθ13 [ω0])}
/ {B12 [ω0] + b13 [ω0] · exp (j · Δθ13 [ω0])}
+ [Γ · exp {j · (−π / 2 + Δθ01)}] · V (386)

式(52)を用いると、式(386)の右辺第1項の角周波数ω0にかかる係数{b12[ω0]−b13[ω0]・exp(j・Δθ13[ω0])}/{b12[ω0]+b13[ω0]・exp(j・Δθ13[ω0])}を、角周波数ω0に関係しない値{b12−b13・exp(j・Δθ13)}/{b12+b13・exp(j・Δθ13)}で表すことができる。したがって、式(386)を次式のように置き換えることができる。
En70=ω0・{b12−b13・exp(j・Δθ13)}
/{b12+b13・exp(j・Δθ13)}
+[γ・exp{j・(−π/2+Δθ01)}]・V ・・・(387)
Using the equation (52), the coefficient {b12 [ω0] −b13 [ω0] · exp (j · Δθ13 [ω0])} / {b12 [ω0] applied to the angular frequency ω0 of the first term on the right side of the equation (386). ] + B13 [ω0] · exp (j · Δθ13 [ω0])} is represented by a value {b12−b13 · exp (j · Δθ13)} / {b12 + b13 · exp (j · Δθ13)} not related to the angular frequency ω0. be able to. Therefore, the equation (386) can be replaced by the following equation.
En70 = ω0 · {b12−b13 · exp (j · Δθ13)}
/ {B12 + b13 · exp (j · Δθ13)}
+ [Γ · exp {j · (−π / 2 + Δθ01)}] · V (387)

式(387)の第2項が、v×Bにより発生する成分を正規化した項となる。なお、起電力和E7πs0bを起電力EdA71で正規化した結果をω0倍した理由は、流速の大きさVに係る右辺第2項から励磁角周波数ω0を消去するためである。流速の大きさVにかかる複素係数は、γの大きさ、−π/2+Δθ01の実軸からの角度をもつ。係数γおよび角度Δθ01は校正等により予め求めることができる定数であり、式(387)の右辺第2項は被測定流体の流速が変化しないかぎり一定となる。したがって、∂A/∂tの成分をもちいてv×B成分の正規化を行うことにより、磁場のシフトや位相変化による誤差を自動的に補正するスパン補正を実現することができる。   The second term of Expression (387) is a term obtained by normalizing the component generated by v × B. The reason why the result obtained by normalizing the electromotive force sum E7πs0b with the electromotive force EdA71 is multiplied by ω0 is to eliminate the excitation angular frequency ω0 from the second term on the right side of the magnitude V of the flow velocity. The complex coefficient related to the magnitude V of the flow velocity has an angle from the real axis of the magnitude of γ, −π / 2 + Δθ01. The coefficient γ and the angle Δθ01 are constants that can be obtained in advance by calibration or the like, and the second term on the right side of the equation (387) is constant as long as the flow velocity of the fluid to be measured does not change. Therefore, by performing the normalization of the v × B component using the component ∂A / ∂t, it is possible to realize span correction that automatically corrects errors due to magnetic field shifts and phase changes.

次に、0点の変動要因である、式(387)の右辺第1項を除去する方法について説明する。搬送波の角周波数をω0の代わりにω2とする場合、前記の式(340)、式(341)においてθ13をπ+θ13で置き換えた式で磁場B12,B13が表される。角周波数ω0での正規化と同様に角周波数ω2において正規化を行う。角周波数ω2においてスパン補正の対象となる起電力和E7πs2は、式(372)において角周波数ω0をω2で置き換えた電極間起電力E7πp2と式(373)において角周波数ω0をω2で置き換えた電極間起電力E7πm2との和E7πp2+E7πm2で表される。第2の∂A/∂t成分の基となる電極間起電力E7π2は、式(371)において角周波数ω0をω2で置き換えたもので表される。第2の∂A/∂t成分となる起電力EdA72は、式(385)において角周波数ω0をω2で置き換えたものとなる。   Next, a method for removing the first term on the right side of the equation (387), which is a variation factor of 0 point, will be described. When the angular frequency of the carrier wave is ω2 instead of ω0, the magnetic fields B12 and B13 are expressed by the equations in which θ13 is replaced by π + θ13 in the equations (340) and (341). Normalization is performed at the angular frequency ω2 as in the normalization at the angular frequency ω0. The electromotive force sum E7πs2 to be subjected to span correction at the angular frequency ω2 is the inter-electrode electromotive force E7πp2 in which the angular frequency ω0 is replaced with ω2 in the equation (372) and the interelectrode between the electrodes in which the angular frequency ω0 is replaced with ω2 in the equation (373). It is represented by the sum E7πp2 + E7πm2 with the electromotive force E7πm2. The interelectrode electromotive force E7π2 that is the basis of the second ∂A / ∂t component is represented by the equation (371) in which the angular frequency ω0 is replaced with ω2. The electromotive force EdA72 as the second ∂A / ∂t component is obtained by replacing the angular frequency ω0 with ω2 in the equation (385).

起電力和E7πs2を起電力EdA72で正規化し、ω2倍した結果をEn72とすれば、正規化起電力和En72は式(387)より次式で表される。
En72=ω2・{b12−b13・exp(j・Δθ13)}
/{b12+b13・exp(j・Δθ13)}
+[γ・exp{j・(−π/2+Δθ01)}]・V ・・・(388)
If the electromotive force sum E7πs2 is normalized by the electromotive force EdA72 and multiplied by ω2 is En72, the normalized electromotive force sum En72 is expressed by the following equation from the equation (387).
En72 = ω2 · {b12−b13 · exp (j · Δθ13)}
/ {B12 + b13 · exp (j · Δθ13)}
+ [Γ · exp {j · (−π / 2 + Δθ01)}] · V (388)

正規化起電力和En70とEn72との差をとり、求めた差分をω0/(ω0−ω2)倍した結果をEdA73とすれば、差分EdA73は次式で表される。この差分EdA73は基本原理における第3の∂A/∂t成分に相当する。
EdA73=(En70−En72)・ω0/(ω0−ω2)
=[{b12−b13・exp(j・Δθ13)}
/{b12+b13・exp(j・Δθ13)}
・ω0+γ・exp{j・(−π/2+Δθ01)}・V
−{b12−b13・exp(j・Δθ13)}
/{b12+b13・exp(j・Δθ13)}
・ω2−γ・exp{j・(−π/2+Δθ01)}・V]
・ω0/(ω0−ω2)
={b12−b13・exp(j・Δθ13)}
/{b12+b13・exp(j・Δθ13)}・ω0 ・・(389)
Taking the difference between the normalized electromotive force sums En70 and En72 and multiplying the obtained difference by ω0 / (ω0−ω2) as EdA73, the difference EdA73 is expressed by the following equation. This difference EdA73 corresponds to the third ∂A / ∂t component in the basic principle.
EdA73 = (En70−En72) · ω0 / (ω0−ω2)
= [{B12-b13 · exp (j · Δθ13)}
/ {B12 + b13 · exp (j · Δθ13)}
.Omega.0 + .gamma.exp {j. (-. Pi./2+.DELTA..theta.01)}.V
-{B12-b13 · exp (j · Δθ13)}
/ {B12 + b13 · exp (j · Δθ13)}
.Omega.2-.gamma.exp {j. (-. Pi./2+.DELTA..theta.01)}.V]
・ Ω0 / (ω0−ω2)
= {B12-b13 · exp (j · Δθ13)}
/ {B12 + b13 · exp (j · Δθ13)} · ω0 ·· (389)

差分EdA73は正規化された∂A/∂t成分を表し、式(387)の右辺第1項と等しくなるので、この差分EdA73を使用すれば、正規化されたv×B成分を正規化起電力和En70から取り出すことができる。式(387)の正規化起電力和En70から式(389)の差分EdA73を引いたときに得られるv×B成分をEvBn7とすると、v×B成分EvBn7は次式で表される。
EvBn7=En70−EdA73
={b12−b13・exp(j・Δθ13)}
/{b12+b13・exp(j・Δθ13)}・ω0
+[γ・exp{j・(−π/2+Δθ01)}]・V
−{b12−b13・exp(j・Δθ13)}
/{b12+b13・exp(j・Δθ13)}・ω0
=[γ・exp{j・(−π/2+Δθ01)}]・V ・・・(390)
The difference EdA73 represents the normalized ∂A / ∂t component and is equal to the first term on the right side of the equation (387). Therefore, if this difference EdA73 is used, the normalized v × B component is normalized. It can be taken out from the power sum En70. When the v × B component obtained by subtracting the difference EdA73 of equation (389) from the normalized electromotive force sum En70 of equation (387) is EvBn7, the v × B component EvBn7 is expressed by the following equation.
EvBn7 = En70-EdA73
= {B12-b13 · exp (j · Δθ13)}
/ {B12 + b13 · exp (j · Δθ13)} · ω0
+ [Γ · exp {j · (−π / 2 + Δθ01)}] · V
-{B12-b13 · exp (j · Δθ13)}
/ {B12 + b13 · exp (j · Δθ13)} · ω0
= [Γ · exp {j · (−π / 2 + Δθ01)}] · V (390)

v×B成分EvBn7は角周波数ω0,ω2に関係しない。流速の大きさVが0のときv×B成分EvBn7も0となることから分かるように、v×B成分EvBn7より、スパンが補正され、かつ0点が補正された出力を得ることができる。流速の大きさVにかかる係数の大きさと方向は、複素ベクトル[γ・rk・exp{j・(−π/2+Δθ01)}]で表される。式(390)より、流速の大きさVは次式のように表される。
V=|EvBn7/[γ・exp{j・(−π/2+Δθ01)}]|
=|EvBn7|/γ ・・・(391)
The v × B component EvBn7 is not related to the angular frequencies ω0 and ω2. As can be seen from the fact that the v × B component EvBn7 becomes 0 when the magnitude V of the flow velocity is 0, an output in which the span is corrected and the zero point is corrected can be obtained from the v × B component EvBn7. The magnitude and direction of the coefficient relating to the magnitude V of the flow velocity are represented by a complex vector [γ · rk · exp {j · (−π / 2 + Δθ01)}]. From the equation (390), the magnitude V of the flow velocity is expressed as the following equation.
V = | EvBn7 / [γ · exp {j · (−π / 2 + Δθ01)}] |
= | EvBn7 | / γ (391)

なお、基本原理で用いた定数および変数と、本実施の形態の定数および変数との対応関係は以下の表7のとおりである。本実施の形態は、表7から明らかなように、前述の基本原理を具体的に実現する1つの例である。   Table 7 below shows the correspondence between the constants and variables used in the basic principle and the constants and variables in the present embodiment. As is apparent from Table 7, the present embodiment is one example that specifically realizes the basic principle described above.

Figure 2006058175
Figure 2006058175

次に、本実施の形態の電磁流量計の具体的な構成とその動作について説明する。本実施の形態の電磁流量計の構成は第1の実施の形態と同様であるので、図16の符号を用いて説明する。本実施の形態の電磁流量計は、測定管1と、電極2a,2bと、第1、第2の励磁コイル3a,3bと、電源部4と、信号変換部5と、流量出力部6とを有する。   Next, a specific configuration and operation of the electromagnetic flow meter of the present embodiment will be described. Since the configuration of the electromagnetic flowmeter of the present embodiment is the same as that of the first embodiment, description will be made using the reference numerals in FIG. The electromagnetic flowmeter of the present embodiment includes a measuring tube 1, electrodes 2a and 2b, first and second exciting coils 3a and 3b, a power supply unit 4, a signal conversion unit 5, and a flow rate output unit 6. Have

信号変換部5は、第1の励磁状態と第2の励磁状態の各々において電極2a,2bで検出される合成起電力の振幅と位相を求め、これらの振幅と位相に基づいて第1の励磁状態の合成起電力の角周波数ω0の成分を第1の∂A/∂t成分として抽出すると共に、第2の励磁状態の合成起電力の角周波数ω2の成分を第2の∂A/∂t成分として抽出し、第1の励磁状態の合成起電力の角周波数ω0+ω1の成分と角周波数ω0−ω1の成分との起電力和を第1の補正対象起電力として、第1の∂A/∂t成分に基づいて第1の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去すると共に、第2の励磁状態の合成起電力の角周波数ω2+ω1の成分と角周波数ω2−ω1の成分との起電力和を第2の補正対象起電力として、第2の∂A/∂t成分に基づいて第2の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去するスパン補正部51と、スパン補正された第1の補正対象起電力とスパン補正された第2の補正対象起電力との差を第3の∂A/∂t成分として抽出し、このスパン補正された2つの補正対象起電力のうちいずれか1つの中から第3の∂A/∂t成分を取り除くことによりv×B成分を抽出する0点補正部52とから構成される。   The signal conversion unit 5 obtains the amplitude and phase of the combined electromotive force detected by the electrodes 2a and 2b in each of the first excitation state and the second excitation state, and performs the first excitation based on these amplitudes and phases. The component of the angular frequency ω0 of the combined electromotive force in the state is extracted as the first ∂A / ∂t component, and the component of the angular frequency ω2 of the combined electromotive force in the second excitation state is extracted as the second ∂A / ∂t. The first electromotive force sum of the component of the angular frequency ω0 + ω1 and the component of the angular frequency ω0−ω1 of the composite electromotive force in the first excitation state is extracted as a first correction target electromotive force. Based on the t component, the variation factor of the span included in the v × B component in the first correction target electromotive force is removed, and the angular frequency ω2 + ω1 component and the angular frequency ω2 of the composite electromotive force in the second excitation state are removed. The sum of the electromotive force with the component of −ω1 is set as the second correction target electromotive force, and the second power A span correction unit 51 that removes a variation factor of the span included in the v × B component in the second correction target electromotive force based on the A / ∂t component, and the first correction target electromotive force that has been subjected to span correction A difference from the second correction target electromotive force subjected to the span correction is extracted as a third ∂A / ∂t component, and the third one of the two correction target electromotive forces subjected to the span correction is extracted. The zero point correction unit 52 extracts the v × B component by removing the ∂A / ∂t component.

電源部4の動作は第6の実施の形態と同じである。本実施の形態の信号変換部5と流量出力部6の処理の流れは第5の実施の形態と同様であるので、図22の符号を用いて信号変換部5と流量出力部6の動作を説明する。まず、信号変換部5のスパン補正部51は、第6の実施の形態で説明した第1の励磁状態において、電極2aと2b間の起電力のうち角周波数ω0の成分の起電力E7π0の振幅r7π0を求めると共に、実軸と電極間起電力E7π0との位相差φ7π0を図示しない位相検波器により求める(図22ステップ501)。また、スパン補正部51は、第1の励磁状態において、電極2aと2b間の起電力のうち角周波数(ω0+ω1)の成分と角周波数(ω0−ω1)成分との和E7πs0の振幅r7πs0を求めると共に、実軸と起電力和E7πs0との位相差φ7πs0を位相検波器により求める(ステップ502)。   The operation of the power supply unit 4 is the same as that in the sixth embodiment. Since the processing flow of the signal conversion unit 5 and the flow rate output unit 6 of the present embodiment is the same as that of the fifth embodiment, the operations of the signal conversion unit 5 and the flow rate output unit 6 are performed using the reference numerals in FIG. explain. First, the span correction unit 51 of the signal conversion unit 5 has the amplitude of the electromotive force E7π0 of the component of the angular frequency ω0 in the electromotive force between the electrodes 2a and 2b in the first excitation state described in the sixth embodiment. In addition to obtaining r7π0, a phase difference φ7π0 between the real axis and the interelectrode electromotive force E7π0 is obtained by a phase detector (not shown) (step 501 in FIG. 22). Further, the span correction unit 51 obtains the amplitude r7πs0 of the sum E7πs0 of the angular frequency (ω0 + ω1) component and the angular frequency (ω0−ω1) component of the electromotive force between the electrodes 2a and 2b in the first excitation state. At the same time, a phase difference φ7πs0 between the real axis and the electromotive force sum E7πs0 is obtained by the phase detector (step 502).

続いて、スパン補正部51は、第6の実施の形態で説明した第2の励磁状態において、電極2aと2b間の起電力のうち角周波数ω2の成分の起電力E7π2の振幅r7π2を求めると共に、実軸と電極間起電力E7π2との位相差φ7π2を位相検波器により求める(ステップ503)。また、スパン補正部51は、第2の励磁状態において、電極2aと2b間の起電力のうち角周波数(ω2+ω1)の成分と角周波数(ω2−ω1)成分との和E7πs2の振幅r7πs2を求めると共に、実軸と起電力和E7πs2との位相差φ7πs2を位相検波器により求める(ステップ504)。   Subsequently, the span correction unit 51 obtains the amplitude r7π2 of the electromotive force E7π2 of the component of the angular frequency ω2 among the electromotive forces between the electrodes 2a and 2b in the second excitation state described in the sixth embodiment. Then, the phase difference φ7π2 between the real axis and the inter-electrode electromotive force E7π2 is obtained by the phase detector (step 503). The span correction unit 51 obtains the amplitude r7πs2 of the sum E7πs2 of the angular frequency (ω2 + ω1) component and the angular frequency (ω2-ω1) component of the electromotive force between the electrodes 2a and 2b in the second excitation state. At the same time, a phase difference φ7πs2 between the real axis and the electromotive force sum E7πs2 is obtained by the phase detector (step 504).

次に、スパン補正部51は、電極間起電力E7π0を近似した起電力EdA71の大きさと角度を求める(ステップ505)。このステップ505の処理は、第1の∂A/∂t成分を求めることに対応する処理であり、式(385)の算出に相当する処理である。スパン補正部51は、起電力EdA71の大きさ|EdA71|を次式のように算出する。
|EdA71|=r7π0 ・・・(392)
そして、スパン補正部51は、起電力EdA71の角度∠EdA71を次式のように算出する。
∠EdA71=φ7π0 ・・・(393)
これで、ステップ505の処理が終了する。
Next, the span correction unit 51 obtains the magnitude and angle of the electromotive force EdA71 that approximates the interelectrode electromotive force E7π0 (step 505). The process of step 505 is a process corresponding to obtaining the first ∂A / ∂t component, and is a process corresponding to the calculation of Expression (385). The span correction unit 51 calculates the magnitude | EdA71 | of the electromotive force EdA71 as follows.
| EdA71 | = r7π0 (392)
Then, the span correction unit 51 calculates the angle ∠EdA71 of the electromotive force EdA71 as the following equation.
∠EdA71 = φ7π0 (393)
This completes the process of step 505.

続いて、スパン補正部51は、起電力和E7πs0を起電力EdA71で正規化した正規化起電力和En70の大きさと角度を求める(ステップ506)。このステップ506の処理は、式(387)の算出に相当する処理である。スパン補正部51は、正規化起電力和En70の大きさ|En70|を次式のように算出する。
|En70|=(r7πs0/|EdA71|)・ω0 ・・・(394)
Subsequently, the span correction unit 51 obtains the magnitude and angle of the normalized electromotive force sum En70 obtained by normalizing the electromotive force sum E7πs0 with the electromotive force EdA71 (step 506). The process of step 506 is a process corresponding to the calculation of Expression (387). The span correction unit 51 calculates the magnitude | En70 | of the normalized electromotive force sum En70 as follows.
| En70 | = (r7πs0 / | EdA71 |) · ω0 (394)

そして、スパン補正部51は、正規化起電力和En70の角度∠En70を次式のように算出する。
∠En70=φ7πs0−∠EdA71 ・・・(395)
さらに、スパン補正部51は、正規化起電力和En70の実軸成分En70xと虚軸成分En70yを次式のように算出する。
En70x=|En70|・cos(∠En70) ・・・(396)
En70y=|En70|・sin(∠En70) ・・・(397)
これで、ステップ506の処理が終了する。
Then, the span correction unit 51 calculates the angle ∠En70 of the normalized electromotive force sum En70 as the following expression.
∠En70 = φ7πs0−∠EdA71 (395)
Further, the span correction unit 51 calculates the real axis component En70x and the imaginary axis component En70y of the normalized electromotive force sum En70 as the following equation.
En70x = | En70 | .cos (∠En70) (396)
En70y = | En70 | .sin (∠En70) (397)
This completes the processing in step 506.

次に、スパン補正部51は、電極間起電力E7π2を近似した起電力EdA72の大きさと角度を求める(ステップ507)。このステップ507の処理は、第2の∂A/∂t成分を求めることに対応する処理である。スパン補正部51は、起電力EdA72の大きさ|EdA72|を次式のように算出する。
|EdA72|=r7π2 ・・・(398)
そして、スパン補正部51は、起電力EdA72の角度∠EdA72を次式のように算出する。
∠EdA72=φ7π2 ・・・(399)
これで、ステップ507の処理が終了する。
Next, the span correction unit 51 obtains the magnitude and angle of the electromotive force EdA72 that approximates the interelectrode electromotive force E7π2 (step 507). The processing in this step 507 is processing corresponding to obtaining the second ∂A / ∂t component. The span correction unit 51 calculates the magnitude | EdA72 | of the electromotive force EdA72 as follows.
| EdA72 | = r7π2 (398)
Then, the span correction unit 51 calculates the angle ∠EdA72 of the electromotive force EdA72 as the following equation.
∠EdA72 = φ7π2 (399)
This completes the processing in step 507.

続いて、スパン補正部51は、起電力和E7πs2を起電力EdA72で正規化した正規化起電力和En72の大きさと角度を求める(ステップ508)。このステップ508の処理は、式(388)の算出に相当する処理である。スパン補正部51は、正規化起電力和En72の大きさ|En72|を次式のように算出する。
|En72|=(r7πs2/|EdA72|)・ω2 ・・・(400)
Subsequently, the span correction unit 51 obtains the magnitude and angle of the normalized electromotive force sum En72 obtained by normalizing the electromotive force sum E7πs2 with the electromotive force EdA72 (step 508). The processing in step 508 is processing equivalent to the calculation of equation (388). The span correction unit 51 calculates the magnitude | En72 | of the normalized electromotive force sum En72 as the following equation.
| En72 | = (r7πs2 / | EdA72 |) · ω2 (400)

そして、スパン補正部51は、正規化起電力和En72の角度∠En72を次式のように算出する。
∠En72=φ7πs2−∠EdA72 ・・・(401)
さらに、スパン補正部51は、正規化起電力和En72の実軸成分En72xと虚軸成分En72yを次式のように算出する。
En72x=|En72|・cos(∠En72) ・・・(402)
En72y=|En72|・sin(∠En72) ・・・(403)
これで、ステップ508の処理が終了する。
Then, the span correction unit 51 calculates the angle ∠En72 of the normalized electromotive force sum En72 as the following equation.
∠En72 = φ7πs2-∠EdA72 (401)
Further, the span correction unit 51 calculates the real axis component En72x and the imaginary axis component En72y of the normalized electromotive force sum En72 as in the following equation.
En72x = | En72 | .cos (∠En72) (402)
En72y = | En72 | .sin (∠En72) (403)
This completes the processing in step 508.

次に、信号変換部5の0点補正部52は、正規化起電力和En70とEn72との差分EdA73の大きさを求める(ステップ509)。このステップ509の処理は、第3の∂A/∂t成分を求めることに対応する処理であり、式(389)の算出に相当する処理である。0点補正部52は、差分EdA73の実軸成分EdA73xと虚軸成分EdA73yを次式のように算出する。
EdA73x=(En70x−En72x)・ω0/(ω0−ω2) ・・(404)
EdA73y=(En70y−En72y)・ω0/(ω0−ω2) ・・(405)
Next, the zero point correction unit 52 of the signal conversion unit 5 obtains the magnitude of the difference EdA73 between the normalized electromotive force sums En70 and En72 (step 509). The processing in step 509 is processing corresponding to obtaining the third ∂A / ∂t component, and is processing corresponding to the calculation of equation (389). The zero point correction unit 52 calculates the real axis component EdA73x and the imaginary axis component EdA73y of the difference EdA73 as in the following equation.
EdA73x = (En70x−En72x) · ω0 / (ω0−ω2) (404)
EdA73y = (En70y−En72y) · ω0 / (ω0−ω2) (405)

そして、0点補正部52は、正規化起電力和En70から差分EdA73を取り除き、v×B成分EvBn7の大きさを求める(ステップ510)。このステップ510の処理は、式(390)の算出に相当する処理である。0点補正部52は、v×B成分EvBn7の大きさ|EvBn7|を次式のように算出する。
|EvBn7|={(En70x−EdA73x)2
+(En70y−EdA73y)21/2 ・・・(406)
Then, the zero point correction unit 52 removes the difference EdA73 from the normalized electromotive force sum En70 and obtains the magnitude of the v × B component EvBn7 (step 510). The process of step 510 is a process corresponding to the calculation of equation (390). The zero point correction unit 52 calculates the magnitude | EvBn7 | of the v × B component EvBn7 as follows.
| EvBn7 | = {(En70x−EdA73x) 2
+ (En70y−EdA73y) 2 } 1/2 (406)

流量出力部6は、被測定流体の流速の大きさVを次式のように算出する(ステップ511)。このステップ511の処理は、式(391)の算出に相当する処理である。
V=|EvBn7|/γ ・・・(407)
なお、比例係数γは、校正等により予め求めることができる定数である。信号変換部5と流量出力部6とは、以上のようなステップ501〜511の処理を例えばオペレータによって計測終了が指示されるまで(ステップ512においてYES)、一定周期毎に行う。なお、ステップ503〜511の処理は第2の励磁状態において行われる。
The flow rate output unit 6 calculates the magnitude V of the flow velocity of the fluid to be measured as in the following equation (step 511). The process of step 511 is a process corresponding to the calculation of equation (391).
V = | EvBn7 | / γ (407)
The proportionality coefficient γ is a constant that can be obtained in advance by calibration or the like. The signal conversion unit 5 and the flow rate output unit 6 perform the processing in steps 501 to 511 as described above at regular intervals until, for example, the operator instructs the end of measurement (YES in step 512). Note that the processing in steps 503 to 511 is performed in the second excitation state.

以上のように、本実施の形態では、第1の励磁状態において、角周波数ω0の成分の起電力E7π0と、角周波数(ω0+ω1)の成分と角周波数(ω0−ω1)成分との起電力和E7πs0を求め、第2の励磁状態において、角周波数ω2の成分の起電力E7π2と、角周波数(ω2+ω1)の成分と角周波数(ω2−ω1)成分との起電力和E7πs2を求める。そして、本実施の形態では、第1の励磁コイル3aから発生する磁場B12と第2の励磁コイル3bから発生する磁場B13とが等しくなるように設定しておくと、電極間起電力E7π0が近似的に第1の∂A/∂t成分として抽出でき、また電極間起電力E7π2が近似的に第2の∂A/∂t成分として抽出できることに着眼し、第1の∂A/∂t成分を用いて起電力和E7πs0中のv×B成分の流速の大きさVにかかるスパンを正規化すると共に、第2の∂A/∂t成分を用いて起電力和E7πs2中のv×B成分の流速の大きさVにかかるスパンを正規化し、正規化起電力和En70とEn72とから差分EdA73(第3の∂A/∂t成分)を抽出して、正規化起電力和En70から第3の∂A/∂t成分を取り除くことによりv×B成分を抽出し、このv×B成分から被測定流体の流量を算出するようにしたので、正確なスパン補正を自動的に行うことができ、かつ被測定流体の流量を0にすることなく電磁流量計の出力の0点を補正することができ、高周波励磁においても0点の安定性を確保することができる。   As described above, in the present embodiment, in the first excitation state, the electromotive force E7π0 of the component of the angular frequency ω0, the electromotive force sum of the component of the angular frequency (ω0 + ω1) and the angular frequency (ω0−ω1) component. E7πs0 is obtained, and in the second excitation state, the electromotive force E7π2 of the component of the angular frequency ω2, and the electromotive force sum E7πs2 of the component of the angular frequency (ω2 + ω1) and the angular frequency (ω2-ω1) component are obtained. In this embodiment, if the magnetic field B12 generated from the first exciting coil 3a and the magnetic field B13 generated from the second exciting coil 3b are set to be equal, the interelectrode electromotive force E7π0 is approximated. Focusing on the fact that the first ∂A / ∂t component can be extracted and the interelectrode electromotive force E7π2 can be approximately extracted as the second ∂A / ∂t component, the first ∂A / ∂t component Is used to normalize the span of the flow velocity V of the v × B component in the electromotive force sum E7πs0 and v × B component in the electromotive force sum E7πs2 using the second ∂A / ∂t component. Normalization is performed on the span of the flow velocity V, and the difference EdA73 (third ∂A / ∂t component) is extracted from the normalized electromotive force sums En70 and En72, and the normalized electromotive force sum En70 V × B by removing the ∂A / ∂t component of Since the minute is extracted and the flow rate of the fluid to be measured is calculated from this v × B component, accurate span correction can be automatically performed, and the electromagnetic flow can be obtained without reducing the flow rate of the fluid to be measured to zero. The zero point of the output of the flow meter can be corrected, and the stability of the zero point can be ensured even in high frequency excitation.

また、本実施の形態では、周波数による磁場の損失の違いを考慮して、起電力和E7πs0のv×B成分を起電力E7π0から抽出した同じ角周波数の第1の∂A/∂t成分を用いて正規化すると共に、起電力和E7πs2のv×B成分を起電力E7π2から抽出した同じ角周波数の第2の∂A/∂t成分を用いて正規化し、それぞれ正規化した起電力和En70とEn72との差を基に0補正を行うようにしたので、磁場の損失による影響がある場合でも、正確なスパン補正と0補正を行うことができる。
また、本実施の形態では、搬送波の周波数を切り換えるだけで、磁場の位相差を切り換える必要がなく、第1の実施の形態のように4つの励磁状態を用いる必要がないので、より高速に流量を算出することが可能になる。
In the present embodiment, the first ∂A / ∂t component having the same angular frequency obtained by extracting the v × B component of the electromotive force sum E7πs0 from the electromotive force E7π0 in consideration of the difference in magnetic field loss depending on the frequency. And normalizing the v × B component of the electromotive force sum E7πs2 using the second ∂A / ∂t components of the same angular frequency extracted from the electromotive force E7π2, and respectively normalizing the electromotive force sum En70. Since the zero correction is performed based on the difference between En and 72, accurate span correction and zero correction can be performed even when there is an influence due to the loss of the magnetic field.
In the present embodiment, it is not necessary to switch the phase difference of the magnetic field only by switching the frequency of the carrier wave, and it is not necessary to use the four excitation states as in the first embodiment. Can be calculated.

なお、本実施の形態では、起電力和E7πs0を0補正およびスパン補正の対象としたが、起電力和E7πs2を0補正およびスパン補正の対象としてもよい。この場合は、次式のように正規化起電力和En72とEn70とから差分EdA73(第3の∂A/∂t成分)を求める。
EdA73=(En72−En70)・ω2/(ω2−ω0) ・・・(408)
そして、次式のように正規化起電力和En72から差分EdA73を引くことによりv×B成分EvBn7を求めるようにすればよい。その他の処理は起電力和E7πs0を0補正およびスパン補正の対象とする場合と同じである。
|EvBn7|=|En72−EdA73| ・・・(409)
In the present embodiment, the electromotive force sum E7πs0 is the target of 0 correction and span correction, but the electromotive force sum E7πs2 may be the target of 0 correction and span correction. In this case, the difference EdA73 (third ∂A / ∂t component) is obtained from the normalized electromotive force sums En72 and En70 as in the following equation.
EdA73 = (En72-En70) · ω2 / (ω2-ω0) (408)
Then, the v × B component EvBn7 may be obtained by subtracting the difference EdA73 from the normalized electromotive force sum En72 as in the following equation. The other processes are the same as those in the case where the electromotive force sum E7πs0 is the target of 0 correction and span correction.
| EvBn7 | = | En72−EdA73 | (409)

[第8の実施の形態]
次に、本発明の第8の実施の形態について説明する。本実施の形態の電磁流量計は1個の励磁コイルと2対の電極とを有するものであり、信号処理系を除く構成は図13に示した電磁流量計と同様であるので、図13の符号を用いて本実施の形態の原理を説明する。新たに追加する第2の電極を既存の第1の電極と同じ側に追加した場合には、第1の実施の形態の冗長な構成となる。したがって、第2の電極は、励磁コイルを挟んで第1の電極と異なる側に配設する必要がある。本実施の形態は、正規化の対象となる合成ベクトルVas0+Vbs0を検出する方法として基本原理で説明した第1の検出方法を用い、第1の∂A/∂t成分を抽出する方法として基本原理で説明した第1の抽出方法を用いるものである。
[Eighth Embodiment]
Next, an eighth embodiment of the present invention will be described. The electromagnetic flow meter of the present embodiment has one excitation coil and two pairs of electrodes, and the configuration excluding the signal processing system is the same as that of the electromagnetic flow meter shown in FIG. The principle of this embodiment will be described using reference numerals. When the newly added second electrode is added on the same side as the existing first electrode, the redundant configuration of the first embodiment is obtained. Therefore, it is necessary to arrange the second electrode on a different side from the first electrode with the exciting coil interposed therebetween. The present embodiment uses the first detection method described in the basic principle as a method for detecting the composite vector Vas0 + Vbs0 to be normalized, and uses the basic principle as a method for extracting the first ∂A / ∂t component. The first extraction method described is used.

励磁コイル3から発生する磁場Bdのうち、電極2a,2b間を結ぶ電極軸EAX1上において電極軸EAX1および測定管軸PAXの双方と直交する磁場成分(磁束密度)B4と、励磁コイル3から発生する磁場Bdのうち、電極2c,2d間を結ぶ電極軸EAX2上において電極軸EAX2および測定管軸PAXの双方と直交する磁場成分(磁束密度)B5は、以下のように与えられるものとする。
B4=b4・cos(ω0・t−θ4) ・・・(410)
B5=b5・cos(ω0・t−θ5) ・・・(411)
Of the magnetic field Bd generated from the excitation coil 3, a magnetic field component (magnetic flux density) B4 orthogonal to both the electrode axis EAX1 and the measurement tube axis PAX on the electrode axis EAX1 connecting the electrodes 2a and 2b, and generated from the excitation coil 3 The magnetic field component (magnetic flux density) B5 orthogonal to both the electrode axis EAX2 and the measurement tube axis PAX on the electrode axis EAX2 connecting the electrodes 2c and 2d is assumed to be given as follows.
B4 = b4 · cos (ω0 · t−θ4) (410)
B5 = b5 · cos (ω0 · t−θ5) (411)

但し、B4、B5は1つの励磁コイル3から発生しているので、b4とb5、θ4とθ5は互いに関係があり、独立変数ではない。式(410)、式(411)において、b4,b5はそれぞれ磁束密度B4,B5の振幅、ω0は角周波数、θ4は磁束密度B4とω0・tとの位相差(位相遅れ)、θ5は磁束密度B5とω0・tとの位相差である。以下、磁束密度B4を磁場B4とし、磁束密度B5を磁場B5とする。   However, since B4 and B5 are generated from one excitation coil 3, b4 and b5 and θ4 and θ5 are related to each other and are not independent variables. In equations (410) and (411), b4 and b5 are the amplitudes of the magnetic flux densities B4 and B5, ω0 is the angular frequency, θ4 is the phase difference (phase lag) between the magnetic flux density B4 and ω0 · t, and θ5 is the magnetic flux. It is the phase difference between the density B5 and ω0 · t. Hereinafter, the magnetic flux density B4 is referred to as a magnetic field B4, and the magnetic flux density B5 is referred to as a magnetic field B5.

磁場の損失を考慮して、角周波数ω0における磁場B4,B5の振幅b4,b5をそれぞれb4[ω0],b5[ω0]と関数表記に変更し、同様に磁場B4,B5の位相差θ4,θ5をそれぞれθ4[ω0],θ5[ω0]と変更すると、式(410)、式(411)は式(412)、式(413)に置き換わる。
B4=b4[ω0]・cos(ω0・t−θ4[ω0]) ・・・(412)
B5=b5[ω0]・cos(ω0・t−θ5[ω0]) ・・・(413)
Considering the loss of the magnetic field, the amplitudes b4 and b5 of the magnetic fields B4 and B5 at the angular frequency ω0 are changed to the function notations b4 [ω0] and b5 [ω0], respectively, and similarly the phase difference θ4 of the magnetic fields B4 and B5. When θ5 is changed to θ4 [ω0] and θ5 [ω0], respectively, equations (410) and (411) are replaced with equations (412) and (413).
B4 = b4 [ω0] · cos (ω0 · t−θ4 [ω0]) (412)
B5 = b5 [ω0] · cos (ω0 · t−θ5 [ω0]) (413)

磁場の変化に起因する起電力は、磁場の時間微分dB/dtによるので、励磁コイル3から発生する磁場BdのうちB4,B5を次式のように微分する。
dB4/dt=ω0・cos(ω0・t)・b4[ω0]・{sin(θ4[ω0])}
+ω0・sin(ω0・t)・b4[ω0]・{−cos(θ4[ω0])}
・・・(414)
dB5/dt=ω0・cos(ω0・t)・b5[ω0]・{sin(θ5[ω0])}
+ω0・sin(ω0・t)・b5[ω0]・{−cos(θ5[ω0])}
・・・(415)
Since the electromotive force resulting from the change of the magnetic field is based on the time derivative dB / dt of the magnetic field, B4 and B5 of the magnetic field Bd generated from the exciting coil 3 are differentiated as follows.
dB4 / dt = ω0 · cos (ω0 · t) · b4 [ω0] · {sin (θ4 [ω0])}
+ Ω0 · sin (ω0 · t) · b4 [ω0] · {−cos (θ4 [ω0])}
... (414)
dB5 / dt = ω0 · cos (ω0 · t) · b5 [ω0] · {sin (θ5 [ω0])}
+ Ω0 · sin (ω0 · t) · b5 [ω0] · {−cos (θ5 [ω0])}
... (415)

被測定流体の流量が0の場合、電極軸EAX1と測定管軸PAXとを含む平面内において、磁場Bdの変化によって発生する、流速と無関係な第1の電極間起電力E1と、電極軸EAX2と測定管軸PAXとを含む平面内において、磁場Bdの変化によって発生する、流速と無関係な第2の電極間起電力E2は、図14に示すように互いに逆向きとなる。このとき、第1の電極間起電力E1と第2の電極間起電力E2は、次式に示すように、起電力の向きを加えた磁場の時間微分(−dB4/dt、dB5/dt)に比例係数rkをかけ、位相差θ4,θ5をそれぞれθ4+θ00,θ5+θ00で置き換えたものとなる(rk、θ00は、被測定流体の導電率及び誘電率と電極2a,2b,2c,2dの配置を含む測定管1の構造に関係する)。   When the flow rate of the fluid to be measured is 0, the first inter-electrode electromotive force E1 that is generated by the change of the magnetic field Bd and is independent of the flow velocity and the electrode axis EAX2 in the plane including the electrode axis EAX1 and the measurement tube axis PAX. In the plane including the measurement tube axis PAX, the second inter-electrode electromotive force E2 generated by the change of the magnetic field Bd is irrelevant to each other as shown in FIG. At this time, the first inter-electrode electromotive force E1 and the second inter-electrode electromotive force E2 are time differentials (−dB4 / dt, dB5 / dt) of the magnetic field added with the direction of the electromotive force, as shown in the following equation. Is multiplied by a proportionality factor rk, and the phase differences θ4 and θ5 are respectively replaced by θ4 + θ00 and θ5 + θ00 (rk and θ00 are the conductivity and dielectric constant of the fluid to be measured and the arrangement of the electrodes 2a, 2b, 2c and 2d, respectively. (Related to the structure of the measuring tube 1).

