JP2006058066A - Method for calculating surge propagation velocity in fault location system - Google Patents

Method for calculating surge propagation velocity in fault location system Download PDF

Info

Publication number
JP2006058066A
JP2006058066A JP2004238184A JP2004238184A JP2006058066A JP 2006058066 A JP2006058066 A JP 2006058066A JP 2004238184 A JP2004238184 A JP 2004238184A JP 2004238184 A JP2004238184 A JP 2004238184A JP 2006058066 A JP2006058066 A JP 2006058066A
Authority
JP
Japan
Prior art keywords
surge
slave stations
fault
slave
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004238184A
Other languages
Japanese (ja)
Other versions
JP4039576B2 (en
Inventor
Motofumi Kataide
基文 片出
Kazuhiro Kobayashi
和博 小林
Koji Fujii
恒治 藤井
Hisamasa Ohara
久征 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Saneisha Seisakusho KK
Original Assignee
Chugoku Electric Power Co Inc
Saneisha Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc, Saneisha Seisakusho KK filed Critical Chugoku Electric Power Co Inc
Priority to JP2004238184A priority Critical patent/JP4039576B2/en
Publication of JP2006058066A publication Critical patent/JP2006058066A/en
Application granted granted Critical
Publication of JP4039576B2 publication Critical patent/JP4039576B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Landscapes

  • Locating Faults (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To find a surge propagation velocity to be used for fault location with higher precision, and perform the location of a fault point with high precision. <P>SOLUTION: The surge propagation velocity for performing location of a fault point is calculated by executing processing consisting of a first step for selecting a plurality of pairs of combinations composed of each one pair of substations being in a relation of arrangement interposing a fault section between, and a second step for calculating surge arrival time at each substation from data on a surge waveform received from each substation, and calculating a surge propagation velocity at which the variations of located fault positions in each combination become minimum by data on surge arrival time at each substation in each selected combination and each length of transmission/distribution lines between the substations stored beforehand in a storage means. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、送配電線路の地絡などの故障発生時に故障点位置を標定するための故障点標定システムおけるサージ伝搬速度の算出方法に関するものである。   The present invention relates to a method for calculating a surge propagation speed in a failure point locating system for locating a failure point position when a failure such as a ground fault occurs in a transmission / distribution electric line.

従来、送配電線路に発生した地絡などの故障点を標定するシステムとして、サージ電流又はサージ電圧を検出する複数の子局を送配電線路に配置し、GPS(Global Positioning System)の時刻信号により同期を取った各子局においてサージ信号の到達時刻(以下、「サージ到達時刻」という。)を特定し、各子局で特定したサージ到達時刻を親局に送信し、親局において故障区間を挟む1対の子局におけるサージ到達時刻の差に基づき故障点を標定するようにしたものがある(例えば、特許文献1)。   Conventionally, as a system for locating fault points such as ground faults that occur in transmission and distribution lines, multiple slave stations that detect surge currents or surge voltages are placed in the transmission and distribution lines, and GPS (Global Positioning System) time signals are used. The surge signal arrival time (hereinafter referred to as “surge arrival time”) is specified in each synchronized slave station, and the surge arrival time specified in each slave station is transmitted to the master station. There is one in which a failure point is determined based on a difference in surge arrival time between a pair of slave stations sandwiched (for example, Patent Document 1).

特開2000−258487号公報(第5〜7頁、図1〜3)JP 2000-258487 A (pages 5 to 7, FIGS. 1 to 3)

故障点の標定演算を行うに際しては、サージ伝搬速度vが必須のパラメータとして必要になる。
従来、このサージ伝搬速度vとしては、当該送配電線路以外の地絡故障から得られたサージ伝搬速度を定数として設定して用いる方法、あるいは下記の特許文献2で提案されているように、故障点を挟まない1対の子局間の送配電線路長と当該子局におけるサージ到達時刻に基づいて算出したものを用いる方法がある。
When performing the fault point location calculation, the surge propagation speed v is required as an essential parameter.
Conventionally, as the surge propagation speed v, a method of using a surge propagation speed obtained from a ground fault other than the transmission / distribution line as a constant, or as proposed in the following Patent Document 2, There is a method of using the one calculated based on the transmission / distribution line length between a pair of slave stations that do not sandwich the point and the surge arrival time at the slave stations.

