JP2006058038A - Diffraction direction measuring method of diffraction grating of shearing interferometer for euv - Google Patents

Diffraction direction measuring method of diffraction grating of shearing interferometer for euv Download PDF

Info

Publication number
JP2006058038A
JP2006058038A JP2004237597A JP2004237597A JP2006058038A JP 2006058038 A JP2006058038 A JP 2006058038A JP 2004237597 A JP2004237597 A JP 2004237597A JP 2004237597 A JP2004237597 A JP 2004237597A JP 2006058038 A JP2006058038 A JP 2006058038A
Authority
JP
Japan
Prior art keywords
diffraction
order
diffraction grating
beams
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004237597A
Other languages
Japanese (ja)
Inventor
Shikiyo Yanagi
志強 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2004237597A priority Critical patent/JP2006058038A/en
Publication of JP2006058038A publication Critical patent/JP2006058038A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for measuring highly accurately the shear direction (diffraction direction of a diffraction grating) of a wave front of a shearing interferometer for EUV in consideration of the fact that, though the shearing interferometer is used for evaluating a projection exposure optical system using EUV light, the diffraction direction of the diffraction grating used for the interferometer is required to be measured highly accurately in order to measure the exposure optical system highly accurately, and that especially for measurement of an EUV wave front including astigmatism, the diffraction direction is required to be determined highly accurately. <P>SOLUTION: An angle between beams is measured by an autocollimator or the like by providing a process for measuring a relative position relation of a diffraction beam by improving separation of beams by visible light or for reducing the angle between the diffraction beams. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、EUV用シアリング干渉計に使用される回折格子の回折方向の測定方法に関するものである。   The present invention relates to a method for measuring the diffraction direction of a diffraction grating used in an EUV shearing interferometer.

従来から投影露光技術を中核とするリソグラフィ技術を用いて半導体チップをより小型に、素子密度をより高くした半導体装置が製造されている。この流れの基本にあるものは「より狭い回路線幅」の追求であり、そのための手段は投影光学系の「高NA化」であり、露光波長の「短波長化」である。そして現在、この短波長化の技術としてEUV(Extreme Ultra-Violet:極端紫外線)を用いる開発が盛んに行われている。   2. Description of the Related Art Conventionally, a semiconductor device having a smaller semiconductor chip and a higher element density has been manufactured by using a lithography technique centered on a projection exposure technique. The basis of this flow is the pursuit of “narrower circuit line width”, and means for that is “higher NA” of the projection optical system and “shorter wavelength” of the exposure wavelength. At present, development using EUV (Extreme Ultra-Violet) as a technology for shortening the wavelength is actively performed.

一般的に、高精度な装置の開発と実用化にはその装置の精度を測定する技術が不可欠である。EUV光を用いた投影光学系の結像性能を測定する方法として、シアリング干渉計や点回折干渉計を用いることが提案されている。例えば、K.A.Goldberg他:「EUV interferometric testing and alignment of the 0.3 NA MET optics」 Proceedings of SPIE Vol.5374, 2004; P.64-P.72 を参照。   In general, a technique for measuring the accuracy of a highly accurate apparatus is indispensable for the development and practical application of the apparatus. As a method for measuring the imaging performance of a projection optical system using EUV light, it has been proposed to use a shearing interferometer or a point diffraction interferometer. See, for example, K.A. Goldberg et al .: “EUV interferometric testing and alignment of the 0.3 NA MET optics” Proceedings of SPIE Vol.5374, 2004; P.64-P.72.

シアリング干渉計は、他の干渉計と同様、被検物を経た測定光束が形成する干渉縞をCCDカメラなどの二次元検出器により検出するものである。しかし、干渉縞を形成する2波面が、何れも被検物を経た同じ測定光束の波面である点において、他の干渉計と異なっている。EUV光用のシアリング干渉計では、被検物を経た測定光束の波面を2つに分割(シア)するための分割手段として回折格子が使用される。そして、分割された波面の分割方向(シア方向、回折格子の回折方向)及び分割量(回折格子での回折角度)を基に、検出器が出力する干渉縞データから被検物を経た波面(透過波面または反射波面)が再現される。従って、シアリング干渉計により被検物を経た波面を高精度に再現するためには、回折格子の回折方向(干渉計のシア方向)と回折角度(シア量)を精度良く求めることが重要である。   As with other interferometers, a shearing interferometer detects interference fringes formed by a measurement light beam that has passed through a test object using a two-dimensional detector such as a CCD camera. However, the two wavefronts forming the interference fringes are different from other interferometers in that both are the wavefronts of the same measurement light beam that has passed through the test object. In a shearing interferometer for EUV light, a diffraction grating is used as a splitting means for splitting (shearing) the wavefront of a measurement light beam that has passed through a test object into two. Then, based on the division direction (shear direction, diffraction direction of the diffraction grating) and the division amount (diffraction angle at the diffraction grating) of the divided wavefront, the wavefront (through the test object) from the interference fringe data output by the detector ( A transmitted wavefront or reflected wavefront) is reproduced. Therefore, in order to accurately reproduce the wavefront that has passed through the test object using the shearing interferometer, it is important to accurately obtain the diffraction direction of the diffraction grating (the shear direction of the interferometer) and the diffraction angle (the amount of shear). .