E1=rk・ω0・cos(ω0・t)・b4[ω0]
・{−sin(θ4[ω0]+θ00)}
+rk・ω0・sin(ω0・t)・b4[ω0]
・{cos(θ4[ω0]+θ00)} ・・・(416)
E2=rk・ω0・cos(ω0・t)・b5[ω0]
・{sin(θ5[ω0]+θ00)}
+rk・ω0・sin(ω0・t)・b5[ω0]
・{−cos(θ5[ω0]+θ00)} ・・・(417)
E1 = rk · ω0 · cos (ω0 · t) · b4 [ω0]
・ {-Sin (θ4 [ω0] + θ00)}
+ Rk · ω0 · sin (ω0 · t) · b4 [ω0]
{Cos (θ4 [ω0] + θ00)} (416)
E2 = rk · ω0 · cos (ω0 · t) · b5 [ω0]
・ {Sin (θ5 [ω0] + θ00)}
+ Rk · ω0 · sin (ω0 · t) · b5 [ω0]
{-Cos (θ5 [ω0] + θ00)} (417)

被測定流体の流速の大きさがV(V≠0)の場合、流速ベクトルvと磁場Bdによって発生する第1の電極間起電力Ev1、流速ベクトルvと磁場Bdによって発生する第2の電極間起電力Ev2は、図15に示すように同じ向きとなる。このとき、第1の電極間起電力Ev1と第2の電極間起電力Ev2は、次式に示すように、起電力の向きを加えた磁場(B4、B5)に比例係数rkvをかけ、位相差θ4,θ5をそれぞれθ4+θ01,θ5+θ01で置き換えたものとなる(rkv、θ01は、流速の大きさVと被測定流体の導電率及び誘電率と電極2a,2b,2c,2dの配置を含む測定管1の構造に関係する)。   When the magnitude of the flow velocity of the fluid to be measured is V (V ≠ 0), the first inter-electrode electromotive force Ev1 generated by the flow velocity vector v and the magnetic field Bd, and the second electrode generated by the flow velocity vector v and the magnetic field Bd. The electromotive force Ev2 has the same direction as shown in FIG. At this time, the first inter-electrode electromotive force Ev1 and the second inter-electrode electromotive force Ev2 are obtained by multiplying the magnetic field (B4, B5) to which the direction of the electromotive force is added by the proportional coefficient rkv as shown in the following equation. The phase differences θ4 and θ5 are respectively replaced by θ4 + θ01 and θ5 + θ01 (rkv and θ01 are measurements including the magnitude V of the flow velocity, the conductivity and dielectric constant of the fluid to be measured, and the arrangement of the electrodes 2a, 2b, 2c and 2d. Related to the structure of the tube 1).

Ev1=rkv・cos(ω0・t)・b4[ω0]・cos(θ4[ω0]+θ01)
+rkv・sin(ω0・t)・b4[ω0]・sin(θ4[ω0]+θ01)
・・・(418)
Ev2=rkv・cos(ω0・t)・b5[ω0]・cos(θ5[ω0]+θ01)
+rkv・sin(ω0・t)・b5[ω0]・sin(θ5[ω0]+θ01)
・・・(419)
Ev1 = rkv · cos (ω0 · t) · b4 [ω0] · cos (θ4 [ω0] + θ01)
+ Rkv · sin (ω0 · t) · b4 [ω0] · sin (θ4 [ω0] + θ01)
... (418)
Ev2 = rkv · cos (ω0 · t) · b5 [ω0] · cos (θ5 [ω0] + θ01)
+ Rkv · sin (ω0 · t) · b5 [ω0] · sin (θ5 [ω0] + θ01)
... (419)

図14、図15で説明した電極間起電力の向きを考慮すると、磁場の時間変化に起因する電極間起電力を複素ベクトルに変換した起電力と被測定流体の流速に起因する電極間起電力を複素ベクトルに変換した起電力とを合わせた、電極2a,2b間の第1の電極間起電力のうち角周波数ω0の成分の起電力E810cは、式(416)、式(418)に式(17)を適用することにより次式で表される。
E810c=rk・ω0・b4[ω0]
・exp{j・(π/2+θ4[ω0]+θ00)}
+γ・rk・V・b4[ω0]・exp{j・(θ4[ω0]+θ01)}
・・・(420)
In consideration of the direction of the inter-electrode electromotive force described with reference to FIGS. 14 and 15, the electro-electromotive force obtained by converting the electro-electromotive force due to the time change of the magnetic field into a complex vector and the flow velocity of the fluid to be measured. The electromotive force E810c of the component of the angular frequency ω0 of the first inter-electrode electromotive force between the electrodes 2a and 2b, which is combined with the electromotive force converted into a complex vector, is expressed by Equations (416) and (418). By applying (17), it is expressed by the following equation.
E810c = rk · ω0 · b4 [ω0]
• exp {j · (π / 2 + θ4 [ω0] + θ00)}
+ Γ · rk · V · b4 [ω0] · exp {j · (θ4 [ω0] + θ01)}
... (420)

磁場の時間変化に起因する電極間起電力を複素ベクトルに変換した起電力と被測定流体の流速に起因する電極間起電力を複素ベクトルに変換した起電力とを合わせた、電極2c,2d間の第2の電極間起電力のうち角周波数ω0の成分の起電力E82cは、式(417)、式(419)に式(17)を適用することにより次式で表される。
E820c=rk・ω0・b5[ω0]
・exp{j・(−π/2+θ5[ω0]+θ00)}
+γ・rk・V・b5[ω0]・exp{j・(θ5[ω0]+θ01)}
・・・(421)
Between the electrodes 2c and 2d, which combines the electromotive force obtained by converting the electromotive force between the electrodes due to the time change of the magnetic field into a complex vector and the electromotive force obtained by converting the electromotive force between the electrodes caused by the flow velocity of the fluid to be measured into the complex vector. The electromotive force E82c of the component having the angular frequency ω0 of the second inter-electrode electromotive force is expressed by the following equation by applying the equation (17) to the equations (417) and (419).
E820c = rk · ω0 · b5 [ω0]
Exp {j. (− Π / 2 + θ5 [ω0] + θ00)}
+ Γ · rk · V · b5 [ω0] · exp {j · (θ5 [ω0] + θ01)}
... (421)

ここで、磁場B4の角周波数ω0の成分の位相遅れθ4[ω0]と磁場B5の角周波数ω0の成分の位相遅れθ5[ω0]との関係をθ5[ω0]=θ4[ω0]+Δθ5[ω0]とし、かつ虚軸に対する∂A/∂t成分の角度θ00と実軸に対するv×B成分の角度θ01との関係をθ01=θ00+Δθ01とする。式(420)にθ5[ω0]=θ4[ω0]+Δθ5[ω0]、θ01=θ00+Δθ01を代入したときの第1の電極間起電力の角周波数ω0の成分E810cと式(421)にθ5[ω0]=θ4[ω0]+Δθ5[ω0]、θ01=θ00+Δθ01を代入したときの第2の電極間起電力の角周波数ω0の成分E820cとの和をE8s0とすれば、起電力和E8s0は次式で表される。
E8s0=rk・exp{j・(θ4[ω0]+θ00)}
・[ω0・exp(j・π/2)
・{b4[ω0]−b5[ω0]・exp(j・Δθ5[ω0])}
+γ・V・exp(j・Δθ01)
・{b4[ω0]+b5[ω0]・exp(j・Δθ5[ω0])}]
・・・(422)
Here, the relationship between the phase delay θ4 [ω0] of the component of the angular frequency ω0 of the magnetic field B4 and the phase delay θ5 [ω0] of the component of the angular frequency ω0 of the magnetic field B5 is expressed as θ5 [ω0] = θ4 [ω0] + Δθ5 [ω0 And the relationship between the angle θ00 of the ∂A / ∂t component with respect to the imaginary axis and the angle θ01 of the v × B component with respect to the real axis is θ01 = θ00 + Δθ01. Θ5 [ω0] = θ4 [ω0] + Δθ5 [ω0], θ01 = θ00 + Δθ01 when substituting θ5 [ω0] = θ4 [ω0] into equation (420), component E810c of the angular frequency ω0 of the first interelectrode electromotive force, and θ5 [ω0 into equation (421). ] = Θ4 [ω0] + Δθ5 [ω0], θ01 = θ00 + Δθ01 and substituting E8s0 with the component E820c of the angular frequency ω0 of the second electrode electromotive force, the electromotive force sum E8s0 is given by expressed.
E8s0 = rk · exp {j · (θ4 [ω0] + θ00)}
・ [Ω0 ・ exp (j ・ π / 2)
{B4 [ω0] −b5 [ω0] · exp (j · Δθ5 [ω0])}
+ Γ · V · exp (j · Δθ01)
{B4 [ω0] + b5 [ω0] · exp (j · Δθ5 [ω0])}]
... (422)

また、式(420)にθ5[ω0]=θ4[ω0]+Δθ5[ω0]、θ01=θ00+Δθ01を代入したときの第1の電極間起電力の角周波数ω0の成分E810cと式(421)にθ5[ω0]=θ4[ω0]+Δθ5[ω0]、θ01=θ00+Δθ01を代入したときの第2の電極間起電力の角周波数ω0の成分E820cとの差をE8d0とすれば、起電力差E8d0は次式で表される。
E8d0=rk・exp{j・(θ4[ω0]+θ00)}
・[ω0・exp(j・π/2)
・{b4[ω0]+b5[ω0]・exp(j・Δθ5[ω0])}
+γ・V・exp(j・Δθ01)
・{b4[ω0]−b5[ω0]・exp(j・Δθ5[ω0])}]
・・・(423)
In addition, when θ5 [ω0] = θ4 [ω0] + Δθ5 [ω0] and θ01 = θ00 + Δθ01 are substituted into Equation (420), the component E810c of the angular frequency ω0 of the first inter-electrode electromotive force and θ5 into Equation (421). If the difference from the component E820c of the angular frequency ω0 of the second electrode electromotive force when substituting [ω0] = θ4 [ω0] + Δθ5 [ω0] and θ01 = θ00 + Δθ01 is E8d0, the electromotive force difference E8d0 is It is expressed by a formula.
E8d0 = rk · exp {j · (θ4 [ω0] + θ00)}
・ [Ω0 ・ exp (j ・ π / 2)
{B4 [ω0] + b5 [ω0] · exp (j · Δθ5 [ω0])}
+ Γ · V · exp (j · Δθ01)
{B4 [ω0] −b5 [ω0] · exp (j · Δθ5 [ω0])}]
... (423)

初期状態(校正時の状態)において、励磁コイル3から発生する磁場B4とB5とを等しく設定しておくと、その後の磁場B4とB5の初期状態からの差は小さくなり、次式の条件が成り立つ。
|b4[ω0]+b5[ω0]・exp(j・Δθ5[ω0])|
≫|b4[ω0]−b5[ω0]・exp(j・Δθ5[ω0])| ・・・(424)
If the magnetic fields B4 and B5 generated from the exciting coil 3 are set to be equal in the initial state (the state at the time of calibration), the difference from the initial state of the subsequent magnetic fields B4 and B5 becomes small, and the condition of the following equation is satisfied: It holds.
| B4 [ω0] + b5 [ω0] · exp (j · Δθ5 [ω0]) |
>> | b4 [ω0] −b5 [ω0] · exp (j · Δθ5 [ω0]) | (424)

また、通常ω0>γ・Vが成り立つことから、式(424)の条件を考慮すると、式(423)において次式の条件が成り立つ。
|ω0・exp(j・π/2)
・{b4[ω0]+b5[ω0]・exp(j・Δθ5[ω0])}|
≫|γ・V・exp(j・Δθ01)
・{b4[ω0]−b5[ω0]・exp(j・Δθ5[ω0])}|
・・・(425)
Further, since ω0> γ · V is normally satisfied, when the condition of the equation (424) is considered, the following equation is satisfied in the equation (423).
| Ω0 · exp (j · π / 2)
{B4 [ω0] + b5 [ω0] · exp (j · Δθ5 [ω0])} |
≫ | γ ・ V ・ exp (j ・ Δθ01)
{B4 [ω0] −b5 [ω0] · exp (j · Δθ5 [ω0])} |
... (425)

式(425)の条件を用いて、起電力差E8d0を近似した起電力差EdA81は次式のように表される。この起電力EdA81は基本原理における第1の∂A/∂t成分に相当する。
EdA81≒E8d0 ・・・(426)
EdA81=rk・exp{j・(θ4[ω0]+θ00)}
・ω0・exp(j・π/2)
・{b4[ω0]+b5[ω0]・exp(j・Δθ5[ω0])}
・・・(427)
The electromotive force difference EdA81 that approximates the electromotive force difference E8d0 using the condition of the equation (425) is expressed by the following equation. This electromotive force EdA81 corresponds to the first ∂A / ∂t component in the basic principle.
EdA81≈E8d0 (426)
EdA81 = rk · exp {j · (θ4 [ω0] + θ00)}
・ Ω0 ・ exp (j ・ π / 2)
{B4 [ω0] + b5 [ω0] · exp (j · Δθ5 [ω0])}
... (427)

起電力差EdA81は、流速の大きさVに関係しないので、∂A/∂tにより発生する成分のみとなる。この起電力差EdA81を用いて起電力和E8s0中のv×B成分の流速の大きさVにかかる係数(スパン)を正規化する。式(422)の起電力和E8s0を式(426)の起電力差EdA81で正規化し、ω0倍した結果をEn80とすれば、正規化起電力和En80は次式で表される。
En80=(E8s0/EdA81)・ω0
=rk・exp{j・(θ4[ω0]+θ00)}
・[ω0・exp(j・π/2)
・{b4[ω0]−b5[ω0]・exp(j・Δθ5[ω0])}
+γ・V・exp(j・Δθ01)
・{b4[ω0]+b5[ω0]・exp(j・Δθ5[ω0])}]
/[rk・exp{j・(θ4[ω0]+θ00)}・ω0・exp(j・π/2)
・{b4[ω0]+b5[ω0]・exp(j・Δθ5[ω0])}]・ω0
=ω0・{b4[ω0]−b5[ω0]・exp(j・Δθ5[ω0])}
/{b4[ω0]+b5[ω0]・exp(j・Δθ5[ω0])}
+[γ・exp{j・(−π/2+Δθ01)}]・V ・・・(428)
Since the electromotive force difference EdA81 is not related to the magnitude V of the flow velocity, it is only a component generated by の み A / ∂t. Using this electromotive force difference EdA81, the coefficient (span) applied to the magnitude V of the flow velocity of the v × B component in the electromotive force sum E8s0 is normalized. Normalizing the electromotive force sum E8s0 in the equation (422) with the electromotive force difference EdA81 in the equation (426) and multiplying the result by ω0 is En80, the normalized electromotive force sum En80 is expressed by the following equation.
En80 = (E8s0 / EdA81) · ω0
= Rk · exp {j · (θ4 [ω0] + θ00)}
・ [Ω0 ・ exp (j ・ π / 2)
{B4 [ω0] −b5 [ω0] · exp (j · Δθ5 [ω0])}
+ Γ · V · exp (j · Δθ01)
{B4 [ω0] + b5 [ω0] · exp (j · Δθ5 [ω0])}]
/ [Rk · exp {j · (θ4 [ω0] + θ00)} · ω0 · exp (j · π / 2)
{B4 [ω0] + b5 [ω0] · exp (j · Δθ5 [ω0])}] · ω0
= Ω0 · {b4 [ω0] −b5 [ω0] · exp (j · Δθ5 [ω0])}
/ {B4 [ω0] + b5 [ω0] · exp (j · Δθ5 [ω0])}
+ [Γ · exp {j · (−π / 2 + Δθ01)}] · V (428)

式(52)を用いると、式(428)の右辺第1項の角周波数ω0にかかる係数{b4[ω0]−b5[ω0]・exp(j・Δθ5[ω0])}/{b4[ω0]+b5[ω0]・exp(j・Δθ5[ω0])}を、角周波数ω0に関係しない値{b4−b5・exp(j・Δθ5)}/{b4+b5・exp(j・Δθ5)}で表すことができる。したがって、式(428)を次式のように置き換えることができる。
En80=ω0・{b4−b5・exp(j・Δθ5)}
/{b4+b5・exp(j・Δθ5)}
+[γ・exp{j・(−π/2+Δθ01)}]・V ・・・(429)
Using equation (52), the coefficient {b4 [ω0] −b5 [ω0] · exp (j · Δθ5 [ω0])} / {b4 [ω0] applied to the angular frequency ω0 of the first term on the right side of equation (428) ] + B5 [ω0] · exp (j · Δθ5 [ω0])} is represented by a value {b4-b5 · exp (j · Δθ5)} / {b4 + b5 · exp (j · Δθ5)} not related to the angular frequency ω0. be able to. Therefore, the equation (428) can be replaced by the following equation.
En80 = ω0 · {b4-b5 · exp (j · Δθ5)}
/ {B4 + b5 · exp (j · Δθ5)}
+ [Γ · exp {j · (−π / 2 + Δθ01)}] · V (429)

式(429)の右辺第2項が、v×Bにより発生する成分を∂A/∂tにより発生する成分で正規化した項となる。なお、起電力和E8s0を起電力差EdA81で正規化した結果をω0倍した理由は、流速の大きさVに係る右辺第2項から励磁角周波数ω0を消去するためである。式(429)によれば、流速の大きさVにかかる複素係数は、γの大きさ、−π/2+Δθ01の実軸からの角度をもつ。係数γおよび角度Δθ01は校正等により予め求めることができる定数であり、式(429)の右辺第2項は被測定流体の流速が変化しないかぎり一定となる。したがって、∂A/∂t成分を用いてv×B成分の正規化を行うことにより、磁場のシフトや位相変化による誤差を自動的に補正するスパン補正を実現することができる。   The second term on the right side of Equation (429) is a term obtained by normalizing the component generated by v × B with the component generated by ∂A / ∂t. The reason why the result obtained by normalizing the electromotive force sum E8s0 by the electromotive force difference EdA81 is multiplied by ω0 is to eliminate the excitation angular frequency ω0 from the second term on the right side of the magnitude V of the flow velocity. According to the equation (429), the complex coefficient related to the magnitude V of the flow velocity has a magnitude of γ and an angle from the real axis of −π / 2 + Δθ01. The coefficient γ and the angle Δθ01 are constants that can be obtained in advance by calibration or the like, and the second term on the right side of the equation (429) is constant as long as the flow velocity of the fluid to be measured does not change. Therefore, by performing the normalization of the v × B component using the ∂A / ∂t component, it is possible to realize span correction that automatically corrects an error due to a magnetic field shift or phase change.

次に、0点の変動要因である、式(429)の右辺第1項を除去する方法について説明する。式(412)、式(413)において励磁角周波数をω0の代わりにω2とすると、磁場B4,B5は次式で表される。
B4=b4[ω2]・cos(ω2・t−θ4[ω2]) ・・・(430)
B5=b5[ω2]・cos(ω2・t−θ5[ω2]) ・・・(431)
Next, a method for removing the first term on the right side of the equation (429), which is a variation factor of 0 point, will be described. When the excitation angular frequency is ω2 instead of ω0 in the equations (412) and (413), the magnetic fields B4 and B5 are expressed by the following equations.
B4 = b4 [ω2] · cos (ω2 · t−θ4 [ω2]) (430)
B5 = b5 [ω2] · cos (ω2 · t−θ5 [ω2]) (431)

角周波数ω0での正規化と同様に角周波数ω2において正規化を行う。角周波数ω2においてスパン補正の対象となる起電力和E8s2は、式(422)において角周波数ω0をω2で置き換えたもので表される。第2の∂A/∂t成分の基となる起電力差E8d2は、式(423)において角周波数ω0をω2で置き換えたもので表される。第2の∂A/∂t成分となる起電力差EdA82は、式(427)において角周波数ω0をω2で置き換えたものとなる。   Normalization is performed at the angular frequency ω2 as in the normalization at the angular frequency ω0. The electromotive force sum E8s2 to be subjected to span correction at the angular frequency ω2 is represented by the expression (422) in which the angular frequency ω0 is replaced with ω2. The electromotive force difference E8d2 that is the basis of the second ∂A / ∂t component is expressed by the equation (423) in which the angular frequency ω0 is replaced with ω2. The electromotive force difference EdA82 serving as the second ∂A / ∂t component is obtained by replacing the angular frequency ω0 with ω2 in the equation (427).

起電力和E8s2を起電力差EdA82で正規化し、ω2倍した結果をEn82とすれば、正規化起電力和En82は式(429)より次式で表される。
En82=ω2・{b4−b5・exp(j・Δθ5)}
/{b4+b5・exp(j・Δθ5)}
+[γ・exp{j・(−π/2+Δθ01)}]・V ・・・(432)
Normalizing the electromotive force sum E8s2 with the electromotive force difference EdA82 and multiplying the result by ω2 to En82, the normalized electromotive force sum En82 is expressed by the following equation from Equation (429).
En82 = ω2 · {b4-b5 · exp (j · Δθ5)}
/ {B4 + b5 · exp (j · Δθ5)}
+ [Γ · exp {j · (−π / 2 + Δθ01)}] · V (432)

正規化起電力和En80とEn82との差をとり、求めた差分をω0/(ω0−ω2)倍した結果をEdA83とすれば、差分EdA83は次式で表される。この起電力和の差分EdA83は基本原理における第3の∂A/∂t成分に相当する。
EdA83=(En20−En22)・ω0/(ω0−ω2)
=[ω0・{b4−b5・exp(j・Δθ5)}
/{b4+b5・exp(j・Δθ5)}
+γ・exp{j・(−π/2+Δθ01)}・V
−ω2・{b4−b5・exp(j・Δθ5)}
/{b4+b5・exp(j・Δθ5)}
−γ・exp{j・(−π/2+Δθ01)}・V]
・ω0/(ω0−ω2)
=ω0・{b4−b5・exp(j・Δθ5)}
/{b4+b5・exp(j・Δθ5)} ・・・(433)
If the difference between the normalized electromotive force sums En80 and En82 is taken and the obtained difference is multiplied by ω0 / (ω0−ω2) as EdA83, the difference EdA83 is expressed by the following equation. This electromotive force sum difference EdA83 corresponds to the third ∂A / ∂t component in the basic principle.
EdA83 = (En20−En22) · ω0 / (ω0−ω2)
= [Ω0 · {b4-b5 · exp (j · Δθ5)}
/ {B4 + b5 · exp (j · Δθ5)}
+ Γ · exp {j · (−π / 2 + Δθ01)} · V
-Ω2 · {b4-b5 · exp (j · Δθ5)}
/ {B4 + b5 · exp (j · Δθ5)}
−γ · exp {j · (−π / 2 + Δθ01)} · V]
・ Ω0 / (ω0−ω2)
= Ω0 · {b4-b5 · exp (j · Δθ5)}
/ {B4 + b5 · exp (j · Δθ5)} (433)

差分EdA83は正規化された∂A/∂t成分を表し、式(429)の右辺第1項と等しくなるので、この差分EdA83を使用すれば、正規化されたv×B成分を正規化起電力和En80から取り出すことができる。式(429)の正規化起電力和En80から式(433)の差分EdA83を引いたときに得られるv×B成分をEvBn8とすると、v×B成分EvBn8は次式で表される。
EvBn8=En80−EdA83
=ω0・{b4−b5・exp(j・Δθ5)}
/{b4+b5・exp(j・Δθ5)}
+[γ・exp{j・(−π/2+Δθ01)}]・V
−ω0・{b4−b5・exp(j・Δθ5)}
/{b4+b5・exp(j・Δθ5)}
=[γ・exp{j・(−π/2+Δθ01)}]・V ・・・(434)
The difference EdA83 represents the normalized ∂A / ∂t component and is equal to the first term on the right side of the equation (429). Therefore, if this difference EdA83 is used, the normalized v × B component is normalized. It can be taken out from the power sum En80. When the v × B component obtained by subtracting the difference EdA83 of the equation (433) from the normalized electromotive force sum En80 of the equation (429) is EvBn8, the v × B component EvBn8 is expressed by the following equation.
EvBn8 = En80-EdA83
= Ω0 · {b4-b5 · exp (j · Δθ5)}
/ {B4 + b5 · exp (j · Δθ5)}
+ [Γ · exp {j · (−π / 2 + Δθ01)}] · V
-Ω0 · {b4-b5 · exp (j · Δθ5)}
/ {B4 + b5 · exp (j · Δθ5)}
= [Γ · exp {j · (−π / 2 + Δθ01)}] · V (434)

v×B成分EvBn8は角周波数ω0に関係しない。流速の大きさVが0のときv×B成分EvBn8も0となることから分かるように、v×B成分EvBn8より、スパンが補正され、かつ0点が補正された出力を得ることができる。式(434)より、流速の大きさVは次式のように表される。
V=|EvBn8/[γ・exp{j・(−π/2+Δθ01)}]|
=|EvBn8|/γ ・・・(435)
The v × B component EvBn8 is not related to the angular frequency ω0. As can be seen from the fact that the v × B component EvBn8 becomes 0 when the magnitude V of the flow velocity is 0, an output in which the span is corrected and the zero point is corrected can be obtained from the v × B component EvBn8. From the equation (434), the magnitude V of the flow velocity is expressed as the following equation.
V = | EvBn8 / [γ · exp {j · (−π / 2 + Δθ01)}] |
= | EvBn8 | / γ (435)

なお、基本原理で用いた定数および変数と、本実施の形態の定数および変数との対応関係は以下の表8のとおりである。本実施の形態は、表8から明らかなように、前述の基本原理を具体的に実現する1つの例である。   Table 8 below shows the correspondence between the constants and variables used in the basic principle and the constants and variables in the present embodiment. As is apparent from Table 8, this embodiment is one example that specifically realizes the basic principle described above.

Figure 2006058175
Figure 2006058175

次に、本実施の形態の電磁流量計の具体的な構成とその動作について説明する。図23は本実施の形態の電磁流量計の構成を示すブロック図であり、図13と同一の構成には同一の符号を付してある。本実施の形態の電磁流量計は、測定管1と、第1の電極2a,2bと、第2の電極2c,2dと、励磁コイル3と、電源部4aと、信号変換部5aと、信号変換部5aによって抽出されたv×B成分から流体の流量を算出する流量出力部6aとを有している。   Next, a specific configuration and operation of the electromagnetic flow meter of the present embodiment will be described. FIG. 23 is a block diagram showing the configuration of the electromagnetic flowmeter of the present embodiment, and the same components as those in FIG. 13 are denoted by the same reference numerals. The electromagnetic flow meter of the present embodiment includes a measuring tube 1, first electrodes 2a and 2b, second electrodes 2c and 2d, an excitation coil 3, a power supply unit 4a, a signal conversion unit 5a, a signal A flow rate output unit 6a that calculates the flow rate of the fluid from the v × B component extracted by the conversion unit 5a.

信号変換部5aは、第1の励磁状態と第2の励磁状態の各々において第1の電極2a,2bで検出される第1の合成起電力と第2の電極2c,2dで検出される第2の合成起電力の振幅と位相を求め、これらの振幅と位相に基づいて第1の合成起電力と第2の合成起電力の同一励磁状態の起電力和および同一励磁状態の起電力差を第1の励磁状態と第2の励磁状態の各々について求め、第1の励磁状態の起電力差を第1の∂A/∂t成分として抽出すると共に、第2の励磁状態の起電力差を第2の∂A/∂t成分として抽出し、第1の励磁状態の起電力和を第1の補正対象起電力として、第1の∂A/∂t成分に基づいて第1の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去すると共に、第2の励磁状態の起電力和を第2の補正対象起電力として、第2の∂A/∂t成分に基づいて第2の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去するスパン補正部51aと、スパン補正された第1の補正対象起電力とスパン補正された第2の補正対象起電力との差を第3の∂A/∂t成分として抽出し、このスパン補正された2つの補正対象起電力のうちいずれか1つの中から第3の∂A/∂t成分を取り除くことによりv×B成分を抽出する0点補正部52aとから構成される。   The signal converter 5a is configured to detect the first combined electromotive force detected by the first electrodes 2a and 2b and the second electrodes 2c and 2d detected in the first excitation state and the second excitation state, respectively. 2 is obtained, and based on these amplitudes and phases, the sum of electromotive forces in the same excitation state and the difference in electromotive forces in the same excitation state of the first composite electromotive force and the second composite electromotive force are obtained. Each of the first excitation state and the second excitation state is obtained, and the electromotive force difference in the first excitation state is extracted as the first ∂A / ∂t component, and the electromotive force difference in the second excitation state is calculated. Extracted as the second ∂A / ∂t component, the sum of electromotive forces in the first excitation state as the first correction target electromotive force, and the first correction target electromotive force based on the first ∂A / ∂t component. While removing the span variation factor included in the v × B component of the power, the electromotive force sum of the second excitation state is As a correction target electromotive force, a span correction unit 51a that removes a span variation factor included in the v × B component in the second correction target electromotive force based on the second ∂A / ∂t component, and a span The difference between the corrected first correction target electromotive force and the second corrected correction target electromotive force is extracted as a third ∂A / ∂t component, and the two corrected correction target electromotive forces with span correction are extracted. The zero point correction unit 52a that extracts the v × B component by removing the third ∂A / ∂t component from any one of them.

電源部4aは、角周波数ω0の励磁電流を励磁コイル3に供給する第1の励磁状態をT1秒継続し、続いて角周波数ω2の励磁電流を励磁コイル3に供給する第2の励磁状態をT2秒継続することをT秒周期で繰り返す。すなわち、T=T1+T2である。   The power supply unit 4a continues the first excitation state in which the excitation current having the angular frequency ω0 is supplied to the excitation coil 3 for T1 seconds, and subsequently performs the second excitation state in which the excitation current having the angular frequency ω2 is supplied to the excitation coil 3. The T2 second duration is repeated at a T second cycle. That is, T = T1 + T2.

図24は信号変換部5aと流量出力部6aの動作を示すフローチャートである。まず、信号変換部5aのスパン補正部51aは、第1の励磁状態において、電極2a,2b間の第1の電極間起電力と電極2c,2d間の第2の電極間起電力との和E8s0の振幅r8s0を求めると共に、実軸と起電力和E8s0との位相差φ8s0を図示しない位相検波器により求める。また、スパン補正部51aは、第1の励磁状態において、第1の電極間起電力と第2の電極間起電力との差E8d0の振幅r8d0を求めると共に、実軸と起電力差E8d0との位相差φ8d0を位相検波器により求める(図24ステップ601)。   FIG. 24 is a flowchart showing the operations of the signal conversion unit 5a and the flow rate output unit 6a. First, the span correction unit 51a of the signal conversion unit 5a is the sum of the first inter-electrode electromotive force between the electrodes 2a and 2b and the second inter-electrode electromotive force between the electrodes 2c and 2d in the first excitation state. The amplitude r8s0 of E8s0 is obtained, and the phase difference φ8s0 between the real axis and the electromotive force sum E8s0 is obtained by a phase detector (not shown). Further, in the first excitation state, the span correction unit 51a obtains the amplitude r8d0 of the difference E8d0 between the first inter-electrode electromotive force and the second inter-electrode electromotive force, and between the real axis and the electromotive force difference E8d0. A phase difference φ8d0 is obtained by a phase detector (step 601 in FIG. 24).

続いて、スパン補正部51aは、第2の励磁状態において、第1の電極間起電力と第2の電極間起電力との和E8s2の振幅r8s2を求めると共に、実軸と起電力和E8s2との位相差φ8s2を位相検波器により求める。また、スパン補正部51aは、第2の励磁状態において、第1の電極間起電力と第2の電極間起電力との差E8d2の振幅r8d2を求めると共に、実軸と起電力差E8d2との位相差φ8d2を位相検波器により求める(ステップ602)。   Subsequently, in the second excitation state, the span correction unit 51a obtains the amplitude r8s2 of the sum E8s2 of the first interelectrode electromotive force and the second interelectrode electromotive force, and the real axis and the electromotive force sum E8s2. Is obtained by a phase detector. Further, in the second excitation state, the span correction unit 51a obtains the amplitude r8d2 of the difference E8d2 between the first inter-electrode electromotive force and the second inter-electrode electromotive force, and between the real axis and the electromotive force difference E8d2. A phase difference φ8d2 is obtained by a phase detector (step 602).

次に、スパン補正部51aは、起電力差E8d0を近似した起電力差EdA81の大きさと角度を求める(ステップ603)。このステップ603の処理は、第1の∂A/∂t成分を求めることに対応する処理であり、式(427)の算出に相当する処理である。スパン補正部51aは、起電力差EdA81の大きさ|EdA81|を次式のように算出する。
|EdA81|=r8d0 ・・・(436)
そして、スパン補正部51aは、起電力差EdA81の角度∠EdA81を次式のように算出する。
∠EdA81=φ8d0 ・・・(437)
これで、ステップ603の処理が終了する。
Next, the span correction unit 51a obtains the magnitude and angle of the electromotive force difference EdA81 that approximates the electromotive force difference E8d0 (step 603). The process of step 603 is a process corresponding to obtaining the first ∂A / ∂t component, and is a process corresponding to the calculation of equation (427). The span correction unit 51a calculates the magnitude | EdA81 | of the electromotive force difference EdA81 as follows.
| EdA81 | = r8d0 (436)
Then, the span correction unit 51a calculates the angle ∠EdA81 of the electromotive force difference EdA81 as the following equation.
∠EdA81 = φ8d0 (437)
This completes the processing in step 603.

続いて、スパン補正部51aは、起電力和E8s0を起電力差EdA81で正規化した正規化起電力和En80の大きさと角度を求める(ステップ604)。このステップ604の処理は、式(429)の算出に相当する処理である。スパン補正部51aは、正規化起電力和En80の大きさ|En80|を次式のように算出する。
|En80|=(r8s0/|EdA81|)・ω0 ・・・(438)
Subsequently, the span correction unit 51a obtains the magnitude and angle of the normalized electromotive force sum En80 obtained by normalizing the electromotive force sum E8s0 with the electromotive force difference EdA81 (step 604). The process of step 604 is a process corresponding to the calculation of equation (429). The span correction unit 51a calculates the magnitude | En80 | of the normalized electromotive force sum En80 as the following equation.
| En80 | = (r8s0 / | EdA81 |) · ω0 (438)

そして、スパン補正部51aは、正規化起電力和En80の角度∠En80を次式のように算出する。
∠En80=φ8s0−∠EdA81 ・・・(439)
さらに、スパン補正部51aは、正規化起電力和En80の実軸成分En80xと虚軸成分En80yを次式のように算出する。
En80x=|En80|・cos(∠En80) ・・・(440)
En80y=|En80|・sin(∠En80) ・・・(441)
これで、ステップ604の処理が終了する。
Then, the span correction unit 51a calculates the angle ∠En80 of the normalized electromotive force sum En80 as the following equation.
∠En80 = φ8s0−∠EdA81 (439)
Further, the span correction unit 51a calculates the real axis component En80x and the imaginary axis component En80y of the normalized electromotive force sum En80 as the following expression.
En80x = | En80 | .cos (∠En80) (440)
En80y = | En80 | .sin (∠En80) (441)
This completes the process of step 604.

次に、スパン補正部51aは、起電力差E8d2を近似した起電力差EdA82の大きさと角度を求める(ステップ605)。このステップ605の処理は、第2の∂A/∂t成分を求めることに対応する処理である。スパン補正部51aは、起電力差EdA82の大きさ|EdA82|を次式のように算出する。
|EdA82|=r8d2 ・・・(442)
そして、スパン補正部51aは、起電力差EdA82の角度∠EdA82を次式のように算出する。
∠EdA82=φ8d2 ・・・(443)
これで、ステップ605の処理が終了する。
Next, the span correction unit 51a obtains the magnitude and angle of the electromotive force difference EdA82 that approximates the electromotive force difference E8d2 (step 605). The processing in step 605 is processing corresponding to obtaining the second ∂A / ∂t component. The span correction unit 51a calculates the magnitude | EdA82 | of the electromotive force difference EdA82 as follows.
| EdA82 | = r8d2 (442)
Then, the span correction unit 51a calculates the angle ∠EdA82 of the electromotive force difference EdA82 as the following equation.
∠EdA82 = φ8d2 (443)
This completes the processing in step 605.

続いて、スパン補正部51aは、起電力和E8s2を起電力差EdA82で正規化した正規化起電力和En82の大きさと角度を求める(ステップ606)。このステップ606の処理は、式(432)の算出に相当する処理である。スパン補正部51aは、正規化起電力和En82の大きさ|En82|を次式のように算出する。
|En82|=(r8s2/|EdA82|)・ω2 ・・・(444)
Subsequently, the span correction unit 51a obtains the magnitude and angle of the normalized electromotive force sum En82 obtained by normalizing the electromotive force sum E8s2 with the electromotive force difference EdA82 (step 606). The process of step 606 is a process corresponding to the calculation of equation (432). The span correction unit 51a calculates the magnitude | En82 | of the normalized electromotive force sum En82 as follows.
| En82 | = (r8s2 / | EdA82 |) · ω2 (444)

そして、スパン補正部51aは、正規化起電力和En82の角度∠En82を次式のように算出する。
∠En82=φ8s2−∠EdA82 ・・・(445)
さらに、スパン補正部51aは、正規化起電力和En82の実軸成分En82xと虚軸成分En82yを次式のように算出する。
En82x=|En82|・cos(∠En82) ・・・(446)
En82y=|En82|・sin(∠En82) ・・・(447)
これで、ステップ606の処理が終了する。
Then, the span correction unit 51a calculates the angle ∠En82 of the normalized electromotive force sum En82 as the following equation.
∠En82 = φ8s2-∠EdA82 (445)
Further, the span correction unit 51a calculates the real axis component En82x and the imaginary axis component En82y of the normalized electromotive force sum En82 as in the following equation.
En82x = | En82 | .cos (∠En82) (446)
En82y = | En82 | .sin (∠En82) (447)
This completes the processing in step 606.