特開2001−133504号公報(図5)JP 2001-133504 A (FIG. 5)

しかしながら、特許文献2に提案されている方法にあっては、各所に配置される送配電機器の対地静電容量などの影響、送配電線路を進行すると共に減衰するサージ電圧またはサージ電流の高周波成分の影響などに起因し、1対の子局のいずれかが検出したサージ到達時刻に大きな誤差が含まれていた場合は、故障点標定結果に大きな誤差が生じてしまうという問題があった。   However, in the method proposed in Patent Document 2, the influence of the ground capacitance of power transmission / distribution equipment arranged in various places, the high-frequency component of the surge voltage or surge current that attenuates along the transmission / distribution line If a large error is included in the surge arrival time detected by one of the pair of slave stations due to the influence of the above, there is a problem that a large error occurs in the fault location result.

本発明の目的は、故障点標定に用いるサージ伝搬速度をさらに高精度で求めることができる故障点標定システムにおけるサージ伝搬速度の算出方法を提供することである。   An object of the present invention is to provide a method for calculating a surge propagation speed in a fault location system that can obtain a surge propagation speed used for fault location with higher accuracy.

上記の課題を解決するため、本発明は、送配電線路における事故発生時の零相電圧と零相電流の位相比較により事故方向を検出し、その検出結果とサージ波形を示すデータを親局に送信する複数の子局と、前記各子局から受信した事故方向のデータにより故障区間を特定し、該故障区間を挟む子局のサージ波形のデータに基づき故障点位置の標定を行う親局とから構成される故障点標定システムにおけるサージ伝搬速度の算出方法であって、
前記親局は、
前記故障区間を挟む配置関係にある1対の子局の組み合わせを複数対選定する第1のステップと、各子局から受信したサージ波形のデータにより各子局におけるサージ到達時刻を算出し、前記選定した各組み合わせにおける子局同士でのサージ到達時刻と前記記憶手段に予め記憶した当該子局間の送配電線路長のデータにより、各組み合わせにおける故障点標定位置のばらつきが最小になるサージ伝搬速度を算出する第2のステップとから成る処理を実行し、故障点位置の標定を行うためのサージ伝搬速度を算出することを特徴とする。
In order to solve the above-mentioned problems, the present invention detects the direction of the accident by comparing the phase of the zero-phase voltage and the zero-phase current at the time of occurrence of the accident in the transmission and distribution line, and the data indicating the detection result and the surge waveform is stored in the master station. A plurality of slave stations to be transmitted, and a master station that identifies a fault section based on data of an accident direction received from each of the slave stations, and determines a fault location based on surge waveform data of the slave station sandwiching the fault section; A method for calculating a surge propagation speed in a fault location system comprising:
The master station is
A first step of selecting a plurality of pairs of a pair of slave stations in an arrangement relationship across the failure section, and calculating a surge arrival time at each slave station from surge waveform data received from each slave station; Surge propagation speed that minimizes variation in fault location in each combination based on surge arrival time between slave stations in each selected combination and transmission / distribution line length data between the slave stations stored in the storage means in advance And a second propagation step for calculating a surge propagation speed for locating the failure point.

本発明によれば、故障点標定に用いるサージ伝搬速度をさらに高精度で求めることができる。これにより、算出したサージ伝搬速度を用いて故障点を高精度で標定することが可能になる。   According to the present invention, the surge propagation speed used for fault location can be determined with higher accuracy. Thereby, it becomes possible to pinpoint a failure point with high accuracy using the calculated surge propagation speed.

以下、本発明の一実施の形態について図面に基づき説明する。
図1は、本発明のサージ伝搬速度算出方法を用いて送配電線路の故障点を標定する故障点標定システムの実施の形態を示すブロック図である。
本実施の形態に係る故障点標定システムは、送配電線路10に設置され、送配電線路の零相電流及び零相電圧の監視・検出を行う複数の子局a〜dと、子局a〜dの検出結果に基づくデータを受信し、当該データに基づき故障点xの位置の標定を行う親局2とから構成される。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing an embodiment of a failure point locating system for locating a failure point in a transmission / distribution electric line using the surge propagation velocity calculation method of the present invention.
The fault location system according to the present embodiment is installed in the transmission / distribution line 10, and has a plurality of slave stations a to d that monitor and detect the zero-phase current and zero-phase voltage of the transmission and distribution line, and the slave stations a to The master station 2 is configured to receive data based on the detection result of d and to determine the location of the failure point x based on the data.