ところで、被検波面をシアリング干渉計により測定し、Zernikeの多項式により波面を表現する場合、焦点ぼけや非点収差などは一方向のみに回折する回折格子による測定では測定できず、回折格子の方向を変えて測定を行っている。例えば、直交する2つの方向の回折格子を用いている。この点に関しては、G. Harbers他:「Analysis of lateral shearing interferograms by use of Zernike polynomials」, Applied Optics Vol. 35, No.11, 1996; P.6161- 6172が参考になる。このようにシアリング干渉計を用いて被検波面を測定する場合には回折方向が異なる複数の回折格子を用いる必要がある。そこで実際に被検波面を測定する際には異なる回折方向を有する複数の回折格子を回折格子板上に並べ、回折格子板を移動させて測定に必要な回折格子を選択している。この場合、複数の回折格子それぞれの回折方向を高精度に把握することが重要であるが、それぞれの回折方向の相対的な値(即ち、回折方向の角度差)を高精度に把握すれば足りることもある。   By the way, when the wavefront to be measured is measured by a shearing interferometer and the wavefront is expressed by a Zernike polynomial, defocusing and astigmatism cannot be measured by a diffraction grating that diffracts in only one direction. Measured by changing For example, diffraction gratings in two orthogonal directions are used. In this regard, G. Harbers et al: “Analysis of lateral shearing interferograms by use of Zernike polynomials”, Applied Optics Vol. 35, No. 11, 1996; Thus, when measuring the wavefront to be detected using a shearing interferometer, it is necessary to use a plurality of diffraction gratings having different diffraction directions. Therefore, when actually measuring the test wavefront, a plurality of diffraction gratings having different diffraction directions are arranged on the diffraction grating plate, and the diffraction grating plate is moved to select a diffraction grating necessary for the measurement. In this case, it is important to grasp the diffraction direction of each of the plurality of diffraction gratings with high accuracy, but it is sufficient to grasp the relative value of each diffraction direction (that is, the angle difference between the diffraction directions) with high accuracy. Sometimes.

以上のように、一般的に結像光学系の評価はその光学系を通過した波面の収差によりなされるが、シアリング干渉計を用いて波面収差を測定する場合、波面の測定精度を決定する要素としてシアの方向(回折格子を使用する場合には回折方向)とシア量が重要である。この回折方向とシア量を測定する方法が特開2004−037429に開示され、測定装置の図が同公報の図1に記されている。測定方法の要点は、干渉計の瞳面(又はその共役面である開口絞り)に指標を置き、この指標を後段の共役な位置に置かれた観察装置(例えばCCD)により観察し、指標のズレから回折方向(シア方向)とシア量を決めるものである。
特開2004−037429
As described above, the imaging optical system is generally evaluated by the aberration of the wavefront that has passed through the optical system. However, when measuring the wavefront aberration using a shearing interferometer, the element that determines the measurement accuracy of the wavefront. The shear direction (the diffraction direction when a diffraction grating is used) and the shear amount are important. A method for measuring the diffraction direction and the shear amount is disclosed in Japanese Patent Application Laid-Open No. 2004-037429, and a diagram of a measuring apparatus is shown in FIG. The main point of the measurement method is that an index is placed on the pupil plane of the interferometer (or the aperture stop that is its conjugate plane), and this index is observed with an observation device (for example, a CCD) placed at a subsequent conjugate position. The diffraction direction (shear direction) and the amount of shear are determined from the deviation.
JP2004-037429A

しかしながら、上記の方法では、非点収差を高精度に測定するために必要な精度で回折方向を測定することはできないことが判明した。
そこで、本発明は、EUV用シアリング干渉計の波面のシア方向(回折格子の回折方向)を高精度に測定する方法を提供することを目的とする。
However, it has been found that the above method cannot measure the diffraction direction with the accuracy required to measure astigmatism with high accuracy.
Therefore, an object of the present invention is to provide a method for measuring the shear direction of the wave front of a shearing interferometer for EUV (the diffraction direction of a diffraction grating) with high accuracy.

上記課題を解決するための第1の手段は、
EUVの波長領域のシアリング干渉計に用いられる回折格子の回折方向の測定方法であって、
可視光レ−ザ−ビ−ムを前記回折格子に照射して零次及び高次回折ビ−ムを生じせしめ、
所定の面内における前記零次回折ビームと前記高次回折ビームのビーム相対位置を光電的に検出する回折方向測定方法である。
The first means for solving the above problems is as follows.
A method for measuring the diffraction direction of a diffraction grating used in a shearing interferometer in the EUV wavelength region,
Irradiating the diffraction grating with a visible light laser beam to produce zero-order and higher-order diffraction beams;
A diffraction direction measuring method for photoelectrically detecting a relative position of the zero-order diffracted beam and the high-order diffracted beam in a predetermined plane.

この方法では、可視光レ−ザービ−ムを回折格子に照射し、その高次回折ビームの零次回折ビームに対する相対位置を光電的に検出している。そのために、回折角が大きくなってビームの位置分離の程度が大きくなり、測定精度が向上し、且つ測定装置中に指標を挿入する必要が無いので測定自体が簡単になる。   In this method, a visible light laser beam is applied to the diffraction grating, and the relative position of the higher-order diffracted beam to the zero-order diffracted beam is detected photoelectrically. Therefore, the diffraction angle is increased, the degree of beam position separation is increased, the measurement accuracy is improved, and there is no need to insert an index into the measurement apparatus, so that the measurement itself is simplified.

上記課題を解決するための第2の手段は、
上記第1の手段に対して、
2次元アナログセンサ、2次元離散センサのアナログ的な使用、開口走査方式のいずれかを用いて前記ビーム相対位置を光電的に検出することである。
The second means for solving the above problems is as follows.
For the first means,
The beam relative position is detected photoelectrically using either a two-dimensional analog sensor, an analog use of a two-dimensional discrete sensor, or an aperture scanning method.

ビームの位置検出には例えばCCDのような受光部が離散的なセンサではどうしてもビームの位置検出精度に不足を生じる。そこで、受光部(画素)が離散的ではないセンサ(本願発明ではアナログセンサと言う)又は開口を連続的に走査する方式から選択した方法により光電的にビームの相対位置を検出している。これにより、高精度にビームの相対位置を測定することが可能になる。   For detecting the position of the beam, for example, a light receiving unit such as a CCD having a discrete sensor inevitably lacks the accuracy of detecting the position of the beam. Therefore, the relative position of the beam is detected photoelectrically by a method in which the light receiving unit (pixel) is selected from a non-discrete sensor (referred to as an analog sensor in the present invention) or a method of continuously scanning the aperture. As a result, the relative position of the beam can be measured with high accuracy.

上記課題を解決するための第3の手段は、
EUVの波長領域のシアリング干渉計に用いられる回折格子の回折方向の測定方法であって、
可視光レ−ザ−ビ−ムを前記回折格子に照射して零次及び高次回折ビ−ムを生じせしめ、
該零次回折ビームと該高次回折ビームとがなすビーム間角度が小さくなるように変換し、
該変換された零次回折ビーム及び高次回折ビームを検出する回折方向測定方法である。
The third means for solving the above problem is as follows:
A method for measuring the diffraction direction of a diffraction grating used in a shearing interferometer in the EUV wavelength region,
Irradiating the diffraction grating with a visible light laser beam to produce zero-order and higher-order diffraction beams;
Transform so that the angle between the beam formed by the zero-order diffraction beam and the high-order diffraction beam is small,
A diffraction direction measuring method for detecting the converted zero-order diffraction beam and high-order diffraction beam.