次に、信号変換部5aの0点補正部52aは、正規化起電力和En80とEn82との差分EdA83の大きさを求める(ステップ607)。このステップ607の処理は、第3の∂A/∂t成分を求めることに対応する処理であり、式(433)の算出に相当する処理である。0点補正部52aは、差分EdA83の実軸成分EdA83xと虚軸成分EdA83yを次式のように算出する。
EdA83x=(En80x−En82x)・ω0/(ω0−ω2) ・・(448)
EdA83y=(En80y−En82y)・ω0/(ω0−ω2) ・・(449)
Next, the zero point correction unit 52a of the signal conversion unit 5a obtains the magnitude of the difference EdA83 between the normalized electromotive force sums En80 and En82 (step 607). The process of step 607 is a process corresponding to obtaining the third ∂A / ∂t component, and is a process corresponding to the calculation of Expression (433). The zero point correction unit 52a calculates the real axis component EdA83x and the imaginary axis component EdA83y of the difference EdA83 as follows.
EdA83x = (En80x−En82x) · ω0 / (ω0−ω2) (48)
EdA83y = (En80y−En82y) · ω0 / (ω0−ω2) (449)

そして、0点補正部52aは、正規化起電力和En80から差分EdA83を取り除き、v×B成分EvBn8の大きさを求める(ステップ608)。このステップ608の処理は、式(434)の算出に相当する処理である。0点補正部52aは、v×B成分EvBn8の大きさ|EvBn8|を次式のように算出する。
|EvBn8|={(En80x−EdA83x)2
+(En80y−EdA83y)21/2 ・・・(450)
Then, the zero point correction unit 52a removes the difference EdA83 from the normalized electromotive force sum En80, and obtains the magnitude of the v × B component EvBn8 (step 608). The processing in step 608 is processing equivalent to the calculation of equation (434). The zero point correction unit 52a calculates the magnitude | EvBn8 | of the v × B component EvBn8 as follows.
| EvBn8 | = {(En80x−EdA83x) 2
+ (En80y−EdA83y) 2 } 1/2 (450)

流量出力部6aは、被測定流体の流速の大きさVを次式のように算出する(ステップ609)。このステップ609の処理は、式(435)の算出に相当する処理である。
V=|EvBn8|/γ ・・・(451)
なお、比例係数γは、校正等により予め求めることができる定数である。信号変換部5aと流量出力部6aとは、以上のようなステップ601〜609の処理を例えばオペレータによって計測終了が指示されるまで(ステップ610においてYES)、一定周期毎に行う。なお、ステップ602〜609の処理は第2の励磁状態において行われる。
The flow rate output unit 6a calculates the magnitude V of the flow velocity of the fluid to be measured as in the following equation (step 609). The process of step 609 is a process corresponding to the calculation of equation (435).
V = | EvBn8 | / γ (451)
The proportionality coefficient γ is a constant that can be obtained in advance by calibration or the like. The signal conversion unit 5a and the flow rate output unit 6a perform the processing in steps 601 to 609 as described above at regular intervals until, for example, the operator instructs the end of measurement (YES in step 610). Note that the processing in steps 602 to 609 is performed in the second excitation state.

以上のように、本実施の形態では、第1の励磁状態において起電力和E8s0と起電力差E8d0を求め、第2の励磁状態において起電力和E8s2と起電力差E8d2を求める。そして、本実施の形態では、励磁コイル3から発生する磁場B4とB5とが等しくなるように設定しておくと、起電力差E8d0が近似的に第1の∂A/∂t成分として抽出でき、また起電力差E8d2が近似的に第2の∂A/∂t成分として抽出できることに着眼し、第1の∂A/∂t成分を用いて起電力和E8s0中のv×B成分の流速の大きさVにかかるスパンを正規化すると共に、第2の∂A/∂t成分を用いて起電力和E8s2中のv×B成分の流速の大きさVにかかるスパンを正規化し、正規化起電力和En80とEn82とから差分EdA83(第3の∂A/∂t成分)を抽出して、正規化起電力和En80から第3の∂A/∂t成分を取り除くことによりv×B成分を抽出し、このv×B成分から被測定流体の流量を算出するようにしたので、正確なスパン補正を自動的に行うことができ、かつ被測定流体の流量を0にすることなく電磁流量計の出力の0点を補正することができ、高周波励磁においても0点の安定性を確保することができる。   As described above, in the present embodiment, the electromotive force sum E8s0 and the electromotive force difference E8d0 are obtained in the first excitation state, and the electromotive force sum E8s2 and the electromotive force difference E8d2 are obtained in the second excitation state. In this embodiment, if the magnetic fields B4 and B5 generated from the exciting coil 3 are set to be equal, the electromotive force difference E8d0 can be approximately extracted as the first ∂A / ∂t component. Further, focusing on the fact that the electromotive force difference E8d2 can be approximately extracted as the second ∂A / ∂t component, the flow velocity of the v × B component in the electromotive force sum E8s0 using the first ∂A / ∂t component. Normalizing the span for the magnitude V of V, and normalizing the span for the magnitude V of the flow velocity of the v × B component in the electromotive force sum E8s2 using the second ∂A / ∂t component The difference EdA83 (third ∂A / ∂t component) is extracted from the electromotive force sums En80 and En82, and the third ∂A / ∂t component is removed from the normalized electromotive force sum En80 to obtain the v × B component. And the flow rate of the fluid to be measured is calculated from this v × B component. As a result, accurate span correction can be performed automatically, and the zero point of the output of the electromagnetic flowmeter can be corrected without setting the flow rate of the fluid to be measured to zero. Can be ensured.

また、本実施の形態では、周波数による磁場の損失の違いを考慮して、起電力和E8s0のv×B成分を起電力差E8d0から抽出した同じ角周波数の第1の∂A/∂t成分を用いて正規化すると共に、起電力和E8s2のv×B成分を起電力差E8d2から抽出した同じ角周波数の第2の∂A/∂t成分を用いて正規化し、それぞれ正規化した起電力和En80とEn82との差を基に0補正を行うようにしたので、磁場の損失による影響がある場合でも、正確なスパン補正と0補正を行うことができる。   In the present embodiment, the first ∂A / 磁場 t component of the same angular frequency obtained by extracting the v × B component of the electromotive force sum E8s0 from the electromotive force difference E8d0 in consideration of the difference in magnetic field loss depending on the frequency. Is normalized using the second ∂A / ∂t component of the same angular frequency extracted from the electromotive force difference E8d2, and the electromotive force obtained by normalizing the v × B component of the electromotive force sum E8s2 is normalized. Since zero correction is performed based on the difference between the sums En80 and En82, accurate span correction and zero correction can be performed even when there is an influence due to the loss of the magnetic field.

なお、本実施の形態では、起電力和E8s0を0補正およびスパン補正の対象としたが、起電力和E8s2を0補正およびスパン補正の対象としてもよい。この場合は、次式のように正規化起電力和En82とEn80とから差分EdA83(第3の∂A/∂t成分)を求める。
EdA83=(En82−En80)・ω2/(ω2−ω0) ・・・(452)
そして、次式のように正規化起電力和En82から差分EdA83を引くことによりv×B成分EvBn8を求めるようにすればよい。その他の処理は起電力和E8s0を0補正およびスパン補正の対象とする場合と同じである。
|EvBn8|=|En82−EdA83| ・・・(453)
In the present embodiment, the electromotive force sum E8s0 is the target of 0 correction and span correction, but the electromotive force sum E8s2 may be the target of 0 correction and span correction. In this case, the difference EdA83 (third ∂A / ∂t component) is obtained from the normalized electromotive force sums En82 and En80 as in the following equation.
EdA83 = (En82−En80) · ω2 / (ω2−ω0) (452)
Then, the v × B component EvBn8 may be obtained by subtracting the difference EdA83 from the normalized electromotive force sum En82 as in the following equation. The other processes are the same as those in the case where the electromotive force sum E8s0 is the target of zero correction and span correction.
| EvBn8 | = | En82-EdA83 | (453)

[第9の実施の形態]
次に、本発明の第9の実施の形態について説明する。本実施の形態の電磁流量計は1個の励磁コイルと2対の電極とを有するものであり、信号処理系を除く構成は図13に示した電磁流量計と同様であるので、図13の符号を用いて本実施の形態の原理を説明する。本実施の形態は、正規化の対象となる合成ベクトルVas0+Vbs0を検出する方法として基本原理で説明した第1の検出方法を用い、第1の∂A/∂t成分を抽出する方法として基本原理で説明した第1の抽出方法を用いるものである。
[Ninth Embodiment]
Next, a ninth embodiment of the present invention will be described. The electromagnetic flow meter of the present embodiment has one excitation coil and two pairs of electrodes, and the configuration excluding the signal processing system is the same as that of the electromagnetic flow meter shown in FIG. The principle of this embodiment will be described using reference numerals. The present embodiment uses the first detection method described in the basic principle as a method for detecting the composite vector Vas0 + Vbs0 to be normalized, and uses the basic principle as a method for extracting the first ∂A / ∂t component. The first extraction method described is used.

励磁コイル3から発生する磁場Bdのうち、電極2a,2b間を結ぶ電極軸EAX1上において電極軸EAX1および測定管軸PAXの双方と直交する磁場成分(磁束密度)B14と、励磁コイル3から発生する磁場Bdのうち、電極2c,2d間を結ぶ電極軸EAX2上において電極軸EAX2および測定管軸PAXの双方と直交する磁場成分(磁束密度)B15は、以下のように与えられるものとする。
B14=b14・cos(ω0・t−θ14)+b14・cos(ω2・t−θ14) ・・・(454)
B15=b15・cos(ω0・t−θ15)+b15・cos(ω2・t−θ15) ・・・(455)
Of the magnetic field Bd generated from the excitation coil 3, the magnetic field component (magnetic flux density) B14 orthogonal to both the electrode axis EAX1 and the measurement tube axis PAX on the electrode axis EAX1 connecting the electrodes 2a and 2b and the excitation coil 3 The magnetic field component (magnetic flux density) B15 orthogonal to both the electrode axis EAX2 and the measurement tube axis PAX on the electrode axis EAX2 connecting the electrodes 2c and 2d is assumed to be given as follows.
B14 = b14 · cos (ω0 · t−θ14) + b14 · cos (ω2 · t−θ14) (454)
B15 = b15 · cos (ω0 · t−θ15) + b15 · cos (ω2 · t−θ15) (455)

但し、B14,B15は1つの励磁コイル3から発生しているので、b14とb15、θ14とθ15は互いに関係があり、独立変数ではない。式(454)、式(455)において、ω0,ω2は異なる角周波数、b14は磁束密度B14の角周波数ω0の成分の振幅および角周波数ω2の成分の振幅、b15は磁束密度B15の角周波数ω0の成分の振幅および角周波数ω2の成分の振幅、θ14は磁束密度B14の角周波数ω0の成分とω0・tとの位相差(位相遅れ)および角周波数ω2の成分とω2・tとの位相差、θ15は磁束密度B15の角周波数ω0の成分とω0・tとの位相差および角周波数ω2の成分とω2・tとの位相差である。以下、磁束密度B14を磁場B14とし、磁束密度B15を磁場B15とする。   However, since B14 and B15 are generated from one excitation coil 3, b14 and b15 and θ14 and θ15 are related to each other and are not independent variables. In Expressions (454) and (455), ω0 and ω2 are different angular frequencies, b14 is the amplitude of the angular frequency ω0 component and the amplitude of the angular frequency ω2 component of the magnetic flux density B14, and b15 is the angular frequency ω0 of the magnetic flux density B15. And θ14 are the phase difference (phase lag) between the angular frequency ω0 component of magnetic flux density B14 and ω0 · t, and the phase difference between the angular frequency ω2 component and ω2 · t. , Θ15 is the phase difference between the angular frequency ω0 component of the magnetic flux density B15 and ω0 · t, and the phase difference between the angular frequency ω2 component and ω2 · t. Hereinafter, the magnetic flux density B14 is referred to as a magnetic field B14, and the magnetic flux density B15 is referred to as a magnetic field B15.

それぞれの角周波数における磁場の損失を考慮して、磁場B14,B15の角周波数ω0の成分の振幅b14,b15をそれぞれb14[ω0],b15[ω0]と関数表記に変更し、同様に角周波数ω0の成分の位相差θ14,θ15をそれぞれθ14[ω0],θ15[ω0]と変更する。さらに、磁場B14,B15の角周波数ω2の成分の振幅b14,b15をそれぞれb14[ω2],b15[ω2]と関数表記に変更し、同様に角周波数ω2の成分の位相差θ14,θ15をそれぞれθ14[ω2],θ15[ω2]と変更する。これにより、式(454)、式(455)は式(456)、式(457)に置き換わる。   Considering the loss of the magnetic field at each angular frequency, the amplitudes b14 and b15 of the components of the angular frequency ω0 of the magnetic fields B14 and B15 are changed to b14 [ω0] and b15 [ω0], respectively, and the angular frequency is similarly changed. The phase differences θ14 and θ15 of the component of ω0 are changed to θ14 [ω0] and θ15 [ω0], respectively. Further, the amplitudes b14 and b15 of the components of the angular frequency ω2 of the magnetic fields B14 and B15 are changed to function notations b14 [ω2] and b15 [ω2], respectively, and similarly the phase differences θ14 and θ15 of the components of the angular frequency ω2 are respectively set. They are changed to θ14 [ω2] and θ15 [ω2]. As a result, Expression (454) and Expression (455) are replaced with Expression (456) and Expression (457).

B14=b14[ω0]・cos(θ14[ω0])・cos(ω0・t)
+b14[ω0]・sin(θ14[ω0])・sin(ω0・t)
+b14[ω2]・cos(θ14[ω2])・cos(ω2・t)
+b14[ω2]・sin(θ14[ω2])・sin(ω2・t)
・・・(456)
B15=b15[ω0]・cos(θ15[ω0])・cos(ω0・t)
+b15[ω0]・sin(θ15[ω0])・sin(ω0・t)
+b15[ω2]・cos(θ15[ω2])・cos(ω2・t)
+b15[ω2]・sin(θ15[ω2])・sin(ω2・t)
・・・(457)
B14 = b14 [ω0] · cos (θ14 [ω0]) · cos (ω0 · t)
+ B14 [ω0] · sin (θ14 [ω0]) · sin (ω0 · t)
+ B14 [ω2] · cos (θ14 [ω2]) · cos (ω2 · t)
+ B14 [ω2] · sin (θ14 [ω2]) · sin (ω2 · t)
... (456)
B15 = b15 [ω0] · cos (θ15 [ω0]) · cos (ω0 · t)
+ B15 [ω0] · sin (θ15 [ω0]) · sin (ω0 · t)
+ B15 [ω2] · cos (θ15 [ω2]) · cos (ω2 · t)
+ B15 [ω2] · sin (θ15 [ω2]) · sin (ω2 · t)
... (457)

磁場の変化に起因する起電力は、磁場の時間微分dB/dtによるので、励磁コイル3から発生する磁場BdのうちB14,B15を次式のように微分する。
dB14/dt=ω0・cos(ω0・t)・b14[ω0]
・{sin(θ14[ω0])}
+ω0・sin(ω0・t)・b14[ω0]
・{−cos(θ14[ω0])}
+ω2・cos(ω2・t)・b14[ω2]
・{sin(θ14[ω2])}
+ω2・sin(ω2・t)・b14[ω2]
・{−cos(θ14[ω2])} ・・・(458)
Since the electromotive force resulting from the change of the magnetic field is based on the time differential dB / dt of the magnetic field, B14 and B15 of the magnetic field Bd generated from the exciting coil 3 are differentiated as follows.
dB14 / dt = ω0 · cos (ω0 · t) · b14 [ω0]
・ {Sin (θ14 [ω0])}
+ Ω0 · sin (ω0 · t) · b14 [ω0]
・ {-Cos (θ14 [ω0])}
+ Ω2 · cos (ω2 · t) · b14 [ω2]
・ {Sin (θ14 [ω2])}
+ Ω2 · sin (ω2 · t) · b14 [ω2]
{-Cos (θ14 [ω2])} (458)

dB15/dt=ω0・cos(ω0・t)・b15[ω0]
・{sin(θ15[ω0])}
+ω0・sin(ω0・t)・b15[ω0]
・{−cos(θ15[ω0])}
+ω2・cos(ω2・t)・b15[ω2]
・{sin(θ15[ω2])}
+ω2・sin(ω2・t)・b15[ω2]
・{−cos(θ15[ω2])} ・・・(459)
dB15 / dt = ω0 · cos (ω0 · t) · b15 [ω0]
・ {Sin (θ15 [ω0])}
+ Ω0 · sin (ω0 · t) · b15 [ω0]
・ {-Cos (θ15 [ω0])}
+ Ω2 · cos (ω2 · t) · b15 [ω2]
・ {Sin (θ15 [ω2])}
+ Ω2 · sin (ω2 · t) · b15 [ω2]
{-Cos (θ15 [ω2])} (459)

被測定流体の流量が0の場合、電極軸EAX1と測定管軸PAXとを含む平面内において、磁場Bdの変化によって発生する、流速と無関係な第1の電極間起電力E1と、電極軸EAX2と測定管軸PAXとを含む平面内において、磁場Bdの変化によって発生する、流速と無関係な第2の電極間起電力E2は、図14に示すように互いに逆向きとなる。このとき、第1の電極間起電力E1と第2の電極間起電力E2は、次式に示すように、起電力の向きを加えた磁場の時間微分(−dB14/dt、dB15/dt)にω0,ω2それぞれの角周波数成分における比例係数rkをかけ、位相差θ14,θ15をそれぞれθ14+θ00,θ15+θ00で置き換えたものとなる(rk、θ00は、被測定流体の導電率及び誘電率と電極2a,2b,2c,2dの配置を含む測定管1の構造に関係する)。   When the flow rate of the fluid to be measured is 0, the first inter-electrode electromotive force E1 that is generated by the change of the magnetic field Bd and is independent of the flow velocity and the electrode axis EAX2 in the plane including the electrode axis EAX1 and the measurement tube axis PAX. In the plane including the measurement tube axis PAX, the second inter-electrode electromotive force E2 generated by the change of the magnetic field Bd is irrelevant to each other as shown in FIG. At this time, the first inter-electrode electromotive force E1 and the second inter-electrode electromotive force E2 are time differentials (−dB14 / dt, dB15 / dt) of the magnetic field added with the direction of the electromotive force, as shown in the following equation. Is multiplied by a proportional coefficient rk for each angular frequency component of ω0 and ω2, and the phase differences θ14 and θ15 are replaced by θ14 + θ00 and θ15 + θ00, respectively (rk and θ00 are the conductivity and dielectric constant of the fluid to be measured and the electrode 2a. , 2b, 2c, 2d, related to the structure of the measuring tube 1).

E1=rk・ω0・cos(ω0・t)・b14[ω0]
・{−sin(θ14[ω0]+θ00)}
+rk・ω0・sin(ω0・t)・b14[ω0]
・{cos(θ14[ω0]+θ00)}
+rk・ω2・cos(ω2・t)・b14[ω2]
・{−sin(θ14[ω2]+θ00)}
+rk・ω2・sin(ω2・t)・b14[ω2]
・{cos(θ14[ω2]+θ00)} ・・・(460)
E1 = rk · ω0 · cos (ω0 · t) · b14 [ω0]
・ {-Sin (θ14 [ω0] + θ00)}
+ Rk · ω0 · sin (ω0 · t) · b14 [ω0]
・ {Cos (θ14 [ω0] + θ00)}
+ Rk · ω2 · cos (ω2 · t) · b14 [ω2]
・ {-Sin (θ14 [ω2] + θ00)}
+ Rk · ω2 · sin (ω2 · t) · b14 [ω2]
{Cos (θ14 [ω2] + θ00)} (460)

E2=rk・ω0・cos(ω0・t)・b15[ω0]
・{sin(θ15[ω0]+θ00)}
+rk・ω0・sin(ω0・t)・b15[ω0]
・{−cos(θ15[ω0]+θ00)}
+rk・ω2・cos(ω2・t)・b15[ω2]
・{sin(θ15[ω2]+θ00)}
+rk・ω2・sin(ω2・t)・b15[ω2]
・{−cos(θ15[ω2]+θ00)} ・・・(461)
E2 = rk · ω0 · cos (ω0 · t) · b15 [ω0]
・ {Sin (θ15 [ω0] + θ00)}
+ Rk · ω0 · sin (ω0 · t) · b15 [ω0]
・ {-Cos (θ15 [ω0] + θ00)}
+ Rk · ω2 · cos (ω2 · t) · b15 [ω2]
・ {Sin (θ15 [ω2] + θ00)}
+ Rk · ω2 · sin (ω2 · t) · b15 [ω2]
{-Cos (θ15 [ω2] + θ00)} (461)

被測定流体の流速の大きさがV(V≠0)の場合、流速ベクトルvと磁場Bdによって発生する第1の電極間起電力Ev1、流速ベクトルvと磁場Bdによって発生する第2の電極間起電力Ev2は、図15に示すように同じ向きとなる。このとき、第1の電極間起電力Ev1と第2の電極間起電力Ev2は、次式に示すように、起電力の向きを加えた磁場(B14、B15)にω0,ω2それぞれの角周波数成分における比例係数rkvをかけ、位相差θ14,θ15をそれぞれθ14+θ01,θ15+θ01で置き換えたものとなる(rkv、θ01は、流速の大きさVと被測定流体の導電率及び誘電率と電極2a,2b,2c,2dの配置を含む測定管1の構造に関係する)。   When the magnitude of the flow velocity of the fluid to be measured is V (V ≠ 0), the first inter-electrode electromotive force Ev1 generated by the flow velocity vector v and the magnetic field Bd, and the second electrode generated by the flow velocity vector v and the magnetic field Bd. The electromotive force Ev2 has the same direction as shown in FIG. At this time, the first inter-electrode electromotive force Ev1 and the second inter-electrode electromotive force Ev2 are represented by the following equations, and the angular frequency of each of ω0 and ω2 is added to the magnetic field (B14, B15) obtained by adding the direction of the electromotive force. The proportional coefficient rkv is applied to the components, and the phase differences θ14 and θ15 are replaced with θ14 + θ01 and θ15 + θ01, respectively (rkv and θ01 are the flow velocity magnitude V, the conductivity and dielectric constant of the fluid to be measured, and the electrodes 2a and 2b. , 2c, 2d related to the structure of the measuring tube 1).

Ev1=rkv・cos(ω0・t)・b14[ω0]
・cos(θ14[ω0]+θ01)
+rkv・sin(ω0・t)・b14[ω0]
・sin(θ14[ω0]+θ01)
+rkv・cos(ω2・t)・b14[ω2]
・cos(θ14[ω2]+θ01)
+rkv・sin(ω2・t)・b14[ω2]
・sin(θ14[ω2]+θ01) ・・・(462)
Ev1 = rkv · cos (ω0 · t) · b14 [ω0]
・ Cos (θ14 [ω0] + θ01)
+ Rkv · sin (ω0 · t) · b14 [ω0]
・ Sin (θ14 [ω0] + θ01)
+ Rkv · cos (ω2 · t) · b14 [ω2]
・ Cos (θ14 [ω2] + θ01)
+ Rkv · sin (ω2 · t) · b14 [ω2]
Sin (θ14 [ω2] + θ01) (462)

Ev2=rkv・cos(ω0・t)・b15[ω0]
・cos(θ15[ω0]+θ01)
+rkv・sin(ω0・t)・b15[ω0]
・sin(θ15[ω0]+θ01)
+rkv・cos(ω2・t)・b15[ω2]
・cos(θ15[ω2]+θ01)
+rkv・sin(ω2・t)・b15[ω2]
・sin(θ15[ω2]+θ01) ・・・(463)
Ev2 = rkv · cos (ω0 · t) · b15 [ω0]
・ Cos (θ15 [ω0] + θ01)
+ Rkv · sin (ω0 · t) · b15 [ω0]
・ Sin (θ15 [ω0] + θ01)
+ Rkv · cos (ω2 · t) · b15 [ω2]
・ Cos (θ15 [ω2] + θ01)
+ Rkv · sin (ω2 · t) · b15 [ω2]
Sin (θ15 [ω2] + θ01) (463)

図14、図15で説明した電極間起電力の向きを考慮すると、磁場の時間変化に起因する電極間起電力を複素ベクトルに変換した起電力と被測定流体の流速に起因する電極間起電力を複素ベクトルに変換した起電力とを合わせた、電極2a,2b間の第1の電極間起電力のうち角周波数ω0の成分の起電力E910cは、式(460)の第1項および第2項と式(462)の第1項および第2項と式(17)とから次式で表される。
E910c=rk・ω0・b14[ω0]
・exp{j・(π/2+θ14[ω0]+θ00)}
+γ・rk・V・b14[ω0]・exp{j・(θ14[ω0]+θ01)}
・・・(464)
In consideration of the direction of the inter-electrode electromotive force described with reference to FIGS. 14 and 15, the electro-electromotive force obtained by converting the electro-electromotive force due to the time change of the magnetic field into a complex vector and the flow velocity of the fluid to be measured. The electromotive force E910c of the component of the angular frequency ω0 of the first interelectrode electromotive force between the electrodes 2a and 2b, which is combined with the electromotive force obtained by converting the signal into a complex vector, is expressed by the first term and the second term in the equation (460). From the term, the first term of the formula (462), the second term, and the formula (17), it is expressed by the following formula.
E910c = rk · ω0 · b14 [ω0]
Exp {j. (Π / 2 + θ14 [ω0] + θ00)}
+ Γ · rk · V · b14 [ω0] · exp {j · (θ14 [ω0] + θ01)}
... (464)

磁場の時間変化に起因する電極間起電力を複素ベクトルに変換した起電力と被測定流体の流速に起因する電極間起電力を複素ベクトルに変換した起電力とを合わせた、電極2a,2b間の第1の電極間起電力のうち角周波数ω2の成分の起電力E912cは、式(460)の第3項および第4項と式(462)の第3項および第4項と式(17)とから次式で表される。
E912c=rk・ω2・b14[ω2]
・exp{j・(π/2+θ14[ω2]+θ00)}
+γ・rk・V・b14[ω2]・exp{j・(θ14[ω2]+θ01)}
・・・(465)
Between the electrodes 2a and 2b, which is a combination of the electromotive force obtained by converting the electromotive force between the electrodes due to the time change of the magnetic field into a complex vector and the electromotive force obtained by converting the electromotive force between the electrodes caused by the flow velocity of the fluid to be measured into the complex vector The electromotive force E912c of the component of the angular frequency ω2 in the first inter-electrode electromotive force of the first term is expressed by the third term, the fourth term, and the third term, the fourth term, and the formula (17) of the formula (462). ) And the following formula.
E912c = rk · ω2 · b14 [ω2]
Exp {j. (Π / 2 + θ14 [ω2] + θ00)}
+ Γ · rk · V · b14 [ω2] · exp {j · (θ14 [ω2] + θ01)}
... (465)

磁場の時間変化に起因する電極間起電力を複素ベクトルに変換した起電力と被測定流体の流速に起因する電極間起電力を複素ベクトルに変換した起電力とを合わせた、電極2c,2d間の第2の電極間起電力のうち角周波数ω0の成分の起電力E920cは、式(461)の第1項および第2項と式(463)の第1項および第2項と式(17)とから次式で表される。
E920c=rk・(ω0)・b15[ω0]
・exp{j・(−π/2+θ15[ω0]+θ00)}
+γ・rk・V・b15[ω0]・exp{j・(θ15[ω0]+θ01)}
・・・(466)
Between the electrodes 2c and 2d, which is a combination of the electromotive force obtained by converting the electromotive force between the electrodes due to the time change of the magnetic field into a complex vector and the electromotive force obtained by converting the electromotive force between the electrodes caused by the flow velocity of the fluid to be measured into the complex vector The electromotive force E920c of the component of the angular frequency ω0 among the second inter-electrode electromotive force of the first term and the second term of the equation (461) and the first and second terms of the equation (463) and the equation (17) ) And the following formula.
E920c = rk · (ω0) · b15 [ω0]
Exp {j. (− Π / 2 + θ15 [ω0] + θ00)}
+ Γ · rk · V · b15 [ω0] · exp {j · (θ15 [ω0] + θ01)}
... (466)

磁場の時間変化に起因する電極間起電力を複素ベクトルに変換した起電力と被測定流体の流速に起因する電極間起電力を複素ベクトルに変換した起電力とを合わせた、電極2c,2d間の第2の電極間起電力のうち角周波数ω2の成分の起電力E922cは、式(461)の第3項および第4項と式(463)の第3項および第4項と式(17)とから次式で表される。
E922c=rk・(ω2)・b15[ω2]
・exp{j・(−π/2+θ15[ω2]+θ00)}
+γ・rk・V・b15[ω2]・exp{j・(θ15[ω2]+θ01)}
・・・(467)
Between the electrodes 2c and 2d, which combines the electromotive force obtained by converting the electromotive force between the electrodes due to the time change of the magnetic field into a complex vector and the electromotive force obtained by converting the electromotive force between the electrodes caused by the flow velocity of the fluid to be measured into the complex vector. The electromotive force E922c of the component of the angular frequency ω2 in the second inter-electrode electromotive force of the second term is expressed by the third term, the fourth term, and the third term, the fourth term, and the formula (17) of the formula (463). ) And the following formula.
E922c = rk · (ω2) · b15 [ω2]
Exp {j · (−π / 2 + θ15 [ω2] + θ00)}
+ Γ · rk · V · b15 [ω2] · exp {j · (θ15 [ω2] + θ01)}
... (467)

ここで、磁場B14の角周波数ω0の成分の位相遅れθ14[ω0]と磁場B15の角周波数ω0の成分の位相遅れθ15[ω0]との関係をθ15[ω0]=θ14[ω0]+Δθ15[ω0]とし、かつ虚軸に対する∂A/∂t成分の角度θ00と実軸に対するv×B成分の角度θ01との関係をθ01=θ00+Δθ01とする。式(464)にθ01=θ00+Δθ01、θ15[ω0]=θ14[ω0]+Δθ15[ω0]を代入したときの第1の電極間起電力の角周波数ω0の成分E910cと式(466)にθ01=θ00+Δθ01、θ15[ω0]=θ14[ω0]+Δθ15[ω0]を代入したときの第2の電極間起電力の角周波数ω0の成分E920cとの和をE9s0とすれば、起電力和E9s0は次式で表される。
E9s0=rk・exp{j・(θ14[ω0]+θ00)}
・[ω0・exp(j・π/2)
・{b14[ω0]−b15[ω0]・exp(j・Δθ15[ω0])}
+γ・V・exp(j・Δθ01)
・{b14[ω0]+b15[ω0]・exp(j・Δθ15[ω0])}]
・・・(468)
Here, the relationship between the phase delay θ14 [ω0] of the component of the angular frequency ω0 of the magnetic field B14 and the phase delay θ15 [ω0] of the component of the angular frequency ω0 of the magnetic field B15 is expressed as θ15 [ω0] = θ14 [ω0] + Δθ15 [ω0. And the relationship between the angle θ00 of the ∂A / ∂t component with respect to the imaginary axis and the angle θ01 of the v × B component with respect to the real axis is θ01 = θ00 + Δθ01. The component E910c of the angular frequency ω0 of the first inter-electrode electromotive force when θ01 = θ00 + Δθ01, θ15 [ω0] = θ14 [ω0] + Δθ15 [ω0] is substituted into the equation (464), and θ01 = θ00 + Δθ01 into the equation (466). , Θ15 [ω0] = θ14 [ω0] + Δθ15 [ω0] is substituted, and the sum of the second inter-electrode electromotive force and the component E920c of the angular frequency ω0 is E9s0, the electromotive force sum E9s0 is expressed.
E9s0 = rk · exp {j · (θ14 [ω0] + θ00)}
・ [Ω0 ・ exp (j ・ π / 2)
{B14 [ω0] −b15 [ω0] · exp (j · Δθ15 [ω0])}
+ Γ · V · exp (j · Δθ01)
{B14 [ω0] + b15 [ω0] · exp (j · Δθ15 [ω0])}]
... (468)

また、式(464)にθ01=θ00+Δθ01、θ15[ω0]=θ14[ω0]+Δθ15[ω0]を代入したときの第1の電極間起電力の角周波数ω0の成分E910cと式(466)にθ01=θ00+Δθ01、θ15[ω0]=θ14[ω0]+Δθ15[ω0]を代入したときの第2の電極間起電力の角周波数ω0の成分E920cとの差をE9d0とすれば、起電力差E9d0は次式で表される。
E9d0=rk・exp{j・(θ14[ω0]+θ00)}
・[ω0・exp(j・π/2)
・{b14[ω0]+b15[ω0]・exp(j・Δθ15[ω0])}
+γ・V・exp(j・Δθ01)
・{b14[ω0]−b15[ω0]・exp(j・Δθ15[ω0])}]
・・・(469)
In addition, when θ01 = θ00 + Δθ01 and θ15 [ω0] = θ14 [ω0] + Δθ15 [ω0] are substituted into Expression (464), the component E910c of the angular frequency ω0 of the first inter-electrode electromotive force and θ01 into Expression (466) = Θ00 + Δθ01, θ15 [ω0] = θ14 [ω0] + Δθ15 [ω0] When the difference between the second electrode electromotive force and the component E920c of the angular frequency ω0 is E9d0, the electromotive force difference E9d0 is It is expressed by a formula.
E9d0 = rk · exp {j · (θ14 [ω0] + θ00)}
・ [Ω0 ・ exp (j ・ π / 2)
{B14 [ω0] + b15 [ω0] · exp (j · Δθ15 [ω0])}
+ Γ · V · exp (j · Δθ01)
{B14 [ω0] −b15 [ω0] · exp (j · Δθ15 [ω0])}]
... (469)

また、磁場B14の角周波数ω2の成分の位相遅れθ14[ω2]と磁場B15の角周波数ω2の成分の位相遅れθ15[ω2]との関係をθ15[ω2]=θ14[ω2]+Δθ15[ω2]とする。式(465)にθ01=θ00+Δθ01、θ15[ω2]=θ14[ω2]+Δθ15[ω2]を代入したときの第1の電極間起電力の角周波数ω2の成分E912cと式(467)にθ01=θ00+Δθ01、θ15[ω2]=θ14[ω2]+Δθ15[ω2]を代入したときの第2の電極間起電力の角周波数ω2の成分E922cとの和をE9s2とすれば、起電力和E9s2は次式で表される。
E9s2=rk・exp{j・(θ14[ω2]+θ00)}
・[ω2・exp(j・π/2)
・{b14[ω2]−b15[ω2]・exp(j・Δθ15[ω2])}
+γ・V・exp(j・Δθ01)
・{b14[ω2]+b15[ω2]・exp(j・Δθ15[ω2])}]
・・・(470)
Further, the relationship between the phase delay θ14 [ω2] of the component of the angular frequency ω2 of the magnetic field B14 and the phase delay θ15 [ω2] of the component of the angular frequency ω2 of the magnetic field B15 is expressed as θ15 [ω2] = θ14 [ω2] + Δθ15 [ω2]. And The component E912c of the angular frequency ω2 of the first inter-electrode electromotive force when θ01 = θ00 + Δθ01 and θ15 [ω2] = θ14 [ω2] + Δθ15 [ω2] are substituted into the equation (465) and θ01 = θ00 + Δθ01 into the equation (467). , Θ15 [ω2] = θ14 [ω2] + Δθ15 [ω2] is substituted, and the sum of the component E922c of the angular frequency ω2 of the second inter-electrode electromotive force is E9s2, the electromotive force sum E9s2 is given by expressed.
E9s2 = rk · exp {j · (θ14 [ω2] + θ00)}
・ [Ω2 ・ exp (j ・ π / 2)
{B14 [ω2] -b15 [ω2] · exp (j · Δθ15 [ω2])}
+ Γ · V · exp (j · Δθ01)
{B14 [ω2] + b15 [ω2] · exp (j · Δθ15 [ω2])}]
... (470)

さらに、式(465)にθ01=θ00+Δθ01、θ15[ω2]=θ14[ω2]+Δθ15[ω2]を代入したときの第1の電極間起電力の角周波数ω2の成分E912cと式(467)にθ01=θ00+Δθ01、θ15[ω2]=θ14[ω2]+Δθ15[ω2]を代入したときの第2の電極間起電力の角周波数ω2の成分E922cとの差をE9d2とすれば、起電力差E9d2は次式で表される。
E9d2=rk・exp{j・(θ14[ω2]+θ00)}
・[ω2・exp(j・π/2)
・{b14[ω2]+b15[ω2]・exp(j・Δθ15[ω2])}
+γ・V・exp(j・Δθ01)
・{b14[ω2]−b15[ω2]・exp(j・Δθ15[ω2])}]
・・・(471)
Further, when θ01 = θ00 + Δθ01 and θ15 [ω2] = θ14 [ω2] + Δθ15 [ω2] are substituted into Expression (465), the component E912c of the angular frequency ω2 of the first inter-electrode electromotive force and θ01 into Expression (467) = Θ00 + Δθ01, θ15 [ω2] = θ14 [ω2] + Δθ15 [ω2] When the difference from the component E922c of the angular frequency ω2 of the second electrode electromotive force is E9d2, the electromotive force difference E9d2 is It is expressed by a formula.
E9d2 = rk · exp {j · (θ14 [ω2] + θ00)}
・ [Ω2 ・ exp (j ・ π / 2)
{B14 [ω2] + b15 [ω2] · exp (j · Δθ15 [ω2])}
+ Γ · V · exp (j · Δθ01)
{B14 [ω2] -b15 [ω2] · exp (j · Δθ15 [ω2])}]
... (471)