子局a〜dは、送配電線路10の零相電圧及び零相電流を検出する電圧・電流センサ3を備えている。また、GPS衛星11からの時刻信号を受信するGPS受信機(図示せず)や親局2との間でのデータ通信装置(図示せず)を備えている。
子局a〜dは、送配電線路10における事故発生時の零相電圧と零相電流の位相比較により事故方向を検出し、その検出結果を親局2に送信する。また、電圧・電流センサ3で検出した零相電圧及び零相電流のサージ波形のデータを、GPS衛星11からの時刻信号に同期して生成したタイムスタンプと共に親局2に送信する。
この子局a〜dは、本願出願人が先に出願した特願2002−295801号に記載したものを用いることができるので、ここでの詳細な構成の説明は省略する。要するに、各子局a〜dは、送配電線路10における事故発生時に、事故方向とサージ波形を示すデータを親局2に送信する機能を備えたものであればよい。
The slave stations a to d include a voltage / current sensor 3 that detects a zero-phase voltage and a zero-phase current of the transmission / distribution electric line 10. Further, a GPS receiver (not shown) that receives a time signal from the GPS satellite 11 and a data communication device (not shown) with the master station 2 are provided.
The slave stations a to d detect the fault direction by phase comparison between the zero-phase voltage and the zero-phase current when the fault occurs in the transmission / distribution electric line 10 and transmit the detection result to the master station 2. Further, the zero-phase voltage and zero-phase current surge waveform data detected by the voltage / current sensor 3 are transmitted to the master station 2 together with a time stamp generated in synchronization with the time signal from the GPS satellite 11.
As the slave stations a to d, those described in Japanese Patent Application No. 2002-295801 filed earlier by the applicant of the present application can be used, and thus detailed description thereof will be omitted. In short, each of the slave stations a to d only needs to have a function of transmitting data indicating an accident direction and a surge waveform to the master station 2 when an accident occurs in the transmission and distribution line 10.

親局2は、各子局a〜dから受信した事故方向を示す検出データと系統接続情報に基づき故障区間を特定する。さらに特定結果の故障区間を挟む配置関係にある1対の子局の組み合わせを複数対選定し、その選定した各組み合わせにおける子局から受信したサージ波形データにより検出したサージ到達時刻t〜tと内部の記憶装置に予め記憶した当該子局間の送配電線路長のデータにより、各組み合わせにおける故障点標定位置のばらつき(あるいは標準偏差)が最小になるサージ伝搬速度vを算出し、その算出したサージ伝搬速度vと前記選定した複数対の子局の組み合わせにおける子局同士でのサージ到達時刻t〜tの差と当該子局間の送配電線路長のデータに基づき各組み合わせにおける故障点xを算出し、その算出した故障点に対し平均処理等した値を故障点標定位置として出力する。 The master station 2 identifies the failure section based on the detection data indicating the accident direction received from each of the slave stations a to d and the system connection information. Further, a plurality of combinations of a pair of slave stations having an arrangement relationship across the failure section as a specific result are selected, and surge arrival times t a to t d detected from surge waveform data received from the slave stations in the selected combinations. And the surge propagation speed v that minimizes the variation (or standard deviation) of the fault location in each combination based on the data of the transmission / distribution line length between the slave stations stored in advance in the internal storage device. Failure in each combination based on the difference in surge arrival times t a to t d between the slave stations in the combination of the selected surge propagation velocity v and the selected plurality of pairs of slave stations and data on the transmission / distribution line length between the slave stations A point x is calculated, and a value obtained by averaging the calculated failure points is output as a failure point location.

親局2は、図2に示すように、データ通信装置21と、コントローラ(CPU)22と、記憶装置23と、入出力装置24とを備える。データ通信装置21は、子局a〜dとの間でデータ通信を行う。コントローラ22はCPUで構成され、メモリ220内に次のような処理を行うプログラムが記憶されている。
(1)子局a〜dに対して検出結果の伝送指令を送り、事故方向の検出結果やサージ到達時刻のデータを収集する事故情報収集処理221、
(2)子局a〜dから受信した事故方向の検出結果のデータと系統接続情報により、故障区間を特定する故障区間判定処理、
(3)子局a〜dから受信したサージ波形データとタイムスタンプとにより、サージ到達時刻を算出するサージ到達時刻算出処理223
(4)子局a〜dにおけるサージ到達時刻のデータと、子局間の送配電線路長のデータによりサージ伝搬速度vを算出するサージ伝搬速度算出処理224、
(5)算出したサージ伝搬速度vにより故障点xを標定する故障点標定処理225
記憶装置23には、図3に示すように、子局間の線路長データ231や系統接続情報232が入出力装置24から予め入力されて格納されている。
また、各子局から受信したサージ波形データ233、事故方向データ234、サージ波形データによって算出した各子局のサージ到達時刻のデータ235が記憶されるようになっている。
As shown in FIG. 2, the master station 2 includes a data communication device 21, a controller (CPU) 22, a storage device 23, and an input / output device 24. The data communication device 21 performs data communication with the slave stations a to d. The controller 22 is constituted by a CPU, and a program for performing the following processing is stored in the memory 220.
(1) Accident information collection processing 221 for sending a transmission result of detection results to the slave stations a to d and collecting data of detection results of accident directions and surge arrival times;
(2) A failure section determination process for identifying a failure section based on the data of the accident direction detection result received from the slave stations a to d and the system connection information;
(3) Surge arrival time calculation processing 223 for calculating the surge arrival time from the surge waveform data received from the slave stations a to d and the time stamp.
(4) Surge propagation speed calculation processing 224 for calculating the surge propagation speed v based on the data of the surge arrival time in the slave stations a to d and the data of the transmission / distribution cable length between the slave stations,
(5) Fault location process 225 for locating the fault point x based on the calculated surge propagation velocity v
As shown in FIG. 3, the line length data 231 between the slave stations and the system connection information 232 are previously input from the input / output device 24 and stored in the storage device 23.
Further, surge waveform data 233, accident direction data 234 received from each slave station, and surge arrival time data 235 calculated from the surge waveform data are stored.