このように、検出すべきビーム間角度を小さくすることにより、簡単な検出装置の使用が可能になり、高精度な測定が容易に可能になる。
上記課題を解決するための第4の手段は、
ビーム間角度を小さくする方法として、回折により生じた零次回折ビーム及び一次回折ビームを折り返し光学素子により折り返し、その後再度前記回折格子を通すことにしている。
Thus, by reducing the angle between the beams to be detected, a simple detection device can be used, and highly accurate measurement can be easily performed.
The fourth means for solving the above problem is as follows.
As a method of reducing the inter-beam angle, the zero-order diffracted beam and the first-order diffracted beam generated by diffraction are folded back by a folding optical element, and then passed through the diffraction grating again.

この方法によれば、ビーム間角度を小さくすることが容易であり、特に折り返し光学素子と回折方向が特定の関係になると再度の回折によりほぼ平行な2つのビームが得られ、ビーム間角度の測定がより容易になる。   According to this method, it is easy to reduce the inter-beam angle. In particular, when the folded optical element and the diffraction direction have a specific relationship, two beams that are substantially parallel are obtained by re-diffraction, and the measurement of the inter-beam angle is performed. Becomes easier.

上記課題を解決するための第5の方法は、
ビーム間角度を小さくする方法として、回折により生じた一次回折ビームをレンズ又はミラ−に通すことにしている。
The fifth method for solving the above problem is as follows.
As a method of reducing the inter-beam angle, a first-order diffracted beam generated by diffraction is passed through a lens or a mirror.

この方法は容易にビーム間角度を小さく出来る方法である。
上記課題を解決するための第6の方法は、
前記第3〜第5の方法を実施する際に、
コリメータ又は干渉法により零次回折ビーム及び高次回折ビームを検出し、ビーム間角度を求めることである。
This method is a method that can easily reduce the beam-to-beam angle.
The sixth method for solving the above problem is as follows.
When carrying out the third to fifth methods,
A zero-order diffracted beam and a high-order diffracted beam are detected by a collimator or an interferometry, and an inter-beam angle is obtained.

検出すべきビーム間角度が小さくなると、コリメータにより容易にビーム間角度を測定することが出来る。また、同じように、干渉縞を形成して干渉縞の解析によっても容易にビーム間角度を測定することも可能である。これらの測定装置、方法は既存の確立された技術であり、本発明に応用すれば容易に高精度な角度測定が可能になる。   When the inter-beam angle to be detected becomes small, the inter-beam angle can be easily measured by a collimator. Similarly, the angle between beams can be easily measured by forming interference fringes and analyzing the interference fringes. These measuring apparatuses and methods are existing established techniques, and if applied to the present invention, highly accurate angle measurement can be easily performed.

本発明では、EUVの波長領域のシアリング干渉計に用いられる回折格子の回折方向の測定に際して、可視光レ−ザーを用いて回折角を大きくし、必要な角度精度が得られる面内において、検出素子がアナログ的である方法を用いている。これにより必要な精度で回折角の測定が可能になる。また、別の方法としては、可視光レーザーを用いて十分な光量を有する回折ビームを容易に生じさせ、その上でこれらのビームのなすビーム間角度を小さくすることにより容易に、高精度に回折方向を測定することを可能にしている。回折格子の回折方向を高精度に測定することが可能になると、シアリング干渉計を用いた波面の再現精度、特に非点収差を含む波面の再現精度が向上する。   In the present invention, when measuring the diffraction direction of the diffraction grating used in the shearing interferometer in the EUV wavelength region, the diffraction angle is increased using a visible light laser, and detection is performed within the plane where the required angular accuracy can be obtained. A method in which the element is analog is used. This makes it possible to measure the diffraction angle with the required accuracy. As another method, a visible light laser is used to easily generate a diffracted beam having a sufficient amount of light, and then the angle between the beams formed by these beams is reduced to easily diffract the beam with high accuracy. It is possible to measure the direction. When the diffraction direction of the diffraction grating can be measured with high accuracy, the reproduction accuracy of the wavefront using the shearing interferometer, particularly the reproduction accuracy of the wavefront including astigmatism is improved.

以下、図面に基づいて本発明の実施形態について説明する。
[第1実施形態]
図1に基づいて本発明の請求項1及び2が係わる第1実施形態について説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[First Embodiment]
A first embodiment according to claims 1 and 2 of the present invention will be described with reference to FIG.

EUV用シアリング干渉計に用いられる回折格子は、透過部と遮蔽部が交互にピッチ数μmで並べられている。実際にEUV光が照射される直径は、干渉計中での測定ビームの集光点との位置関係によって変化するが、数mm以下である。   In a diffraction grating used for an EUV shearing interferometer, a transmission portion and a shielding portion are alternately arranged at a pitch of several μm. The diameter to which the EUV light is actually irradiated varies depending on the positional relationship with the condensing point of the measurement beam in the interferometer, but is several mm or less.