初期状態(校正時の状態)において、励磁コイル3から発生する磁場B14とB15とを等しく設定しておくと、その後の磁場B14とB15の初期状態からの差は小さくなり、次式の条件が成り立つ。
|b14[ω0]+b15[ω0]・exp(j・Δθ15[ω0])|
≫|b14[ω0]−b15[ω0]・exp(j・Δθ15[ω0])|
・・・(472)
|b14[ω2]+b15[ω2]・exp(j・Δθ15[ω2])|
≫|b15[ω2]−b15[ω2]・exp(j・Δθ15[ω2])|
・・・(473)
If the magnetic fields B14 and B15 generated from the exciting coil 3 are set to be equal in the initial state (the state at the time of calibration), the difference from the initial state of the subsequent magnetic fields B14 and B15 becomes small. It holds.
| B14 [ω0] + b15 [ω0] · exp (j · Δθ15 [ω0]) |
»| B14 [ω0] −b15 [ω0] · exp (j · Δθ15 [ω0]) |
... (472)
B14 [ω2] + b15 [ω2] · exp (j · Δθ15 [ω2]) |
»| B15 [ω2] −b15 [ω2] · exp (j · Δθ15 [ω2]) |
... (473)

また、通常ω0>γ・V、ω2>γ・Vが成り立つことから、式(472)の条件を考慮すると、式(469)において式(474)の条件が成り立ち、式(473)の条件を考慮すると式(471)において式(475)の条件が成り立つ。
|ω0・exp(j・π/2)
・{b14[ω0]+b15[ω0]・exp(j・Δθ15[ω0])}|
≫|γ・V・exp(j・Δθ01)
・{b14[ω0]−b15[ω0]・exp(j・Δθ15[ω0])}|
・・・(474)
|ω2・exp(j・π/2)
・{b14[ω2]+b15[ω2]・exp(j・Δθ15[ω2])}|
≫|γ・V・exp(j・Δθ01)
・{b14[ω2]−b15[ω2]・exp(j・Δθ15[ω2])}|
・・・(475)
Further, since ω0> γ · V and ω2> γ · V are normally satisfied, when the condition of Expression (472) is considered, the condition of Expression (474) is satisfied in Expression (469), and the condition of Expression (473) is satisfied. In consideration, the condition of the expression (475) is established in the expression (471).
| Ω0 · exp (j · π / 2)
{B14 [ω0] + b15 [ω0] · exp (j · Δθ15 [ω0])} |
≫ | γ ・ V ・ exp (j ・ Δθ01)
{B14 [ω0] −b15 [ω0] · exp (j · Δθ15 [ω0])} |
... (474)
| Ω2 · exp (j · π / 2)
{B14 [ω2] + b15 [ω2] · exp (j · Δθ15 [ω2])} |
≫ | γ ・ V ・ exp (j ・ Δθ01)
{B14 [ω2] -b15 [ω2] · exp (j · Δθ15 [ω2])} |
... (475)

式(474)の条件を用いて、式(469)の起電力差E9d0を近似したものをEdA91とすれば、起電力差EdA91は次式で表される。この起電力差EdA91は基本原理における第1の∂A/∂t成分に相当する。
EdA91≒E9d0 ・・・(476)
EdA91=rk・exp{j・(θ14[ω0]+θ00)}
・ω0・exp(j・π/2)
・{b14[ω0]+b15[ω0]・exp(j・Δθ15[ω0])}
・・・(477)
If an approximation of the electromotive force difference E9d0 in the equation (469) using the condition of the equation (474) as EdA91, the electromotive force difference EdA91 is expressed by the following equation. This electromotive force difference EdA91 corresponds to the first ∂A / ∂t component in the basic principle.
EdA91≈E9d0 (476)
EdA91 = rk · exp {j · (θ14 [ω0] + θ00)}
・ Ω0 ・ exp (j ・ π / 2)
{B14 [ω0] + b15 [ω0] · exp (j · Δθ15 [ω0])}
... (477)

起電力差EdA91は、流速の大きさVに関係しないので、∂A/∂tによって発生する成分のみとなる。この起電力差EdA91を用いて起電力和E9s0中のv×B成分の流速の大きさVにかかる係数(スパン)を正規化する。起電力和E9s0を起電力差EdA91で正規化し、ω0倍した結果をEn90とすれば、正規化起電力和En90は次式で表される。
En90=(E9s0/EdA91)・ω0
=rk・exp{j・(θ1[ω0]+θ00)}
・[ω0・exp(j・π/2)
・{b14[ω0]−b15[ω0]・exp(j・Δθ15[ω0])}
+γ・V・exp(j・Δθ01)
・{b14[ω0]+b15[ω0]・exp(j・Δθ15[ω0])}]
/[rk・exp{j・(θ14[ω0]+θ00)}・ω0・exp(j・π/2)
・{b14[ω0]+b15[ω0]・exp(j・Δθ15[ω0])}]・ω0
=ω0・{b14[ω0]−b15[ω0]・exp(j・Δθ15[ω0])}
/{b14[ω0]+b15[ω0]・exp(j・Δθ15[ω0])}
+[γ・exp{j・(−π/2+Δθ01)}]・V ・・・(478)
Since the electromotive force difference EdA91 is not related to the magnitude V of the flow velocity, it becomes only a component generated by ∂A / ∂t. Using this electromotive force difference EdA91, the coefficient (span) applied to the magnitude V of the flow velocity of the v × B component in the electromotive force sum E9s0 is normalized. If the electromotive force sum E9s0 is normalized by the electromotive force difference EdA91 and multiplied by ω0 is En90, the normalized electromotive force sum En90 is expressed by the following equation.
En90 = (E9s0 / EdA91) · ω0
= Rk · exp {j · (θ1 [ω0] + θ00)}
・ [Ω0 ・ exp (j ・ π / 2)
{B14 [ω0] −b15 [ω0] · exp (j · Δθ15 [ω0])}
+ Γ · V · exp (j · Δθ01)
{B14 [ω0] + b15 [ω0] · exp (j · Δθ15 [ω0])}]
/ [Rk · exp {j · (θ14 [ω0] + θ00)} · ω0 · exp (j · π / 2)
{B14 [ω0] + b15 [ω0] · exp (j · Δθ15 [ω0])}] · ω0
= Ω0 · {b14 [ω0] −b15 [ω0] · exp (j · Δθ15 [ω0])}
/ {B14 [ω0] + b15 [ω0] · exp (j · Δθ15 [ω0])}
+ [Γ · exp {j · (−π / 2 + Δθ01)}] · V (478)

式(52)を用いると、式(478)の右辺第1項の角周波数ω0にかかる係数{b14[ω0]−b15[ω0]・exp(j・Δθ15[ω0])}/{b14[ω0]+b15[ω0]・exp(j・Δθ15[ω0])}を、角周波数ω0に関係しない値{b14−b15・exp(j・Δθ15)}/{b14+b15・exp(j・Δθ15)}で表すことができる。したがって、式(478)を次式のように置き換えることができる。
En90=ω0・{b14−b15・exp(j・Δθ15)}
/{b14+b15・exp(j・Δθ15)}
+[γ・exp{j・(−π/2+Δθ01)}]・V ・・・(479)
Using equation (52), the coefficient {b14 [ω0] −b15 [ω0] · exp (j · Δθ15 [ω0])} / {b14 [ω0] applied to the angular frequency ω0 of the first term on the right side of equation (478) ] + B15 [ω0] · exp (j · Δθ15 [ω0])} is represented by a value {b14−b15 · exp (j · Δθ15)} / {b14 + b15 · exp (j · Δθ15)} not related to the angular frequency ω0. be able to. Therefore, the equation (478) can be replaced by the following equation.
En90 = ω0 · {b14−b15 · exp (j · Δθ15)}
/ {B14 + b15 · exp (j · Δθ15)}
+ [Γ · exp {j · (−π / 2 + Δθ01)}] · V (479)

式(479)の右辺第2項が、v×Bにより発生する成分を正規化した項となる。なお、起電力和E9s0を起電力差EdA91で正規化した結果をω0倍した理由は、流速の大きさVに係る右辺第2項から励磁角周波数ω0を消去するためである。流速の大きさVにかかる複素係数は、γの大きさ、−π/2+Δθ01の実軸からの角度をもつ。係数γおよび角度Δθ01は校正等により予め求めることができる定数であり、式(479)の右辺第2項は被測定流体の流速が変化しないかぎり一定となる。したがって、∂A/∂t成分を用いてv×B成分の正規化を行うことにより、磁場のシフトや位相変化による誤差を自動的に補正するスパン補正を実現することができる。   The second term on the right side of Equation (479) is a term obtained by normalizing the component generated by v × B. The reason why the result obtained by normalizing the electromotive force sum E9s0 by the electromotive force difference EdA91 is multiplied by ω0 is to eliminate the excitation angular frequency ω0 from the second term on the right side of the magnitude V of the flow velocity. The complex coefficient related to the magnitude V of the flow velocity has an angle from the real axis of the magnitude of γ, −π / 2 + Δθ01. The coefficient γ and the angle Δθ01 are constants that can be obtained in advance by calibration or the like, and the second term on the right side of the equation (479) is constant as long as the flow velocity of the fluid to be measured does not change. Therefore, by performing the normalization of the v × B component using the ∂A / ∂t component, it is possible to realize span correction that automatically corrects an error due to a magnetic field shift or phase change.

次に、0点の変動要因である、式(479)の右辺第1項を除去する方法について説明する。角周波数ω0での正規化と同様に角周波数ω2において正規化を行う。式(475)の条件を用いて、式(471)の起電力差E9d2を近似したものをEdA92とすれば、起電力差EdA92は次式で表される。この起電力EdA92は基本原理における第2の∂A/∂t成分に相当する。
EdA92≒E9d2 ・・・(480)
EdA92=rk・exp{j・(θ14[ω2]+θ00)}
・ω2・exp(j・π/2)
・{b14[ω2]+b15[ω2]・exp(j・Δθ15[ω2])}
・・・(481)
Next, a method for removing the first term on the right side of Equation (479), which is a factor of variation at 0 point, will be described. Normalization is performed at the angular frequency ω2 as in the normalization at the angular frequency ω0. If an approximation of the electromotive force difference E9d2 in the equation (471) using the condition of the equation (475) is taken as EdA92, the electromotive force difference EdA92 is expressed by the following equation. This electromotive force EdA92 corresponds to the second ∂A / ∂t component in the basic principle.
EdA92≈E9d2 (480)
EdA92 = rk · exp {j · (θ14 [ω2] + θ00)}
・ Ω2 ・ exp (j ・ π / 2)
{B14 [ω2] + b15 [ω2] · exp (j · Δθ15 [ω2])}
... (481)

式(470)の起電力和E9s2を式(481)の起電力差EdA92で正規化し、ω2倍した結果をEn92とすれば、正規化起電力和En92は式(479)より次式で表される。
En92=ω2・{b14−b15・exp(j・Δθ15)}
/{b14+b15・exp(j・Δθ15)}
+[γ・exp{j・(−π/2+Δθ01)}]・V ・・・(482)
If the result obtained by normalizing the electromotive force sum E9s2 of the equation (470) by the electromotive force difference EdA92 of the equation (481) and multiplying it by ω2 is En92, the normalized electromotive force sum En92 is expressed by the following equation from the equation (479). The
En92 = ω2 · {b14−b15 · exp (j · Δθ15)}
/ {B14 + b15 · exp (j · Δθ15)}
+ [Γ · exp {j · (−π / 2 + Δθ01)}] · V (482)

正規化起電力和En90とEn92との差をとり、求めた差分をω0/(ω0−ω2)倍した結果をEdA93とすれば、差分EdA93は次式で表される。この差分EdA93は基本原理における第3の∂A/∂t成分に相当する。
EdA93=(En9a−En9b)・ω0/(ω0−ω2)
=[ω0・{b14−b15・exp(j・Δθ15)}
/{b14+b15・exp(j・Δθ15)}
+γ・exp{j・(−π/2+Δθ01)}・V
−ω2・{b14−b15・exp(j・Δθ15)}
/{b14+b15・exp(j・Δθ15)}
−γ・exp{j・(−π/2+Δθ01)}・V]
・ω0/(ω0−ω2)
=ω0・{b14−b15・exp(j・Δθ15)}
/{b14+b15・exp(j・Δθ15)} ・・・(483)
Taking the difference between the normalized electromotive force sums En90 and En92 and multiplying the obtained difference by ω0 / (ω0−ω2) as EdA93, the difference EdA93 is expressed by the following equation. This difference EdA93 corresponds to the third ∂A / ∂t component in the basic principle.
EdA93 = (En9a−En9b) · ω0 / (ω0−ω2)
= [Ω0 · {b14−b15 · exp (j · Δθ15)}
/ {B14 + b15 · exp (j · Δθ15)}
+ Γ · exp {j · (−π / 2 + Δθ01)} · V
−ω2 · {b14−b15 · exp (j · Δθ15)}
/ {B14 + b15 · exp (j · Δθ15)}
−γ · exp {j · (−π / 2 + Δθ01)} · V]
・ Ω0 / (ω0−ω2)
= Ω0 · {b14−b15 · exp (j · Δθ15)}
/ {B14 + b15 · exp (j · Δθ15)} (483)

差分EdA93は正規化された∂A/∂t成分を表し、式(479)の右辺第1項と等しくなるので、この差分EdA93を使用すれば、正規化されたv×B成分を正規化起電力和En90から取り出すことができる。式(479)の正規化起電力和En90から式(483)の差分EdA93を引いたときに得られるv×B成分をEvBn9とすると、v×B成分EvBn9は次式で表される。
EvBn9=En90−EdA93
=ω0・{b14−b15・exp(j・Δθ15)}
/{b14+b15・exp(j・Δθ15)}
+[γ・exp{j・(−π/2+Δθ01)}]・V
−ω0・{b14−b15・exp(j・Δθ15)}
/{b14+b15・exp(j・Δθ15)}
=[γ・exp{j・(−π/2+Δθ01)}]・V ・・・(484)
The difference EdA93 represents the normalized ∂A / ∂t component and is equal to the first term on the right side of the equation (479). Therefore, if this difference EdA93 is used, the normalized v × B component is normalized. It can be taken out from the power sum En90. When the v × B component obtained when the difference EdA93 of the equation (483) is subtracted from the normalized electromotive force sum En90 of the equation (479) is EvBn9, the v × B component EvBn9 is expressed by the following equation.
EvBn9 = En90-EdA93
= Ω0 · {b14−b15 · exp (j · Δθ15)}
/ {B14 + b15 · exp (j · Δθ15)}
+ [Γ · exp {j · (−π / 2 + Δθ01)}] · V
-Ω0 · {b14-b15 · exp (j · Δθ15)}
/ {B14 + b15 · exp (j · Δθ15)}
= [Γ · exp {j · (−π / 2 + Δθ01)}] · V (484)

v×B成分EvBn9は角周波数ω0,ω2に関係しない。流速の大きさVが0のときv×B成分EvBn9も0となることから分かるように、v×B成分EvBn9より、スパンが補正され、かつ0点が補正された出力を得ることができる。式(484)より、流速の大きさVは次式のように表される。
V=|EvBn9/[γ・exp{j・(−π/2+Δθ01)}]|
=|EvBn9|/γ ・・・(485)
The v × B component EvBn9 is not related to the angular frequencies ω0 and ω2. As can be seen from the fact that the v × B component EvBn9 becomes 0 when the magnitude V of the flow velocity is 0, an output in which the span is corrected and the zero point is corrected can be obtained from the v × B component EvBn9. From the equation (484), the magnitude V of the flow velocity is expressed as the following equation.
V = | EvBn9 / [γ · exp {j · (−π / 2 + Δθ01)}] |
= | EvBn9 | / γ (485)

なお、基本原理で用いた定数および変数と、本実施の形態の定数および変数との対応関係は以下の表9のとおりである。本実施の形態は、表9から明らかなように、前述の基本原理を具体的に実現する1つの例である。   Table 9 below shows the correspondence between the constants and variables used in the basic principle and the constants and variables in the present embodiment. As is apparent from Table 9, this embodiment is one example that specifically realizes the basic principle described above.

Figure 2006058175
Figure 2006058175

次に、本実施の形態の電磁流量計の具体的な構成とその動作について説明する。本実施の形態の電磁流量計の構成は第8の実施の形態と同様であるので、図23の符号を用いて説明する。本実施の形態の電磁流量計は、測定管1と、第1の電極2a,2bと、第2の電極2c,2dと、励磁コイル3と、電源部4aと、信号変換部5aと、流量出力部6aとを有する。   Next, a specific configuration and operation of the electromagnetic flow meter of the present embodiment will be described. Since the configuration of the electromagnetic flowmeter of the present embodiment is the same as that of the eighth embodiment, description will be made using the reference numerals in FIG. The electromagnetic flow meter of the present embodiment includes a measurement tube 1, first electrodes 2a and 2b, second electrodes 2c and 2d, an excitation coil 3, a power supply unit 4a, a signal conversion unit 5a, a flow rate. And an output unit 6a.

信号変換部5aは、第1の電極2a,2bで検出される第1の合成起電力と第2の電極2c,2dで検出される第2の合成起電力の振幅と位相を求め、これらの振幅と位相に基づいて第1の合成起電力と第2の合成起電力の同一周波数成分の起電力和および同一周波数成分の起電力差を角周波数ω0とω2の各々について求め、角周波数ω0の起電力差を第1の∂A/∂t成分として抽出すると共に、角周波数ω2の起電力差を第2の∂A/∂t成分として抽出し、角周波数ω0の起電力和を第1の補正対象起電力として、第1の∂A/∂t成分に基づいて第1の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去すると共に、角周波数ω2の起電力和を第2の補正対象起電力として、第2の∂A/∂t成分に基づいて第2の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去するスパン補正部51aと、スパン補正された第1の補正対象起電力とスパン補正された第2の補正対象起電力との差を第3の∂A/∂t成分として抽出し、このスパン補正された2つの補正対象起電力のうちいずれか1つの中から第3の∂A/∂t成分を取り除くことによりv×B成分を抽出する0点補正部52aとから構成される。   The signal converter 5a obtains the amplitude and phase of the first combined electromotive force detected by the first electrodes 2a and 2b and the second combined electromotive force detected by the second electrodes 2c and 2d. Based on the amplitude and phase, the sum of the electromotive forces of the same frequency components and the electromotive force difference of the same frequency components of the first composite electromotive force and the second composite electromotive force are obtained for each of the angular frequencies ω0 and ω2, and the angular frequency ω0 The electromotive force difference is extracted as the first ∂A / ∂t component, the electromotive force difference at the angular frequency ω2 is extracted as the second ∂A / ∂t component, and the electromotive force sum of the angular frequency ω0 is calculated as the first ∂A / ∂t component. As a correction target electromotive force, based on the first ∂A / ∂t component, the variation factor of the span included in the v × B component in the first correction target electromotive force is removed, and the electromotive force at the angular frequency ω2 Based on the second ∂A / ∂t component, the sum is taken as the second correction target electromotive force. A span correction unit 51a that removes a span variation factor included in the v × B component in the target electromotive force, a first correction target electromotive force that is subjected to span correction, and a second correction target electromotive force that is subjected to span correction Is extracted as the third ∂A / ∂t component, and v × is obtained by removing the third ∂A / い ず れ t component from any one of the two correction target electromotive forces subjected to the span correction. And a zero point correction unit 52a for extracting the B component.

本実施の形態の電源部4aは、角周波数ω0の正弦波成分と角周波数ω2の正弦波成分とを含む励磁電流を励磁コイル3に供給する。このとき、励磁電流における角周波数ω0の成分と角周波数ω2の成分の振幅は同一である。   The power supply unit 4a of the present embodiment supplies an excitation current including a sine wave component having an angular frequency ω0 and a sine wave component having an angular frequency ω2 to the excitation coil 3. At this time, the amplitude of the angular frequency ω0 component and the angular frequency ω2 component in the excitation current is the same.

図25は本実施の形態の信号変換部5aと流量出力部6aの動作を示すフローチャートである。まず、信号変換部5aのスパン補正部51aは、第1の電極間起電力の角周波数ω0の成分E910cと第2の電極間起電力の角周波数ω0の成分E920cとの和E9s0の振幅r9s0を求めると共に、実軸と起電力和E9s0との位相差φ9s0を図示しない位相検波器により求める。また、スパン補正部51aは、第1の電極間起電力の角周波数ω0の成分E910cと第2の電極間起電力の角周波数ω0の成分E920cとの差E9d0の振幅r9d0を求めると共に、実軸と起電力差E9d0との位相差φ9d0を位相検波器により求める。また、スパン補正部51aは、第1の電極間起電力の角周波数ω2の成分E912cと第2の電極間起電力の角周波数ω2の成分E922cとの和E9s2の振幅r9s2を求めると共に、実軸と起電力和E9s2との位相差φ9s2を位相検波器により求める。さらに、スパン補正部51aは、第1の電極間起電力の角周波数ω2の成分E912cと第2の電極間起電力の角周波数ω2の成分E922cとの差E9d2の振幅r9d2を求めると共に、実軸と起電力差E9d2との位相差φ9d2を位相検波器により求める(図25ステップ701)。電極間起電力E910c,E920c,E912c,E922cは、バンドパスフィルタやコムフィルタによって周波数分離することができる。   FIG. 25 is a flowchart showing the operations of the signal conversion unit 5a and the flow rate output unit 6a of the present embodiment. First, the span correction unit 51a of the signal converting unit 5a sets the amplitude r9s0 of the sum E9s0 of the component E910c of the angular frequency ω0 of the first interelectrode electromotive force and the component E920c of the angular frequency ω0 of the second interelectrode electromotive force. At the same time, the phase difference φ9s0 between the real axis and the electromotive force sum E9s0 is obtained by a phase detector (not shown). The span correction unit 51a obtains the amplitude r9d0 of the difference E9d0 between the component E910c of the angular frequency ω0 of the first inter-electrode electromotive force and the component E920c of the angular frequency ω0 of the second inter-electrode electromotive force, and the real axis And a phase difference φ9d0 between the electromotive force difference E9d0 and the phase detector. The span correction unit 51a obtains the amplitude r9s2 of the sum E9s2 of the component E912c of the angular frequency ω2 of the first inter-electrode electromotive force and the component E922c of the angular frequency ω2 of the second inter-electrode electromotive force, and the real axis And a phase detector φ9s2 is obtained by the phase detector. Furthermore, the span correction unit 51a obtains the amplitude r9d2 of the difference E9d2 between the component E912c of the angular frequency ω2 of the first inter-electrode electromotive force and the component E922c of the angular frequency ω2 of the second inter-electrode electromotive force, and the real axis And a phase difference φ9d2 between the electromotive force difference E9d2 and the phase detector (step 701 in FIG. 25). The inter-electrode electromotive forces E910c, E920c, E912c, and E922c can be frequency-separated by a bandpass filter or a comb filter.

次に、スパン補正部51aは、起電力差E9d0を近似した起電力差EdA91の大きさと角度を求める(ステップ702)。このステップ702の処理は、第1の∂A/∂t成分を求めることに対応する処理であり、式(477)の算出に相当する処理である。スパン補正部51aは、起電力差EdA91の大きさ|EdA91|を次式のように算出する。
|EdA91|=r9d0 ・・・(486)
そして、スパン補正部51aは、起電力差EdA91の角度∠EdA91を次式のように算出する。
∠EdA91=φ9d0 ・・・(487)
これで、ステップ702の処理が終了する。
Next, the span correction unit 51a obtains the magnitude and angle of the electromotive force difference EdA91 that approximates the electromotive force difference E9d0 (step 702). The process of step 702 is a process corresponding to obtaining the first ∂A / ∂t component, and is a process corresponding to the calculation of Expression (477). The span correction unit 51a calculates the magnitude | EdA91 | of the electromotive force difference EdA91 as follows.
| EdA91 | = r9d0 (486)
Then, the span correction unit 51a calculates the angle ∠EdA91 of the electromotive force difference EdA91 as the following equation.
∠EdA91 = φ9d0 (487)
This completes the processing in step 702.

続いて、スパン補正部51aは、起電力和E9s0を起電力差EdA91で正規化した正規化起電力和En90の大きさと角度を求める(ステップ703)。このステップ703の処理は、式(479)の算出に相当する処理である。スパン補正部51aは、正規化起電力和En90の大きさ|En90|を次式のように算出する。
|En90|=(r9s0/|EdA91|)・ω0 ・・・(488)
Subsequently, the span correction unit 51a obtains the magnitude and angle of the normalized electromotive force sum En90 obtained by normalizing the electromotive force sum E9s0 with the electromotive force difference EdA91 (step 703). The processing in step 703 is processing equivalent to the calculation of equation (479). The span correction unit 51a calculates the magnitude | En90 | of the normalized electromotive force sum En90 as the following equation.
| En90 | = (r9s0 / | EdA91 |) · ω0 (488)

そして、スパン補正部51aは、正規化起電力和En90の角度∠En90を次式のように算出する。
∠En90=φ9s0−∠EdA91 ・・・(489)
さらに、スパン補正部51aは、正規化起電力和En90の実軸成分En90xと虚軸成分En90yを次式のように算出する。
En90x=|En90|・cos(∠En90) ・・・(490)
En90y=|En90|・sin(∠En90) ・・・(491)
これで、ステップ703の処理が終了する。
Then, the span correction unit 51a calculates the angle ∠En90 of the normalized electromotive force sum En90 as the following equation.
∠En90 = φ9s0−∠EdA91 (489)
Further, the span correction unit 51a calculates the real axis component En90x and the imaginary axis component En90y of the normalized electromotive force sum En90 as in the following equation.
En90x = | En90 | .cos (∠En90) (490)
En90y = | En90 | .sin (∠En90) (491)
This completes the processing in step 703.

次に、スパン補正部51aは、起電力差E9d2を近似した起電力差EdA92の大きさと角度を求める(ステップ704)。このステップ704の処理は、第2の∂A/∂t成分を求めることに対応する処理であり、式(481)の算出に相当する処理である。スパン補正部51aは、起電力差EdA92の大きさ|EdA92|を次式のように算出する。
|EdA92|=r9d2 ・・・(492)
そして、スパン補正部51aは、起電力差EdA92の角度∠EdA92を次式のように算出する。
∠EdA92=φ9d2 ・・・(493)
これで、ステップ704の処理が終了する。
Next, the span correction unit 51a obtains the magnitude and angle of the electromotive force difference EdA92 that approximates the electromotive force difference E9d2 (step 704). The process of step 704 is a process corresponding to obtaining the second ∂A / ∂t component, and is a process corresponding to the calculation of equation (481). The span correction unit 51a calculates the magnitude | EdA92 | of the electromotive force difference EdA92 as the following equation.
| EdA92 | = r9d2 (492)
Then, the span correction unit 51a calculates the angle ∠EdA92 of the electromotive force difference EdA92 as the following equation.
∠EdA92 = φ9d2 (493)
This completes the process of step 704.

続いて、スパン補正部51aは、起電力和E9s2を起電力差EdA92で正規化した正規化起電力和En92の大きさと角度を求める(ステップ705)。このステップ705の処理は、式(482)の算出に相当する処理である。スパン補正部51aは、正規化起電力和En92の大きさ|En92|を次式のように算出する。
|En92|=(r9s2/|EdA92|)・ω2 ・・・(494)
Subsequently, the span correction unit 51a obtains the magnitude and angle of the normalized electromotive force sum En92 obtained by normalizing the electromotive force sum E9s2 with the electromotive force difference EdA92 (step 705). The process of step 705 is a process corresponding to the calculation of equation (482). The span correction unit 51a calculates the magnitude | En92 | of the normalized electromotive force sum En92 as the following equation.
| En92 | = (r9s2 / | EdA92 |) · ω2 (494)

そして、スパン補正部51aは、正規化起電力和En92の角度∠En92を次式のように算出する。
∠En92=φ9s2−∠EdA92 ・・・(495)
さらに、スパン補正部51aは、正規化起電力和En92の実軸成分En92xと虚軸成分En92yを次式のように算出する。
En92x=|En92|・cos(∠En92) ・・・(496)
En92y=|En92|・sin(∠En92) ・・・(497)
これで、ステップ705の処理が終了する。
Then, the span correction unit 51a calculates the angle ∠En92 of the normalized electromotive force sum En92 as the following equation.
∠En92 = φ9s2-∠EdA92 (495)
Further, the span correction unit 51a calculates the real axis component En92x and the imaginary axis component En92y of the normalized electromotive force sum En92 as the following expression.
En92x = | En92 | .cos (∠En92) (496)
En92y = | En92 | .sin (∠En92) (497)
This completes the process of step 705.

次に、信号変換部5aの0点補正部52aは、正規化起電力和En90とEn92との差分EdA93の大きさを求める(ステップ706)。このステップ706の処理は、第3の∂A/∂t成分を求めることに対応する処理であり、式(483)の算出に相当する処理である。0点補正部52aは、差分EdA93の実軸成分EdA93xと虚軸成分EdA93yを次式のように算出する。
EdA93x=(En90x−En92x)・ω0/(ω0−ω2) ・・(498)
EdA93y=(En90y−En92y)・ω0/(ω0−ω2) ・・(499)
Next, the zero point correction unit 52a of the signal conversion unit 5a obtains the magnitude of the difference EdA93 between the normalized electromotive force sums En90 and En92 (step 706). The process of step 706 is a process corresponding to obtaining the third ∂A / ∂t component, and is a process corresponding to the calculation of Expression (483). The zero point correction unit 52a calculates the real axis component EdA93x and the imaginary axis component EdA93y of the difference EdA93 as in the following equation.
EdA93x = (En90x-En92x) .omega.0 / (. Omega.0-.omega.2) .. (498)
EdA93y = (En90y−En92y) · ω0 / (ω0−ω2) (499)

そして、0点補正部52aは、正規化起電力和En90から差分EdA93を取り除き、v×B成分EvBn9の大きさを求める(ステップ707)。このステップ707の処理は、式(484)の算出に相当する処理である。0点補正部52aは、v×B成分EvBn9の大きさ|EvBn9|を次式のように算出する。
|EvBn9|={(En90x−EdA93x)2
+(En90y−EdA93y)21/2 ・・・(500)
Then, the zero point correction unit 52a removes the difference EdA93 from the normalized electromotive force sum En90, and obtains the magnitude of the v × B component EvBn9 (step 707). The process of step 707 is a process corresponding to the calculation of equation (484). The zero point correction unit 52a calculates the magnitude | EvBn9 | of the v × B component EvBn9 as the following equation.
| EvBn9 | = {(En90x−EdA93x) 2
+ (En90y−EdA93y) 2 } 1/2 (500)

流量出力部6aは、被測定流体の流速の大きさVを次式のように算出する(ステップ708)。このステップ708の処理は、式(485)の算出に相当する処理である。
V=|EvBn9|/γ ・・・(501)
なお、比例係数γは、校正等により予め求めることができる定数である。信号変換部5aと流量出力部6aとは、以上のようなステップ701〜708の処理を例えばオペレータによって計測終了が指示されるまで(ステップ709においてYES)、一定周期毎に行う。
The flow rate output unit 6a calculates the magnitude V of the flow velocity of the fluid to be measured as in the following equation (step 708). The processing in step 708 is processing equivalent to the calculation of equation (485).
V = | EvBn9 | / γ (501)
The proportionality coefficient γ is a constant that can be obtained in advance by calibration or the like. The signal conversion unit 5a and the flow rate output unit 6a perform the processing in steps 701 to 708 as described above at regular intervals until, for example, the operator instructs the end of measurement (YES in step 709).

以上のように、本実施の形態では、角周波数ω0の起電力和E9s0と起電力差E9d0とを求めると共に、角周波数ω2の起電力和E9s2と起電力差E9d2とを求める。そして、本実施の形態では、励磁コイル3から発生する磁場B14とB15とが等しくなるように設定しておくと、起電力差E9d0が近似的に第1の∂A/∂t成分として抽出でき、また起電力差E9d2が近似的に第2の∂A/∂t成分として抽出できることに着眼し、第1の∂A/∂t成分を用いて起電力和E9s0中のv×B成分の流速の大きさVにかかるスパンを正規化すると共に、第2の∂A/∂t成分を用いて起電力和E9s2中のv×B成分の流速の大きさVにかかるスパンを正規化し、正規化起電力和En90とEn92とから差分EdA93(第3の∂A/∂t成分)を抽出して、正規化起電力和En90から第3の∂A/∂t成分を取り除くことによりv×B成分を抽出し、このv×B成分から被測定流体の流量を算出するようにしたので、正確なスパン補正を自動的に行うことができ、かつ被測定流体の流量を0にすることなく電磁流量計の出力の0点を補正することができ、高周波励磁においても0点の安定性を確保することができる。   As described above, in the present embodiment, the electromotive force sum E9s0 and the electromotive force difference E9d0 at the angular frequency ω0 are obtained, and the electromotive force sum E9s2 and the electromotive force difference E9d2 at the angular frequency ω2 are obtained. In this embodiment, when the magnetic fields B14 and B15 generated from the exciting coil 3 are set to be equal, the electromotive force difference E9d0 can be approximately extracted as the first ∂A / ∂t component. Also, focusing on the fact that the electromotive force difference E9d2 can be approximately extracted as the second ∂A / ∂t component, the flow velocity of the v × B component in the electromotive force sum E9s0 using the first ∂A / ∂t component. Normalizing the span over the magnitude V of V, and normalizing the span over the magnitude V of the flow velocity of the v × B component in the electromotive force sum E9s2 using the second ∂A / ∂t component The difference EdA93 (third ∂A / ∂t component) is extracted from the electromotive force sums En90 and En92, and the third ∂A / ∂t component is removed from the normalized electromotive force sum En90 to obtain the v × B component. And the flow rate of the fluid to be measured is calculated from this v × B component As a result, accurate span correction can be performed automatically, and the zero point of the output of the electromagnetic flowmeter can be corrected without reducing the flow rate of the fluid to be measured. The stability of 0 point can be ensured.

また、本実施の形態では、周波数による磁場の損失の違いを考慮して、起電力和E9s0のv×B成分を起電力差E9d0から抽出した同じ角周波数の第1の∂A/∂t成分を用いて正規化すると共に、起電力和E9s2のv×B成分を起電力差E9d2から抽出した同じ角周波数の第2の∂A/∂t成分を用いて正規化し、それぞれ正規化した起電力和En90とEn92との差を基に0補正を行うようにしたので、磁場の損失による影響がある場合でも、正確なスパン補正と0補正を行うことができる。
また、本実施の形態では、第8の実施の形態のように励磁周波数を切り替える必要がないため、より高速に流量を算出することが可能になる。
In the present embodiment, the first ∂A / 磁場 t component having the same angular frequency obtained by extracting the v × B component of the electromotive force sum E9s0 from the electromotive force difference E9d0 in consideration of the difference in the loss of the magnetic field due to the frequency. Is normalized using the second ∂A / ∂t component of the same angular frequency extracted from the electromotive force difference E9d2, and the electromotive force obtained by normalizing the v × B component of the electromotive force sum E9s2 is normalized. Since zero correction is performed based on the difference between the sums En90 and En92, accurate span correction and zero correction can be performed even when there is an influence due to magnetic field loss.
Further, in this embodiment, it is not necessary to switch the excitation frequency as in the eighth embodiment, so that the flow rate can be calculated at a higher speed.

なお、本実施の形態では、2種類の周波数成分で励磁する例を示したが、3種類以上の周波数成分で励磁すれば、0補正の精度をさらに向上させることができる。3種類以上の周波数成分で励磁する例としては、変調が使用できる。角周波数ω0の搬送波を角周波数ω1の変調波で励磁すれば、振幅変調の場合は角周波数ω0,ω0±ω1の成分の起電力を得ることができ、位相変調又は周波数変調の場合は角周波数ω0,ω0±ζ・ω1(ζは正の整数)の成分の起電力を得ることができる。この変調を使用する例は第4の実施の形態〜第7の実施の形態で示したものと同等なので、詳細な説明は省略する。   In the present embodiment, an example in which excitation is performed with two types of frequency components has been described. However, if excitation is performed with three or more types of frequency components, the accuracy of zero correction can be further improved. As an example of excitation with three or more types of frequency components, modulation can be used. If a carrier wave having an angular frequency ω0 is excited by a modulated wave having an angular frequency ω1, the electromotive force of the components having angular frequencies ω0 and ω0 ± ω1 can be obtained in the case of amplitude modulation, and the angular frequency in the case of phase modulation or frequency modulation. The electromotive force of the component of ω0, ω0 ± ζ · ω1 (ζ is a positive integer) can be obtained. An example in which this modulation is used is equivalent to that shown in the fourth to seventh embodiments, and a detailed description thereof will be omitted.

また、本実施の形態では、起電力和E9s0を0補正およびスパン補正の対象としたが、起電力和E9s2を0補正およびスパン補正の対象としてもよい。この場合は、次式のように正規化起電力和En92とEn90とから差分EdA93(第3の∂A/∂t成分)を求める。
EdA93=(En92−En90)・ω2/(ω2−ω0) ・・・(502)
そして、次式のように正規化起電力和En92から差分EdA93を引くことによりv×B成分EvBn9を求めるようにすればよい。その他の処理は起電力和E9s0を0補正およびスパン補正の対象とする場合と同じである。
|EvBn9|=|En92−EdA93| ・・・(503)
Further, in the present embodiment, the electromotive force sum E9s0 is set as an object of 0 correction and span correction, but the electromotive force sum E9s2 may be set as an object of 0 correction and span correction. In this case, the difference EdA93 (third ∂A / ∂t component) is obtained from the normalized electromotive force sums En92 and En90 as in the following equation.
EdA93 = (En92-En90) · ω2 / (ω2-ω0) (502)
Then, the v × B component EvBn9 may be obtained by subtracting the difference EdA93 from the normalized electromotive force sum En92 as in the following equation. The other processes are the same as the case where the electromotive force sum E9s0 is the target of 0 correction and span correction.
| EvBn9 | = | En92-EdA93 | (503)

[第10の実施の形態]
次に、本発明の第10の実施の形態について説明する。本実施の形態の電磁流量計は1個の励磁コイルと2対の電極とを有するものであり、信号処理系を除く構成は図13に示した電磁流量計と同様であるので、図13の符号を用いて本実施の形態の原理を説明する。本実施の形態は、正規化の対象となる合成ベクトルVas0+Vbs0を検出する方法として基本原理で説明した第2の検出方法を用い、第1の∂A/∂t成分を抽出する方法として基本原理で説明した第2の抽出方法を用いるものである。
[Tenth embodiment]
Next, a tenth embodiment of the present invention will be described. The electromagnetic flow meter of the present embodiment has one excitation coil and two pairs of electrodes, and the configuration excluding the signal processing system is the same as that of the electromagnetic flow meter shown in FIG. The principle of this embodiment will be described using reference numerals. The present embodiment uses the second detection method described in the basic principle as a method for detecting the composite vector Vas0 + Vbs0 to be normalized, and uses the basic principle as a method for extracting the first ∂A / ∂t component. The second extraction method described is used.