以上の構成により、送配電線路の地絡時における故障点位置の標定に用いるサージ伝搬速度の算出方法について説明する。
まず、事故方向を示すデータと記憶装置23に記憶されている系統接続情報232により故障区間を特定する。この故障区間を特定する処理は本発明の範囲外であるので、詳細な説明は省略する。そして、以下では、送配電線路の系統が1系統である場合を代表して説明する。
本発明では、図5に示すように、送配電線路10の子局bとcとの間が故障区間であると判定した場合、この故障区間を挟む配置関係にある1対の子局の組み合わせを複数対選定する。
すなわち、子局b−c、b−d、a−c、a−dというような組み合わせを選定する。そして、その選定した各組み合わせにおける子局のサージ到達時刻t〜tと記憶装置23に予め記憶した当該子局間の送配電線路長のデータLab,Lbc,Lcdにより、各組み合わせにおける故障点標定位置x、x、x、xのばらつきが最小になるサージ伝搬速度vを算出する。
With the above configuration, a method of calculating the surge propagation speed used for locating the failure point position during a ground fault in the transmission / distribution electric line will be described.
First, the failure section is specified by the data indicating the accident direction and the system connection information 232 stored in the storage device 23. Since the process of specifying the failure section is out of the scope of the present invention, detailed description is omitted. And below, the case where the system of a transmission-and-distribution electric wire path is one system is demonstrated as a representative.
In the present invention, as shown in FIG. 5, when it is determined that the failure between the slave stations b and c of the transmission and distribution line 10 is a failure section, a combination of a pair of slave stations in an arrangement relationship sandwiching the failure section Select multiple pairs.
That is, combinations such as slave stations bc, bd, ac, and ad are selected. Then, each combination is determined based on the surge arrival times t a to t d of the slave stations in the selected combinations and the data L ab , L bc , and L cd of the transmission and distribution line lengths between the slave stations stored in the storage device 23 in advance. The surge propagation velocity v that minimizes the variation in the failure point location positions x 1 , x 2 , x 3 , x 4 is calculated.

Figure 2006058066
Figure 2006058066
Figure 2006058066
Figure 2006058066

この<計算式1>に図5の組み合わせ数n=4を代入すると、次の<計算式2>が得られる。

Figure 2006058066
Substituting the number of combinations n = 4 in FIG. 5 into <Calculation Formula 1>, the following <Calculation Formula 2> is obtained.
Figure 2006058066

図5の故障区間における故障点xを求めるに際しては、<計算式2>によって算出したサージ伝搬速度vと前記選定した複数対の子局の組み合わせにおける子局同士でのサージ到達時刻t〜tの差と当該子局間の送配電線路長のデータに基づき各組み合わせにおける故障点x〜xを算出し、その算出した故障点の平均値を故障点標定位置として出力する。

Figure 2006058066
When obtaining the failure point x in the failure section of FIG. 5, surge arrival times t a to t between the slave stations in the combination of the surge propagation velocity v calculated by <Calculation Formula 2> and the selected plurality of pairs of slave stations. calculating a fault point x 1 ~x 4 in each combination based on the TD line length of data between d differences and child station, and outputs the average value of the calculated fault point as a fault point locating position.
Figure 2006058066

図6(a)に示すように組み合わせ数nがn=2で、故障点の電源側1台と負荷側2台の計3台の子局で標定を行う場合、上述した<計算式1>にn=2を代入した次の<計算式4>により伝搬速度vを算出する。

Figure 2006058066
そして、故障点より電源側直近の子局(図6(a)の場合、子局a)からの標定xを<計算式4>の計算結果を用いて、次の<計算式5>により算出する。xは故障点を挟む2通りの子局間で各々標定したx1とx2の平均値とする。
Figure 2006058066
As shown in FIG. 6A, when the number of combinations n is n = 2 and the orientation is performed by a total of three slave stations, one on the power source side and two on the load side, the above-described <Calculation Formula 1> The propagation velocity v is calculated by the following <calculation formula 4> in which n = 2 is substituted for.
Figure 2006058066
Then, the orientation x from the slave station closest to the power supply side from the failure point (slave station a in the case of FIG. 6A) is calculated by the following <Calculation Formula 5> using the calculation result of <Calculation Formula 4>. To do. x is an average value of x1 and x2 each determined between two slave stations sandwiching the failure point.
Figure 2006058066

また、図6(b)に示すように、組み合わせ数nがn=2で、故障点の電源側2台と負荷側1台の計3台の子局a〜cで標定を行う場合、伝搬速度vを上述した<計算式4>により求める。但し、各変数は以下の通りとする。

Figure 2006058066
In addition, as shown in FIG. 6B, when the number of combinations n is n = 2 and the orientation is performed by three slave stations a to c in total, that is, two units on the power source side and one unit on the load side, propagation is performed. The speed v is obtained by the above-described <Calculation Formula 4>. However, each variable is as follows.
Figure 2006058066

次に、故障点より電源側直近の子局(この場合、子局b)からの標定xを<計算式4>の計算結果を用いて、上記<計算式5>により算出する。なお、図6(a)の場合と異なりxとxは以下の通りとする。

Figure 2006058066
Next, the orientation x from the slave station closest to the power supply side (in this case, the slave station b) from the failure point is calculated by the above <Calculation Formula 5> using the calculation result of <Calculation Formula 4>. Incidentally, x 1 and x 2 unlike in the case of FIG. 6 (a) is as follows.
Figure 2006058066

以上のように、本実施の形態においては、故障区間を挟む配置関係にある1対の子局の組み合わせを複数対選定し、その選定した各組み合わせにおける子局のサージ到達時刻t〜tと内部の記憶装置23に予め記憶した当該子局間の送配電線路長のデータにより、各組み合わせにおける故障点標定位置のばらつきが最小になるサージ伝搬速度vを算出し、その算出したサージ伝搬速度vと前記選定した複数対の子局の組み合わせにおける子局同士でのサージ到達時刻t〜tの差と当該子局間の送配電線路長のデータに基づき各組み合わせにおける故障点xを算出し、その算出した故障点の平均値を故障点標定位置として出力するため、1つの子局が検出したサージ到達時刻に誤差が含まれていたとしても、故障点の標定結果の誤差を少なくすることができる。 As described above, in the present embodiment, a plurality of pairs of a pair of slave stations having an arrangement relationship across the failure section are selected, and surge arrival times t a to t d of the slave stations in the selected combinations are selected. And the surge transmission speed v that minimizes the variation of the fault location in each combination is calculated from the data of the transmission / distribution line length between the slave stations stored in advance in the internal storage device 23, and the calculated surge propagation speed The failure point x in each combination is calculated based on the difference in surge arrival times t a to t d between the slave stations in the combination of v and the selected plurality of pairs of slave stations and data on the transmission / distribution line length between the slave stations. Since the average value of the calculated failure points is output as the failure point location, even if an error is included in the surge arrival time detected by one slave station, the failure point location result is incorrect. It can be reduced.

例えば、図5に示すような故障区間における故障点xを従来方法で標定する場合、その計算式は下記の<計算式6>のようなものとなる。

Figure 2006058066
For example, when the failure point x in the failure section as shown in FIG. 5 is determined by the conventional method, the calculation formula is as shown in the following <Calculation Formula 6>.
Figure 2006058066

従来方法で故障点を標定した場合と本発明の方法により標定した場合に、各子局が検出したサージ到達時刻に誤差が含まれない場合の標定結果を比較すると以下のようになる。
この場合、子局間距離L、子局bからの故障点位置xおよび各子局のサージ到達時刻tを下記の「表1」のようなものとしたとき、各手法のサージ伝搬速度vと故障点標定xの計算結果は「表2」に示すようなものとなる。ただし、各Lとtはvが各子局間で300[m/μs]で一定となるよう設定し、tは子局cの到達時刻tcを基準(0μs)として表している。
表2のように、tに誤差を含まない場合、両手法とも正確な標定を示している。

Figure 2006058066
Figure 2006058066
When the fault points are determined by the conventional method and when the method of the present invention is used, the results of the determination when no error is included in the surge arrival time detected by each slave station are as follows.
In this case, when the distance L between slave stations, the failure point position x from the slave station b, and the surge arrival time t of each slave station are as shown in Table 1 below, the surge propagation speed v of each method The calculation result of the fault location x is as shown in “Table 2”. However, L and t are set so that v is constant at 300 [m / μs] between each slave station, and t represents the arrival time tc of the slave station c as a reference (0 μs).
As shown in Table 2, when t does not include an error, both methods show accurate orientation.
Figure 2006058066
Figure 2006058066

次に、「表1」の子局bのサージ到達時刻tに誤差Δtを含ませた場合について、標定精度の比較を行った結果を「表3」に示す。

Figure 2006058066
「表3」から明らかなように、本発明による標定方法では1つの子局が検出したサージ到達時刻に誤差が含まれていたとしても、標定精度が良いことが分かる。 Next, “Table 3” shows the results of comparison of the orientation accuracy when the error Δt b is included in the surge arrival time t b of the slave station b in “Table 1”.
Figure 2006058066
As is apparent from “Table 3”, it can be seen that the orientation method according to the present invention has good orientation accuracy even if an error is included in the surge arrival time detected by one slave station.

本発明によるサージ伝搬速度算出方法により算出したサージ伝搬速度の値を用いた場合、原理的には、子局の組み合わせ数が多くなるほど標定結果の精度は高くなる。しかし、組み合わせのそれぞれで計算した結果x、x、x、…の中に極端に離れた値を示しているものがあった場合、それを採用すると、標定結果の精度を低下させる恐れがある。このような場合には、極端に離れた標定値を示しているものは除外し、許容のばらつき範囲内にあるものだけを採用して最終的な標定値xを求めるようにすることが望ましい。 When the value of the surge propagation speed calculated by the surge propagation speed calculation method according to the present invention is used, in principle, the accuracy of the orientation result increases as the number of combinations of slave stations increases. However, if some of the results x 1 , x 2 , x 3 ,... Calculated by each combination show extremely distant values, adopting them may reduce the accuracy of the orientation results. There is. In such a case, it is desirable to exclude those indicating extremely distant standard values, and to obtain only the standard value x within the allowable variation range.

図4は、親局2におけるコントローラ22がサージ伝搬速度vを算出し、その算出したサージ伝搬速度vを用いて故障点xを標定する手順を示すフローチャートである。
図4において、コントローラ22は、予め定めた基準の子局(例えば、電源側に近い1つの子局)から事故情報が到来するのを待っているが、その基準の子局から事故情報(事故方向とサージ波形を示すデータ)を受信したならば(ステップ41)、事故情報収集処理221により当該系統における他の子局に対して伝送指令を送信し、各子局が検出している事故情報(サージ波形、事故方向)を収集する(ステップ42)。収集した事故情報は記憶装置23に各子局のサージ波形データ233、各子局が検出した事故方向データ234として記憶させる。なお、サージ波形データ233にはタイムスタンプのデータが含まれている。
FIG. 4 is a flowchart showing a procedure in which the controller 22 in the master station 2 calculates the surge propagation speed v and uses the calculated surge propagation speed v to locate the failure point x.
In FIG. 4, the controller 22 is waiting for accident information to arrive from a predetermined reference slave station (for example, one slave station close to the power supply side). (Data indicating direction and surge waveform) is received (step 41), the accident information collecting process 221 transmits a transmission command to the other slave stations in the system, and the accident information detected by each slave station. (Surge waveform, accident direction) are collected (step 42). The collected accident information is stored in the storage device 23 as surge waveform data 233 of each slave station and accident direction data 234 detected by each slave station. The surge waveform data 233 includes time stamp data.

次に、故障区間判定処理222により、各子局が検出した事故方向のデータ234を記憶装置23から読み出し、その事故方向のデータ234と系統接続情報232とから故障区間を判定する。さらに、各子局から受信したサージ波形データ233より各子局におけるサージ到達時刻を算出し、記憶装置23に記憶させる(ステップ43)。
次に、サージ伝搬速度算出処理223により、故障区間を挟む配置関係にある1対の子局の組み合わせを複数対選定し(ステップ44)、その選定した子局間の線路長231、サージ到達時刻のデータ235を記憶装置23から読み出す(ステップ45)。
Next, the failure section determination processing 222 reads the accident direction data 234 detected by each slave station from the storage device 23, and determines the failure section from the accident direction data 234 and the system connection information 232. Further, the surge arrival time at each slave station is calculated from the surge waveform data 233 received from each slave station, and stored in the storage device 23 (step 43).
Next, the surge propagation speed calculation processing 223 selects a plurality of combinations of a pair of slave stations having an arrangement relationship across the failure section (step 44), the line length 231 between the selected slave stations, the surge arrival time. Is read from the storage device 23 (step 45).