図1はX方向に回折する場合を示しているが、他の方向に対しても同様に行える。
回折方向を測定すべき回折格子1に、波長632.8nmのHe−Neレーザー2を照射する。回折格子の格子ピッチは2μmであり、レ−ザ−ビームの直径は1mmである。回折格子を通過するとビームは高次に回折されるが、図1には零次回折(回折されない)ビーム11と一次回折ビーム12(破線)のみが記されている。一次回折角θは2μm・sinθ=632.8nmよりθ=0.32radとなる。回折格子から距離Lmmだけ離れた測定面に2次元センサを置く。センサの位置検出精度をRμmとし、回折角検出要求精度をD秒とすると、(3600*180/3.14)*2*(R*10-3)/(L*0.32)<=Dより、1.29*103(R/D)<=L(mm)とすれば所定の角度精度により回折方向(図1中では2つのビームを結ぶ直線がX軸となす角度)が測定できる。例えば、R=0.5,D=0.3とすると、L≒2mとなる。この場合、零次回折ビームと1次回折ビームのXY面上での距離はおよそL*0.32=6.4*102mmとなる。本発明での「所定の面」とは、このように必要な分解能を得るための測定面である。
Although FIG. 1 shows the case of diffraction in the X direction, the same can be done for other directions.
A diffraction grating 1 whose diffraction direction is to be measured is irradiated with a He-Ne laser 2 having a wavelength of 632.8 nm. The grating pitch of the diffraction grating is 2 μm, and the diameter of the laser beam is 1 mm. When passing through the diffraction grating, the beam is diffracted to a high order, but only the zero-order diffraction (not diffracted) beam 11 and the first-order diffraction beam 12 (broken line) are shown in FIG. The primary diffraction angle θ is θ = 0.32 rad from 2 μm · sin θ = 632.8 nm. A two-dimensional sensor is placed on the measurement surface separated from the diffraction grating by a distance Lmm. When the position detection accuracy of the sensor is R μm and the required diffraction angle detection accuracy is D seconds, (3600 * 180 / 3.14) * 2 * (R * 10 −3 ) / (L * 0.32) <= D Accordingly, if 1.29 * 10 3 (R / D) <= L (mm), the diffraction direction (the angle formed by the straight line connecting the two beams with the X axis in FIG. 1) can be measured with a predetermined angular accuracy. . For example, if R = 0.5 and D = 0.3, L≈2 m. In this case, the distance on the XY plane between the zero-order diffraction beam and the first-order diffraction beam is approximately L * 0.32 = 6.4 * 10 2 mm. The “predetermined surface” in the present invention is a measurement surface for obtaining the necessary resolution in this way.

回折された2つのビームの相対位置測定は、互いに距離が正確に定められた2つの2次元センサ13により行う。センサとしては2次元アナログセンサ、例えばPSD(Position Sensitive Detector:位置検出素子)や4分割センサ−(4象限センサとも言う)である。これらのセンサは基本的に離散的な画素を単位とする受光部を持たないので、画素の大きさにより制限される分解能の制限を受けない。尚、PSDや4象限センサに関しては、藤村著:光応用技術 III−5 「光計測」 日本オプトメカトロニクス境界編 19
91年 P.153−154参照。また、上市されているものには、PSDとして浜松ホトニクス社製S2044、4分割センサにはS4349がある。
The relative positions of the two diffracted beams are measured by two two-dimensional sensors 13 whose distances are accurately determined. The sensor is a two-dimensional analog sensor, such as a PSD (Position Sensitive Detector) or a quadrant sensor (also referred to as a four-quadrant sensor). Since these sensors basically do not have a light receiving unit having discrete pixels as a unit, they are not subject to resolution limitations limited by the size of the pixels. Regarding PSD and 4-quadrant sensors, Fujimura: Optical Application Technology III-5 “Optical Measurement” Japan Opto-Mechatronics Boundary Edition 19
1991 See 153-154. In addition, among the products on the market, there are S4444 manufactured by Hamamatsu Photonics, Ltd. as PSD, and S4349 in the quadrant sensor.

2つの回折ビームの相対位置測定に関しては、離散的な受光部を有するCCDのような素子を用い、これを微小量走査する方式によっても高精度に測定することが可能になる。本発明では、このような方法を離散的な素子のアナログ的な使用と言う。図2(a)、(b)、(c)、(d)が微少量だけ素子を走査させた時の画素の配置例である。画素と画素の非受光部を走査により測定可能になって高精度な測定ができる。   Regarding the relative position measurement of the two diffracted beams, it is possible to measure with high accuracy by using a device such as a CCD having a discrete light receiving section and scanning a minute amount thereof. In the present invention, such a method is called analog use of discrete elements. 2A, 2B, 2C, and 2D are pixel arrangement examples when the element is scanned by a minute amount. The pixel and the non-light receiving portion of the pixel can be measured by scanning, and high-precision measurement can be performed.

次に2つのセンサの位置関係に関して記しておく。基本的にはXY面内(観察面内)で、原点とX=L・tanθの位置に2次元センサを置いて零次回折ビーム11の位置座標および一次回折ビーム12の位置座標を求める。しかし、この方法において回折ビームが2次元センサの測定領域から外れることもある。その場合には2次元センサを微少量位置変化させてセンサの測定領域に入るようにし、その時のセンサの位置微少量変化を正確に求める。位置変化量は、例えば、リニアエンコーダや干渉測距計を用いて測定し、センサの位置変化量と位置変化したセンサ内の受光位置により回折ビームの位置を測定する。   Next, the positional relationship between the two sensors will be described. Basically, the position coordinates of the zero-order diffraction beam 11 and the position coordinates of the first-order diffraction beam 12 are obtained by placing a two-dimensional sensor in the XY plane (in the observation plane) at the origin and the position of X = L · tan θ. However, in this method, the diffracted beam may deviate from the measurement area of the two-dimensional sensor. In such a case, the position of the two-dimensional sensor is changed so as to enter the sensor measurement region, and the change in the position of the sensor at that time is accurately obtained. The position change amount is measured using, for example, a linear encoder or an interferometer, and the position of the diffracted beam is measured based on the position change amount of the sensor and the light receiving position in the sensor where the position has changed.