励磁コイル3から発生する磁場Bdのうち、電極2a,2b間を結ぶ電極軸EAX1上において電極軸EAX1および測定管軸PAXの双方と直交する磁場成分(磁束密度)B16と、励磁コイル3から発生する磁場Bdのうち、電極2c,2d間を結ぶ電極軸EAX2上において電極軸EAX2および測定管軸PAXの双方と直交する磁場成分(磁束密度)B17は、以下のように与えられるものとする。
B16=b16・cos(ωp・t−θ16)+b16・cos(ωm・t−θ16) ・・・(504)
B17=b17・cos(ωp・t−θ17)+b17・cos(ωm・t−θ17) ・・・(505)
Of the magnetic field Bd generated from the excitation coil 3, the magnetic field component (magnetic flux density) B16 orthogonal to both the electrode axis EAX1 and the measurement tube axis PAX on the electrode axis EAX1 connecting the electrodes 2a and 2b, and the excitation coil 3 The magnetic field component (magnetic flux density) B17 orthogonal to both the electrode axis EAX2 and the measurement tube axis PAX on the electrode axis EAX2 connecting the electrodes 2c and 2d is assumed to be given as follows.
B16 = b16 · cos (ωp · t−θ16) + b16 · cos (ωm · t−θ16) (504)
B17 = b17 · cos (ωp · t−θ17) + b17 · cos (ωm · t−θ17) (505)

但し、B16,B17は1つの励磁コイル3から発生しているので、b16とb17、θ16とθ17は互いに関係があり、独立変数ではない。式(504)、式(505)において、ωp,ωmは異なる角周波数、b16は磁束密度B16の角周波数ωpの成分の振幅および角周波数ωmの成分の振幅、b17は磁束密度B17の角周波数ωpの成分の振幅および角周波数ωmの成分の振幅、θ16は磁束密度B16の角周波数ωpの成分とωp・tとの位相差(位相遅れ)および角周波数ωmの成分とωm・tとの位相差、θ17は磁束密度B17の角周波数ωpの成分とωp・tとの位相差および角周波数ωmの成分とωm・tとの位相差である。以下、磁束密度B16を磁場B16とし、磁束密度B17を磁場B17とする。   However, since B16 and B17 are generated from one excitation coil 3, b16 and b17 and θ16 and θ17 are related to each other and are not independent variables. In equations (504) and (505), ωp and ωm are different angular frequencies, b16 is the amplitude of the angular frequency ωp component and the amplitude of the angular frequency ωm component of the magnetic flux density B16, and b17 is the angular frequency ωp of the magnetic flux density B17. And θ16 is the phase difference (phase lag) between the angular frequency ωp component and ωp · t of the magnetic flux density B16, and the phase difference between the angular frequency ωm component and ωm · t. , Θ17 are the phase difference between the angular frequency ωp component of the magnetic flux density B17 and ωp · t, and the phase difference between the angular frequency ωm component and ωm · t. Hereinafter, the magnetic flux density B16 is referred to as a magnetic field B16, and the magnetic flux density B17 is referred to as a magnetic field B17.

それぞれの角周波数における磁場の損失を考慮して、磁場B16,B17の角周波数ωpの成分の振幅b16,b17をそれぞれb16[ωp],b17[ωp]と関数表記に変更し、同様に角周波数ωpの成分の位相差θ16,θ17をそれぞれθ16[ωp],θ17[ωp]と変更する。さらに、磁場B16,B17の角周波数ωmの成分の振幅b16,b17をそれぞれb16[ωm],b17[ωm]と関数表記に変更し、同様に角周波数ωmの成分の位相差θ16,θ17をそれぞれθ16[ωm],θ17[ωm]と変更する。これにより、式(504)、式(505)は式(506)、式(507)に置き換わる。   Considering the loss of the magnetic field at each angular frequency, the amplitudes b16 and b17 of the components of the angular frequency ωp of the magnetic fields B16 and B17 are changed to b16 [ωp] and b17 [ωp], respectively, and the angular frequency is similarly changed. The phase differences θ16 and θ17 of the components of ωp are changed to θ16 [ωp] and θ17 [ωp], respectively. Furthermore, the amplitudes b16 and b17 of the components of the angular frequency ωm of the magnetic fields B16 and B17 are changed to b16 [ωm] and b17 [ωm], respectively, and the function notations are similarly obtained, and the phase differences θ16 and θ17 of the components of the angular frequency ωm are respectively set. They are changed to θ16 [ωm] and θ17 [ωm]. Thereby, Formula (504) and Formula (505) are replaced with Formula (506) and Formula (507).

B16=b16[ωp]・cos(θ16[ωp])・cos(ωp・t)
+b16[ωp]・sin(θ16[ωp])・sin(ωp・t)
+b16[ωm]・cos(θ16[ωm])・cos(ωm・t)
+b16[ωm]・sin(θ16[ωm])・sin(ωm・t)
・・・(506)
B17=b17[ωp]・cos(θ17[ωp])・cos(ωp・t)
+b17[ωp]・sin(θ17[ωp])・sin(ωp・t)
+b17[ωm]・cos(θ17[ωm])・cos(ωm・t)
+b17[ωm]・sin(θ17[ωm])・sin(ωm・t)
・・・(507)
B16 = b16 [ωp] · cos (θ16 [ωp]) · cos (ωp · t)
+ B16 [ωp] · sin (θ16 [ωp]) · sin (ωp · t)
+ B16 [ωm] · cos (θ16 [ωm]) · cos (ωm · t)
+ B16 [ωm] · sin (θ16 [ωm]) · sin (ωm · t)
... (506)
B17 = b17 [ωp] · cos (θ17 [ωp]) · cos (ωp · t)
+ B17 [ωp] · sin (θ17 [ωp]) · sin (ωp · t)
+ B17 [ωm] · cos (θ17 [ωm]) · cos (ωm · t)
+ B17 [ωm] · sin (θ17 [ωm]) · sin (ωm · t)
... (507)

磁場の変化に起因する起電力は、磁場の時間微分dB/dtによるので、励磁コイル3から発生する磁場BdのうちB16,B17を次式のように微分する。
dB16/dt=ωp・cos(ωp・t)・b16[ωp]
・{sin(θ16[ωp])}
+ωp・sin(ωp・t)・b16[ωp]
・{−cos(θ16[ωp])}
+ωm・cos(ωm・t)・b16[ωm]
・{sin(θ16[ωm])}
+ωm・sin(ωm・t)・b16[ωm]
・{−cos(θ16[ωm])} ・・・(508)
Since the electromotive force resulting from the change of the magnetic field is based on the time derivative dB / dt of the magnetic field, B16 and B17 of the magnetic field Bd generated from the exciting coil 3 are differentiated as follows.
dB16 / dt = ωp · cos (ωp · t) · b16 [ωp]
・ {Sin (θ16 [ωp])}
+ Ωp · sin (ωp · t) · b16 [ωp]
・ {-Cos (θ16 [ωp])}
+ Ωm · cos (ωm · t) · b16 [ωm]
・ {Sin (θ16 [ωm])}
+ Ωm · sin (ωm · t) · b16 [ωm]
{-Cos (θ16 [ωm])} (508)

dB17/dt=ωp・cos(ωp・t)・b17[ωp]
・{sin(θ17[ωp])}
+ωp・sin(ωp・t)・b17[ωp]
・{−cos(θ17[ωp])}
+ωm・cos(ωm・t)・b17[ωm]
・{sin(θ17[ωm])}
+ωm・sin(ωm・t)・b17[ωm]
・{−cos(θ17[ωm])} ・・・(509)
dB17 / dt = ωp · cos (ωp · t) · b17 [ωp]
・ {Sin (θ17 [ωp])}
+ Ωp · sin (ωp · t) · b17 [ωp]
・ {-Cos (θ17 [ωp])}
+ Ωm · cos (ωm · t) · b17 [ωm]
・ {Sin (θ17 [ωm])}
+ Ωm · sin (ωm · t) · b17 [ωm]
{-Cos (θ17 [ωm])} (509)

被測定流体の流量が0の場合、電極軸EAX1と測定管軸PAXとを含む平面内において、磁場Bdの変化によって発生する、流速と無関係な第1の電極間起電力E1と、電極軸EAX2と測定管軸PAXとを含む平面内において、磁場Bdの変化によって発生する、流速と無関係な第2の電極間起電力E2は、図14に示すように互いに逆向きとなる。このとき、第1の電極間起電力E1と第2の電極間起電力E2は、次式に示すように、起電力の向きを加えた磁場の時間微分(−dB16/dt、dB17/dt)にωp,ωmそれぞれの角周波数成分における比例係数rkをかけ、位相差θ16,θ17をそれぞれθ16+θ00,θ17+θ00で置き換えたものとなる(rk、θ00は、被測定流体の導電率及び誘電率と電極2a,2b,2c,2dの配置を含む測定管1の構造に関係する)。   When the flow rate of the fluid to be measured is 0, the first inter-electrode electromotive force E1 that is generated by the change of the magnetic field Bd and is independent of the flow velocity and the electrode axis EAX2 in the plane including the electrode axis EAX1 and the measurement tube axis PAX. In the plane including the measurement tube axis PAX, the second inter-electrode electromotive force E2 generated by the change of the magnetic field Bd is irrelevant to each other as shown in FIG. At this time, the first inter-electrode electromotive force E1 and the second inter-electrode electromotive force E2 are time differentials (−dB16 / dt, dB17 / dt) of the magnetic field added with the direction of the electromotive force, as shown in the following equation. Is multiplied by a proportional coefficient rk in the angular frequency components of ωp and ωm, and the phase differences θ16 and θ17 are replaced with θ16 + θ00 and θ17 + θ00, respectively (rk and θ00 are the conductivity and dielectric constant of the fluid to be measured and the electrode 2a. , 2b, 2c, 2d, related to the structure of the measuring tube 1).

E1=rk・ωp・cos(ωp・t)・b16[ωp]
・{−sin(θ16[ωp]+θ00)}
+rk・ωp・sin(ωp・t)・b16[ωp]
・{cos(θ16[ωp]+θ00)}
+rk・ωm・cos(ωm・t)・b16[ωm]
・{−sin(θ16[ωm]+θ00)}
+rk・ωm・sin(ωm・t)・b16[ωm]
・{cos(θ16[ωm]+θ00)} ・・・(510)
E1 = rk · ωp · cos (ωp · t) · b16 [ωp]
・ {-Sin (θ16 [ωp] + θ00)}
+ Rk · ωp · sin (ωp · t) · b16 [ωp]
・ {Cos (θ16 [ωp] + θ00)}
+ Rk · ωm · cos (ωm · t) · b16 [ωm]
・ {-Sin (θ16 [ωm] + θ00)}
+ Rk · ωm · sin (ωm · t) · b16 [ωm]
{Cos (θ16 [ωm] + θ00)} (510)

E2=rk・ωp・cos(ωp・t)・b17[ωp]
・{sin(θ17[ωp]+θ00)}
+rk・ωp・sin(ωp・t)・b17[ωp]
・{−cos(θ17[ωp]+θ00)}
+rk・ωm・cos(ωp・t)・b17[ωm]
・{sin(θ17[ωm]+θ00)}
+rk・ωm・sin(ωm・t)・b17[ωm]
・{−cos(θ17[ωm]+θ00)} ・・・(511)
E2 = rk · ωp · cos (ωp · t) · b17 [ωp]
・ {Sin (θ17 [ωp] + θ00)}
+ Rk · ωp · sin (ωp · t) · b17 [ωp]
・ {-Cos (θ17 [ωp] + θ00)}
+ Rk · ωm · cos (ωp · t) · b17 [ωm]
・ {Sin (θ17 [ωm] + θ00)}
+ Rk · ωm · sin (ωm · t) · b17 [ωm]
{-Cos (θ17 [ωm] + θ00)} (511)

被測定流体の流速の大きさがV(V≠0)の場合、流速ベクトルvと磁場Bdによって発生する第1の電極間起電力Ev1、流速ベクトルvと磁場Bdによって発生する第2の電極間起電力Ev2は、図15に示すように同じ向きとなる。このとき、第1の電極間起電力Ev1と第2の電極間起電力Ev2は、次式に示すように、起電力の向きを加えた磁場(B16、B17)にω0,ω2それぞれの周波数成分における比例係数rkvをかけ、位相差θ16,θ17をそれぞれθ16+θ01,θ17+θ01で置き換えたものとなる(rkv、θ01は、流速の大きさVと被測定流体の導電率及び誘電率と電極2a,2b,2c,2dの配置を含む測定管1の構造に関係する)。   When the magnitude of the flow velocity of the fluid to be measured is V (V ≠ 0), the first inter-electrode electromotive force Ev1 generated by the flow velocity vector v and the magnetic field Bd, and the second electrode generated by the flow velocity vector v and the magnetic field Bd. The electromotive force Ev2 has the same direction as shown in FIG. At this time, the first inter-electrode electromotive force Ev1 and the second inter-electrode electromotive force Ev2 are respectively frequency components of ω0 and ω2 to the magnetic field (B16, B17) obtained by adding the direction of the electromotive force, as shown in the following equation. The phase differences θ16 and θ17 are respectively replaced by θ16 + θ01 and θ17 + θ01 (rkv and θ01 are the flow velocity magnitude V, the conductivity and dielectric constant of the fluid to be measured, and the electrodes 2a, 2b, (Related to the structure of the measuring tube 1 including the arrangement of 2c, 2d).

Ev1=rkv・cos(ωp・t)・b16[ωp]
・cos(θ16[ωp]+θ01)
+rkv・sin(ωp・t)・b16[ωp]
・sin(θ16[ωp]+θ01)
+rkv・cos(ωm・t)・b16[ωm]
・cos(θ16[ωm]+θ01)
+rkv・sin(ωm・t)・b16[ωm]
・sin(θ16[ωm]+θ01) ・・・(512)
Ev1 = rkv · cos (ωp · t) · b16 [ωp]
・ Cos (θ16 [ωp] + θ01)
+ Rkv · sin (ωp · t) · b16 [ωp]
・ Sin (θ16 [ωp] + θ01)
+ Rkv · cos (ωm · t) · b16 [ωm]
・ Cos (θ16 [ωm] + θ01)
+ Rkv · sin (ωm · t) · b16 [ωm]
Sin (θ16 [ωm] + θ01) (512)

Ev2=rkv・cos(ωp・t)・b17[ωp]
・cos(θ17[ωp]+θ01)
+rkv・sin(ωp・t)・b17[ωp]
・sin(θ17[ωp]+θ01)
+rkv・cos(ωm・t)・b17[ωm]
・cos(θ17[ωm]+θ01)
+rkv・sin(ωm・t)・b17[ωm]
・sin(θ17[ωm]+θ01) ・・・(513)
Ev2 = rkv · cos (ωp · t) · b17 [ωp]
・ Cos (θ17 [ωp] + θ01)
+ Rkv · sin (ωp · t) · b17 [ωp]
・ Sin (θ17 [ωp] + θ01)
+ Rkv · cos (ωm · t) · b17 [ωm]
・ Cos (θ17 [ωm] + θ01)
+ Rkv · sin (ωm · t) · b17 [ωm]
Sin (θ17 [ωm] + θ01) (513)

図14、図15で説明した電極間起電力の向きを考慮すると、磁場の時間変化に起因する電極間起電力を複素ベクトルに変換した起電力と被測定流体の流速に起因する電極間起電力を複素ベクトルに変換した起電力とを合わせた、電極2a,2b間の第1の電極間起電力のうち角周波数ωpの成分の起電力EX1pcは、式(510)の第1項および第2項と式(512)の第1項および第2項と式(17)とから次式で表される。
EX1pc=rk・ωp・b16[ωp]
・exp{j・(π/2+θ16[ωp]+θ00)}
+γ・rk・V・b16[ωp]・exp{j・(θ16[ωp]+θ01)}
・・・(514)
In consideration of the direction of the electromotive force between the electrodes described in FIGS. 14 and 15, the electromotive force obtained by converting the interelectrode electromotive force due to the time change of the magnetic field into a complex vector and the interelectrode electromotive force due to the flow velocity of the fluid to be measured. The electromotive force EX1pc of the component of the angular frequency ωp of the first interelectrode electromotive force between the electrodes 2a and 2b, which is combined with the electromotive force obtained by converting the signal into a complex vector, is expressed by the first term and the second term of the equation (510). From the term, the first term and the second term of equation (512), and equation (17),
EX1pc = rk · ωp · b16 [ωp]
Exp {j. (Π / 2 + θ16 [ωp] + θ00)}
+ Γ · rk · V · b16 [ωp] · exp {j · (θ16 [ωp] + θ01)}
... (514)

磁場の時間変化に起因する電極間起電力を複素ベクトルに変換した起電力と被測定流体の流速に起因する電極間起電力を複素ベクトルに変換した起電力とを合わせた、電極2a,2b間の第1の電極間起電力のうち角周波数ωmの成分の起電力EX1mcは、式(510)の第3項および第4項と式(512)の第3項および第4項と式(17)とから次式で表される。
EX1mc=rk・ωm・b16[ωm]
・exp{j・(π/2+θ16[ωm]+θ00)}
+γ・rk・V・b16[ωm]・exp{j・(θ16[ωm]+θ01)}
・・・(515)
Between the electrodes 2a and 2b, which is a combination of the electromotive force obtained by converting the electromotive force between the electrodes due to the time change of the magnetic field into a complex vector and the electromotive force obtained by converting the electromotive force between the electrodes caused by the flow velocity of the fluid to be measured into the complex vector The electromotive force EX1mc of the component of the angular frequency ωm of the first inter-electrode electromotive force of the first term is expressed by the third term, the fourth term, and the third term, the fourth term, and the formula (17) of the formula (512). ) And the following formula.
EX1mc = rk · ωm · b16 [ωm]
• exp {j · (π / 2 + θ16 [ωm] + θ00)}
+ Γ · rk · V · b16 [ωm] · exp {j · (θ16 [ωm] + θ01)}
... (515)

磁場の時間変化に起因する電極間起電力を複素ベクトルに変換した起電力と被測定流体の流速に起因する電極間起電力を複素ベクトルに変換した起電力とを合わせた、電極2c,2d間の第2の電極間起電力のうち角周波数ωpの成分の起電力EX2pcは、式(511)の第1項および第2項と式(513)の第1項および第2項と式(17)とから次式で表される。
EX2pc=rk・(ωp)・b17[ωp]
・exp{j・(−π/2+θ17[ωp]+θ00)}
+γ・rk・V・b17[ωp]・exp{j・(θ17[ωp]+θ01)}
・・・(516)
Between the electrodes 2c and 2d, which is a combination of the electromotive force obtained by converting the electromotive force between the electrodes due to the time change of the magnetic field into a complex vector and the electromotive force obtained by converting the electromotive force between the electrodes caused by the flow velocity of the fluid to be measured into the complex vector The electromotive force EX2pc of the component of the angular frequency ωp of the second inter-electrode electromotive force is expressed by the first term, the second term of the equation (511), the first term, the second term of the equation (513), and the equation (17). ) And the following formula.
EX2pc = rk · (ωp) · b17 [ωp]
Exp {j · (−π / 2 + θ17 [ωp] + θ00)}
+ Γ · rk · V · b17 [ωp] · exp {j · (θ17 [ωp] + θ01)}
... (516)

磁場の時間変化に起因する電極間起電力を複素ベクトルに変換した起電力と被測定流体の流速に起因する電極間起電力を複素ベクトルに変換した起電力とを合わせた、電極2c,2d間の第2の電極間起電力のうち角周波数ωmの成分の起電力EX2mcは、式(511)の第3項および第4項と式(513)の第3項および第4項と式(17)とから次式で表される。
EX2mc=rk・(ωm)・b17[ωm]
・exp{j・(−π/2+θ17[ωm]+θ00)}
+γ・rk・V・b17[ωm]・exp{j・(θ17[ωm]+θ01)}
・・・(517)
Between the electrodes 2c and 2d, which is a combination of the electromotive force obtained by converting the electromotive force between the electrodes due to the time change of the magnetic field into a complex vector and the electromotive force obtained by converting the electromotive force between the electrodes caused by the flow velocity of the fluid to be measured into the complex vector The electromotive force EX2mc of the component of the angular frequency ωm in the second inter-electrode electromotive force of the second term is expressed by the third term, the fourth term, and the third term, the fourth term, and the formula (17) of the formula (513). ) And the following formula.
EX2mc = rk · (ωm) · b17 [ωm]
Exp {j · (−π / 2 + θ17 [ωm] + θ00)}
+ Γ · rk · V · b17 [ωm] · exp {j · (θ17 [ωm] + θ01)}
... (517)

ここで、ωp=ω0+Δω、ωm=ω0−Δωと定義し、さらに磁場B16の角周波数ω0の成分の位相遅れθ16[ω0]と磁場B17の角周波数ω0の成分の位相遅れθ17[ω0]との関係をθ17[ω0]=θ16[ω0]+Δθ17[ω0]とし、かつ虚軸に対する∂A/∂t成分の角度θ00と実軸に対するv×B成分の角度θ01との関係をθ01=θ00+Δθ01とする。式(514)にωp=ω0+Δω、θ01=θ00+Δθ01を代入したときの第1の電極間起電力の角周波数ωpの成分EX1pcと、式(516)にωp=ω0+Δω、θ01=θ00+Δθ01を代入したときの第2の電極間起電力の角周波数ωpの成分EX2pcとの和をEXsp0とすれば、起電力和EXsp0は次式で表される。   Here, ωp = ω0 + Δω and ωm = ω0−Δω are defined, and further, the phase delay θ16 [ω0] of the component of the angular frequency ω0 of the magnetic field B16 and the phase delay θ17 [ω0] of the component of the angular frequency ω0 of the magnetic field B17. The relationship is θ17 [ω0] = θ16 [ω0] + Δθ17 [ω0], and the relationship between the angle θ00 of the ∂A / ∂t component with respect to the imaginary axis and the angle θ01 of the v × B component with respect to the real axis is θ01 = θ00 + Δθ01. . The component EX1pc of the angular frequency ωp of the first inter-electrode electromotive force when ωp = ω0 + Δω and θ01 = θ00 + Δθ01 are substituted into the equation (514), and when ωp = ω0 + Δω and θ01 = θ00 + Δθ01 are substituted into the equation (516). If the sum of the second electrode electromotive force and the component EX2pc of the angular frequency ωp is EXsp0, the electromotive force sum EXsp0 is expressed by the following equation.

EXsp0=rk・exp(j・θ00))
・[(ω0+Δω)・exp(j・π/2)
・{b16[ω0+Δω]・exp(j・θ16[ω0+Δω])
−b17[ω0+Δω]・exp(j・θ17[ω0+Δω])}
+γ・V・exp(j・Δθ01)
・{b16[ω0+Δω]・exp(j・θ16[ω0+Δω])
+b17[ω0+Δω]・exp(j・θ17[ω0+Δω])}]
・・・(518)
EXsp0 = rk · exp (j · θ00))
・ [(Ω0 + Δω) · exp (j · π / 2)
・ {B16 [ω0 + Δω] · exp (j · θ16 [ω0 + Δω])
-B17 [ω0 + Δω] · exp (j · θ17 [ω0 + Δω])}
+ Γ · V · exp (j · Δθ01)
・ {B16 [ω0 + Δω] · exp (j · θ16 [ω0 + Δω])
+ B17 [ω0 + Δω] · exp (j · θ17 [ω0 + Δω])}]
... (518)

また、式(515)にωm=ω0−Δω、θ01=θ00+Δθ01を代入したときの第1の電極間起電力の角周波数ωmの成分EX1mcと、式(517)にωm=ω0−Δω、θ01=θ00+Δθ01を代入したときの第2の電極間起電力の角周波数ωmの成分EX2mcとの和をEXsm0とすれば、起電力和EXsm0は次式で表される。
EXsm0=rk・exp(j・θ00)
・[(ω0−Δω)・exp(j・π/2)
・{b16[ω0−Δω]・exp(j・θ16[ω0−Δω])
−b17[ω0−Δω]・exp(j・θ17[ω0−Δω])}
+γ・V・exp(j・Δθ01)
・{b16[ω0−Δω]・exp(j・θ16[ω0−Δω])
+b17[ω0−Δω]・exp(j・θ17[ω0−Δω])}]
・・・(519)
Further, the component EX1mc of the angular frequency ωm of the first inter-electrode electromotive force when ωm = ω0−Δω and θ01 = θ00 + Δθ01 are substituted into the equation (515), and ωm = ω0−Δω, θ01 = in the equation (517). If the sum of the angular frequency ωm of the second inter-electrode electromotive force and the component EX2mc when substituting θ00 + Δθ01 is EXsm0, the electromotive force sum EXsm0 is expressed by the following equation.
EXsm0 = rk · exp (j · θ00)
・ [(Ω0−Δω) exp (j · π / 2)
{B16 [ω0-Δω] exp (j · θ16 [ω0-Δω])
−b17 [ω0−Δω] · exp (j · θ17 [ω0−Δω])}
+ Γ · V · exp (j · Δθ01)
{B16 [ω0-Δω] exp (j · θ16 [ω0-Δω])
+ B17 [ω0−Δω] · exp (j · θ17 [ω0−Δω])}]
... (519)

また、式(514)にωp=ω0+Δω、θ01=θ00+Δθ01を代入したときの第1の電極間起電力の角周波数ωpの成分EX1pcと、式(516)にωp=ω0+Δω、θ01=θ00+Δθ01を代入したときの第2の電極間起電力の角周波数ωpの成分EX2pcとの差をEXdp0とすれば、起電力差EXdp0は次式で表される。
EXdp0=rk・exp(j・θ00))
・[(ω0+Δω)・exp(j・π/2)
・{b16[ω0+Δω]・exp(j・θ16[ω0+Δω])
+b17[ω0+Δω]・exp(j・θ17[ω0+Δω])}
+γ・V・exp(j・Δθ01)
・{b16[ω0+Δω]・exp(j・θ16[ω0+Δω])
−b17[ω0+Δω]・exp(j・θ17[ω0+Δω])}]
・・・(520)
Also, the component EX1pc of the angular frequency ωp of the first inter-electrode electromotive force when ωp = ω0 + Δω and θ01 = θ00 + Δθ01 are substituted into the equation (514), and ωp = ω0 + Δω, θ01 = θ00 + Δθ01 are substituted into the equation (516). If the difference between the second electrode electromotive force and the component EX2pc of the angular frequency ωp is EXdp0, the electromotive force difference EXdp0 is expressed by the following equation.
EXdp0 = rk · exp (j · θ00))
・ [(Ω0 + Δω) · exp (j · π / 2)
・ {B16 [ω0 + Δω] · exp (j · θ16 [ω0 + Δω])
+ B17 [ω0 + Δω] · exp (j · θ17 [ω0 + Δω])}
+ Γ · V · exp (j · Δθ01)
・ {B16 [ω0 + Δω] · exp (j · θ16 [ω0 + Δω])
-B17 [ω0 + Δω] · exp (j · θ17 [ω0 + Δω])}]
... (520)

また、式(515)にωm=ω0−Δω、θ01=θ00+Δθ01を代入したときの第1の電極間起電力の角周波数ωmの成分EX1mcと、式(517)にωm=ω0−Δω、θ01=θ00+Δθ01を代入したときの第2の電極間起電力の角周波数ωmの成分EX2mcとの差をEXdm0とすれば、起電力差EXdm0は次式で表される。但し、式(518)〜式(521)ではθ17[ω0]=θ16[ω0]+Δθ17[ω0]は適用せず、後の式で適用する。
EXdm0=rk・exp(j・θ00)
・[(ω0−Δω)・exp(j・π/2)
・{b16[ω0−Δω]・exp(j・θ16[ω0−Δω])
+b17[ω0−Δω]・exp(j・θ17[ω0−Δω])}
+γ・V・exp(j・Δθ01)
・{b16[ω0−Δω]・exp(j・θ16[ω0−Δω])
−b17[ω0−Δω]・exp(j・θ17[ω0−Δω])}]
・・・(521)
Further, the component EX1mc of the angular frequency ωm of the first inter-electrode electromotive force when ωm = ω0−Δω and θ01 = θ00 + Δθ01 are substituted into the equation (515), and ωm = ω0−Δω, θ01 = in the equation (517). If the difference from the component EX2mc of the angular frequency ωm of the second electrode electromotive force when θ00 + Δθ01 is substituted is EXdm0, the electromotive force difference EXdm0 is expressed by the following equation. However, in the equations (518) to (521), θ17 [ω0] = θ16 [ω0] + Δθ17 [ω0] is not applied, and is applied in the later equation.
EXdm0 = rk · exp (j · θ00)
・ [(Ω0−Δω) exp (j · π / 2)
{B16 [ω0-Δω] exp (j · θ16 [ω0-Δω])
+ B17 [ω0−Δω] · exp (j · θ17 [ω0−Δω])}
+ Γ · V · exp (j · Δθ01)
{B16 [ω0-Δω] exp (j · θ16 [ω0-Δω])
−b17 [ω0−Δω] · exp (j · θ17 [ω0−Δω])}]
... (521)

起電力和EXsp0とEXsm0との和をEXss0とすれば、起電力和の和EXss0は次式で表される。
EXss0=EXsp0+EXsm0
=rk・exp(j・θ00)
・[ω0・exp(j・π/2)
・{b16[ω0+Δω]・exp(j・θ16[ω0+Δω])
−b17[ω0+Δω]・exp(j・θ17[ω0+Δω])
+b16[ω0−Δω]・exp(j・θ16[ω0−Δω])
−b17[ω0−Δω]・exp(j・θ17[ω0−Δω])}
+Δω・exp(j・π/2)
・{b16[ω0+Δω]・exp(j・θ16[ω0+Δω])
−b17[ω0+Δω]・exp(j・θ17[ω0+Δω])
−b16[ω0−Δω]・exp(j・θ16[ω0−Δω])
+b17[ω0−Δω]・exp(j・θ17[ω0−Δω])}
+γ・V・exp(j・Δθ01)
・{b16[ω0+Δω]・exp(j・θ16[ω0+Δω])
+b17[ω0+Δω]・exp(j・θ17[ω0+Δω])
+b16[ω0−Δω]・exp(j・θ16[ω0−Δω])
+b17[ω0−Δω]・exp(j・θ17[ω0−Δω])}]
・・・(522)
If the sum of the electromotive force sums EXsp0 and EXsm0 is EXss0, the sum of the electromotive force sums EXss0 is expressed by the following equation.
EXss0 = EXsp0 + EXsm0
= Rk · exp (j · θ00)
・ [Ω0 ・ exp (j ・ π / 2)
・ {B16 [ω0 + Δω] · exp (j · θ16 [ω0 + Δω])
-B17 [ω0 + Δω] · exp (j · θ17 [ω0 + Δω])
+ B16 [ω0−Δω] · exp (j · θ16 [ω0−Δω])
−b17 [ω0−Δω] · exp (j · θ17 [ω0−Δω])}
+ Δω · exp (j · π / 2)
・ {B16 [ω0 + Δω] · exp (j · θ16 [ω0 + Δω])
-B17 [ω0 + Δω] · exp (j · θ17 [ω0 + Δω])
−b16 [ω0−Δω] · exp (j · θ16 [ω0−Δω])
+ B17 [ω0−Δω] · exp (j · θ17 [ω0−Δω])}
+ Γ · V · exp (j · Δθ01)
・ {B16 [ω0 + Δω] · exp (j · θ16 [ω0 + Δω])
+ B17 [ω0 + Δω] · exp (j · θ17 [ω0 + Δω])
+ B16 [ω0−Δω] · exp (j · θ16 [ω0−Δω])
+ B17 [ω0−Δω] · exp (j · θ17 [ω0−Δω])}]
... (522)

また、起電力差EXdp0とEXdm0との和をEXds0とすれば、起電力差の和EXds0は次式で表される。
EXds0=EXdp0+EXdm0
=rk・exp(j・θ00)
・[ω0・exp(j・π/2)
・{b16[ω0+Δω]・exp(j・θ16[ω0+Δω])
+b17[ω0+Δω]・exp(j・θ17[ω0+Δω])
+b16[ω0−Δω]・exp(j・θ16[ω0−Δω])
+b17[ω0−Δω]・exp(j・θ17[ω0−Δω])}
+Δω・exp(j・π/2)
・{b16[ω0+Δω]・exp(j・θ16[ω0+Δω])
+b17[ω0+Δω]・exp(j・θ17[ω0+Δω])
−b16[ω0−Δω]・exp(j・θ16[ω0−Δω])
−b17[ω0−Δω]・exp(j・θ17[ω0−Δω])}
+γ・V・exp(j・Δθ01)
・{b16[ω0+Δω]・exp(j・θ16[ω0+Δω])
−b17[ω0+Δω]・exp(j・θ17[ω0+Δω])
+b16[ω0−Δω]・exp(j・θ16[ω0−Δω])
−b17[ω0−Δω]・exp(j・θ17[ω0−Δω])}]
・・・(523)
If the sum of the electromotive force differences EXdp0 and EXdm0 is EXds0, the sum of electromotive force differences EXds0 is expressed by the following equation.
EXds0 = EXdp0 + EXdm0
= Rk · exp (j · θ00)
・ [Ω0 ・ exp (j ・ π / 2)
・ {B16 [ω0 + Δω] · exp (j · θ16 [ω0 + Δω])
+ B17 [ω0 + Δω] · exp (j · θ17 [ω0 + Δω])
+ B16 [ω0−Δω] · exp (j · θ16 [ω0−Δω])
+ B17 [ω0−Δω] · exp (j · θ17 [ω0−Δω])}
+ Δω · exp (j · π / 2)
・ {B16 [ω0 + Δω] · exp (j · θ16 [ω0 + Δω])
+ B17 [ω0 + Δω] · exp (j · θ17 [ω0 + Δω])
−b16 [ω0−Δω] · exp (j · θ16 [ω0−Δω])
−b17 [ω0−Δω] · exp (j · θ17 [ω0−Δω])}
+ Γ · V · exp (j · Δθ01)
・ {B16 [ω0 + Δω] · exp (j · θ16 [ω0 + Δω])
-B17 [ω0 + Δω] · exp (j · θ17 [ω0 + Δω])
+ B16 [ω0−Δω] · exp (j · θ16 [ω0−Δω])
−b17 [ω0−Δω] · exp (j · θ17 [ω0−Δω])}]
... (523)

ここで、通常ω0>Δωが成り立つことから、式(524)〜式(527)の条件式が成り立つ。
2・b16[ω0]・exp(j・θ16[ω0])
≒b16[ω0+Δω]・exp(j・θ16[ω0+Δω])
+b16[ω0−Δω]・exp(j・θ16[ω0−Δω]) ・・・(524)
2・b17[ω0]・exp(j・θ17[ω0])
≒b17[ω0+Δω]・exp(j・θ17[ω0+Δω])
+b17[ω0−Δω]・exp(j・θ17[ω0−Δω]) ・・・(525)
Here, since ω0> Δω is normally satisfied, the conditional expressions of Expressions (524) to (527) are satisfied.
2 · b16 [ω0] · exp (j · θ16 [ω0])
≒ b16 [ω0 + Δω] · exp (j · θ16 [ω0 + Δω])
+ B16 [ω0−Δω] · exp (j · θ16 [ω0−Δω]) (524)
2 · b17 [ω0] · exp (j · θ17 [ω0])
≒ b17 [ω0 + Δω] · exp (j · θ17 [ω0 + Δω])
+ B17 [ω0−Δω] · exp (j · θ17 [ω0−Δω]) (525)

|ω0・exp(j・π/2)
・{2・b16[ω0]・exp(j・θ16[ω0])}|
≫|±Δω・exp(j・π/2)
・{b16[ω0+Δω]・exp(j・θ16[ω0+Δω])
−b16[ω0−Δω]・exp(j・θ16[ω0−Δω])}|
・・・(526)
|ω0・exp(j・π/2)
・{2・b17[ω0]・exp(j・θ17[ω0])}|
≫|±Δω・exp(j・π/2)
・{b17[ω0+Δω]・exp(j・θ17[ω0+Δω])
−b17[ω0−Δω]・exp(j・θ17[ω0−Δω])}|
・・・(527)
| Ω0 · exp (j · π / 2)
{2 · b16 [ω0] · exp (j · θ16 [ω0])} |
>> | ± Δω · exp (j · π / 2)
・ {B16 [ω0 + Δω] · exp (j · θ16 [ω0 + Δω])
−b16 [ω0−Δω] · exp (j · θ16 [ω0−Δω])} |
... (526)
| Ω0 · exp (j · π / 2)
{2 · b17 [ω0] · exp (j · θ17 [ω0])} |
>> | ± Δω · exp (j · π / 2)
{B17 [ω0 + Δω] exp (j · θ17 [ω0 + Δω])
−b17 [ω0−Δω] · exp (j · θ17 [ω0−Δω])} |
... (527)

式(524)〜式(527)の条件を式(522)に適用して和EXss0を近似したものをEXss0aとおくと、起電力和の和EXss0aは次式で表される。
EXss0a≒EXss0 ・・・(528)
EXss0a=rk・exp(j・θ00)
・[ω0・exp(j・π/2)
・{2・b16[ω0]・exp(j・θ16[ω0])
−2・b17[ω0]・exp(j・θ17[ω0])}
+γ・V・exp(j・Δθ01)
・{2・b16[ω0]・exp(j・θ16[ω0])
+2・b17[ω0]・exp(j・θ17[ω0])}
・・・(529)
When the condition of equations (524) to (527) is applied to equation (522) and the sum EXss0 is approximated as EXss0a, the sum of electromotive forces EXss0a is expressed by the following equation.
EXss0a≈EXss0 (528)
EXss0a = rk · exp (j · θ00)
・ [Ω0 ・ exp (j ・ π / 2)
・ {2 ・ b16 [ω0] ・ exp (j ・ θ16 [ω0])
-2 · b17 [ω0] · exp (j · θ17 [ω0])}
+ Γ · V · exp (j · Δθ01)
・ {2 ・ b16 [ω0] ・ exp (j ・ θ16 [ω0])
+ 2 · b17 [ω0] · exp (j · θ17 [ω0])}
... (529)