次に、サージ伝搬速度の計算式に代入し、サージ伝搬速度vを算出する(ステップ46)。例えば、図5に例示したような故障区間を挟む4個の子局が検出した事故情報を用いる場合、上述した<計算式2>に子局間の線路長、子局間のサージ到達時刻の差のデータを代入し、サージ伝搬速度vを算出する。
次に、サージ伝搬速度v、選定した子局間の線路長、サージ到達時刻の差のデータを故障点標定計算式に代入し、故障点xを算出し、出力する(ステップ47)。例えば、図5に例示したような故障区間を挟む4個の子局が検出した事故情報を用いる場合、上述した<計算式3>によって故障点xを算出する。そして、算出した故障点xを入出力装置24を構成するディスプレイに表示、またはプリンタから印字出力する。
Next, the surge propagation velocity v is calculated by substituting into the surge propagation velocity computation formula (step 46). For example, when using accident information detected by four slave stations sandwiching a failure section as illustrated in FIG. 5, the line length between slave stations and the surge arrival time between slave stations are expressed in <Calculation Formula 2> described above. Substituting the difference data, the surge propagation velocity v is calculated.
Next, the data of the difference in surge propagation speed v, the selected line length between slave stations, and the surge arrival time is substituted into the fault location calculation formula to calculate and output the fault point x (step 47). For example, when the accident information detected by four slave stations sandwiching the failure section as illustrated in FIG. 5 is used, the failure point x is calculated by the above-described <Calculation Formula 3>. The calculated failure point x is displayed on a display constituting the input / output device 24 or printed out from a printer.

なお、上記の説明では、サージ伝搬速度vの算出に用いる子局の数を3または4としているが、本発明はこれに限定されるものでないことは言うまでもなく、子局の組み合わせの対は、2対以上であればよい。
また、各子局が監視対象としている送配電線路長のデータは入出力装置24から予め入力しているが、GPS受信機によって検出した各子局の位置情報を親局に送信し、これにより子局間の線路長を算出して用いるようにしてもよい。
In the above description, the number of slave stations used for calculating the surge propagation velocity v is 3 or 4. However, it goes without saying that the present invention is not limited to this, and the combination of slave stations is: What is necessary is just two or more pairs.
In addition, the transmission / distribution line length data that each slave station is monitoring is input in advance from the input / output device 24, but the location information of each slave station detected by the GPS receiver is transmitted to the master station, thereby The line length between the slave stations may be calculated and used.

本発明の一実施の形態に係る故障点位置標定システムの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the failure point location system which concerns on one embodiment of this invention. 図1における親局の構成を示すブロック図である。It is a block diagram which shows the structure of the main | base station in FIG. 親局の記憶装置に格納されるデータの例を示す図である。It is a figure which shows the example of the data stored in the memory | storage device of a master station. 親局における故障点標定処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the failure point location process in a master station. サージ伝搬速度を算出する場合の子局の組み合わせ(子局数=4)を説明する図である。It is a figure explaining the combination (the number of slave stations = 4) of a slave station in the case of calculating a surge propagation speed. サージ伝搬速度を算出する場合の子局の組み合わせ(子局数=3)を説明する図である。It is a figure explaining the combination (the number of slave stations = 3) of a slave station in the case of calculating a surge propagation speed.

符号の説明Explanation of symbols

a〜d 子局
2 親局
3 電圧・電流センサ
10 送配電線路
11 GPS衛星
x 故障点
21 データ通信装置
22 コントローラ(CPU)
23 記憶装置
24 入出力装置
221 事故情報収集処理
222 事故区間判定処理
223 サージ到達時刻算出処理
224 サージ伝搬速度算出処理
225 故障点標定処理
a to d Slave station 2 Master station 3 Voltage / current sensor 10 Transmission and distribution line 11 GPS satellite x Failure point 21 Data communication device 22 Controller (CPU)
23 Storage device 24 Input / output device 221 Accident information collection processing 222 Accident section determination processing 223 Surge arrival time calculation processing 224 Surge propagation speed calculation processing 225 Fault location processing

Claims (1)

送配電線路における事故発生時の零相電圧と零相電流の位相比較により事故方向を検出し、その検出結果とサージ波形を示すデータを親局に送信する複数の子局と、前記各子局から受信した事故方向のデータにより故障区間を特定し、該故障区間を挟む子局のサージ波形のデータに基づき故障点位置の標定を行う親局とから構成される故障点標定システムにおけるサージ伝搬速度の算出方法であって、
前記親局は、
前記故障区間を挟む配置関係にある1対の子局の組み合わせを複数対選定する第1のステップと、
各子局から受信したサージ波形のデータにより各子局におけるサージ到達時刻を算出し、前記選定した各組み合わせにおける子局同士でのサージ到達時刻と前記記憶手段に予め記憶した当該子局間の送配電線路長のデータにより、各組み合わせにおける故障点標定位置のばらつきが最小になるサージ伝搬速度を算出する第2のステップと、
から成る処理を実行し、故障点位置の標定を行うためのサージ伝搬速度を算出することを特徴とする故障点標定システムにおけるサージ伝搬速度の算出方法。
A plurality of slave stations that detect the direction of the accident by phase comparison of zero-phase voltage and zero-phase current at the time of the occurrence of an accident in the transmission and distribution line, and transmit the detection result and data indicating the surge waveform to the master station, and each of the slave stations Surge propagation speed in a fault location system consisting of a master station that identifies faulty sections from accident direction data received from the master station and locates fault points based on surge waveform data of slave stations that sandwich the fault section The calculation method of
The master station is
A first step of selecting a plurality of combinations of a pair of slave stations in an arrangement relationship across the failure section;
The surge arrival time at each slave station is calculated from the surge waveform data received from each slave station, the surge arrival time between the slave stations in each of the selected combinations and the transmission between the slave stations stored in advance in the storage means. A second step of calculating a surge propagation speed that minimizes the variation of the fault location in each combination based on the distribution line length data;
A method for calculating a surge propagation speed in a fault location system, wherein a surge propagation speed for locating a fault location is calculated.
JP2004238184A 2004-08-18 2004-08-18 Calculation method of surge propagation speed in fault location system Active JP4039576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004238184A JP4039576B2 (en) 2004-08-18 2004-08-18 Calculation method of surge propagation speed in fault location system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004238184A JP4039576B2 (en) 2004-08-18 2004-08-18 Calculation method of surge propagation speed in fault location system

Publications (2)

Publication Number Publication Date
JP2006058066A true JP2006058066A (en) 2006-03-02
JP4039576B2 JP4039576B2 (en) 2008-01-30

Family

ID=36105656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004238184A Active JP4039576B2 (en) 2004-08-18 2004-08-18 Calculation method of surge propagation speed in fault location system

Country Status (1)

Country Link
JP (1) JP4039576B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008139145A (en) * 2006-12-01 2008-06-19 Kyushu Electric Power Co Inc Method for calculating surge propagation velocity in fault location system
JP2021063749A (en) * 2019-10-16 2021-04-22 中国電力株式会社 Ground point locating device, ground point locating system, and ground point locating method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008139145A (en) * 2006-12-01 2008-06-19 Kyushu Electric Power Co Inc Method for calculating surge propagation velocity in fault location system
JP2021063749A (en) * 2019-10-16 2021-04-22 中国電力株式会社 Ground point locating device, ground point locating system, and ground point locating method
JP7391318B2 (en) 2019-10-16 2023-12-05 中国電力株式会社 Ground fault point location device, ground fault point location system, ground fault point location method

Also Published As

Publication number Publication date
JP4039576B2 (en) 2008-01-30

Similar Documents

Publication Publication Date Title
US6477475B1 (en) Fault point location system
CN107209220A (en) Use the fault location of traveling wave
US20160011252A1 (en) Decision Support System for Outage Management and Automated Crew Dispatch
JP5373260B2 (en) Accident point location method and system for transmission and distribution systems
US11467200B2 (en) Method and device for identifying the location of a fault in an electrical power distribution network
CN104330708A (en) Fault location method for wide area traveling wave signal below power grid
US10585133B2 (en) Electric power fault protection device using single-ended traveling wave fault location estimation
CN111512168B (en) System and method for analyzing fault data of a power transmission network
CN111433617A (en) Method and device for positioning fault point in regional network based on traveling wave
JP2017215293A (en) Feeding circuit failure point standardization system for electric railroad and feeding circuit failure point standardization method for electric railroad
KR102036456B1 (en) Apparatus and method for detecting fault of combined transmission line
US9910080B2 (en) Method and arrangement for locating short-circuits in energy supply systems
JP7429339B2 (en) Parameter-independent traveling wave-based fault localization using asynchronous measurements
WO2018122627A1 (en) Travelling wave based method for locating a fault in a transmission line and device therefor
JP6449663B2 (en) Fault location method and fault location system
US20230400499A1 (en) Method and System for Detecting Location of Fault in a Cable
JP6263034B2 (en) Fault location system and fault location method
JP4039576B2 (en) Calculation method of surge propagation speed in fault location system
CN111175609B (en) Power distribution network line fault positioning method and system
JP2005315842A (en) Fault point locating method and apparatus, program, and computer-readable recording medium
JP2001196980A (en) Method and system for retrieving and locating fault point of communication cable for wired distribution line remote supervisory control
CN110794335A (en) Single-phase grounding detection system based on waveform difference and detection method thereof
CN108369254B (en) Method of locating a fault in a power transmission medium
JP4104341B2 (en) Accident location system
JP3689078B2 (en) Fault location system and slave station used for fault location system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071101

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4039576

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250