回折されたビームの相対位置測定の他の方法は、細いスリット(例えば1μ幅)や開口エッジをビームに対して走査することにより光電的に行うことである。このスリットを走査する方法を模式的に図3に示した。図3は測定面の平面図であり、ビームに向かう形で見た場合の図である。測定面には直交するスリット25(a)、25(b)を有するスリット板20が配置されており、そのスリット板20の位置は干渉計23(a),(b),(c),(d)によりX、Y面内で制御されている。24(a)、(b)は測定鏡である。図示の状態からスリット板をX方向に移動させて、スリット25(a)により零次回折ビーム11と一次回折ビーム12を順次走査し、スリットを通ったビームを不図示の光電子増倍管により電気信号として出力させる。X方向の走査が終了すると、X方向の走査出力を基にスリット25(b)を干渉計によって位置制御しながら移動させ、Y方向にビーム11を走査し、次いでX方向にスリット板を移動させ、ビーム12を走査する。走査による電気出力は図4(a),(b)のようになる。これによってビーム11,12のX、Y座標値が定まる。2つのビームのそれぞれのX,Yの座標が定まると、2つのビームを結ぶ線分の傾き、即ちビームの回折方向が決定される。
[第2実施例]
本実施例は本発明の請求項3、4に係わる実施の形態に関する説明である。
Another method of measuring the relative position of the diffracted beam is to perform photoelectrically by scanning the beam with a narrow slit (e.g., 1 [mu] width) or aperture edge. A method of scanning the slit is schematically shown in FIG. FIG. 3 is a plan view of the measurement surface, as viewed from the beam. A slit plate 20 having orthogonal slits 25 (a) and 25 (b) is arranged on the measurement surface, and the position of the slit plate 20 is interferometers 23 (a), (b), (c), ( It is controlled in the X and Y planes by d). Reference numerals 24 (a) and (b) denote measuring mirrors. The slit plate is moved in the X direction from the state shown in the figure, the zero-order diffracted beam 11 and the first-order diffracted beam 12 are sequentially scanned by the slit 25 (a), and the beam passing through the slit is electrically connected by a photomultiplier tube (not shown). Output as a signal. When scanning in the X direction is completed, the slit 25 (b) is moved while controlling the position by the interferometer based on the scanning output in the X direction, the beam 11 is scanned in the Y direction, and then the slit plate is moved in the X direction. The beam 12 is scanned. The electrical output by scanning is as shown in FIGS. 4 (a) and 4 (b). As a result, the X and Y coordinate values of the beams 11 and 12 are determined. When the X and Y coordinates of the two beams are determined, the inclination of the line segment connecting the two beams, that is, the diffraction direction of the beam is determined.
[Second Embodiment]
This example is an explanation relating to an embodiment according to claims 3 and 4 of the present invention.

図5を参照しながら、まず測定原理の説明を行う。
回折格子1に可視光レーザ−ビーム2を照射して零次回折ビーム11と一次回折ビーム12を励起させる。折り返しプリズム45(折り返し光学素子)により2つのビームを折り返し、再度回折格子1を通過させる。折り返しプリズム45は断面が直角二等辺三角形であり、折り返しプリズム45の稜線47とは直交するように配置されている。従って、折り返し零次回折ビーム46は入射ビーム11と平行にプリズム45から出るが、折り返し一次回折ビーム49は一般的には回折方向と折り返し用プリズム45の稜線47との位置関係により定まる方向をもってプリズム45より出る。これらのビーム46,49を再度回折格子1に通し、ハーフミラー48を介して観察すると、折り返し零次回折ビーム46が回折されたビーム、折り返し一次回折ビーム49が再度回折されたビームの複数ビームが観察される。ここで、一次回折ビーム12の回折方向が折り返し用プリズム45の稜線47と直交する場合を考えてみる。この場合、折り返し零次回折ビーム46、入射一次回折ビーム12、折り返し一次回折ビーム49は同一平面内に入ることになる。そして、再度回折格子41を通過すると、折り返し零次回折ビーム46の一次回折ビームと折り返し一次回折ビーム49の零次回折ビームは平行になる。従って、例えばコリメータにより観察すると、コリメータの観察面では1点のみが観察される。そこで、折り返し用プリズム45を微少角度回転走査し、その時の観察面での像点の位置変化を観察する。像点が1点になる時の、折り返し用プリズム45の回転角を測定すると回折格子1の回折方向が折り返し用プリズムの稜線47と直交する方向になる。勿論、この現象を利用する際にコリメータを利用する以外にも手段はある。この点は後の説明で補足する。
First, the principle of measurement will be described with reference to FIG.
The diffraction grating 1 is irradiated with a visible light laser beam 2 to excite the zero-order diffraction beam 11 and the first-order diffraction beam 12. The two beams are folded back by the folding prism 45 (folding optical element) and passed through the diffraction grating 1 again. The folding prism 45 has a right-angled isosceles triangle section, and is arranged so as to be orthogonal to the ridge line 47 of the folding prism 45. Therefore, the folded zero-order diffracted beam 46 exits from the prism 45 in parallel with the incident beam 11, but the folded first-order diffracted beam 49 generally has a direction determined by the positional relationship between the diffraction direction and the ridge line 47 of the folding prism 45. Get out from 45. When these beams 46 and 49 are again passed through the diffraction grating 1 and observed through the half mirror 48, a plurality of beams of the folded zero-order diffracted beam 46 and the folded first-order diffracted beam 49 are diffracted. Observed. Here, consider a case where the diffraction direction of the primary diffraction beam 12 is orthogonal to the ridge line 47 of the folding prism 45. In this case, the folded zero-order diffracted beam 46, the incident first-order diffracted beam 12, and the folded first-order diffracted beam 49 are in the same plane. When passing through the diffraction grating 41 again, the first-order diffracted beam 46 of the folded zero-order diffracted beam 46 and the zero-order diffracted beam 49 of the folded first-order diffracted beam 49 become parallel. Therefore, for example, when observed with a collimator, only one point is observed on the observation surface of the collimator. Therefore, the folding prism 45 is rotated by a small angle, and the position change of the image point on the observation surface at that time is observed. When the rotation angle of the folding prism 45 when the image point becomes one point is measured, the diffraction direction of the diffraction grating 1 becomes a direction orthogonal to the ridge line 47 of the folding prism 45. Of course, there are means other than using a collimator when using this phenomenon. This point will be supplemented in later explanation.

尚、折り返しプリズムは断面が必ずしも直角2等辺3角形である必要はなく、零次回折ビームに直交する辺を有する台形状でも良い。また、プリズムである必要も無く、反射鏡であっても良い。   The folding prism does not necessarily have a right-angled isosceles triangle, but may have a trapezoidal shape having sides orthogonal to the zero-order diffraction beam. Moreover, it is not necessary to be a prism, and a reflecting mirror may be used.

次に本実施例の測定方法を実施するための好適な光学系を記しておく。図6はその例である。回折方向の測定を要する回折格子1にレ−ザ−ビーム2を照射して零時回折ビーム11と一次回折ビーム12を励起する。回折格子ではこの他にも高次の回折ビームが励起されるので、レンズ58(a)、マスク59(a)、レンズ58(b)を用いて必要な次数のビームのみを折り返し用プリズム45に入射させる。この折り返し用プリズム45は回転機構60に取りつけられている。折り返し用プリズム45で折り返された零時回折ビームと一次回折ビーム49はレンズ58(b)を経てマスク59(a)に達する。折り返し零次回折ビーム46はマスク59(a)の開口を通過して再度回折格子1に達するが、折り返し一次回折ビーム49はプリズム45の回転角に依存してマスク59(a)により遮断されることがある。しかし、プリズム45の稜線と回折格子1の回折方向が直角に近くなると折り返し一次ビーム49はマスク59(a)のもう一方の開口を通過して再度回折格子に達する。再度の回折により高次の回折ビームが励起されるが、回折格子1で再度回折されたビームのうち、折り返し零次回折ビームの再回折1次ビームのみが通過できるようにレンズ58(c)、マスク59(b)を配置する。すると、最初の回折により励起された零次回折ビームの再回折一次ビームは、折り返し用プリズム45に対する入射条件に依存することなくマスク59(b)の開口を通過する。一方、最初の回折により励起された一次回折ビームの再回折零次ビームは、回折方向とプリズム45の稜線方向が直交する場合に近くなるとマスク59(b)の開口を通過することになる。そこで、マスク59(b)の開口の後に光電変換素子(不図示)を置いて光量を検出する。そして、その最大出力もたらすプリズム45の回転角(XYZ座標系での稜線47の方向角度と考えてよい)を求めると回折格子の回折方向が定まる。ここでは、マスク59(b)の後に光電変換素子を置いて光量を測定しているが、先の説明のように、マスク59(b)の後にレンズ58(d)を置いて再度平行ビームを取り出し、再回折零次ビームと再回折1次ビームをオートコリメータ95により観察してもよい。また、2つのビームを干渉させて干渉縞を解析することにより2つのビーム間角度を検出し、回折方向を計算しても良い。   Next, a suitable optical system for carrying out the measuring method of this embodiment will be described. FIG. 6 shows an example. The laser beam 2 is irradiated to the diffraction grating 1 that requires measurement of the diffraction direction to excite the zero-time diffraction beam 11 and the first-order diffraction beam 12. In the diffraction grating, other high-order diffracted beams are also excited, so that only the necessary order beams are applied to the folding prism 45 using the lens 58 (a), the mask 59 (a), and the lens 58 (b). Make it incident. The folding prism 45 is attached to the rotation mechanism 60. The zero-time diffracted beam and the first-order diffracted beam 49 folded by the folding prism 45 reach the mask 59 (a) through the lens 58 (b). The folded zero-order diffracted beam 46 passes through the opening of the mask 59 (a) and reaches the diffraction grating 1 again, but the folded first-order diffracted beam 49 is blocked by the mask 59 (a) depending on the rotation angle of the prism 45. Sometimes. However, when the ridgeline of the prism 45 and the diffraction direction of the diffraction grating 1 are close to a right angle, the folded primary beam 49 passes through the other opening of the mask 59 (a) and reaches the diffraction grating again. The high-order diffracted beam is excited by the re-diffraction, but among the beams diffracted again by the diffraction grating 1, only the re-diffracted first-order beam of the folded zero-order diffracted beam can pass through the lens 58 (c), A mask 59 (b) is disposed. Then, the re-diffracted primary beam of the zero-order diffracted beam excited by the first diffraction passes through the opening of the mask 59 (b) without depending on the incident condition with respect to the folding prism 45. On the other hand, the re-diffracted zero-order beam of the first-order diffracted beam excited by the first diffraction passes through the opening of the mask 59 (b) when the diffraction direction and the ridge line direction of the prism 45 are close to each other. Therefore, a photoelectric conversion element (not shown) is placed after the opening of the mask 59 (b) to detect the amount of light. Then, when the rotation angle of the prism 45 (which may be considered as the direction angle of the ridge line 47 in the XYZ coordinate system) resulting in the maximum output is obtained, the diffraction direction of the diffraction grating is determined. Here, the photoelectric conversion element is placed after the mask 59 (b) to measure the amount of light. However, as described above, the lens 58 (d) is placed after the mask 59 (b) and the parallel beam is again emitted. The re-diffracted zero-order beam and the re-diffracted primary beam may be observed by the autocollimator 95. Alternatively, the diffraction direction may be calculated by detecting the angle between the two beams by causing interference between the two beams and analyzing the interference fringes.

また、レンズ58(d)により平行ビームを形成するのではなく、集光させる方法でも良い(図中の点線表示)。この場合、オートコリメータの代わりに2次元センサを置き、2つの折り返し回折ビームの集光位置を検出し、プリズム45,レンズ58、ハーフミラ−48の光学特性を基に集光位置情報から2つのビーム間角度を求め、回折格子の回折方向を計算する。   Further, instead of forming a parallel beam by the lens 58 (d), a method of condensing the beam may be used (indicated by a dotted line in the figure). In this case, a two-dimensional sensor is used in place of the autocollimator, the condensing positions of the two folded diffraction beams are detected, and the two beams are obtained from the condensing position information based on the optical characteristics of the prism 45, the lens 58, and the half mirror 48. Find the angle between them and calculate the diffraction direction of the diffraction grating.

さらに、このような光学系を用いて、複数の回折格子の回折角の差を高精度に求める方法を記す。
まず図8のように回折格子(a)71と回折格子(b)72を回折格子板73に取りつけておく。この回折格子板73を図6中の位置に移動可能に取りつける。
Furthermore, a method for obtaining the difference in diffraction angles of a plurality of diffraction gratings with high accuracy using such an optical system will be described.
First, the diffraction grating (a) 71 and the diffraction grating (b) 72 are attached to the diffraction grating plate 73 as shown in FIG. The diffraction grating plate 73 is movably attached to the position in FIG.

第1の回折格子71を測定位置(図6の回折格子1の位置)に移動して上記の方法により回折方向を測定する。次に、第2の回折格子72を測定位置に移動して同様に第2の回折格子の回折方向を測定する。この時、回折格子板73の端面には反射鏡81(図9)が取りつけられていて、この第1,第2の回折格子の切り替えに際しては、干渉計82により移動時の方向制御を行っている。これによって、切り替えた時の回折格子の方向が制御されることになる。従って、第1の回折方向の測定後、回折格子板73を移動させ、同時に回転機構60をあらかじめ決められた角度だけ回転させたときに第1、第2の回折格子の格子方向(従って、回折方向)と回転機構の角度合わせが正確になされ、相対的な角度がより正確に求まることになる。   The first diffraction grating 71 is moved to the measurement position (the position of the diffraction grating 1 in FIG. 6), and the diffraction direction is measured by the above method. Next, the second diffraction grating 72 is moved to the measurement position, and the diffraction direction of the second diffraction grating is similarly measured. At this time, a reflecting mirror 81 (FIG. 9) is attached to the end face of the diffraction grating plate 73. When the first and second diffraction gratings are switched, the interferometer 82 performs direction control during movement. Yes. As a result, the direction of the diffraction grating when switched is controlled. Therefore, after the measurement of the first diffraction direction, the diffraction grating plate 73 is moved, and at the same time, when the rotation mechanism 60 is rotated by a predetermined angle, the grating directions of the first and second diffraction gratings (accordingly, diffraction). (Direction) and the angle of the rotation mechanism are accurately adjusted, and the relative angle can be obtained more accurately.

[第3実施例]
本実施例は本発明の請求項5に係わる実施の形態に関する説明である。
図7を参照しながら説明を行う。
[Third embodiment]
This example is an explanation relating to an embodiment according to claim 5 of the present invention.
This will be described with reference to FIG.

回折格子1に可視光レーザ−ビーム2を照射して零次回折ビーム11と一次回折ビーム12を励起させる。図7(a)では零次回折ビームを光軸とするレンズ91を置き、一次回折ビーム12を屈折させてビーム11との角度を小さくする。   The diffraction grating 1 is irradiated with a visible light laser beam 2 to excite the zero-order diffraction beam 11 and the first-order diffraction beam 12. In FIG. 7A, a lens 91 having a zeroth-order diffracted beam as an optical axis is placed, and the first-order diffracted beam 12 is refracted to reduce the angle with the beam 11.

図7(b)では一次回折ビームをミラ−92により折り曲げてビーム11との角度を小さくする。このように2つのビームのなす角度を小さくした後、オートコリメータや干渉縞観察法により2つのビームのなす角度(方向も含めた角度)を測定する。レンズ91やミラ−92の光学系における位置とその光学特性より変化前の2つのビームのなす角度、即ち回折方向が求まる。   In FIG. 7B, the first-order diffracted beam is bent by a mirror 92 to reduce the angle with the beam 11. After reducing the angle formed by the two beams in this manner, the angle formed by the two beams (including the direction) is measured by an autocollimator or an interference fringe observation method. The angle formed by the two beams before the change, that is, the diffraction direction, can be obtained from the position of the lens 91 and mirror 92 in the optical system and the optical characteristics thereof.

小さくなったビーム間角度の測定に関しては、第2実施例のように行えば良い。   The measurement of the beam angle that has become smaller may be performed as in the second embodiment.

半導体装置の高密度化は携帯電子機器の発展にとって必至の技術であり、本発明はその高密度化にとって必至な回路の細線化技術の一端である。従って、本発明は電子産業上必ず利用される技術である。   Increasing the density of semiconductor devices is an indispensable technology for the development of portable electronic devices, and the present invention is one of the circuit thinning techniques indispensable for increasing the density. Therefore, the present invention is a technique that is surely used in the electronics industry.

2つの回折ビームの相対位置測定法の概念図である。It is a conceptual diagram of the relative position measuring method of two diffracted beams. 離散的受光素子の走査時の位置関係を示す図である。It is a figure which shows the positional relationship at the time of the scanning of a discrete light receiving element. 2つのビームの相対位置関係を開口走査方式で測定する概念図である。It is a conceptual diagram which measures the relative positional relationship of two beams with an aperture scanning system. ビーム走査によって得られる出力例である。It is an example of an output obtained by beam scanning. 折り返し光学素子を用いた、ビーム間角度変換原理図である。It is a beam angle conversion principle view using a return optical element. 折り返し光学素子を用いたビーム間角度測定系の例を示す図である。It is a figure which shows the example of the angle measurement system between beams using a return | turnback optical element. ビーム間角度変換光学素子の例を示す図である。It is a figure which shows the example of the angle conversion optical element between beams. 回折格子板の例である。It is an example of a diffraction grating plate. 回折格子板の斜視図である。It is a perspective view of a diffraction grating plate.

符号の説明Explanation of symbols

1 ・・・・ 回折格子
2 ・・・・ レ−ザ−ビ−ム
11 ・・・・ 零次回折ビーム
12 ・・・・ 一次回折ビーム
13 ・・・・ 2次元センサ
20 ・・・・ スリット板
23 ・・・・ 干渉計
24 ・・・・ 測定鏡
25 ・・・・ スリット
45 ・・・・ 折り返しプリズム
47 ・・・・ 稜線
48 ・・・・ ハーフミラ−
58 ・・・・ レンズ
59 ・・・・ マスク
60 ・・・・ 回転機構
73 ・・・・ 回折格子板
81 ・・・・ 反射鏡
91 ・・・・ レンズ
92 ・・・・ ミラ−
95 ・・・・ オートコリメータ−
DESCRIPTION OF SYMBOLS 1 ... Diffraction grating 2 ... Laser beam 11 ... Zero order diffraction beam 12 ... First order diffraction beam 13 ... Two-dimensional sensor 20 ... Slit Plate 23 ... Interferometer 24 ... Measuring mirror 25 ... Slit 45 ... Folding prism 47 ... Edge line 48 ... Half mirror
58 ... Lens 59 ... Mask 60 ... Rotating mechanism 73 ... Diffraction grating plate 81 ... Reflector 91 ... Lens 92 ... Miller
95 ・ ・ ・ ・ Autocollimator

Claims (6)

EUVの波長領域のシアリング干渉計に用いられる回折格子の回折方向の測定方法であって、
可視光レ−ザ−ビ−ムを前記回折格子に照射して零次及び高次回折ビ−ムを生じせしめ、
所定の面内における前記零次回折ビームと前記高次回折ビームのビーム相対位置を光電的に検出する
ことを特徴とする回折方向測定方法。
A method for measuring the diffraction direction of a diffraction grating used in a shearing interferometer in the EUV wavelength region,
Irradiating the diffraction grating with a visible light laser beam to produce zero-order and higher-order diffraction beams;
A diffraction direction measuring method, wherein a beam relative position of the zero-order diffraction beam and the high-order diffraction beam in a predetermined plane is detected photoelectrically.
請求項1記載の回折方向測定方法であって、
2次元アナログセンサ、2次元離散センサのアナログ的な使用、開口走査方式のいずれかを用いて前記ビーム相対位置を光電的に検出する
ことを特徴とする回折方向測定方法。
The method of measuring a diffraction direction according to claim 1,
A diffraction direction measuring method, wherein the beam relative position is detected photoelectrically using any one of a two-dimensional analog sensor, an analog use of a two-dimensional discrete sensor, and an aperture scanning method.
EUVの波長領域のシアリング干渉計に用いられる回折格子の回折方向の測定方法であって、
可視光レ−ザ−ビ−ムを前記回折格子に照射して零次及び高次回折ビ−ムを生じせしめ、
該零次回折ビームと該高次回折ビームとがなすビーム間角度が小さくなるように変換し、
該変換された零次回折ビーム及び高次回折ビームを検出する
ことを特徴とする回折方向測定方法。
A method for measuring the diffraction direction of a diffraction grating used in a shearing interferometer in the EUV wavelength region,
Irradiating the diffraction grating with a visible light laser beam to produce zero-order and higher-order diffraction beams;
Transform so that the angle between the beam formed by the zero-order diffraction beam and the high-order diffraction beam is small,
A diffraction direction measuring method, wherein the converted zero-order diffraction beam and high-order diffraction beam are detected.
請求項3記載の回折方向測定方法であって、
回折により生じた前記零次回折ビーム及び前記一次回折ビームを折り返し光学素子により折り返し、その後再度前記回折格子を通すことによりビーム間角度を小さくすることを特徴とする回折方向測定方法。
A diffraction direction measuring method according to claim 3,
A diffraction direction measuring method, wherein the zero-order diffracted beam and the first-order diffracted beam generated by diffraction are folded by a folding optical element and then passed through the diffraction grating again to reduce the angle between the beams.
請求項3記載の回折方向測定方法であって、
回折により生じた前記前記一次回折ビームをレンズ又はミラ−に通すことによりビーム間角度を小さくする
ことを特徴とする回折方向測定方法。
A diffraction direction measuring method according to claim 3,
A diffraction direction measuring method characterized in that the angle between the beams is reduced by passing the first-order diffracted beam generated by diffraction through a lens or a mirror.
請求項3乃至5記載の回折方向測定方であって、
コリメータ又は干渉法により前記零次回折ビーム及び高次回折ビームを検出し、前記ビーム間角度を求める
ことを特徴とする回折方向測定方法。
The method of measuring a diffraction direction according to claim 3, wherein
A diffraction direction measuring method, wherein the zero-order diffracted beam and the high-order diffracted beam are detected by a collimator or an interferometry, and the inter-beam angle is obtained.
JP2004237597A 2004-08-17 2004-08-17 Diffraction direction measuring method of diffraction grating of shearing interferometer for euv Pending JP2006058038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004237597A JP2006058038A (en) 2004-08-17 2004-08-17 Diffraction direction measuring method of diffraction grating of shearing interferometer for euv

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004237597A JP2006058038A (en) 2004-08-17 2004-08-17 Diffraction direction measuring method of diffraction grating of shearing interferometer for euv

Publications (1)

Publication Number Publication Date
JP2006058038A true JP2006058038A (en) 2006-03-02

Family

ID=36105632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004237597A Pending JP2006058038A (en) 2004-08-17 2004-08-17 Diffraction direction measuring method of diffraction grating of shearing interferometer for euv

Country Status (1)

Country Link
JP (1) JP2006058038A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101292918B1 (en) 2011-08-12 2013-08-02 한국원자력연구원 Imaging detectors for grating interferometer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101292918B1 (en) 2011-08-12 2013-08-02 한국원자력연구원 Imaging detectors for grating interferometer

Similar Documents

Publication Publication Date Title
US7548077B2 (en) Measuring apparatus and a measuring method for measuring a polarization characteristic of an optical system
US7599071B2 (en) Determining positional error of an optical component using structured light patterns
JP4482487B2 (en) Dynamic pupil fill shearing interferometer
US20080304079A1 (en) Displacement measurement sensor head and system having measurement sub-beams comprising zeroth order and first order diffraction components
US9625836B2 (en) Interferometer, lithography apparatus, and method of manufacturing article
JP2000097616A (en) Interferometer
TW201234127A (en) Projection exposure tool for microlithography and method for microlithographic imaging
JP2009162539A (en) Light wave interferometer apparatus
TW201807389A (en) Measurement system for determining a wavefront aberration
JP4786923B2 (en) Conversion coefficient calibration method and apparatus for fringe measurement apparatus, and fringe measurement apparatus provided with the conversion coefficient calibration apparatus
US10747120B2 (en) Lithographic method and apparatus
JP5955375B2 (en) Optical device
JP4183220B2 (en) Optical spherical curvature radius measuring device
JP2007298281A (en) Measuring method and device of surface shape of specimen
JP2006017485A (en) Device and method for measuring surface shape, manufacturing method of projection optical system, projection optical system, and projection exposing device
US5995215A (en) Autocollimator with grating
EP1644699B1 (en) Methods and apparatus for reducing error in interferometric imaging measurements
JPH08313205A (en) Oblique-incidence interferometer equipment
JP5129702B2 (en) Measuring apparatus, exposure apparatus, and device manufacturing method
JP2005183415A (en) Shearing interference measuring method and shearing interferometer
JP2006058038A (en) Diffraction direction measuring method of diffraction grating of shearing interferometer for euv
US20160025480A1 (en) Interferometric level sensor
JP2009210359A (en) Evaluation method, evaluation apparatus, and exposure device
JP2009145068A (en) Surface profile measuring method and interferometer
JP2595050B2 (en) Small angle measuring device