また、式(524)〜式(527)の条件を式(523)に適用して和EXds0を近似したものをEXds0aとおくと、起電力差の和EXds0aは次式で表される。
EXds0a≒EXds0 ・・・(530)
EXds0a=rk・exp(j・θ00)
・[ω0・exp(j・π/2)
・{2・b16[ω0]・exp(j・θ16[ω0])
+2・b17[ω0]・exp(j・θ17[ω0])}
+γ・V・exp(j・Δθ01)
・{2・b16[ω0]・exp(j・θ16[ω0])
−2・b17[ω0]・exp(j・θ17[ω0])}]
・・・(531)
Further, when EXds0a is obtained by applying the conditions of Expressions (524) to (527) to Expression (523) and approximating the sum EXds0, the sum of electromotive force differences EXds0a is expressed by the following expression.
EXds0a≈EXds0 (530)
EXds0a = rk · exp (j · θ00)
・ [Ω0 ・ exp (j ・ π / 2)
・ {2 ・ b16 [ω0] ・ exp (j ・ θ16 [ω0])
+ 2 · b17 [ω0] · exp (j · θ17 [ω0])}
+ Γ · V · exp (j · Δθ01)
・ {2 ・ b16 [ω0] ・ exp (j ・ θ16 [ω0])
-2 · b17 [ω0] · exp (j · θ17 [ω0])}]
... (531)

θ17[ω0]=θ16[ω0]+Δθ17[ω0]を起電力和の和EXss0aに代入したものをEXss0bとすれば、起電力和の和EXss0bは次式で表される。
EXss0b=2・rk・exp{j・(θ16[ω0]+θ00)}
・[ω0・exp(j・π/2)
・{b16[ω0]−b17[ω0]・exp(j・Δθ17[ω0])}
+γ・V・exp(j・Δθ01)
・{b16[ω0]+b17[ω0]・exp(j・Δθ17[ω0])}]
・・・(532)
When EXss0b is obtained by substituting θ17 [ω0] = θ16 [ω0] + Δθ17 [ω0] into the sum of electromotive forces EXss0a, the sum of electromotive force EXss0b is expressed by the following equation.
EXss0b = 2 · rk · exp {j · (θ16 [ω0] + θ00)}
・ [Ω0 ・ exp (j ・ π / 2)
{B16 [ω0] −b17 [ω0] · exp (j · Δθ17 [ω0])}
+ Γ · V · exp (j · Δθ01)
{B16 [ω0] + b17 [ω0] · exp (j · Δθ17 [ω0])}]
... (532)

また、θ17[ω0]=θ16[ω0]+Δθ17[ω0]を起電力差の和EXds0aに代入したものをEXds0bとすれば、起電力差の和EXds0bは次式で表される。
EXds0b=2・rk・exp{j・(θ16[ω0]+θ00)}
・[ω0・exp(j・π/2)
・{b16[ω0]+b17[ω0]・exp(j・Δθ17[ω0])}
+γ・V・exp(j・Δθ01)
・{b16[ω0]−b17[ω0]・exp(j・Δθ17[ω0])}]
・・・(533)
Further, if EXds0b is obtained by substituting θ17 [ω0] = θ16 [ω0] + Δθ17 [ω0] into the sum of electromotive forces EXds0a, the sum of electromotive force differences EXds0b is expressed by the following equation.
EXds0b = 2 · rk · exp {j · (θ16 [ω0] + θ00)}
・ [Ω0 ・ exp (j ・ π / 2)
{B16 [ω0] + b17 [ω0] · exp (j · Δθ17 [ω0])}
+ Γ · V · exp (j · Δθ01)
{B16 [ω0] −b17 [ω0] · exp (j · Δθ17 [ω0])}]
... (533)

ここで、初期状態(校正時の状態)において、励磁コイル3から発生する磁場B16とB17とを等しく設定しておくと、その後の磁場B16とB17の初期状態からの差は小さくなり、次式の条件が成り立つ。
|b16[ω0]+b17[ω0]・exp(j・Δθ17[ω0])|
≫|b16[ω0] −b17[ω0]・exp(j・Δθ17[ω0])|
・・・(534)
Here, if the magnetic fields B16 and B17 generated from the exciting coil 3 are set equal in the initial state (the state at the time of calibration), the difference from the initial state of the subsequent magnetic fields B16 and B17 becomes small. The following conditions hold.
| B16 [ω0] + b17 [ω0] · exp (j · Δθ17 [ω0]) |
»| B16 [ω0] −b17 [ω0] · exp (j · Δθ17 [ω0]) |
... (534)

また、通常ω0>γ・Vが成り立つことから、式(534)の条件を考慮すると、式(533)において次式の条件が成り立つ。
|ω0・exp(j・π/2)
・{b16[ω0]+b17[ω0]・exp(j・Δθ17[ω0])}|
≫|γ・V・exp(j・Δθ01)・b16[ω0]
−b17[ω0]・exp(j・Δθ17[ω0])| ・・・(535)
In general, since ω0> γ · V is satisfied, when the condition of the equation (534) is considered, the following equation is satisfied in the equation (533).
| Ω0 · exp (j · π / 2)
{B16 [ω0] + b17 [ω0] · exp (j · Δθ17 [ω0])} |
»| Γ · V · exp (j · Δθ01) · b16 [ω0]
-B17 [ω0] · exp (j · Δθ17 [ω0]) | (535)

式(535)の条件を用いて、式(533)の起電力差の和EXds0bを近似したものをEdAX1とすれば、起電力差の和EdAX1は次式で表される。この起電力差の和EdAX1は基本原理における第1の∂A/∂t成分に相当する。
EdAX1≒EXds0b≒EXds0 ・・・(536)
EdAX1=2・rk・exp{j・(θ16[ω0]+θ00)}
・ω0・exp(j・π/2)
・{b16[ω0]+b17[ω0]・exp(j・Δθ17[ω0])}
・・・(537)
Assuming that EdAX1 is an approximation of the sum EXds0b of the electromotive force difference of the equation (533) using the condition of the equation (535), the sum of electromotive force differences EdAX1 is expressed by the following equation. This sum of electromotive force differences EdAX1 corresponds to the first ∂A / ∂t component in the basic principle.
EdAX1≈EXds0b≈EXds0 (536)
EdAX1 = 2 · rk · exp {j · (θ16 [ω0] + θ00)}
・ Ω0 ・ exp (j ・ π / 2)
{B16 [ω0] + b17 [ω0] · exp (j · Δθ17 [ω0])}
... (537)

起電力差の和EdAX1は、流速の大きさVに関係しないので、∂A/∂tによって発生する成分のみとなる。この和EdAX1を用いて起電力和の和EXss0b(合成ベクトルVas0+Vbs0)中のv×B成分の流速の大きさVにかかる係数(スパン)を正規化する。起電力和の和EXss0bを起電力差の和EdAX1で正規化し、ω0倍した結果をEnX0とすれば、正規化起電力和EnX0は次式で表される。
EnX0=(EXss0b/EdAX1)・ω0
=2・rk・exp{j・(θ16[ω0]+θ00)}
・[ ω0・exp(j・π/2)
・{b16[ω0]−b17[ω0]・exp(j・Δθ17[ω0])}
+γ・V・exp(j・Δθ01)
・{b16[ω0]+b17[ω0]・exp(j・Δθ17[ω0])}]
/[2・rk・exp{j・(θ16[ω0]+θ00)}
・ω0・exp(j・π/2)
・{b16[ω0]+b17[ω0]・exp(j・Δθ17[ω0])}]・ω0
=ω0・{b16[ω0]−b17[ω0]・exp(j・Δθ17[ω0])}
/{b16[ω0]+b17[ω0]・exp(j・Δθ17[ω0])}
+[γ・exp{j・(−π/2+Δθ01)}]・V ・・・(538)
Since the sum of the electromotive force differences EdAX1 is not related to the magnitude V of the flow velocity, it becomes only the component generated by ∂A / な る t. Using this sum EdAX1, the coefficient (span) applied to the magnitude V of the flow velocity of the v × B component in the sum of electromotive forces EXss0b (combined vector Vas0 + Vbs0) is normalized. If the sum of electromotive forces EXss0b is normalized by the sum of electromotive force differences EdAX1 and multiplied by ω0 is EnX0, the normalized electromotive force sum EnX0 is expressed by the following equation.
EnX0 = (EXss0b / EdAX1) · ω0
= 2 · rk · exp {j · (θ16 [ω0] + θ00)}
・ [Ω0 ・ exp (j ・ π / 2)
{B16 [ω0] −b17 [ω0] · exp (j · Δθ17 [ω0])}
+ Γ · V · exp (j · Δθ01)
{B16 [ω0] + b17 [ω0] · exp (j · Δθ17 [ω0])}]
/ [2 · rk · exp {j · (θ16 [ω0] + θ00)}
・ Ω0 ・ exp (j ・ π / 2)
{B16 [ω0] + b17 [ω0] · exp (j · Δθ17 [ω0])}] · ω0
= Ω0 · {b16 [ω0] −b17 [ω0] · exp (j · Δθ17 [ω0])}
/ {B16 [ω0] + b17 [ω0] · exp (j · Δθ17 [ω0])}
+ [Γ · exp {j · (−π / 2 + Δθ01)}] · V (538)

式(52)を用いると、式(538)の右辺第1項の角周波数ω0にかかる係数{b16[ω0]−b17[ω0]・exp(j・Δθ17[ω0])}/{b16[ω0]+b17[ω0]・exp(j・Δθ17[ω0])}を、角周波数ω0に関係しない値{b16−b17・exp(j・Δθ17)}/{b16+b17・exp(j・Δθ17)}で表すことができる。したがって、式(538)を次式のように置き換えることができる。
EnX0=ω0・{b16−b17・exp(j・Δθ17)}
/{b16+b17・exp(j・Δθ17)}
+[γ・exp{j・(−π/2+Δθ01)}]・V ・・・(539)
Using equation (52), the coefficient {b16 [ω0] −b17 [ω0] · exp (j · Δθ17 [ω0])} / {b16 [ω0] applied to the angular frequency ω0 of the first term on the right side of equation (538). ] + B17 [ω0] · exp (j · Δθ17 [ω0])} is represented by a value {b16−b17 · exp (j · Δθ17)} / {b16 + b17 · exp (j · Δθ17)} not related to the angular frequency ω0. be able to. Therefore, equation (538) can be replaced as:
EnX0 = ω0 · {b16−b17 · exp (j · Δθ17)}
/ {B16 + b17 · exp (j · Δθ17)}
+ [Γ · exp {j · (−π / 2 + Δθ01)}] · V (539)

式(539)の右辺第2項が、v×Bにより発生する成分を正規化した項となる。なお、起電力和の和EXss0bを起電力差の和EdAX1で正規化した結果をω0倍した理由は、流速の大きさVに係る右辺第2項から励磁角周波数ω0を消去するためである。流速の大きさVにかかる複素係数は、γの大きさ、−π/2+Δθ01の実軸からの角度をもつ。係数γおよび角度Δθ01は校正等により予め求めることができる定数であり、式(539)の右辺第2項は被測定流体の流速が変化しないかぎり一定となる。したがって、∂A/∂tの成分をもちいてv×B成分の正規化を行うことにより、磁場のシフトや位相変化による誤差を自動的に補正するスパン補正を実現することができる。   The second term on the right side of Equation (539) is a term obtained by normalizing the component generated by v × B. The reason why the result of normalizing the sum of electromotive forces EXss0b with the sum of electromotive force differences EdAX1 is multiplied by ω0 is to eliminate the excitation angular frequency ω0 from the second term on the right side of the magnitude V of the flow velocity. The complex coefficient related to the magnitude V of the flow velocity has an angle from the real axis of the magnitude of γ, −π / 2 + Δθ01. The coefficient γ and the angle Δθ01 are constants that can be obtained in advance by calibration or the like, and the second term on the right side of the equation (539) is constant as long as the flow velocity of the fluid to be measured does not change. Therefore, by performing the normalization of the v × B component using the component ∂A / ∂t, it is possible to realize span correction that automatically corrects errors due to magnetic field shifts and phase changes.

次に、0点の変動要因である、式(539)の右辺第1項を除去する方法について説明する。式(506)、式(507)において励磁角周波数ωp,ωmの代わりに、ωc,ωdをとると磁場B16、B17は次式で表される。
B16=b16[ωc]・cos(θ16[ωc])・cos(ωc・t)
+b16[ωc]・sin(θ16[ωc])・sin(ωc・t)
+b16[ωd]・cos(θ16[ωd])・cos(ωd・t)
+b16[ωd]・sin(θ16[ωd])・sin(ωd・t)
・・・(540)
B17=b17[ωc]・cos(θ17[ωc])・cos(ωc・t)
+b17[ωc]・sin(θ17[ωc])・sin(ωc・t)
+b17[ωd]・cos(θ17[ωd])・cos(ωd・t)
+b17[ωd]・sin(θ17[ωd])・sin(ωd・t)
・・・(541)
Next, a method for removing the first term on the right side of the equation (539), which is a variation factor of 0 point, will be described. When ωc and ωd are taken instead of the excitation angular frequencies ωp and ωm in the equations (506) and (507), the magnetic fields B16 and B17 are expressed by the following equations.
B16 = b16 [ωc] · cos (θ16 [ωc]) · cos (ωc · t)
+ B16 [ωc] · sin (θ16 [ωc]) · sin (ωc · t)
+ B16 [ωd] · cos (θ16 [ωd]) · cos (ωd · t)
+ B16 [ωd] · sin (θ16 [ωd]) · sin (ωd · t)
... (540)
B17 = b17 [ωc] · cos (θ17 [ωc]) · cos (ωc · t)
+ B17 [ωc] · sin (θ17 [ωc]) · sin (ωc · t)
+ B17 [ωd] · cos (θ17 [ωd]) · cos (ωd · t)
+ B17 [ωd] · sin (θ17 [ωd]) · sin (ωd · t)
... (541)

ここで、角周波数ωc、ωdは、ωc=ω2+Δω、ωd=ω2−Δωの関係になるように設定しておく。角周波数ω0での正規化と同様に角周波数ω2において正規化を行う。角周波数ω2においてスパン補正の対象となる起電力和の和EXss2は、式(518)において角周波数ω0をω2で置き換えた起電力和EXsp2と式(519)において角周波数ω0をω2で置き換えた起電力和EXsm2との和EXsp2+EXsm2で表される。第2の∂A/∂t成分の基となる起電力差の和EXds2は、式(520)において角周波数ω0をω2で置き換えた起電力差EXdp2と式(521)において角周波数ω0をω2で置き換えた起電力差EXdm2との和EXdp2+EXdm2で表される。第2の∂A/∂t成分となる起電力差の和EdAX2は、式(537)において角周波数ω0をω2で置き換えたものとなる。   Here, the angular frequencies ωc and ωd are set to have a relationship of ωc = ω2 + Δω and ωd = ω2−Δω. Normalization is performed at the angular frequency ω2 as in the normalization at the angular frequency ω0. The sum of electromotive forces EXss2 to be subjected to span correction at the angular frequency ω2 is the sum of electromotive forces EXsp2 in which the angular frequency ω0 is replaced with ω2 in Equation (518) and the sum of the electromotive forces EXsp2 in Equation (519) with ω2. It is represented by the sum EXsp2 + EXsm2 with the power sum EXsm2. The sum EXds2 of the electromotive force difference that is the basis of the second ∂A / ∂t component is the electromotive force difference EXdp2 obtained by replacing the angular frequency ω0 with ω2 in the equation (520) and the angular frequency ω0 in the equation (521) with ω2. This is expressed as a sum EXdp2 + EXdm2 with the replaced electromotive force difference EXdm2. The sum EdAX2 of the electromotive force difference as the second ∂A / ∂t component is obtained by replacing the angular frequency ω0 with ω2 in the equation (537).

起電力和の和EXss2を起電力差の和EdAX2で正規化し、ω2倍した結果をEnX2とすれば、正規化起電力和EnX2は式(539)より次式で表される。
EnX2=ω2・{b16−b17・exp(j・Δθ17)}
/{b16+b17・exp(j・Δθ17)}
+[γ・exp{j・(−π/2+Δθ01)}]・V ・・・(542)
When the sum of electromotive forces EXss2 is normalized by the sum of electromotive force differences EdAX2 and multiplied by ω2 is EnX2, the normalized electromotive force sum EnX2 is expressed by the following equation from Equation (539).
EnX2 = ω2 · {b16−b17 · exp (j · Δθ17)}
/ {B16 + b17 · exp (j · Δθ17)}
+ [Γ · exp {j · (−π / 2 + Δθ01)}] · V (542)

正規化起電力和EnX0とEnX2との差をとり、求めた差分をω0/(ω0−ω2)倍した結果をEdAX3とすれば、差分EdAX3は次式で表される。この差分EdAX3は基本原理における第3の∂A/∂t成分に相当する。
EdAX3=(EnX0−EnX2)・ω0/(ω0−ω2)
=[{b16−b17・exp(j・Δθ17)}
/{b16+b17・exp(j・Δθ17)}
・ω0+γ・exp{j・(−π/2+Δθ01)}・V
−{b16−b17・exp(j・Δθ17)}
/{b16+b17・exp(j・Δθ17)}
・ω2−γ・exp{j・(−π/2+Δθ01)}・V]
・ω0/(ω0−ω2)
={b16−b17・exp(j・Δθ17)}
/{b16+b17・exp(j・Δθ17)}・ω0 ・・(543)
Taking the difference between the normalized electromotive force sums EnX0 and EnX2 and multiplying the obtained difference by ω0 / (ω0−ω2) as EdAX3, the difference EdAX3 is expressed by the following equation. This difference EdAX3 corresponds to the third ∂A / ∂t component in the basic principle.
EdAX3 = (EnX0−EnX2) · ω0 / (ω0−ω2)
= [{B16−b17 · exp (j · Δθ17)}
/ {B16 + b17 · exp (j · Δθ17)}
.Omega.0 + .gamma.exp {j. (-. Pi./2+.DELTA..theta.01)}.V
-{B16-b17 · exp (j · Δθ17)}
/ {B16 + b17 · exp (j · Δθ17)}
.Omega.2-.gamma.exp {j. (-. Pi./2+.DELTA..theta.01)}.V]
・ Ω0 / (ω0−ω2)
= {B16-b17 · exp (j · Δθ17)}
/ {B16 + b17 · exp (j · Δθ17)} · ω0 ·· (543)

差分EdAX3は正規化された∂A/∂t成分を表し、式(539)の右辺第1項と等しくなるので、この差分EdAX3を使用すれば、正規化されたv×B成分を正規化起電力和EnX0から取り出すことができる。式(539)の正規化起電力和EnX0から式(543)の差分EdAX3を引いたときに得られるv×B成分をEvBnXとすると、v×B成分EvBnXは次式で表される。
EvBnX=EnX0−EdAX3
={b16−b17・exp(j・Δθ17)}
/{b16+b17・exp(j・Δθ17)}・ω0
+[γ・exp{j・(−π/2+Δθ01)}]・V
−{b16−b17・exp(j・Δθ17)}
/{b16+b17・exp(j・Δθ17)}・ω0
=[γ・exp{j・(−π/2+Δθ01)}]・V ・・・(544)
The difference EdAX3 represents a normalized ∂A / ∂t component and is equal to the first term on the right side of the equation (539). Therefore, if this difference EdAX3 is used, the normalized v × B component is normalized. It can be taken out from the power sum EnX0. When the v × B component obtained by subtracting the difference EdAX3 of the equation (543) from the normalized electromotive force sum EnX0 of the equation (539) is EvBnX, the v × B component EvBnX is expressed by the following equation.
EvBnX = EnX0-EdAX3
= {B16-b17 · exp (j · Δθ17)}
/ {B16 + b17 · exp (j · Δθ17)} · ω0
+ [Γ · exp {j · (−π / 2 + Δθ01)}] · V
-{B16-b17 · exp (j · Δθ17)}
/ {B16 + b17 · exp (j · Δθ17)} · ω0
= [Γ · exp {j · (−π / 2 + Δθ01)}] · V (544)

v×B成分EvBnXは角周波数ωに関係しない。流速の大きさVが0のときv×B成分EvBnXも0となることから分かるように、v×B成分EvBnXより、スパンが補正され、かつ0点が補正された出力を得ることができる。式(544)より、流速の大きさVは次式のように表される。
V=|EvBnX/[γ・exp{j・(−π/2+Δθ01)}]|
=|EvBnX|/γ ・・・(545)
The v × B component EvBnX is not related to the angular frequency ω. As can be seen from the fact that the v × B component EvBnX becomes 0 when the magnitude V of the flow velocity is 0, an output in which the span is corrected and the zero point is corrected can be obtained from the v × B component EvBnX. From the equation (544), the magnitude V of the flow velocity is expressed as the following equation.
V = | EvBnX / [γ · exp {j · (−π / 2 + Δθ01)}] |
= | EvBnX | / γ (545)

なお、基本原理で用いた定数および変数と、本実施の形態の定数および変数との対応関係は以下の表10のとおりである。本実施の形態は、表10から明らかなように、前述の基本原理を具体的に実現する1つの例である。   The correspondence relationship between the constants and variables used in the basic principle and the constants and variables of the present embodiment is as shown in Table 10 below. As is apparent from Table 10, the present embodiment is an example that specifically realizes the basic principle described above.

Figure 2006058175
Figure 2006058175

次に、本実施の形態の電磁流量計の具体的な構成とその動作について説明する。本実施の形態の電磁流量計の構成は第8の実施の形態と同様であるので、図23の符号を用いて説明する。本実施の形態の電磁流量計は、測定管1と、第1の電極2a,2bと、第2の電極2c,2dと、励磁コイル3と、電源部4aと、信号変換部5aと、流量出力部6aとを有する。   Next, a specific configuration and operation of the electromagnetic flow meter of the present embodiment will be described. Since the configuration of the electromagnetic flowmeter of the present embodiment is the same as that of the eighth embodiment, description will be made using the reference numerals in FIG. The electromagnetic flow meter of the present embodiment includes a measurement tube 1, first electrodes 2a and 2b, second electrodes 2c and 2d, an excitation coil 3, a power supply unit 4a, a signal conversion unit 5a, a flow rate. And an output unit 6a.

信号変換部5aは、第1の励磁状態と第2の励磁状態の各々において第1の電極2a,2bで検出される第1の合成起電力と第2の電極2c,2dで検出される第2の合成起電力の振幅と位相を求め、これらの振幅と位相に基づいて第1の合成起電力と第2の合成起電力の同一周波数成分の起電力和および同一周波数成分の起電力差を、第1の励磁状態の角周波数ω0±Δωと第2の励磁状態の角周波数ω2±Δωの各々について求め、第1の励磁状態の角周波数ω0+Δωの起電力差と角周波数ω0−Δωの起電力差との和を第1の∂A/∂t成分として抽出すると共に、第2の励磁状態の角周波数ω2+Δωの起電力差と角周波数ω2−Δωの起電力差との和を第2の∂A/∂t成分として抽出し、第1の励磁状態の角周波数ω0+Δωの起電力和と角周波数ω0−Δωの起電力和との和を第1の補正対象起電力として、第1の∂A/∂t成分に基づいて第1の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去すると共に、第2の励磁状態の角周波数ω2+Δωの起電力和と角周波数ω2−Δωの起電力和との和を第2の補正対象起電力として、第2の∂A/∂t成分に基づいて第2の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去するスパン補正部51aと、スパン補正された第1の補正対象起電力とスパン補正された第2の補正対象起電力との差を第3の∂A/∂t成分として抽出し、このスパン補正された2つの補正対象起電力のうちいずれか1つの中から第3の∂A/∂t成分を取り除くことによりv×B成分を抽出する0点補正部52aとから構成される。   The signal converter 5a is configured to detect the first combined electromotive force detected by the first electrodes 2a and 2b and the second electrodes 2c and 2d detected in the first excitation state and the second excitation state, respectively. 2 is obtained, and based on these amplitudes and phases, the sum of the electromotive forces of the same frequency components and the electromotive force difference of the same frequency components of the first composite electromotive force and the second composite electromotive force are obtained. The angular frequency ω0 ± Δω in the first excitation state and the angular frequency ω2 ± Δω in the second excitation state are obtained, and the difference in electromotive force between the angular frequency ω0 + Δω and the occurrence of the angular frequency ω0−Δω in the first excitation state is obtained. The sum of the power difference is extracted as the first ∂A / 成分 t component, and the sum of the electromotive force difference at the angular frequency ω2 + Δω and the electromotive force difference at the angular frequency ω2-Δω in the second excitation state is Extracted as ∂A / ∂t component, sum of electromotive force and angular circumference of angular frequency ω0 + Δω in the first excitation state The sum of the wave number ω0−Δω and the sum of electromotive forces is used as the first correction target electromotive force, and is included in the v × B component in the first correction target electromotive force based on the first ∂A / ∂t component. In addition to removing the variation factor of the span, the sum of the electromotive force of the angular frequency ω2 + Δω and the electromotive force sum of the angular frequency ω2-Δω in the second excitation state is used as the second correction target electromotive force. / Span correction unit 51a for removing a span variation factor included in the v × B component of the second correction target electromotive force based on the ∂t component, and the first correction target electromotive force and the span corrected. The difference from the corrected second correction target electromotive force is extracted as a third ∂A / ∂t component, and the third ∂ from two of the two correction target electromotive forces subjected to span correction is extracted. It is composed of a zero point correction unit 52a that extracts the v × B component by removing the A / ∂t component. That.

本実施の形態の電源部4aは、角周波数(ω0+Δω)の正弦波成分と角周波数(ω0−Δω)の正弦波成分とを含む励磁電流を励磁コイル3に供給する第1の励磁状態をT1秒継続し、続いて角周波数(ω2+Δω)の正弦波成分と角周波数(ω2−Δω)の正弦波成分とを含む励磁電流を励磁コイル3に供給する第2の励磁状態をT2秒継続することをT秒周期で繰り返す。すなわち、T=T1+T2である。   The power supply unit 4a according to the present embodiment performs a first excitation state in which the excitation current including the sine wave component of the angular frequency (ω0 + Δω) and the sine wave component of the angular frequency (ω0−Δω) is supplied to the excitation coil T1. The second excitation state in which the excitation current including the sine wave component of the angular frequency (ω2 + Δω) and the sine wave component of the angular frequency (ω2−Δω) is supplied to the excitation coil 3 is continued for T2 seconds. Is repeated every T seconds. That is, T = T1 + T2.

図26は本実施の形態の信号変換部5aと流量出力部6aの動作を示すフローチャートである。まず、信号変換部5aのスパン補正部51aは、第1の励磁状態において、電極2aと2b間の第1の電極間起電力の角周波数(ω0+Δω)の成分と電極2c,2d間の第2の電極間起電力の角周波数(ω0+Δω)の成分との和EXsp0、および第1の電極間起電力の角周波数(ω0−Δω)の成分と第2の電極間起電力の角周波数(ω0−Δω)の成分との和EXsm0を求め、起電力和EXsp0とEXsm0との和EXss0の振幅rXss0を求めると共に、実軸と起電力和の和EXss0との位相差φXss0を図示しない位相検波器により求める(図26ステップ801)。   FIG. 26 is a flowchart showing the operation of the signal conversion unit 5a and the flow rate output unit 6a of the present embodiment. First, the span correction unit 51a of the signal conversion unit 5a, in the first excitation state, the component of the angular frequency (ω0 + Δω) of the first inter-electrode electromotive force between the electrodes 2a and 2b and the second between the electrodes 2c and 2d. The sum EXsp0 with the component of the angular frequency (ω0 + Δω) of the interelectrode electromotive force and the angular frequency (ω0− of the component of the angular frequency (ω0−Δω) of the first interelectrode electromotive force and the second electrode electromotive force. Δs) and the sum EXsm0 of the electromotive force sums EXsp0 and EXsm0, the amplitude rXss0 of the sum EXs0, and the phase difference φXss0 between the real axis and the sum of the electromotive force EXss0 are obtained by a phase detector (not shown). (Step 801 in FIG. 26).

また、スパン補正部51aは、第1の励磁状態において、第1の電極間起電力の角周波数(ω0+Δω)の成分と第2の電極間起電力の角周波数(ω0+Δω)の成分との差EXdp0、および第1の電極間起電力の角周波数(ω0−Δω)の成分と第2の電極間起電力の角周波数(ω0−Δω)の成分との差EXdm0を求め、起電力差EXdp0とEXdm0との和EXds0の振幅rXds0を求めると共に、実軸と起電力差の和EXds0との位相差φXds0を位相検波器により求める(ステップ802)。   Further, in the first excitation state, the span correction unit 51a has a difference EXdp0 between the component of the angular frequency (ω0 + Δω) of the first interelectrode electromotive force and the component of the angular frequency (ω0 + Δω) of the second interelectrode electromotive force. And the difference EXdm0 between the component of the angular frequency (ω0−Δω) of the first inter-electrode electromotive force and the component of the angular frequency (ω0−Δω) of the second inter-electrode electromotive force is obtained, and the electromotive force difference EXdp0 and EXdm0 The amplitude rXds0 of the sum EXds0 is calculated, and the phase difference φXds0 between the real axis and the sum EXds0 of the electromotive force difference is obtained by the phase detector (step 802).

続いて、スパン補正部51aは、第2の励磁状態において、第1の電極間起電力の角周波数(ω2+Δω)の成分と第2の電極間起電力の角周波数(ω2+Δω)の成分との和EXsp2、および第1の電極間起電力の角周波数(ω2−Δω)の成分と第2の電極間起電力の角周波数(ω2−Δω)の成分との和EXsm2を求め、起電力和EXsp2とEXsm2との和EXss2の振幅rXss2を求めると共に、実軸と起電力和の和EXss2との位相差φXss2を位相検波器により求める(ステップ803)。   Subsequently, in the second excitation state, the span correction unit 51a sums the component of the angular frequency (ω2 + Δω) of the first interelectrode electromotive force and the component of the angular frequency (ω2 + Δω) of the second interelectrode electromotive force. EXsp2 and the sum EXsm2 of the component of the angular frequency (ω2-Δω) of the first inter-electrode electromotive force and the component of the angular frequency (ω2-Δω) of the second inter-electrode electromotive force are obtained, and the electromotive force sum EXsp2 The amplitude rXss2 of the sum EXsm2 with EXsm2 is obtained, and the phase difference φXss2 between the real axis and the sum of electromotive forces EXss2 is obtained with a phase detector (step 803).

また、スパン補正部51aは、第2の励磁状態において、第1の電極間起電力の角周波数(ω2+Δω)の成分と第2の電極間起電力の角周波数(ω2+Δω)の成分との差EXdp2、および第1の電極間起電力の角周波数(ω2−Δω)の成分と第2の電極間起電力の角周波数(ω2−Δω)の成分との差EXdm2を求め、起電力差EXdp2とEXdm2との和EXds2の振幅rXds2を求めると共に、実軸と起電力差の和EXds2との位相差φXds2を位相検波器により求める(ステップ804)。   Further, in the second excitation state, the span correction unit 51a has a difference EXdp2 between the component of the angular frequency (ω2 + Δω) of the first interelectrode electromotive force and the component of the angular frequency (ω2 + Δω) of the second interelectrode electromotive force. , And the difference EXdm2 between the component of the angular frequency (ω2−Δω) of the first inter-electrode electromotive force and the component of the angular frequency (ω2-Δω) of the second inter-electrode electromotive force, and the electromotive force difference EXdp2 and EXdm2 The amplitude rXds2 of the sum EXds2 is obtained, and the phase difference φXds2 between the real axis and the sum EXds2 of the electromotive force difference is obtained by the phase detector (step 804).

次に、スパン補正部51aは、起電力差の和EXds0を近似した起電力差の和EdAX1の大きさと角度を求める(ステップ805)。このステップ805の処理は、第1の∂A/∂t成分を求めることに対応する処理であり、式(537)の算出に相当する処理である。スパン補正部51aは、起電力差の和EdAX1の大きさ|EdAX1|を次式のように算出する。
|EdAX1|=rXds0 ・・・(546)
そして、スパン補正部51aは、起電力差の和EdAX1の角度∠EdAX1を次式のように算出する。
∠EdAX1=φXds0 ・・・(547)
これで、ステップ805の処理が終了する。
Next, the span correction unit 51a calculates the magnitude and angle of the electromotive force difference sum EdAX1 that approximates the electromotive force difference sum EXds0 (step 805). The process in step 805 is a process corresponding to obtaining the first ∂A / ∂t component, and is a process corresponding to the calculation of Expression (537). The span correction unit 51a calculates the magnitude | EdAX1 | of the sum of electromotive force differences EdAX1 as the following equation.
| EdAX1 | = rXds0 (546)
Then, the span correction unit 51a calculates an angle ∠EdAX1 of the sum of electromotive force differences EdAX1 as the following equation.
∠EdAX1 = φXds0 (547)
This completes the process of step 805.

続いて、スパン補正部51aは、起電力和の和EXss0を起電力差の和EdAX1で正規化した正規化起電力和EnX0の大きさと角度を求める(ステップ806)。このステップ806の処理は、式(539)の算出に相当する処理である。スパン補正部51aは、正規化起電力和EnX0の大きさ|EnX0|を次式のように算出する。
|EnX0|=(rXss0/|EdAX1|)・ω0 ・・・(548)
Subsequently, the span correction unit 51a obtains the magnitude and angle of the normalized electromotive force sum EnX0 obtained by normalizing the sum of electromotive forces EXss0 with the sum of electromotive force differences EdAX1 (step 806). The process of step 806 is a process corresponding to the calculation of equation (539). The span correction unit 51a calculates the magnitude | EnX0 | of the normalized electromotive force sum EnX0 as the following equation.
| EnX0 | = (rXss0 / | EdAX1 |) · ω0 (548)

そして、スパン補正部51aは、正規化起電力和EnX0の角度∠EnX0を次式のように算出する。
∠EnX0=φXss0−∠EdAX1 ・・・(549)
さらに、スパン補正部51aは、正規化起電力和EnX0の実軸成分EnX0xと虚軸成分EnX0yを次式のように算出する。
EnX0x=|EnX0|・cos(∠EnX0) ・・・(550)
EnX0y=|EnX0|・sin(∠EnX0) ・・・(551)
これで、ステップ806の処理が終了する。
Then, the span correction unit 51a calculates the angle ∠EnX0 of the normalized electromotive force sum EnX0 as the following equation.
∠EnX0 = φXss0−∠EdAX1 (549)
Further, the span correction unit 51a calculates the real axis component EnX0x and the imaginary axis component EnX0y of the normalized electromotive force sum EnX0 as in the following equation.
EnX0x = | EnX0 | .cos (∠EnX0) (550)
EnX0y = | EnX0 | .sin (∠EnX0) (551)
This completes the processing in step 806.

次に、スパン補正部51aは、起電力差の和EXds2を近似した起電力差の和EdAX2の大きさと角度を求める(ステップ807)。このステップ807の処理は、第2の∂A/∂t成分を求めることに対応する処理である。スパン補正部51aは、起電力差の和EdAX2の大きさ|EdAX2|を次式のように算出する。
|EdAX2|=rXds2 ・・・(552)
そして、スパン補正部51aは、起電力差の和EdAX2の角度∠EdAX2を次式のように算出する。
∠EdAX2=φXds2 ・・・(553)
これで、ステップ807の処理が終了する。
Next, the span correction unit 51a obtains the magnitude and angle of the electromotive force difference sum EdAX2 that approximates the electromotive force difference sum EXds2 (step 807). The processing in step 807 is processing corresponding to obtaining the second ∂A / ∂t component. The span correction unit 51a calculates the magnitude | EdAX2 | of the sum of electromotive force differences EdAX2 as the following equation.
| EdAX2 | = rXds2 (552)
Then, the span correction unit 51a calculates the angle ∠EdAX2 of the sum of electromotive force differences EdAX2 as the following equation.
∠EdAX2 = φXds2 (553)
This completes the processing in step 807.

続いて、スパン補正部51aは、起電力和の和EXss2を起電力差の和EdAX2で正規化した正規化起電力和EnX2の大きさと角度を求める(ステップ808)。このステップ808の処理は、式(542)の算出に相当する処理である。スパン補正部51aは、正規化起電力和EnX2の大きさ|EnX2|を次式のように算出する。
|EnX2|=(rXss2/|EdAX2|)・ω2 ・・・(554)
Subsequently, the span correction unit 51a obtains the magnitude and angle of the normalized electromotive force sum EnX2 obtained by normalizing the sum of electromotive forces EXss2 with the sum of electromotive force differences EdAX2 (step 808). The process of step 808 is a process corresponding to the calculation of Expression (542). The span correction unit 51a calculates the magnitude | EnX2 | of the normalized electromotive force sum EnX2 as follows.
| EnX2 | = (rXss2 // EdAX2 |) · ω2 (554)

そして、スパン補正部51aは、正規化起電力和EnX2の角度∠EnX2を次式のように算出する。
∠EnX2=φXss2−∠EdAX2 ・・・(555)
さらに、スパン補正部51aは、正規化起電力和EnX2の実軸成分EnX2xと虚軸成分EnX2yを次式のように算出する。
EnX2x=|EnX2|・cos(∠EnX2) ・・・(556)
EnX2y=|EnX2|・sin(∠EnX2) ・・・(557)
これで、ステップ808の処理が終了する。
Then, the span correction unit 51a calculates the angle ∠EnX2 of the normalized electromotive force sum EnX2 as the following equation.
∠EnX2 = φXss2-∠EdAX2 (555)
Further, the span correction unit 51a calculates the real axis component EnX2x and the imaginary axis component EnX2y of the normalized electromotive force sum EnX2 as follows.
EnX2x = | EnX2 | .cos (∠EnX2) (556)
EnX2y = | EnX2 | .sin (∠EnX2) (557)
This completes the processing in step 808.

次に、信号変換部5aの0点補正部52aは、正規化起電力和EnX0とEnX2との差分EdAX3の大きさを求める(ステップ809)。このステップ809の処理は、第3の∂A/∂t成分を求めることに対応する処理であり、式(543)の算出に相当する処理である。0点補正部52aは、差分EdAX3の実軸成分EdAX3xと虚軸成分EdAX3yを次式のように算出する。
EdAX3x=(EnX0x−EnX2x)・ω0/(ω0−ω2) ・・(558)
EdAX3y=(EnX0y−EnX2y)・ω0/(ω0−ω2) ・・(559)
Next, the zero point correction unit 52a of the signal conversion unit 5a calculates the magnitude of the difference EdAX3 between the normalized electromotive force sums EnX0 and EnX2 (step 809). The process of step 809 is a process corresponding to obtaining the third ∂A / ∂t component, and is a process corresponding to the calculation of Expression (543). The zero point correction unit 52a calculates the real axis component EdAX3x and the imaginary axis component EdAX3y of the difference EdAX3 as follows.
EdAX3x = (EnX0x−EnX2x) · ω0 / (ω0−ω2) (558)
EdAX3y = (EnX0y−EnX2y) · ω0 / (ω0−ω2) (559)

そして、0点補正部52aは、正規化起電力和EnX0から差分EdAX3を取り除き、v×B成分EvBnXの大きさを求める(ステップ810)。このステップ810の処理は、式(544)の算出に相当する処理である。0点補正部52aは、v×B成分EvBnXの大きさ|EvBnX|を次式のように算出する。
|EvBnX|={(EnX0x−EdAX3x)2
+(EnX0y−EdAX3y)21/2 ・・・(560)
Then, the zero point correction unit 52a removes the difference EdAX3 from the normalized electromotive force sum EnX0 and obtains the magnitude of the v × B component EvBnX (step 810). The process of step 810 is a process corresponding to the calculation of Expression (544). The zero point correction unit 52a calculates the magnitude | EvBnX | of the v × B component EvBnX as the following equation.
| EvBnX | = {(EnX0x−EdAX3x) 2
+ (EnX0y-EdAX3y) 2 } 1/2 (560)

流量出力部6aは、被測定流体の流速の大きさVを次式のように算出する(ステップ811)。このステップ811の処理は、式(545)の算出に相当する処理である。
V=|EvBnX|/γ ・・・(561)
なお、比例係数γは、校正等により予め求めることができる定数である。信号変換部5aと流量出力部6aとは、以上のようなステップ801〜811の処理を例えばオペレータによって計測終了が指示されるまで(ステップ812においてYES)、一定周期毎に行う。なお、ステップ803〜811の処理は第2の励磁状態において行われる。
The flow rate output unit 6a calculates the magnitude V of the flow velocity of the fluid to be measured as in the following equation (step 811). The process of step 811 is a process corresponding to the calculation of equation (545).
V = | EvBnX | / γ (561)
The proportionality coefficient γ is a constant that can be obtained in advance by calibration or the like. The signal conversion unit 5a and the flow rate output unit 6a perform the processing in steps 801 to 811 as described above at regular intervals until, for example, the operator instructs the end of measurement (YES in step 812). Note that the processing in steps 803 to 811 is performed in the second excitation state.

以上のように、本実施の形態では、第1の励磁状態において起電力和の和EXss0と起電力差の和EXds0を求め、第2の励磁状態において起電力和の和EXss2と起電力差の和EXds2を求める。そして、本実施の形態では、励磁コイル3から発生する磁場B16とB17とが等しくなるように設定しておくと、起電力差の和EXds0が近似的に第1の∂A/∂t成分として抽出でき、また起電力差の和EXds2が近似的に第2の∂A/∂t成分として抽出できることに着眼し、第1の∂A/∂t成分を用いて起電力和の和EXss0中のv×B成分の流速の大きさVにかかるスパンを正規化すると共に、第2の∂A/∂t成分を用いて起電力和の和EXss2中のv×B成分の流速の大きさVにかかるスパンを正規化し、正規化起電力和EnX0とEnX2とから差分EdAX3(第3の∂A/∂t成分)を抽出して、正規化起電力和EnX0から第3の∂A/∂t成分を取り除くことによりv×B成分を抽出し、このv×B成分から被測定流体の流量を算出するようにしたので、正確なスパン補正を自動的に行うことができ、かつ被測定流体の流量を0にすることなく電磁流量計の出力の0点を補正することができ、高周波励磁においても0点の安定性を確保することができる。   As described above, in the present embodiment, the sum of electromotive forces EXss0 and the sum of electromotive force differences EXds0 are obtained in the first excitation state, and the sum of electromotive force EXss2 and the difference between the electromotive force differences in the second excitation state. The sum EXds2 is obtained. In this embodiment, if the magnetic fields B16 and B17 generated from the exciting coil 3 are set to be equal, the sum EXds0 of the electromotive force difference is approximately set as the first ∂A / ∂t component. Focusing on the fact that the sum EXds2 of the electromotive force difference can be approximately extracted as the second ∂A / ∂t component, and using the first ∂A / ∂t component, Normalize the span of the flow velocity V of the v × B component V, and use the second ∂A / ∂t component to obtain the flow velocity V of the v × B component in the sum of electromotive forces EXss2. The span is normalized, the difference EdAX3 (third ∂A / ∂t component) is extracted from the normalized electromotive force sums EnX0 and EnX2, and the third ∂A / ∂t component is extracted from the normalized electromotive force sum EnX0. V × B component is extracted by removing the v × B component. Since the flow rate of the fluid to be measured is calculated, accurate span correction can be automatically performed, and the zero point of the output of the electromagnetic flowmeter can be corrected without reducing the flow rate of the fluid to be measured. Thus, stability at zero point can be ensured even in high frequency excitation.

また、本実施の形態では、周波数による磁場の損失の違いを考慮して、起電力和の和EXss0のv×B成分を起電力差の和EXds0から抽出した同じ角周波数の第1の∂A/∂t成分を用いて正規化すると共に、起電力和の和EXss2のv×B成分を起電力差の和EXds2から抽出した同じ角周波数の第2の∂A/∂t成分を用いて正規化し、それぞれ正規化した起電力和EnX0とEnX2との差を基に0補正を行うようにしたので、磁場の損失による影響がある場合でも、正確なスパン補正と0補正を行うことができる。また、本実施の形態では、周波数を分散させて励磁するので、周波数帯の効率的な使用が可能になる。   Further, in the present embodiment, in consideration of the difference in magnetic field loss depending on the frequency, the first 同 じ A having the same angular frequency obtained by extracting the v × B component of the electromotive force sum EXss0 from the electromotive force difference sum EXds0. Normalize using the second ∂A / ∂t component of the same angular frequency extracted from the sum of electromotive force differences EXds2 Since zero correction is performed based on the difference between the normalized electromotive force sums EnX0 and EnX2, respectively, accurate span correction and zero correction can be performed even when there is an influence due to magnetic field loss. Further, in the present embodiment, since excitation is performed with the frequencies dispersed, the frequency band can be used efficiently.

なお、本実施の形態の別の例として、変調が使用できる。角周波数ω0の搬送波を角周波数ω1の変調波で励磁すれば、振幅変調の場合は角周波数ω0,ω0±ω1の成分の起電力を得ることができ、位相変調又は周波数変調の場合は角周波数ω0,ω0±ζ・ω1(ζは正の整数)の成分の起電力を得ることができる。この変調を使用する例は、基本原理の最後で述べたように、図1の電磁流量計の構成から図13の電磁流量計の構成への変換を行えば、第4の実施の形態〜第7の実施の形態で示したものと同等なので、詳細な説明は省略する。   Note that modulation can be used as another example of the present embodiment. If a carrier wave having an angular frequency ω0 is excited by a modulated wave having an angular frequency ω1, the electromotive force of the components having angular frequencies ω0 and ω0 ± ω1 can be obtained in the case of amplitude modulation, and the angular frequency in the case of phase modulation or frequency modulation. The electromotive force of the component of ω0, ω0 ± ζ · ω1 (ζ is a positive integer) can be obtained. As described at the end of the basic principle, an example of using this modulation is the fourth embodiment to the fourth embodiment, if the configuration of the electromagnetic flow meter of FIG. 1 is converted to the configuration of the electromagnetic flow meter of FIG. The detailed description is omitted because it is the same as that shown in the seventh embodiment.

また、本実施の形態では、起電力和の和EXss0を0補正およびスパン補正の対象としたが、起電力和の和EXss2を0補正およびスパン補正の対象としてもよい。この場合は、次式のように正規化起電力和EnX2とEnX0とから差分EdAX3(第3の∂A/∂t成分)を求める。
EdAX3=(EnX2−EnX0)・ω2/(ω2−ω0) ・・・(562)
そして、次式のように正規化起電力和EnX2から差分EdAX3を引くことによりv×B成分EvBnXを求めるようにすればよい。その他の処理は起電力和の和EXss0を0補正およびスパン補正の対象とする場合と同じである。
|EvBnX|=|EnX2−EdAX3| ・・・(563)
In the present embodiment, the sum of electromotive forces EXss0 is the target of 0 correction and span correction, but the sum of electromotive forces EXss2 may be the target of 0 correction and span correction. In this case, the difference EdAX3 (third ∂A / ∂t component) is obtained from the normalized electromotive force sums EnX2 and EnX0 as in the following equation.
EdAX3 = (EnX2-EnX0) · ω2 / (ω2-ω0) (562)
Then, the v × B component EvBnX may be obtained by subtracting the difference EdAX3 from the normalized electromotive force sum EnX2 as in the following equation. The other processes are the same as the case where the sum of electromotive forces EXss0 is the target of 0 correction and span correction.
| EvBnX | = | EnX2-EdAX3 | (563)

なお、第1の実施の形態〜第10の実施の形態では、励磁電流に正弦波を用いる正弦波励磁方式を採用しているが、矩形波の場合正弦波の組み合わせと考えることができるので、励磁電流に矩形波を用いる矩形波励磁方式を採用してもよい。また、第1の実施の形態〜第10の実施の形態で使用する電極2a,2b,2c,2dとしては、図27に示すように、測定管1の内壁から露出して被測定流体に接触する形式の電極でもよいし、図28に示すように、被測定流体と接触しない容量結合式の電極でもよい。容量結合式の場合、電極2a,2b,2c,2dは、測定管1の内壁に形成されるセラミックやテフロン(登録商標)等からなるライニング10によって被覆される。   In the first to tenth embodiments, a sine wave excitation method using a sine wave as an excitation current is employed, but in the case of a rectangular wave, it can be considered as a combination of sine waves. A rectangular wave excitation method using a rectangular wave as the excitation current may be employed. As shown in FIG. 27, the electrodes 2a, 2b, 2c, and 2d used in the first to tenth embodiments are exposed from the inner wall of the measuring tube 1 and come into contact with the fluid to be measured. 28, or a capacitively coupled electrode that does not contact the fluid to be measured as shown in FIG. In the case of the capacitive coupling type, the electrodes 2a, 2b, 2c and 2d are covered with a lining 10 made of ceramic, Teflon (registered trademark) or the like formed on the inner wall of the measuring tube 1.

また、第1の実施の形態〜第10の実施の形態では、第1の電極として1対の電極2a,2bを使用し、第2の電極として1対の電極2c,2dを使用しているが、これに限るものではなく、第1の電極と第2の電極をそれぞれ1個ずつにしてもよい。電極が1個だけの場合には、被測定流体の電位を接地電位にするための接地リングや接地電極が測定管1に設けられており、1個の電極に生じた起電力(接地電位との電位差)を信号変換部5,5a,5bで検出すればよい。電極軸は、1対の電極を使用する場合はこの1対の電極間を結ぶ直線である。一方、電極が1個だけの場合、この1個の実電極を含む平面PLN上において、測定管軸PAXを挟んで実電極と対向する位置に仮想の電極を配置したと仮定したとき、実電極と仮想の電極とを結ぶ直線が電極軸となる。   In the first to tenth embodiments, the pair of electrodes 2a and 2b is used as the first electrode, and the pair of electrodes 2c and 2d is used as the second electrode. However, the present invention is not limited to this, and one each of the first electrode and the second electrode may be provided. When there is only one electrode, a grounding ring and a grounding electrode for setting the potential of the fluid to be measured to the grounding potential are provided in the measuring tube 1, and an electromotive force (grounding potential and grounding potential) generated in one electrode is provided. The signal converters 5, 5a, and 5b may detect the potential difference. The electrode axis is a straight line connecting the pair of electrodes when a pair of electrodes is used. On the other hand, when there is only one electrode, when it is assumed that a virtual electrode is arranged at a position facing the real electrode across the measurement tube axis PAX on the plane PLN including this single real electrode, A straight line connecting the imaginary electrode and the virtual electrode becomes the electrode axis.

また、第6の実施の形態および第7の実施の形態では、第1次ベッセル関数の展開においてn=0,1の場合のみを適用し、電極間起電力の角周波数ω0±ω1,ω2±ω1の成分を用いたが、これに限るものではなく、ω0+ζ1・ω1(ζ1は正の整数),ω2+ζ2・ω1(ζ2は正の整数)の成分を用いてもよい。ζ1,ζ2が2以上の整数の場合には、第1次ベッセル関数の展開においてn=2以降を適用すれば、流速の大きさVの算出が可能である。   In the sixth embodiment and the seventh embodiment, only the case of n = 0, 1 is applied in the expansion of the first-order Bessel function, and the angular frequency ω0 ± ω1, ω2 ± of the electromotive force between the electrodes is applied. Although the component of ω1 is used, the present invention is not limited to this, and components of ω0 + ζ1 · ω1 (ζ1 is a positive integer) and ω2 + ζ2 · ω1 (ζ2 is a positive integer) may be used. When ζ1 and ζ2 are integers of 2 or more, the flow velocity magnitude V can be calculated by applying n = 2 or later in the expansion of the first-order Bessel function.

本発明は、測定管内を流れる被測定流体の流量計測に適用することができる。   The present invention can be applied to flow measurement of a fluid to be measured flowing in a measurement tube.

本発明の基本原理に基づく電磁流量計のうち2個の励磁コイルと1対の電極とを有する電磁流量計の原理を説明するためのブロック図である。It is a block diagram for demonstrating the principle of the electromagnetic flowmeter which has two excitation coils and one pair of electrodes among the electromagnetic flowmeters based on the basic principle of this invention. 図1の電磁流量計において被測定流体の流量が0の場合の渦電流及び電極間起電力を示す図である。It is a figure which shows the eddy current and electromotive force between electrodes when the flow volume of the fluid to be measured is 0 in the electromagnetic flow meter of FIG. 図1の電磁流量計において被測定流体の流量が0でない場合の渦電流及び電極間起電力を示す図である。It is a figure which shows the eddy current and electromotive force between electrodes when the flow volume of the fluid to be measured is not 0 in the electromagnetic flow meter of FIG. 図1の電磁流量計において第1の励磁コイルのみで励磁した場合の∂A/∂t成分のベクトルとv×B成分のベクトルと合成ベクトルとを示す図である。It is a figure which shows the vector of (A) / (t) component, the vector of vxB component, and a synthetic | combination vector at the time of exciting only with the 1st excitation coil in the electromagnetic flowmeter of FIG. 図1の電磁流量計において第2の励磁コイルのみで励磁した場合の∂A/∂t成分のベクトルとv×B成分のベクトルと合成ベクトルとを示す図である。It is a figure which shows the vector of (A) / (t) component, the vector of vxB component, and a synthetic | combination vector at the time of exciting only with the 2nd excitation coil in the electromagnetic flowmeter of FIG. 図1の電磁流量計において2つの励磁コイルで励磁した場合の∂A/∂t成分のベクトルとv×B成分のベクトルと合成ベクトルとを示す図である。It is a figure which shows the vector of (A) / (t) component, the vector of vxB component, and a synthetic | combination vector at the time of exciting with two exciting coils in the electromagnetic flowmeter of FIG. 図1の電磁流量計において第2の励磁状態で第2の励磁コイルのみで励磁した場合の∂A/∂t成分のベクトルとv×B成分のベクトルと合成ベクトルとを示す図である。It is a figure which shows the vector of (A) / (t) component, the vector of vxB component, and a synthetic | combination vector at the time of exciting only by the 2nd excitation coil in the 2nd excitation state in the electromagnetic flowmeter of FIG. 図1の電磁流量計において第2の励磁状態で2つの励磁コイルを励磁した場合の∂A/∂t成分のベクトルとv×B成分のベクトルと合成ベクトルとを示す図である。It is a figure which shows the vector of (A) / (t) component, the vector of vxB component, and a synthetic | combination vector at the time of exciting two excitation coils in the 2nd excitation state in the electromagnetic flowmeter of FIG. 図1の電磁流量計における第1の∂A/∂t成分のベクトルと正規化の対象となる合成ベクトルとを示す図である。It is a figure which shows the vector of the 1st (A) / (t) component in the electromagnetic flowmeter of FIG. 1, and the synthetic | combination vector used as the object of normalization. 図1の電磁流量計において電極で検出される合成ベクトルを第1の∂A/∂t成分により正規化する処理を複素ベクトル表現した図である。It is the figure which expressed the complex vector expression of the process which normalizes the synthetic | combination vector detected with an electrode in the electromagnetic flowmeter of FIG. 1 by the 1st ∂A / ∂t component. 図1の電磁流量計において正規化した合成ベクトルから第3の∂A/∂t成分を抽出する処理を複素ベクトル表現した図である。It is the figure which expressed the complex vector representation of the process which extracts the 3rd ∂A / ∂t component from the synthetic vector normalized in the electromagnetic flow meter of FIG. 図1の電磁流量計において正規化した合成ベクトルからv×B成分を抽出する処理を複素ベクトル表現した図である。It is the figure which expressed the complex vector expression about the process which extracts the vxB component from the synthetic | combination vector normalized in the electromagnetic flowmeter of FIG. 本発明の基本原理に基づく電磁流量計のうち1個の励磁コイルと2対の電極とを有する電磁流量計の原理を説明するためのブロック図である。It is a block diagram for demonstrating the principle of the electromagnetic flowmeter which has one excitation coil and two pairs of electrodes among the electromagnetic flowmeters based on the basic principle of this invention. 図13の電磁流量計において被測定流体の流量が0の場合の渦電流及び電極間起電力を示す図である。It is a figure which shows the eddy current and electromotive force between electrodes when the flow volume of the fluid to be measured is 0 in the electromagnetic flow meter of FIG. 図13の電磁流量計において被測定流体の流量が0でない場合の渦電流及び電極間起電力を示す図である。It is a figure which shows the eddy current and electromotive force between electrodes when the flow volume of the fluid to be measured is not 0 in the electromagnetic flow meter of FIG. 本発明の第1の実施の形態の電磁流量計の構成を示すブロック図である。It is a block diagram which shows the structure of the electromagnetic flowmeter of the 1st Embodiment of this invention. 本発明の第1の実施の形態における信号変換部と流量出力部の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the signal converter in the 1st Embodiment of this invention, and a flow volume output part. 本発明の第2の実施の形態における信号変換部と流量出力部の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the signal converter in the 2nd Embodiment of this invention, and a flow volume output part. 本発明の第3の実施の形態において第1の∂A/∂t成分のベクトルを抽出する処理を複素ベクトル表現した図である。It is the figure which expressed complex vector expression about the processing which extracts the vector of the 1st ∂A / ∂t component in the 3rd embodiment of the present invention. 本発明の第3の実施の形態における信号変換部と流量出力部の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the signal conversion part and flow volume output part in the 3rd Embodiment of this invention. 本発明の第4の実施の形態における信号変換部と流量出力部の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the signal conversion part and flow volume output part in the 4th Embodiment of this invention. 本発明の第5の実施の形態における信号変換部と流量出力部の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the signal conversion part and flow volume output part in the 5th Embodiment of this invention. 本発明の第8の実施の形態の電磁流量計の構成を示すブロック図である。It is a block diagram which shows the structure of the electromagnetic flowmeter of the 8th Embodiment of this invention. 本発明の第8の実施の形態における信号変換部と流量出力部の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the signal conversion part and flow volume output part in the 8th Embodiment of this invention. 本発明の第9の実施の形態における信号変換部と流量出力部の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the signal conversion part and flow volume output part in the 9th Embodiment of this invention. 本発明の第10の実施の形態における信号変換部と流量出力部の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the signal conversion part and flow volume output part in the 10th Embodiment of this invention. 本発明の電磁流量計で用いる電極の1例を示す断面図である。It is sectional drawing which shows one example of the electrode used with the electromagnetic flowmeter of this invention. 本発明の電磁流量計で用いる電極の他の例を示す断面図である。It is sectional drawing which shows the other example of the electrode used with the electromagnetic flowmeter of this invention. 従来の電磁流量計の原理を説明するためのブロック図である。It is a block diagram for demonstrating the principle of the conventional electromagnetic flowmeter. 従来の電磁流量計において被測定流体の流量が0の場合の渦電流及び電極間起電力を示す図である。It is a figure which shows the eddy current and electromotive force between electrodes when the flow volume of the fluid to be measured is 0 in a conventional electromagnetic flow meter. 従来の電磁流量計において被測定流体の流量が0でない場合の渦電流及び電極間起電力を示す図である。It is a figure which shows the eddy current and electromotive force between electrodes when the flow volume of the fluid to be measured is not 0 in a conventional electromagnetic flow meter. 電磁流量計におけるスパンのシフトを説明するための図である。It is a figure for demonstrating the shift of the span in an electromagnetic flowmeter. 電磁流量計における0点のシフトを説明するための図である。It is a figure for demonstrating the zero point shift in an electromagnetic flowmeter. 従来の電磁流量計の問題点を説明するための図である。It is a figure for demonstrating the problem of the conventional electromagnetic flowmeter.

符号の説明Explanation of symbols

1…測定管、2a、2b、2c、2d…電極、3、3a、3b…励磁コイル、4、4a…電源部、5、5a…信号変換部、6、6a…流量出力部、51、51a…スパン補正部、52、52a…0点補正部。   DESCRIPTION OF SYMBOLS 1 ... Measuring tube, 2a, 2b, 2c, 2d ... Electrode 3, 3a, 3b ... Excitation coil, 4, 4a ... Power supply part 5, 5a ... Signal conversion part, 6, 6a ... Flow output part, 51, 51a ... Span correction unit, 52, 52a ... 0 point correction unit.

Claims (21)

被測定流体が流れる測定管と、
この測定管に配設され、前記流体に印加される磁場と前記流体の流れとによって生じた起電力を検出する電極と、
この電極を含む、前記測定管の軸方向と垂直な第1の平面に対して非対称かつ時間変化する磁場を前記流体に印加する励磁部と、
前記電極で検出される、前記流体の流速とは無関係な∂A/∂t成分の起電力と前記流体の流速に起因するv×B成分の起電力との合成起電力から、第1の周波数における第1の∂A/∂t成分と第1の補正対象起電力とを抽出すると共に、第2の周波数における第2の∂A/∂t成分と第2の補正対象起電力とを抽出し、前記抽出した第1の∂A/∂t成分に基づいて前記第1の補正対象起電力の中のv×B成分の流速の大きさVにかかる係数であるスパンの変動要因を除去すると共に、前記抽出した第2の∂A/∂t成分に基づいて前記第2の補正対象起電力の中のv×B成分の流速の大きさVにかかる係数であるスパンの変動要因を除去するスパン補正を行うスパン補正部と、
前記スパン補正された第1の補正対象起電力と前記スパン補正された第2の補正対象起電力に基づいて、前記流体の流速とは無関係であり、前記磁場の時間変化に起因する第3の∂A/∂t成分を抽出し、このスパン補正された2つの補正対象起電力のうちいずれか1つの中から、前記抽出した第3の∂A/∂t成分を取り除くことによりv×B成分を抽出する0点補正部と、
前記抽出されたv×B成分から前記流体の流量を算出する流量出力部とを備えることを特徴とする電磁流量計。
A measuring tube through which the fluid to be measured flows;
An electrode disposed in the measuring tube and detecting an electromotive force generated by the magnetic field applied to the fluid and the flow of the fluid;
An excitation unit for applying to the fluid a magnetic field that is asymmetric and time-varying with respect to a first plane perpendicular to the axial direction of the measuring tube, including the electrode
From the combined electromotive force of the 電極 A / ∂t component electromotive force detected by the electrode and the v × B component electromotive force caused by the fluid flow velocity, which is irrelevant to the fluid flow velocity, the first frequency The first ∂A / ∂t component and the first correction target electromotive force at the second frequency are extracted, and the second ∂A / ∂t component and the second correction target electromotive force at the second frequency are extracted. And removing a variation factor of the span, which is a coefficient applied to the magnitude V of the flow velocity of the v × B component in the first correction target electromotive force based on the extracted first ∂A / ∂t component. , A span for removing a variation factor of the span, which is a coefficient relating to the flow velocity V of the v × B component in the second correction target electromotive force based on the extracted second 前 記 A / ∂t component A span correction unit that performs correction,
Based on the span-corrected first correction target electromotive force and the span-corrected second correction target electromotive force, the flow rate of the fluid is irrelevant and the third is caused by the time change of the magnetic field. By extracting the ∂A / ∂t component and removing the extracted third ∂A / ∂t component from any one of the two correction target electromotive forces subjected to the span correction, the v × B component A zero point correction unit for extracting
An electromagnetic flow meter comprising: a flow rate output unit that calculates a flow rate of the fluid from the extracted v × B component.
請求項1記載の電磁流量計において、
前記励磁部は、前記電極を含む、前記測定管の軸方向と垂直な第1の平面から第1のオフセットを設けて離れた位置に配設された第1の励磁コイルと、前記第1の平面から第2のオフセットを設けて離れた位置に、前記第1の平面を挟んで前記第1の励磁コイルと対向するように配設された第2の励磁コイルと、前記第1の励磁コイルに供給する励磁電流と第2の励磁コイルに供給する励磁電流の位相差および励磁角周波数を切り替えながら、前記第1の励磁コイルと第2の励磁コイルに励磁電流を供給する電源部とからなることを特徴とする電磁流量計。
The electromagnetic flowmeter according to claim 1,
The excitation section includes a first excitation coil disposed at a position away from a first plane perpendicular to the axial direction of the measurement tube, including the electrode, with a first offset, and the first excitation coil A second excitation coil disposed at a position away from the plane by providing a second offset so as to face the first excitation coil across the first plane; and the first excitation coil And a power supply unit for supplying excitation current to the first excitation coil and the second excitation coil while switching the phase difference and excitation angular frequency of the excitation current supplied to the second excitation coil and the excitation current supplied to the second excitation coil. An electromagnetic flow meter characterized by that.
請求項2記載の電磁流量計において、
前記スパン補正部は、前記第1の励磁コイルにより発生する第1の磁場と前記第2の励磁コイルにより発生する第2の磁場との位相差がΔθ3で、励磁角周波数がω0の第1の励磁状態と、この第1の励磁状態に対して前記第1の磁場と第2の磁場との位相差をΔθ3+πに変更した第2の励磁状態と、前記第1の励磁状態に対して励磁角周波数をω2に変更した第3の励磁状態と、前記第2の励磁状態に対して励磁角周波数をω2に変更した第4の励磁状態の4つの励磁状態の各々において前記電極で検出される合成起電力の振幅と位相を求め、これらの振幅と位相に基づいて前記第2の励磁状態の合成起電力を前記第1の∂A/∂t成分として抽出すると共に、前記第4の励磁状態の合成起電力を前記第2の∂A/∂t成分として抽出し、前記第1の励磁状態の合成起電力を第1の補正対象起電力として、前記抽出した第1の∂A/∂t成分に基づいて前記第1の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去すると共に、前記第3の励磁状態の合成起電力を第2の補正対象起電力として、前記抽出した第2の∂A/∂t成分に基づいて前記第2の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去するスパン補正を行い、
前記0点補正部は、前記スパン補正された第1の補正対象起電力と前記スパン補正された第2の補正対象起電力との差を前記第3の∂A/∂t成分として抽出し、このスパン補正された2つの補正対象起電力のうちいずれか1つの中から、前記抽出した第3の∂A/∂t成分を取り除くことによりv×B成分を抽出することを特徴とする電磁流量計。
The electromagnetic flow meter according to claim 2,
The span correction unit has a first phase difference between the first magnetic field generated by the first exciting coil and the second magnetic field generated by the second exciting coil by Δθ3 and an exciting angular frequency of ω0. An excitation state, a second excitation state in which the phase difference between the first magnetic field and the second magnetic field is changed to Δθ3 + π with respect to the first excitation state, and an excitation angle with respect to the first excitation state. A combination detected by the electrodes in each of four excitation states, a third excitation state in which the frequency is changed to ω2 and a fourth excitation state in which the excitation angular frequency is changed to ω2 with respect to the second excitation state. The amplitude and phase of the electromotive force are obtained, and based on these amplitude and phase, the combined electromotive force in the second excitation state is extracted as the first ∂A / ∂t component, and the fourth excitation state Extracting the combined electromotive force as the second ∂A / ∂t component, The combined electromotive force in the first excitation state is set as the first correction target electromotive force, and the v × B component in the first correction target electromotive force is based on the extracted first ∂A / ∂t component. The variation factor of the included span is removed, and the combined electromotive force in the third excitation state is set as the second correction target electromotive force based on the extracted second ∂A / ∂t component. Perform span correction to remove the span variation factor included in the v × B component in the correction target electromotive force,
The zero point correction unit extracts a difference between the first correction target electromotive force subjected to the span correction and the second correction target electromotive force subjected to the span correction as the third ∂A / ∂t component, An electromagnetic flow rate characterized in that a v × B component is extracted by removing the extracted third ∂A / ∂t component from any one of the two corrected electromotive forces subjected to span correction Total.
請求項1記載の電磁流量計において、
前記励磁部は、前記電極を含む、前記測定管の軸方向と垂直な第1の平面から第1のオフセットを設けて離れた位置に配設された第1の励磁コイルと、前記第1の平面から第2のオフセットを設けて離れた位置に、前記第1の平面を挟んで前記第1の励磁コイルと対向するように配設された第2の励磁コイルと、前記第1の励磁コイルに供給する励磁電流と第2の励磁コイルに供給する励磁電流の位相差を切り替えながら、複数の励磁角周波数を同時に与える励磁電流を前記第1の励磁コイルと第2の励磁コイルに供給する電源部とからなることを特徴とする電磁流量計。
The electromagnetic flowmeter according to claim 1,
The excitation section includes a first excitation coil disposed at a position away from a first plane perpendicular to the axial direction of the measurement tube, including the electrode, with a first offset, and the first excitation coil A second excitation coil disposed at a position away from the plane by providing a second offset so as to face the first excitation coil across the first plane; and the first excitation coil A power supply that supplies excitation currents that simultaneously provide a plurality of excitation angular frequencies to the first excitation coil and the second excitation coil while switching the phase difference between the excitation current supplied to the first excitation coil and the excitation current supplied to the second excitation coil. An electromagnetic flow meter comprising a part.
請求項4記載の電磁流量計において、
前記電源部は、角周波数ω0とω2の異なる2つの励磁角周波数を同時に与える励磁電流を前記第1の励磁コイルと第2の励磁コイルに供給し、
前記スパン補正部は、前記第1の励磁コイルにより発生する第1の磁場と前記第2の励磁コイルにより発生する第2の磁場との位相差がΔθ7で、励磁角周波数がω0,ω2の第1の励磁状態と、この第1の励磁状態に対して前記第1の磁場と第2の磁場との位相差をΔθ7+πに変更した第2の励磁状態の2つの励磁状態の各々において前記電極で検出される合成起電力の振幅と位相を求め、これらの振幅と位相に基づいて前記第2の励磁状態の合成起電力の角周波数ω0の成分を前記第1の∂A/∂t成分として抽出すると共に、前記第2の励磁状態の合成起電力の角周波数ω2の成分を前記第2の∂A/∂t成分として抽出し、前記第1の励磁状態の合成起電力の角周波数ω0の成分を第1の補正対象起電力として、前記抽出した第1の∂A/∂t成分に基づいて前記第1の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去すると共に、前記第1の励磁状態の合成起電力の角周波数ω2の成分を第2の補正対象起電力として、前記抽出した第2の∂A/∂t成分に基づいて前記第2の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去するスパン補正を行い、
前記0点補正部は、前記スパン補正された第1の補正対象起電力と前記スパン補正された第2の補正対象起電力との差を前記第3の∂A/∂t成分として抽出し、このスパン補正された2つの補正対象起電力のうちいずれか1つの中から、前記抽出した第3の∂A/∂t成分を取り除くことによりv×B成分を抽出することを特徴とする電磁流量計。
The electromagnetic flow meter according to claim 4, wherein
The power supply unit supplies an excitation current that simultaneously gives two excitation angular frequencies having different angular frequencies ω0 and ω2 to the first excitation coil and the second excitation coil,
The span correction unit has a phase difference of Δθ7 between the first magnetic field generated by the first excitation coil and the second magnetic field generated by the second excitation coil, and excitation angular frequencies of ω0 and ω2. In each of the two excitation states, one excitation state and a second excitation state in which the phase difference between the first magnetic field and the second magnetic field is changed to Δθ7 + π with respect to the first excitation state. The amplitude and phase of the detected composite electromotive force are obtained, and the component of the angular frequency ω0 of the composite electromotive force in the second excitation state is extracted as the first ∂A / ∂t component based on these amplitude and phase. In addition, the component of the angular frequency ω2 of the synthetic electromotive force in the second excitation state is extracted as the second ∂A / ∂t component, and the component of the angular frequency ω0 of the synthetic electromotive force in the first excitation state As the first correction target electromotive force, the extracted first ∂A Based on the ∂t component, the variation factor of the span included in the v × B component in the first correction target electromotive force is removed, and the component of the angular frequency ω2 of the composite electromotive force in the first excitation state is As a second correction target electromotive force, a span for removing a variation factor of the span included in the v × B component in the second correction target electromotive force based on the extracted second ∂A / ∂t component Make corrections
The zero point correction unit extracts a difference between the first correction target electromotive force subjected to the span correction and the second correction target electromotive force subjected to the span correction as the third ∂A / ∂t component, An electromagnetic flow rate characterized in that a v × B component is extracted by removing the extracted third ∂A / ∂t component from any one of the two corrected electromotive forces subjected to span correction Total.
請求項1記載の電磁流量計において、
前記励磁部は、前記電極を含む、前記測定管の軸方向と垂直な第1の平面から第1のオフセットを設けて離れた位置に配設された第1の励磁コイルと、前記第1の平面から第2のオフセットを設けて離れた位置に、前記第1の平面を挟んで前記第1の励磁コイルと対向するように配設された第2の励磁コイルと、前記第1の励磁コイルに供給する励磁電流と第2の励磁コイルに供給する励磁電流の位相差および励磁角周波数を切り替えながら、前記第1の励磁コイルと第2の励磁コイルに複数の励磁角周波数を同時に与える励磁電流を供給する電源部とからなることを特徴とする電磁流量計。
The electromagnetic flowmeter according to claim 1,
The excitation section includes a first excitation coil disposed at a position away from a first plane perpendicular to the axial direction of the measurement tube, including the electrode, with a first offset, and the first excitation coil A second excitation coil disposed at a position away from the plane by providing a second offset so as to face the first excitation coil across the first plane; and the first excitation coil An excitation current that simultaneously gives a plurality of excitation angular frequencies to the first excitation coil and the second excitation coil while switching the phase difference and excitation angular frequency of the excitation current supplied to the second excitation coil and the excitation current supplied to the second excitation coil An electromagnetic flow meter comprising: a power supply unit that supplies electric power.
請求項6記載の電磁流量計において、
前記電源部は、角周波数ω0±Δωの異なる2つの励磁角周波数を同時に与える励磁電流を前記第1の励磁コイルと第2の励磁コイルに供給する励磁状態と、角周波数ω2±Δωの異なる2つの励磁角周波数を同時に与える励磁電流を前記第1の励磁コイルと第2の励磁コイルに供給する励磁状態とを切り換えながら前記励磁コイルに励磁電流を供給し、
前記スパン補正部は、前記第1の励磁コイルにより発生する第1の磁場と前記第2の励磁コイルにより発生する第2の磁場との位相差がΔθ9で、励磁角周波数がω0±Δωの第1の励磁状態と、この第1の励磁状態に対して前記第1の磁場と第2の磁場との位相差をΔθ9+πに変更した第2の励磁状態と、前記第1の励磁状態に対して励磁角周波数をω2±Δωに変更した第3の励磁状態と、この第3の励磁状態に対して前記第1の磁場と第2の磁場との位相差をΔθ9+πに変更した第4の励磁状態の4つの励磁状態の各々において前記電極で検出される合成起電力の振幅と位相を求め、これらの振幅と位相に基づいて前記第2の励磁状態の合成起電力の角周波数ω0+Δωの成分と角周波数ω0−Δωの成分との起電力和を前記第1の∂A/∂t成分として抽出すると共に、前記第4の励磁状態の合成起電力の角周波数ω2+Δωの成分と角周波数ω2−Δωの成分との起電力和を前記第2の∂A/∂t成分として抽出し、前記第1の励磁状態の合成起電力の角周波数ω0+Δωの成分と角周波数ω0−Δωの成分との起電力和を第1の補正対象起電力として、前記抽出した第1の∂A/∂t成分に基づいて前記第1の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去すると共に、前記第3の励磁状態の合成起電力の角周波数ω2+Δωの成分と角周波数ω2−Δωの成分との起電力和を第2の補正対象起電力として、前記抽出した第2の∂A/∂t成分に基づいて前記第2の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去するスパン補正を行い、
前記0点補正部は、前記スパン補正された第1の補正対象起電力と前記スパン補正された第2の補正対象起電力との差を前記第3の∂A/∂t成分として抽出し、このスパン補正された2つの補正対象起電力のうちいずれか1つの中から、前記抽出した第3の∂A/∂t成分を取り除くことによりv×B成分を抽出することを特徴とする電磁流量計。
The electromagnetic flow meter according to claim 6, wherein
The power supply unit supplies an excitation current that simultaneously supplies two excitation angular frequencies having different angular frequencies ω0 ± Δω to the first excitation coil and the second excitation coil, and two different angular frequencies ω2 ± Δω. Supplying an excitation current to the excitation coil while switching between excitation states for supplying the excitation current to the first excitation coil and the second excitation coil at the same time.
The span correction unit has a first phase difference between the first magnetic field generated by the first excitation coil and the second magnetic field generated by the second excitation coil by Δθ9 and an excitation angular frequency of ω0 ± Δω. 1 excitation state, a second excitation state in which the phase difference between the first magnetic field and the second magnetic field is changed to Δθ9 + π with respect to the first excitation state, and the first excitation state. A third excitation state in which the excitation angular frequency is changed to ω2 ± Δω, and a fourth excitation state in which the phase difference between the first magnetic field and the second magnetic field is changed to Δθ9 + π with respect to the third excitation state. The amplitude and phase of the composite electromotive force detected by the electrode in each of the four excitation states are obtained, and the component and angle of the angular frequency ω0 + Δω of the composite electromotive force in the second excitation state are determined based on these amplitudes and phases. The electromotive force sum with the component of the frequency ω0−Δω is the first ∂A / ∂t And the sum of electromotive forces of the component of angular frequency ω2 + Δω and the component of angular frequency ω2-Δω of the synthetic electromotive force in the fourth excitation state is extracted as the second ∂A / ∂t component, The extracted first ∂A / ∂t component using the sum of electromotive forces of the component of angular frequency ω0 + Δω and the component of angular frequency ω0-Δω of the composite electromotive force in the first excitation state as the first correction target electromotive force. Based on this, the variation factor of the span included in the v × B component in the first correction target electromotive force is removed, and the angular frequency ω2 + Δω component and the angular frequency ω2 of the composite electromotive force in the third excitation state are removed. A sum of electromotive forces with a component of -Δω is set as a second correction target electromotive force, and a v × B component in the second correction target electromotive force is calculated based on the extracted second ∂A / ∂t component. Perform span correction to remove the included span fluctuation factors,
The zero point correction unit extracts a difference between the first correction target electromotive force subjected to the span correction and the second correction target electromotive force subjected to the span correction as the third ∂A / ∂t component, An electromagnetic flow rate characterized in that a v × B component is extracted by removing the extracted third ∂A / ∂t component from any one of the two corrected electromotive forces subjected to span correction Total.
請求項1記載の電磁流量計において、
前記励磁部は、前記電極を含む、前記測定管の軸方向と垂直な第1の平面から第1のオフセットを設けて離れた位置に配設された第1の励磁コイルと、前記第1の平面から第2のオフセットを設けて離れた位置に、前記第1の平面を挟んで前記第1の励磁コイルと対向するように配設された第2の励磁コイルと、前記第1の励磁コイルと第2の励磁コイルに複数の励磁角周波数を同時又は交互に与える励磁電流を供給する電源部とからなることを特徴とする電磁流量計。
The electromagnetic flowmeter according to claim 1,
The excitation section includes a first excitation coil disposed at a position away from a first plane perpendicular to the axial direction of the measurement tube, including the electrode, with a first offset, and the first excitation coil A second excitation coil disposed at a position away from the plane by providing a second offset so as to face the first excitation coil across the first plane; and the first excitation coil And a power supply unit that supplies an excitation current that simultaneously or alternately gives a plurality of excitation angular frequencies to the second excitation coil.
請求項8記載の電磁流量計において、
前記電源部は、複数の周波数の搬送波をこの搬送波と異なる周波数の変調波によって変調した複数の成分を同時又は交互に与える励磁電流を前記第1の励磁コイルと第2の励磁コイルに供給することを特徴とする電磁流量計。
The electromagnetic flow meter according to claim 8,
The power supply unit supplies an excitation current that simultaneously or alternately supplies a plurality of components obtained by modulating a plurality of carrier waves with a frequency different from that of the carrier waves to the first excitation coil and the second excitation coil. An electromagnetic flow meter characterized by
請求項9記載の電磁流量計において、
前記電源部は、角周波数ω0の搬送波を角周波数ω1の変調波によって振幅変調した第1の励磁電流を前記第1の励磁コイルに供給すると同時に、前記角周波数ω0の搬送波を前記第1の励磁電流の変調波に対して同一角周波数で逆位相の変調波によって振幅変調した第2の励磁電流を前記第2の励磁コイルに供給する第1の励磁状態と、角周波数ω2の搬送波を角周波数ω1の変調波によって振幅変調した第3の励磁電流を前記第1の励磁コイルに供給すると同時に、前記角周波数ω2の搬送波を前記第3の励磁電流の変調波に対して同一角周波数で逆位相の変調波によって振幅変調した第4の励磁電流を前記第2の励磁コイルに供給する第2の励磁状態とを切り換えながら、前記第1の励磁コイルと第2の励磁コイルに励磁電流を供給し、
前記スパン補正部は、前記第1の励磁状態と第2の励磁状態の各々において前記電極で検出される合成起電力の振幅と位相を求め、これらの振幅と位相に基づいて前記第1の励磁状態の合成起電力の角周波数ω0+ω1の成分と角周波数ω0−ω1の成分との起電力和を前記第1の∂A/∂t成分として抽出すると共に、前記第2の励磁状態の合成起電力の角周波数ω2+ω1の成分と角周波数ω2−ω1の成分との起電力和を前記第2の∂A/∂t成分として抽出し、前記第1の励磁状態の合成起電力の角周波数ω0の成分を第1の補正対象起電力として、前記抽出した第1の∂A/∂t成分に基づいて前記第1の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去すると共に、前記第2の励磁状態の合成起電力の角周波数ω2の成分を第2の補正対象起電力として、前記抽出した第2の∂A/∂t成分に基づいて前記第2の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去するスパン補正を行い、
前記0点補正部は、前記スパン補正された第1の補正対象起電力と前記スパン補正された第2の補正対象起電力との差を前記第3の∂A/∂t成分として抽出し、このスパン補正された2つの補正対象起電力のうちいずれか1つの中から、前記抽出した第3の∂A/∂t成分を取り除くことによりv×B成分を抽出することを特徴とする電磁流量計。
The electromagnetic flow meter according to claim 9, wherein
The power supply unit supplies a first excitation current obtained by amplitude-modulating a carrier wave having an angular frequency ω0 with a modulated wave having an angular frequency ω1 to the first excitation coil, and simultaneously, a carrier wave having the angular frequency ω0 is supplied to the first excitation coil. A first excitation state in which a second excitation current amplitude-modulated by a modulation wave having the same angular frequency and an opposite phase with respect to the modulation wave of the current is supplied to the second excitation coil, and a carrier wave having an angular frequency ω2 is an angular frequency. A third exciting current amplitude-modulated by the modulated wave of ω1 is supplied to the first exciting coil, and at the same time, the carrier wave of the angular frequency ω2 is opposite in phase to the modulated wave of the third exciting current at the same angular frequency. The excitation current is supplied to the first excitation coil and the second excitation coil while switching between the second excitation state in which the fourth excitation current amplitude-modulated by the modulated wave is supplied to the second excitation coil. ,
The span correction unit obtains an amplitude and a phase of a composite electromotive force detected by the electrode in each of the first excitation state and the second excitation state, and the first excitation based on these amplitudes and phases. The sum of electromotive forces of the component of the angular frequency ω0 + ω1 and the component of the angular frequency ω0−ω1 of the combined electromotive force in the state is extracted as the first ∂A / ∂t component, and the combined electromotive force in the second excitation state The sum of electromotive forces of the component of the angular frequency ω2 + ω1 and the component of the angular frequency ω2-ω1 is extracted as the second ∂A / ∂t component, and the component of the angular frequency ω0 of the composite electromotive force in the first excited state is extracted. Is used as the first correction target electromotive force, and the variation factor of the span included in the v × B component in the first correction target electromotive force is removed based on the extracted first ∂A / ∂t component. In addition, the angular frequency ω2 of the composite electromotive force in the second excitation state is Using the component as the second correction target electromotive force, the variation factor of the span included in the v × B component in the second correction target electromotive force is removed based on the extracted second ∂A / ∂t component Perform span correction to
The zero point correction unit extracts a difference between the first correction target electromotive force subjected to the span correction and the second correction target electromotive force subjected to the span correction as the third ∂A / ∂t component, An electromagnetic flow rate characterized in that a v × B component is extracted by removing the extracted third ∂A / ∂t component from any one of the two corrected electromotive forces subjected to span correction Total.
請求項9記載の電磁流量計において、
前記電源部は、角周波数ω0の搬送波を角周波数ω1の変調波によって振幅変調した第1の励磁電流を前記第1の励磁コイルに供給すると同時に、前記角周波数ω0の搬送波を前記第1の励磁電流の変調波に対して同一角周波数で逆位相の変調波によって振幅変調した第2の励磁電流を前記第2の励磁コイルに供給する第1の励磁状態と、角周波数ω2の搬送波を角周波数ω1の変調波によって振幅変調した第3の励磁電流を前記第1の励磁コイルに供給すると同時に、前記角周波数ω2の搬送波を前記第3の励磁電流の変調波に対して同一角周波数で逆位相の変調波によって振幅変調した第4の励磁電流を前記第2の励磁コイルに供給する第2の励磁状態とを切り換えながら、前記第1の励磁コイルと第2の励磁コイルに励磁電流を供給し、
前記スパン補正部は、前記第1の励磁状態と第2の励磁状態の各々において前記電極で検出される合成起電力の振幅と位相を求め、これらの振幅と位相に基づいて前記第1の励磁状態の合成起電力の角周波数ω0の成分を前記第1の∂A/∂t成分として抽出すると共に、前記第2の励磁状態の合成起電力の角周波数ω2の成分を前記第2の∂A/∂t成分として抽出し、前記第1の励磁状態の合成起電力の角周波数ω0+ω1の成分と角周波数ω0−ω1の成分との起電力和を第1の補正対象起電力として、前記抽出した第1の∂A/∂t成分に基づいて前記第1の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去すると共に、前記第2の励磁状態の合成起電力の角周波数ω2+ω1の成分と角周波数ω2−ω1の成分との起電力和を第2の補正対象起電力として、前記抽出した第2の∂A/∂t成分に基づいて前記第2の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去するスパン補正を行い、
前記0点補正部は、前記スパン補正された第1の補正対象起電力と前記スパン補正された第2の補正対象起電力との差を前記第3の∂A/∂t成分として抽出し、このスパン補正された2つの補正対象起電力のうちいずれか1つの中から、前記抽出した第3の∂A/∂t成分を取り除くことによりv×B成分を抽出することを特徴とする電磁流量計。
The electromagnetic flow meter according to claim 9, wherein
The power supply unit supplies a first excitation current obtained by amplitude-modulating a carrier wave having an angular frequency ω0 with a modulated wave having an angular frequency ω1 to the first excitation coil, and simultaneously, a carrier wave having the angular frequency ω0 is supplied to the first excitation coil. A first excitation state in which a second excitation current amplitude-modulated by a modulated wave having the same angular frequency and an opposite phase with respect to a modulated wave of current is supplied to the second exciting coil, and a carrier wave having an angular frequency ω2 is angular frequency. A third exciting current amplitude-modulated by the modulated wave of ω1 is supplied to the first exciting coil, and at the same time, the carrier wave of the angular frequency ω2 is opposite in phase to the modulated wave of the third exciting current at the same angular frequency. The excitation current is supplied to the first excitation coil and the second excitation coil while switching between the second excitation state in which the fourth excitation current amplitude-modulated by the modulated wave is supplied to the second excitation coil. ,
The span correction unit obtains an amplitude and a phase of a composite electromotive force detected by the electrode in each of the first excitation state and the second excitation state, and the first excitation based on these amplitudes and phases. The component of the angular frequency ω0 of the combined electromotive force in the state is extracted as the first ∂A / ∂t component, and the component of the angular frequency ω2 of the synthetic electromotive force in the second excitation state is extracted as the second ∂A. /? T component, and the extracted electromotive force sum of the component of the angular frequency ω0 + ω1 and the component of the angular frequency ω0-ω1 of the composite electromotive force in the first excitation state is extracted as the first correction target electromotive force. Based on the first ∂A / ∂t component, the variation factor of the span included in the v × B component in the first correction target electromotive force is removed, and the combined electromotive force in the second excitation state is removed. Electromotive force between the component of angular frequency ω2 + ω1 and the component of angular frequency ω2-ω1 Using the sum of the forces as the second correction target electromotive force, the variation factor of the span included in the v × B component in the second correction target electromotive force based on the extracted second ∂A / ∂t component Perform span correction to be removed,
The zero point correction unit extracts a difference between the first correction target electromotive force subjected to the span correction and the second correction target electromotive force subjected to the span correction as the third ∂A / ∂t component, An electromagnetic flow rate characterized in that a v × B component is extracted by removing the extracted third ∂A / ∂t component from any one of the two corrected electromotive forces subjected to span correction Total.
請求項9記載の電磁流量計において、
前記電源部は、角周波数ω0の搬送波を角周波数ω1の変調波によって位相変調又は周波数変調した第1の励磁電流を前記第1の励磁コイルに供給すると同時に、前記角周波数ω0の搬送波を前記第1の励磁電流の変調波に対して同一角周波数で逆位相の変調波によって位相変調又は周波数変調した第2の励磁電流を前記第2の励磁コイルに供給する第1の励磁状態と、角周波数ω2の搬送波を角周波数ω1の変調波によって位相変調又は周波数変調した第3の励磁電流を前記第1の励磁コイルに供給すると同時に、前記角周波数ω2の搬送波を前記第3の励磁電流の変調波に対して同一角周波数で逆位相の変調波によって位相変調又は周波数変調した第4の励磁電流を前記第2の励磁コイルに供給する第2の励磁状態とを切り換えながら、前記第1の励磁コイルと第2の励磁コイルに励磁電流を供給し、
前記スパン補正部は、前記第1の励磁状態と第2の励磁状態の各々において前記電極で検出される合成起電力の振幅と位相を求め、これらの振幅と位相に基づいて前記第1の励磁状態の合成起電力の角周波数ω0+ζ1・ω1(ζ1は正の整数)の成分と角周波数ω0−ζ1・ω1の成分との起電力和を前記第1の∂A/∂t成分として抽出すると共に、前記第2の励磁状態の合成起電力の角周波数ω2+ζ2・ω1(ζ2は正の整数)の成分と角周波数ω2−ζ2・ω1の成分との起電力和を前記第2の∂A/∂t成分として抽出し、前記第1の励磁状態の合成起電力の角周波数ω0の成分を第1の補正対象起電力として、前記抽出した第1の∂A/∂t成分に基づいて前記第1の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去すると共に、前記第2の励磁状態の合成起電力の角周波数ω2の成分を第2の補正対象起電力として、前記抽出した第2の∂A/∂t成分に基づいて前記第2の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去するスパン補正を行い、
前記0点補正部は、前記スパン補正された第1の補正対象起電力と前記スパン補正された第2の補正対象起電力との差を前記第3の∂A/∂t成分として抽出し、このスパン補正された2つの補正対象起電力のうちいずれか1つの中から、前記抽出した第3の∂A/∂t成分を取り除くことによりv×B成分を抽出することを特徴とする電磁流量計。
The electromagnetic flow meter according to claim 9, wherein
The power supply unit supplies a first excitation current obtained by phase-modulating or frequency-modulating a carrier wave having an angular frequency ω0 with a modulated wave having an angular frequency ω1 to the first excitation coil, and simultaneously supplying the carrier wave having the angular frequency ω0 to the first excitation coil. A first excitation state in which a second excitation current phase-modulated or frequency-modulated with a modulation wave of the same angular frequency and opposite phase with respect to the modulation wave of one excitation current is supplied to the second excitation coil; A third excitation current obtained by phase-modulating or frequency-modulating a carrier wave of ω2 with a modulated wave of angular frequency ω1 is supplied to the first excitation coil, and at the same time, a carrier wave of angular frequency ω2 is modulated by the third excitation current. While switching between a second excitation state in which a fourth excitation current phase-modulated or frequency-modulated with a modulated wave having the same angular frequency and opposite phase is supplied to the second excitation coil, The exciting current is supplied to the first exciting coil and the second exciting coil,
The span correction unit obtains an amplitude and a phase of a composite electromotive force detected by the electrode in each of the first excitation state and the second excitation state, and the first excitation based on these amplitudes and phases. The sum of electromotive forces of the component of the angular frequency ω0 + ζ1 · ω1 (ζ1 is a positive integer) and the component of the angular frequency ω0−ζ1 · ω1 of the combined electromotive force in the state is extracted as the first ∂A / ∂t component. , The sum of electromotive forces of the component of the angular frequency ω2 + ζ2 · ω1 (ζ2 is a positive integer) and the component of the angular frequency ω2−ζ2 · ω1 of the combined electromotive force in the second excitation state is the second ∂A / ∂. Extracted as a t component, and a component of the angular frequency ω0 of the composite electromotive force in the first excitation state is used as a first correction target electromotive force, based on the extracted first ∂A / ∂t component. Of span variation included in the v × B component of the correction target electromotive force And the second correction target based on the extracted second ∂A / ∂t component with the component of the angular frequency ω2 of the composite electromotive force in the second excitation state as the second correction target electromotive force. Perform span correction to remove the span variation factor included in the v × B component of the electromotive force,
The zero point correction unit extracts a difference between the first correction target electromotive force subjected to the span correction and the second correction target electromotive force subjected to the span correction as the third ∂A / ∂t component, An electromagnetic flow rate characterized in that a v × B component is extracted by removing the extracted third ∂A / ∂t component from any one of the two corrected electromotive forces subjected to span correction Total.
請求項9記載の電磁流量計において、
前記電源部は、角周波数ω0の搬送波を角周波数ω1の変調波によって位相変調又は周波数変調した第1の励磁電流を前記第1の励磁コイルに供給すると同時に、前記角周波数ω0の搬送波を前記第1の励磁電流の変調波に対して同一角周波数で逆位相の変調波によって位相変調又は周波数変調した第2の励磁電流を前記第2の励磁コイルに供給する第1の励磁状態と、角周波数ω2の搬送波を角周波数ω1の変調波によって位相変調又は周波数変調した第3の励磁電流を前記第1の励磁コイルに供給すると同時に、前記角周波数ω2の搬送波を前記第3の励磁電流の変調波に対して同一角周波数で逆位相の変調波によって位相変調又は周波数変調した第4の励磁電流を前記第2の励磁コイルに供給する第2の励磁状態とを切り換えながら、前記第1の励磁コイルと第2の励磁コイルに励磁電流を供給し、
前記スパン補正部は、前記第1の励磁状態と第2の励磁状態の各々において前記電極で検出される合成起電力の振幅と位相を求め、これらの振幅と位相に基づいて前記第1の励磁状態の合成起電力の角周波数ω0の成分を前記第1の∂A/∂t成分として抽出すると共に、前記第2の励磁状態の合成起電力の角周波数ω2の成分を前記第2の∂A/∂t成分として抽出し、前記第1の励磁状態の合成起電力の角周波数ω0+ζ1・ω1(ζ1は正の整数)の成分と角周波数ω0−ζ1・ω1の成分との起電力和を第1の補正対象起電力として、前記抽出した第1の∂A/∂t成分に基づいて前記第1の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去すると共に、前記第2の励磁状態の合成起電力の角周波数ω2+ζ2・ω1(ζ2は正の整数)の成分と角周波数ω2−ζ2・ω1の成分との起電力和を第2の補正対象起電力として、前記抽出した第2の∂A/∂t成分に基づいて前記第2の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去するスパン補正を行い、
前記0点補正部は、前記スパン補正された第1の補正対象起電力と前記スパン補正された第2の補正対象起電力との差を前記第3の∂A/∂t成分として抽出し、このスパン補正された2つの補正対象起電力のうちいずれか1つの中から、前記抽出した第3の∂A/∂t成分を取り除くことによりv×B成分を抽出することを特徴とする電磁流量計。
The electromagnetic flow meter according to claim 9, wherein
The power supply unit supplies a first excitation current obtained by phase-modulating or frequency-modulating a carrier wave having an angular frequency ω0 with a modulated wave having an angular frequency ω1 to the first excitation coil, and simultaneously supplying the carrier wave having the angular frequency ω0 to the first excitation coil. A first excitation state in which a second excitation current phase-modulated or frequency-modulated with a modulation wave of the same angular frequency and opposite phase with respect to the modulation wave of one excitation current is supplied to the second excitation coil; A third excitation current obtained by phase-modulating or frequency-modulating a carrier wave of ω2 with a modulated wave of angular frequency ω1 is supplied to the first excitation coil, and at the same time, a carrier wave of angular frequency ω2 is modulated by the third excitation current. While switching between a second excitation state in which a fourth excitation current phase-modulated or frequency-modulated with a modulated wave having the same angular frequency and opposite phase is supplied to the second excitation coil, The exciting current is supplied to the first exciting coil and the second exciting coil,
The span correction unit obtains an amplitude and a phase of a composite electromotive force detected by the electrode in each of the first excitation state and the second excitation state, and the first excitation based on these amplitudes and phases. The component of the angular frequency ω0 of the combined electromotive force in the state is extracted as the first ∂A / ∂t component, and the component of the angular frequency ω2 of the synthetic electromotive force in the second excitation state is extracted as the second ∂A. /? T component, and the electromotive force sum of the component of the angular frequency ω0 + ζ1 · ω1 (ζ1 is a positive integer) and the component of the angular frequency ω0−ζ1 · ω1 of the composite electromotive force in the first excitation state As a correction target electromotive force of 1, the variation factor of the span included in the v × B component in the first correction target electromotive force is removed based on the extracted first ∂A / ∂t component, and Angular frequency ω2 + ζ2 · ω1 (ζ2 of the synthetic electromotive force in the second excitation state Is a positive integer) and the sum of electromotive forces of the components of the angular frequency ω2-ζ2 · ω1 as a second correction target electromotive force, based on the extracted second ∂A / ∂t component, Perform span correction to remove the span variation factor included in the v × B component of the correction target electromotive force of
The zero point correction unit extracts a difference between the first correction target electromotive force subjected to the span correction and the second correction target electromotive force subjected to the span correction as the third ∂A / ∂t component, An electromagnetic flow rate characterized in that a v × B component is extracted by removing the extracted third ∂A / ∂t component from any one of the two corrected electromotive forces subjected to span correction Total.
請求項1記載の電磁流量計において、
前記励磁部は、前記流体に磁場を印加する励磁コイルと、この励磁コイルに励磁角周波数を切り替えながら励磁電流を供給する電源部とからなり、
前記電極は、前記励磁コイルの軸を含む、前記測定管の軸方向と垂直な第2の平面から第1のオフセットを設けて離れた位置に配設された第1の電極と、前記第2の平面から第2のオフセットを設けて離れた位置に、前記第2の平面を挟んで前記第1の電極と対向するように配設された第2の電極とからなることを特徴とする電磁流量計。
The electromagnetic flowmeter according to claim 1,
The excitation unit includes an excitation coil that applies a magnetic field to the fluid, and a power supply unit that supplies an excitation current while switching the excitation angular frequency to the excitation coil.
The electrode includes a first electrode disposed at a position spaced apart from a second plane perpendicular to the axial direction of the measurement tube, including the axis of the excitation coil, and the second electrode. And a second electrode disposed so as to face the first electrode across the second plane at a position away from the plane by providing a second offset. Flowmeter.
請求項14記載の電磁流量計において、
前記電源部は、角周波数ω0の励磁電流を前記励磁コイルに供給する第1の励磁状態と、角周波数ω2の励磁電流を前記励磁コイルに供給する第2の励磁状態とを切り換えながら前記励磁コイルに励磁電流を供給し、
前記スパン補正部は、前記第1の励磁状態と第2の励磁状態の各々において前記第1の電極で検出される第1の合成起電力と前記第2の電極で検出される第2の合成起電力の振幅と位相を求め、これらの振幅と位相に基づいて前記第1の合成起電力と前記第2の合成起電力の同一励磁状態の起電力和および同一励磁状態の起電力差を前記第1の励磁状態と第2の励磁状態の各々について求め、前記第1の励磁状態の起電力差を前記第1の∂A/∂t成分として抽出すると共に、前記第2の励磁状態の起電力差を前記第2の∂A/∂t成分として抽出し、前記第1の励磁状態の起電力和を第1の補正対象起電力として、前記抽出した第1の∂A/∂t成分に基づいて前記第1の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去すると共に、前記第2の励磁状態の起電力和を第2の補正対象起電力として、前記抽出した第2の∂A/∂t成分に基づいて前記第2の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去するスパン補正を行い、
前記0点補正部は、前記スパン補正された第1の補正対象起電力と前記スパン補正された第2の補正対象起電力との差を前記第3の∂A/∂t成分として抽出し、このスパン補正された2つの補正対象起電力のうちいずれか1つの中から、前記抽出した第3の∂A/∂t成分を取り除くことによりv×B成分を抽出することを特徴とする電磁流量計。
The electromagnetic flow meter according to claim 14, wherein
The power supply unit switches the excitation coil while switching between a first excitation state in which an excitation current having an angular frequency ω0 is supplied to the excitation coil and a second excitation state in which an excitation current having an angular frequency ω2 is supplied to the excitation coil. Supply excitation current to
The span correction unit includes a first composite electromotive force detected by the first electrode and a second composite detected by the second electrode in each of the first excitation state and the second excitation state. The amplitude and phase of the electromotive force are obtained, and based on these amplitude and phase, the sum of the electromotive forces in the same excitation state and the electromotive force difference in the same excitation state of the first combined electromotive force and the second combined electromotive force are calculated. Each of the first excitation state and the second excitation state is obtained, the electromotive force difference between the first excitation states is extracted as the first ∂A / ∂t component, and the second excitation state is started. The power difference is extracted as the second ∂A / ∂t component, and the sum of electromotive forces in the first excitation state is used as the first correction target electromotive force to the extracted first ∂A / ∂t component. Based on this, the variation factor of the span included in the v × B component in the first correction target electromotive force is removed. In addition, the sum of electromotive forces in the second excitation state is set as a second correction target electromotive force, and v in the second correction target electromotive force based on the extracted second ∂A / ∂t component. X Perform span correction to remove the span fluctuation factor included in the B component,
The zero point correction unit extracts a difference between the first correction target electromotive force subjected to the span correction and the second correction target electromotive force subjected to the span correction as the third ∂A / ∂t component, An electromagnetic flow rate characterized in that a v × B component is extracted by removing the extracted third ∂A / ∂t component from any one of the two corrected electromotive forces subjected to span correction Total.
請求項1記載の電磁流量計において、
前記励磁部は、前記流体に磁場を印加する励磁コイルと、複数の励磁角周波数を同時に与える励磁電流を前記励磁コイルに供給する電源部とからなり、
前記電極は、前記励磁コイルの軸を含む、前記測定管の軸方向と垂直な第2の平面から第1のオフセットを設けて離れた位置に配設された第1の電極と、前記第2の平面から第2のオフセットを設けて離れた位置に、前記第2の平面を挟んで前記第1の電極と対向するように配設された第2の電極とからなることを特徴とする電磁流量計。
The electromagnetic flowmeter according to claim 1,
The excitation unit includes an excitation coil that applies a magnetic field to the fluid, and a power supply unit that supplies an excitation current that simultaneously provides a plurality of excitation angular frequencies to the excitation coil.
The electrode includes a first electrode disposed at a position spaced apart from a second plane perpendicular to the axial direction of the measurement tube, including the axis of the excitation coil, and the second electrode. And a second electrode disposed so as to face the first electrode across the second plane at a position away from the plane by providing a second offset. Flowmeter.
請求項16記載の電磁流量計において、
前記電源部は、角周波数ω0とω2の異なる2つの励磁角周波数を同時に与える励磁電流を前記励磁コイルに供給し、
前記スパン補正部は、前記第1の電極で検出される第1の合成起電力と前記第2の電極で検出される第2の合成起電力の振幅と位相を求め、これらの振幅と位相に基づいて前記第1の合成起電力と第2の合成起電力の同一周波数成分の起電力和および同一周波数成分の起電力差を角周波数ω0とω2の各々について求め、前記角周波数ω0の起電力差を前記第1の∂A/∂t成分として抽出すると共に、前記角周波数ω2の起電力差を前記第2の∂A/∂t成分として抽出し、前記角周波数ω0の起電力和を第1の補正対象起電力として、前記抽出した第1の∂A/∂t成分に基づいて前記第1の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去すると共に、前記角周波数ω2の起電力和を第2の補正対象起電力として、前記抽出した第2の∂A/∂t成分に基づいて前記第2の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去するスパン補正を行い、
前記0点補正部は、前記スパン補正された第1の補正対象起電力と前記スパン補正された第2の補正対象起電力との差を前記第3の∂A/∂t成分として抽出し、このスパン補正された2つの補正対象起電力のうちいずれか1つの中から、前記抽出した第3の∂A/∂t成分を取り除くことによりv×B成分を抽出することを特徴とする電磁流量計。
The electromagnetic flow meter according to claim 16, wherein
The power supply unit supplies an excitation current that simultaneously gives two excitation angular frequencies having different angular frequencies ω0 and ω2 to the excitation coil,
The span correction unit obtains the amplitude and phase of the first combined electromotive force detected by the first electrode and the second combined electromotive force detected by the second electrode, and uses these amplitudes and phases. Based on each of the angular frequencies ω 0 and ω 2, an electromotive force sum of the same frequency components and an electromotive force difference of the same frequency components of the first combined electromotive force and the second combined electromotive force are obtained for each of the angular frequencies ω 0 and ω 2. The difference is extracted as the first ∂A / ∂t component, the electromotive force difference at the angular frequency ω2 is extracted as the second ∂A / ∂t component, and the electromotive force sum of the angular frequency ω0 is As a correction target electromotive force of 1, the variation factor of the span included in the v × B component in the first correction target electromotive force is removed based on the extracted first ∂A / ∂t component, and The sum of electromotive forces of the angular frequency ω2 as a second correction target electromotive force, Perform span correction to eliminate variable factors of the span included in the v × B component in said second correction target electromotive force based on the second ∂A / ∂t component out,
The zero point correction unit extracts a difference between the first correction target electromotive force subjected to the span correction and the second correction target electromotive force subjected to the span correction as the third ∂A / ∂t component, An electromagnetic flow rate characterized in that a v × B component is extracted by removing the extracted third ∂A / ∂t component from any one of the two corrected electromotive forces subjected to span correction Total.
請求項14記載の電磁流量計において、
前記電源部は、異なる2つの励磁角周波数を同時に与える励磁電流を前記励磁コイルに供給することを特徴とする電磁流量計。
The electromagnetic flow meter according to claim 14, wherein
The electromagnetic power meter, wherein the power supply unit supplies an excitation current that simultaneously gives two different excitation angular frequencies to the excitation coil.
請求項18記載の電磁流量計において、
前記電源部は、角周波数ω0±Δωの異なる2つの励磁角周波数を同時に与える励磁電流を前記励磁コイルに供給する第1の励磁状態と、角周波数ω2±Δωの異なる2つの励磁角周波数を同時に与える励磁電流を前記励磁コイルに供給する第2の励磁状態とを切り換えながら前記励磁コイルに励磁電流を供給し、
前記スパン補正部は、前記第1の励磁状態と第2の励磁状態の各々において前記第1の電極で検出される第1の合成起電力と前記第2の電極で検出される第2の合成起電力の振幅と位相を求め、これらの振幅と位相に基づいて前記第1の合成起電力と第2の合成起電力の同一周波数成分の起電力和および同一周波数成分の起電力差を、前記第1の励磁状態の角周波数ω0±Δωと前記第2の励磁状態の角周波数ω2±Δωの各々について求め、前記第1の励磁状態の角周波数ω0+Δωの起電力差と角周波数ω0−Δωの起電力差との和を前記第1の∂A/∂t成分として抽出すると共に、前記第2の励磁状態の角周波数ω2+Δωの起電力差と角周波数ω2−Δωの起電力差との和を前記第2の∂A/∂t成分として抽出し、前記第1の励磁状態の角周波数ω0+Δωの起電力和と角周波数ω0−Δωの起電力和との和を第1の補正対象起電力として、前記抽出した第1の∂A/∂t成分に基づいて前記第1の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去すると共に、前記第2の励磁状態の角周波数ω2+Δωの起電力和と角周波数ω2−Δωの起電力和との和を第2の補正対象起電力として、前記抽出した第2の∂A/∂t成分に基づいて前記第2の補正対象起電力の中のv×B成分に含まれるスパンの変動要因を除去するスパン補正を行い、
前記0点補正部は、前記スパン補正された第1の補正対象起電力と前記スパン補正された第2の補正対象起電力との差を前記第3の∂A/∂t成分として抽出し、このスパン補正された2つの補正対象起電力のうちいずれか1つの中から、前記抽出した第3の∂A/∂t成分を取り除くことによりv×B成分を抽出することを特徴とする電磁流量計。
The electromagnetic flow meter according to claim 18,
The power supply unit simultaneously performs a first excitation state in which excitation currents that simultaneously provide two excitation angular frequencies having different angular frequencies ω0 ± Δω are supplied to the excitation coil, and two excitation angular frequencies having different angular frequencies ω2 ± Δω. Supplying an excitation current to the excitation coil while switching between a second excitation state in which the excitation current to be supplied is supplied to the excitation coil;
The span correction unit includes a first composite electromotive force detected by the first electrode and a second composite detected by the second electrode in each of the first excitation state and the second excitation state. The amplitude and phase of the electromotive force are obtained, and based on these amplitude and phase, the sum of electromotive forces of the same frequency component and the electromotive force difference of the same frequency component of the first combined electromotive force and the second combined electromotive force are Each of the angular frequency ω0 ± Δω in the first excitation state and the angular frequency ω2 ± Δω in the second excitation state is obtained, and an electromotive force difference between the angular frequency ω0 + Δω in the first excitation state and the angular frequency ω0−Δω The sum of the electromotive force difference is extracted as the first ∂A / ∂t component, and the sum of the electromotive force difference at the angular frequency ω2 + Δω and the electromotive force difference at the angular frequency ω2-Δω in the second excitation state is calculated. Extracted as the second ∂A / ∂t component, and the angular frequency of the first excitation state The sum of the electromotive force sum of several ω0 + Δω and the sum of electromotive forces of the angular frequencies ω0−Δω is used as a first correction target electromotive force, and the first correction target is based on the extracted first ∂A / ∂t component. In addition to removing the span fluctuation factor included in the v × B component of the electromotive force, the sum of the electromotive force sum of the angular frequency ω2 + Δω and the electromotive force sum of the angular frequency ω2-Δω in the second excitation state is As the second correction target electromotive force, the span correction for removing the variation factor of the span included in the v × B component in the second correction target electromotive force based on the extracted second ∂A / ∂t component And
The zero point correction unit extracts a difference between the first correction target electromotive force subjected to the span correction and the second correction target electromotive force subjected to the span correction as the third ∂A / ∂t component, An electromagnetic flow rate characterized in that a v × B component is extracted by removing the extracted third ∂A / ∂t component from any one of the two corrected electromotive forces subjected to span correction Total.
請求項1記載の電磁流量計において、
前記励磁部は、前記流体に磁場を印加する励磁コイルと、複数の励磁角周波数を同時又は交互に与える励磁電流を前記励磁コイルに供給する電源部とからなり、
前記電極は、前記励磁コイルの軸を含む、前記測定管の軸方向と垂直な第2の平面から第1のオフセットを設けて離れた位置に配設された第1の電極と、前記第2の平面から第2のオフセットを設けて離れた位置に、前記第2の平面を挟んで前記第1の電極と対向するように配設された第2の電極とからなることを特徴とする電磁流量計。
The electromagnetic flowmeter according to claim 1,
The excitation unit includes an excitation coil that applies a magnetic field to the fluid and a power supply unit that supplies an excitation current that simultaneously or alternately provides a plurality of excitation angular frequencies to the excitation coil.
The electrode includes a first electrode disposed at a position spaced apart from a second plane perpendicular to the axial direction of the measurement tube, including the axis of the excitation coil, and the second electrode. And a second electrode disposed so as to face the first electrode across the second plane at a position away from the plane by providing a second offset. Flowmeter.
請求項20記載の電磁流量計において、
前記電源部は、複数の周波数の搬送波をこの搬送波と異なる周波数の変調波によって変調した複数の成分を同時又は交互に与える励磁電流を前記励磁コイルに供給することを特徴とする電磁流量計。
The electromagnetic flow meter according to claim 20, wherein
The said power supply part supplies the exciting current which gives the several component which modulated the several frequency carrier wave with the modulated wave of a different frequency from this carrier wave simultaneously or alternately to the said excitation coil, The electromagnetic flowmeter characterized by the above-mentioned.
JP2004241463A 2004-08-20 2004-08-20 Electromagnetic flow meter Expired - Fee Related JP4550523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004241463A JP4550523B2 (en) 2004-08-20 2004-08-20 Electromagnetic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004241463A JP4550523B2 (en) 2004-08-20 2004-08-20 Electromagnetic flow meter

Publications (2)

Publication Number Publication Date
JP2006058175A true JP2006058175A (en) 2006-03-02
JP4550523B2 JP4550523B2 (en) 2010-09-22

Family

ID=36105746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004241463A Expired - Fee Related JP4550523B2 (en) 2004-08-20 2004-08-20 Electromagnetic flow meter

Country Status (1)

Country Link
JP (1) JP4550523B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62194418A (en) * 1986-02-21 1987-08-26 Yokogawa Electric Corp Electromagnetic flowmeter
JPH05501916A (en) * 1989-09-26 1993-04-08 ザ フォックスボロ カンパニー Electromagnetic flowmeters and related improvements
WO2003027614A1 (en) * 2001-09-20 2003-04-03 Yamatake Corporation Electromagnetic flowmeter
JP2004108973A (en) * 2002-09-19 2004-04-08 Yamatake Corp Electromagnetic flowmeter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62194418A (en) * 1986-02-21 1987-08-26 Yokogawa Electric Corp Electromagnetic flowmeter
JPH05501916A (en) * 1989-09-26 1993-04-08 ザ フォックスボロ カンパニー Electromagnetic flowmeters and related improvements
WO2003027614A1 (en) * 2001-09-20 2003-04-03 Yamatake Corporation Electromagnetic flowmeter
JP2004108973A (en) * 2002-09-19 2004-04-08 Yamatake Corp Electromagnetic flowmeter

Also Published As

Publication number Publication date
JP4550523B2 (en) 2010-09-22

Similar Documents

Publication Publication Date Title
JP3756862B2 (en) Electromagnetic flow meter
JP4754932B2 (en) Electromagnetic flow meter
JP3774218B2 (en) Electromagnetic flow meter
US7496455B2 (en) Electromagnetic flowmeter
US20080028867A1 (en) State Detection Device
JP5385064B2 (en) Electromagnetic flow meter
US7426874B2 (en) Electromagnetic flowmeter with measuring tube
WO2005098373A1 (en) Electromagnetic flowmeter
US8037774B2 (en) State detection device
JP4550523B2 (en) Electromagnetic flow meter
JP5391000B2 (en) Electromagnetic flow meter
JP4555023B2 (en) Electromagnetic flow meter
JP4555024B2 (en) Electromagnetic flow meter
JP4550468B2 (en) Electromagnetic flow meter
JP4559186B2 (en) Electromagnetic flow meter
JPH0152700B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100708

R150 Certificate of patent or registration of utility model

Ref document number: 4550523

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140716

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees