JP2006058023A - Thin film, optical element with it, and method for forming film - Google Patents

Thin film, optical element with it, and method for forming film Download PDF

Info

Publication number
JP2006058023A
JP2006058023A JP2004237241A JP2004237241A JP2006058023A JP 2006058023 A JP2006058023 A JP 2006058023A JP 2004237241 A JP2004237241 A JP 2004237241A JP 2004237241 A JP2004237241 A JP 2004237241A JP 2006058023 A JP2006058023 A JP 2006058023A
Authority
JP
Japan
Prior art keywords
film
optical element
thin film
reflecting surface
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004237241A
Other languages
Japanese (ja)
Other versions
JP4498059B2 (en
JP2006058023A5 (en
Inventor
Masakiyo Kato
正磨 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004237241A priority Critical patent/JP4498059B2/en
Publication of JP2006058023A publication Critical patent/JP2006058023A/en
Publication of JP2006058023A5 publication Critical patent/JP2006058023A5/ja
Application granted granted Critical
Publication of JP4498059B2 publication Critical patent/JP4498059B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin film which can reduce liquid level aberration while sufficiently maintaining a reflectivity performance, and also provide an optical element with the thin film formed on its surface. <P>SOLUTION: In this optical element, the thin film is formed on the reflective surface reflecting incident light. The thicknesses of the thin films distribute in rotational symmetry centering around a line which passes through the center of the reflective surface and is perpendicular to it and also distribute so as to include an odd function to a radius centering around a rotational symmetry axis. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、一般に光学素子等の基材表面に成膜された薄膜、及びその薄膜を有する光学素子に係り、特に、半導体露光装置に用いられるレンズ、ミラー等の光学素子表面に成膜された多層膜に関する。本発明は、広い入射角で光学素子に光(例えばEUV光)が入射する場合において、その収差低減を目的とする多層膜に好適である。   The present invention generally relates to a thin film formed on a surface of a substrate such as an optical element, and an optical element having the thin film, and more particularly to a film formed on the surface of an optical element such as a lens or a mirror used in a semiconductor exposure apparatus. The present invention relates to a multilayer film. The present invention is suitable for a multilayer film intended to reduce aberration when light (for example, EUV light) is incident on an optical element with a wide incident angle.

半導体技術分野は集積回路素子の微細化とともに急速な発展を遂げている。半導体技術は主にリソグラフィ技術とエッチング技術とから構成されるが、このうちリソグラフィ技術による微細化は露光波長の短波長化・開口数の増大・露光方式の変更によって達成される。近年では、露光波長を従来の紫外線の10分の1程度であるEUV波長(10〜15nm)とした投影リソグラフィ技術が開発されている。EUV波長領域では光は物質に強く吸収されるため、投影光学系に屈折光学系を用いることができず反射光学系が使用される。また反射面には反射率向上を目的とした多層膜が成膜されている。投影光学系においては、入射光量に対する出射光量(投影光学系を通過した光量)の比率を全系透過率又は透過率と呼び、反射率性能(透過率性能)が高いとは、全系透過率が高いこと、透過率が瞳内で一様な分布であること、及び物体高ごとの透過率に差がないことをいう。   The semiconductor technology field has been rapidly developed along with the miniaturization of integrated circuit elements. Semiconductor technology is mainly composed of lithography technology and etching technology. Of these, miniaturization by lithography technology is achieved by shortening the exposure wavelength, increasing the numerical aperture, and changing the exposure method. In recent years, a projection lithography technique has been developed in which the exposure wavelength is an EUV wavelength (10 to 15 nm), which is about one-tenth of conventional ultraviolet rays. In the EUV wavelength region, light is strongly absorbed by the substance, and therefore a refractive optical system cannot be used for the projection optical system, and a reflective optical system is used. A multilayer film for improving the reflectance is formed on the reflecting surface. In the projection optical system, the ratio of the outgoing light quantity (the light quantity that has passed through the projection optical system) to the incident light quantity is called the total system transmittance or transmittance, and high reflectance performance (transmittance performance) means that the total system transmittance Is high, the transmittance is uniformly distributed in the pupil, and there is no difference in transmittance for each object height.

多層膜は実質的に周期構造になっており、ブラッグ条件:2dcosθ=mλ(d:周期長、θ:入射角、λ:露光波長)にしたがって反射率が向上するため、反射面の各点の入射角に対して最適な周期長が存在する。そこでEUV光の照射領域内で光の入射角度差が大きい反射面では反射位置によって周期長(すなわち膜厚)を変化させた傾斜膜が使用される。反射位置によって周期長が変化する膜を、傾斜をつけた膜、又は傾斜膜と呼ぶこととする。   The multilayer film has a substantially periodic structure, and the reflectivity is improved according to the Bragg condition: 2d cos θ = mλ (d: period length, θ: incident angle, λ: exposure wavelength). There is an optimum period length for the incident angle. Therefore, an inclined film whose period length (that is, film thickness) is changed depending on the reflection position is used on the reflection surface having a large incident angle difference of light within the EUV light irradiation region. A film whose period length varies depending on the reflection position is referred to as a tilted film or a tilted film.

多層膜によってEUV光の複素振幅反射率が変化するため、反射面でEUV光の反射率とともに反射位相も変化する。そのため最終的な光学系は薄膜を考慮して設計する必要がある。このときの回転対称な物体位置に対して同じ収差特性を持たせるため、膜厚の関数は光軸に対して回転対称であることが多い。ただし薄膜の回転対称軸を光軸から偏芯させる例も提案されている(例えば、特許文献1を参照。)。   Since the complex amplitude reflectance of the EUV light is changed by the multilayer film, the reflection phase is changed together with the reflectance of the EUV light on the reflection surface. Therefore, the final optical system needs to be designed in consideration of the thin film. In order to give the same aberration characteristic to the rotationally symmetric object position at this time, the film thickness function is often rotationally symmetric with respect to the optical axis. However, an example in which the rotationally symmetric axis of the thin film is decentered from the optical axis has also been proposed (see, for example, Patent Document 1).

薄膜を含めた投影光学系は透過率が大きく、透過率の均一性が高く、また波面収差が小さいことが求められる。しかし十分に収差が排除された投影光学系に反射率向上の目的で多層膜を成膜すると、光の反射位置が変化することと薄膜により反射位相が変化することから、全系の波面収差が劣化する。反射膜の膜厚分布は回転中心からの半径の多項式関数が使用されるが、薄膜を成膜したことによる波面収差の劣化を抑えるために、2次までの偶関数を使用することが多い。このように薄膜の傾斜が単純な関数で表せる場合、薄膜によって生じる収差は低次のものがほとんどである。それらは、ティルト成分とデフォーカス成分とを除くと低次の非点収差が主である。薄膜によって劣化した収差が低次である場合、光学系の面間隔補正のみである程度の収差補正が可能である。   A projection optical system including a thin film is required to have a high transmittance, a high uniformity of the transmittance, and a small wavefront aberration. However, when a multilayer film is formed on a projection optical system that sufficiently eliminates aberrations for the purpose of improving reflectivity, the reflection position of the light changes and the reflection phase changes due to the thin film. to degrade. The film thickness distribution of the reflection film uses a polynomial function of the radius from the center of rotation, but in order to suppress the deterioration of wavefront aberration due to the formation of the thin film, an even function up to the second order is often used. When the inclination of the thin film can be expressed by a simple function in this way, most of the aberrations generated by the thin film are low-order. They are mainly low-order astigmatism except for the tilt component and the defocus component. When the aberration deteriorated by the thin film is low order, a certain degree of aberration correction is possible only by correcting the surface distance of the optical system.

多層膜の膜厚分布が半径方向に変曲点を多く有する場合、反射面の表面形状も変曲点の多いうねった形状となり、波面収差が大きくなってしまう。そのため膜厚分布の関数は編曲点が少ない関数の方が好ましい。例えば、膜厚分布の関数が回転中心からの半径の多項式関数の場合、最高次数は2次又は4次程度が好ましい。ただしこの場合、関数のパラメータの個数が減少するため、透過率の瞳内分布を一様にして全系透過率を高くすることが困難となる。
米国特許出願公開第2003/0099034A1号明細書
When the film thickness distribution of the multilayer film has many inflection points in the radial direction, the surface shape of the reflecting surface also becomes a wavy shape with many inflection points, and the wavefront aberration becomes large. Therefore, the function of the film thickness distribution is preferably a function having few arrangement points. For example, when the film thickness distribution function is a polynomial function of the radius from the rotation center, the highest order is preferably about the second order or the fourth order. However, in this case, since the number of function parameters is reduced, it is difficult to increase the entire system transmittance by making the distribution of the transmittance in the pupil uniform.
US Patent Application Publication No. 2003 / 099034A1

しかしながら、例えば図13に示すようなEUV投影光学系においては、光学系に配置された各ミラーに対して光が斜めに入射するため、光の入射角分布が物体軸方向に広がっていく傾向がある。ここで物体軸方向とは光軸Oに直交する図中Y方向のことである。各反射面での光の反射位相は各反射面に対する光の入射角に依存し、また光学系の瞳上での等位相面が波面にあたるため、EUV投影光学系で多層膜を成膜すると、波面の傾きすなわち波面のティルト成分が大きくなることがある。ティルト成分は光の結像位置の位置ずれと像面のデフォーカス成分とに分けられる。一般的に、物体が光軸から離れた位置にあるような光学系では倍率補正でティルトによる結像位置のずれを補正できる。物体が大きさを持つ場合にその中心位置に合わせて倍率補正を行うと、中心位置以外の他の物体位置では倍率補正による結像位置移動量とティルトによる結像位置ずれ量とが若干異なってしまう。そのため、倍率補正のみではティルトの効果を補正しきれず、ディストーションとして残ってしまって問題になることがある。また反射膜には投影光学系の波面収差を小さく維持しつつ、各面の反射率を向上させるものが求められるが、反射率を向上させるために反射膜の表面形状(傾斜)を複雑にしてしまうと、反射位相が位置に対して高周期な形状を有して波面収差が悪化することが多く、反射率性能と波面収差性能の両方が高性能の反射膜を作成することは困難であった。   However, in an EUV projection optical system as shown in FIG. 13, for example, light is incident obliquely on each mirror arranged in the optical system, so that the incident angle distribution of the light tends to spread in the object axis direction. is there. Here, the object axis direction is the Y direction in the figure orthogonal to the optical axis O. The reflection phase of the light on each reflecting surface depends on the incident angle of the light with respect to each reflecting surface, and since the equiphase surface on the pupil of the optical system corresponds to the wavefront, when a multilayer film is formed with the EUV projection optical system, The slope of the wavefront, that is, the tilt component of the wavefront, may increase. The tilt component is divided into a positional shift of the light image formation position and a defocus component of the image plane. In general, in an optical system in which an object is located away from the optical axis, the displacement of the imaging position due to tilt can be corrected by magnification correction. If the object has a size and the magnification correction is performed according to the center position, the image position movement amount due to the magnification correction and the image position displacement amount due to the tilt are slightly different at other object positions other than the center position. End up. For this reason, the tilt effect cannot be corrected by only the magnification correction, and the distortion may remain as a problem. In addition, the reflecting film is required to improve the reflectivity of each surface while keeping the wavefront aberration of the projection optical system small. To improve the reflectivity, the surface shape (tilt) of the reflecting film is complicated. As a result, the wavefront aberration often deteriorates because the reflection phase has a shape with a high period with respect to the position, and it is difficult to produce a reflective film having both high reflectivity performance and wavefront aberration performance. It was.

本発明は上記の事情に鑑みて為されたもので、反射率性能を十分に維持しつつ波面収差を低減することのできる薄膜、その薄膜が表面に成膜された光学素子を提供することを例示的目的とする。   The present invention has been made in view of the above circumstances, and provides a thin film capable of reducing wavefront aberration while sufficiently maintaining reflectance performance, and an optical element having the thin film formed on the surface thereof. For illustrative purposes.

上記の目的を達成するために、本発明の例示的側面としての光学素子は、入射光を反射する反射面に薄膜が形成された光学素子であって、薄膜の膜厚が、反射面の中央を通り前記反射面に垂直な線を中心として回転対称に分布し、かつ、回転対称軸を中心とした半径に対して奇関数を含むように分布していることを特徴とする。   In order to achieve the above object, an optical element as an exemplary aspect of the present invention is an optical element in which a thin film is formed on a reflective surface that reflects incident light, and the film thickness of the thin film is the center of the reflective surface. And is distributed so as to be rotationally symmetric about a line perpendicular to the reflecting surface and to include an odd function with respect to a radius centered on the rotationally symmetric axis.

その薄膜が多層膜であってもよい。また、多層膜が、シリコン層及びモリブデン層からなる2層を繰り返し積層して構成されていてもよい。繰り返し数が40であってもよい。   The thin film may be a multilayer film. The multilayer film may be configured by repeatedly stacking two layers including a silicon layer and a molybdenum layer. The number of repetitions may be 40.

本発明の他の例示的側面としての光学系は、上記の光学素子を有し、かつ光学素子の反射面のうち入射光を反射する反射領域が光軸を含まないことを特徴とする。   An optical system according to another exemplary aspect of the present invention includes the above-described optical element, and a reflection region that reflects incident light on a reflection surface of the optical element does not include an optical axis.

本発明のさらに他の例示的側面としての露光装置は、光源からの光でレチクルを照明する照明光学系と、レチクルのパターンを基板上に投影する投影光学系とを備えた露光装置であって、照明光学系又は投影光学系の少なくともいずれか一方が上記の光学素子を有することを特徴とする。   An exposure apparatus according to still another exemplary aspect of the present invention is an exposure apparatus that includes an illumination optical system that illuminates a reticle with light from a light source, and a projection optical system that projects a reticle pattern onto a substrate. At least one of the illumination optical system and the projection optical system has the optical element described above.

本発明のさらに他の例示的側面としてのデバイス製造方法は、上記の露光装置によって基板を露光する工程と、露光された基板に所定のプロセスを行う工程とを有することを特徴とする。   A device manufacturing method according to still another exemplary aspect of the present invention includes a step of exposing a substrate by the exposure apparatus described above, and a step of performing a predetermined process on the exposed substrate.

本発明のさらに他の例示的側面としての薄膜は、入射光を反射する反射光学素子の反射面に成膜された薄膜であって、その膜厚が、反射面の中央を通り前記反射面に垂直な線を中心として回転対称に分布し、かつ、回転対称軸を中心とした半径に対して奇関数を含むように分布していることを特徴とする。   A thin film as still another exemplary aspect of the present invention is a thin film formed on a reflective surface of a reflective optical element that reflects incident light, and the thickness of the thin film passes through the center of the reflective surface to the reflective surface. It is distributed so as to be rotationally symmetric about a vertical line, and to be distributed so as to include an odd function with respect to a radius centered on the rotationally symmetric axis.

本発明のさらに他の例示的側面としての成膜方法は、入射光を反射する反射光学素子の反射面に薄膜を成膜する成膜方法であって、薄膜の膜厚が、反射面の中央を通り前記反射面に垂直な線を中心として回転対称に分布させ、かつ、回転対称軸を中心とした半径に対して奇関数を含んで分布させたことを特徴とする。   A film forming method as still another exemplary aspect of the present invention is a film forming method in which a thin film is formed on a reflective surface of a reflective optical element that reflects incident light, and the film thickness of the thin film is the center of the reflective surface. And distributed in a rotationally symmetric manner around a line perpendicular to the reflecting surface and including an odd function with respect to a radius around the rotationally symmetric axis.

本発明の他の目的及び更なる特徴は、以下、添付図面を参照して説明される実施形態により明らかにされるであろう。   Other objects and further features of the present invention will be made clear by embodiments described below with reference to the accompanying drawings.

本発明によれば、膜厚の関数として従来の偶関数のみならず奇関数をも加えることによって膜によって生じるティルト成分を抑えることが可能となり、光学系の設計に自由度が生じて反射率性能の向上を実現できる。   According to the present invention, it is possible to suppress the tilt component generated by the film by adding not only the conventional even function but also an odd function as a function of the film thickness, and the degree of freedom in the design of the optical system arises, resulting in reflectivity performance. Can be improved.

[実施の形態1]
本発明の実施の形態1に係る薄膜について、以下、説明する。この薄膜は、反射型の投影光学系に用いられる反射ミラーの表面に成膜される反射膜である。反射型の投影光学系の設計は大きく3つの段階に分けられる。第1の段階は、反射膜を考慮せずに結像性能の高い光学系を設計する段階である。照射光の反射率は一切考慮せず、それ以外の性能・形態・仕様をすべて決定する。第2の段階は、反射率性能の高い反射膜を設計する段階である。この段階では投影光学系の設計値は変更せず、反射性能が高くなるように反射膜の仕様を決定する。第3の段階は、反射膜を付加することによって劣化した結像性能を、光学系によって補正する段階である。
[Embodiment 1]
The thin film according to Embodiment 1 of the present invention will be described below. This thin film is a reflective film formed on the surface of a reflective mirror used in a reflective projection optical system. The design of the reflective projection optical system can be roughly divided into three stages. The first stage is a stage in which an optical system with high imaging performance is designed without considering the reflective film. All other performance, form, and specifications are determined without considering the reflectance of the irradiated light. The second stage is a stage in which a reflective film with high reflectivity performance is designed. At this stage, the design value of the projection optical system is not changed, and the specification of the reflection film is determined so that the reflection performance is improved. The third stage is a stage in which the imaging performance deteriorated by adding the reflective film is corrected by the optical system.

本発明においては、膜厚の関数として従来の偶関数のみならず奇関数をも加えることにより、膜によって生じるティルト成分を抑えることが可能となり(第1の効果)、設計に自由度が生じて反射率性能の向上を実現できる(第2の効果)という効果を奏することができる。   In the present invention, by adding not only the conventional even function but also an odd function as a function of the film thickness, it is possible to suppress the tilt component generated by the film (first effect), and there is a degree of freedom in design. The effect that the reflectance performance can be improved (second effect) can be achieved.

反射膜の膜厚分布は所定の回転対称軸を中心として回転対称な分布形状である。その膜厚分布の関数(以下、膜厚関数という。)の回転対称軸から半径rの位置の膜厚をdとすると、dは半径rの絶対値の関数で表される。例えば、膜厚の関数が多項式の2次以下の関数(奇関数を含む)で構成される場合、膜厚dと半径rとの関係は以下の式(1)で表される。ここで、C0,C1,C2は係数を表す。   The film thickness distribution of the reflective film is a rotationally symmetric distribution shape about a predetermined rotational symmetry axis. When the film thickness at the position of the radius r from the rotational symmetry axis of the function of the film thickness distribution (hereinafter referred to as the film thickness function) is d, d is expressed as a function of the absolute value of the radius r. For example, when the film thickness function is composed of a function of a second order or lower (including an odd function) of a polynomial, the relationship between the film thickness d and the radius r is expressed by the following equation (1). Here, C0, C1, and C2 represent coefficients.

・・・(1)
式(1)からわかるように、奇関数を含む反射膜の膜厚関数は、回転中心位置で滑らかではなくなる、又は微分係数が不連続となる。この場合、反射波面の形状も回転中心位置で微分係数が不連続となる。そこで、反射膜の回転中心位置を光の照射領域(反射領域)として使用する反射面ではC1の項を使用しないようにする。すなわちC1=0とする。図1にC1の項を使用した場合と使用しない場合とを比較した例を示す。図1(a)は、C1の項を使用した場合の反射膜の膜厚分布形状の例を示す模式図であり、図1(b)は、C1の項を使用しない場合(すなわちC1=0の場合)の反射膜の膜厚分布形状の例を示す模式図である。
... (1)
As can be seen from equation (1), the film thickness function of the reflective film including the odd function is not smooth at the rotation center position, or the differential coefficient is discontinuous. In this case, the differential coefficient of the shape of the reflected wavefront is also discontinuous at the rotation center position. Therefore, the C1 term is not used on the reflection surface that uses the rotation center position of the reflection film as the light irradiation region (reflection region). That is, C1 = 0. FIG. 1 shows an example in which the case of using the term C1 is compared with the case of not using it. FIG. 1A is a schematic diagram showing an example of the thickness distribution shape of the reflective film when the term C1 is used, and FIG. 1B is a case where the term C1 is not used (that is, C1 = 0). It is a schematic diagram which shows the example of the film thickness distribution shape of a reflective film of (in the case of).

[実施例1]
本発明に係る薄膜(反射膜)をEUV投影光学系に適用した場合の効果について説明する。EUV投影光学系に開口数NA=0.28、縮小比4:1のものを採用する。なお、EUV光の波長は13.5nmである。図2にこの実施例1に係るEUV投影光学系1の光路図を示す。EUV投影光学系1に用いられる光学素子(ミラー)の各光学面(反射面)に勾配を持った多層膜を成膜する。多層膜は厚さ4.07nmのシリコン(Si)層と厚さ2.84nmのモリブデン(Mo)層とによって構成され、この2層を1組として40組(40周期)積層されている。周期長分布は光軸を中心とする回転対称な分布になっていて、光軸からの半径の関数として2次以下の多項式で構成される。
[Example 1]
The effect when the thin film (reflection film) according to the present invention is applied to an EUV projection optical system will be described. An EUV projection optical system having a numerical aperture NA = 0.28 and a reduction ratio of 4: 1 is adopted. The wavelength of EUV light is 13.5 nm. FIG. 2 shows an optical path diagram of the EUV projection optical system 1 according to the first embodiment. A multilayer film having a gradient is formed on each optical surface (reflection surface) of an optical element (mirror) used in the EUV projection optical system 1. The multilayer film is composed of a 4.07 nm thick silicon (Si) layer and a 2.84 nm thick molybdenum (Mo) layer, and the two layers are stacked as 40 sets (40 cycles). The periodic length distribution is a rotationally symmetric distribution with the optical axis as the center, and is composed of a second-order polynomial as a function of the radius from the optical axis.

この実施例1においては、各反射膜の回転対称軸は光軸Oに一致している。このEUV投影光学系を構成する各ミラーの反射面を、投影原版としてのマスクMS側から被投影体としてのウエハW側に向かって順に第1反射面M1、第2反射面M2、第3反射面M3、第4反射面M4、第5反射面M5、第6反射面M6とする。第1反射面M1、第3反射面M3、第4反射面M4は、反射領域に反射膜の回転中心位置を含まないので、これらの反射面には偶関数及び奇関数からなる膜厚分布の傾斜膜を適用する。回転対称軸から半径rの位置の膜厚dは、以下の式(2)によって表される。ここでC0,C1,C2は係数であり、iは反射面番号である。   In Example 1, the rotational symmetry axis of each reflective film coincides with the optical axis O. The reflecting surfaces of the mirrors constituting the EUV projection optical system are arranged in order from the mask MS as the projection original plate toward the wafer W as the projection target in order from the first reflecting surface M1, the second reflecting surface M2, and the third reflecting surface. A surface M3, a fourth reflecting surface M4, a fifth reflecting surface M5, and a sixth reflecting surface M6 are used. Since the first reflecting surface M1, the third reflecting surface M3, and the fourth reflecting surface M4 do not include the rotation center position of the reflecting film in the reflecting region, these reflecting surfaces have a film thickness distribution composed of an even function and an odd function. Apply a graded membrane. The film thickness d at the position of the radius r from the rotational symmetry axis is expressed by the following formula (2). Here, C0, C1, and C2 are coefficients, and i is a reflection surface number.

・・・(2)
また、第2反射面M2、第5反射面M5、第6反射面M6は、反射領域に反射膜の回転中心位置を含むので、これらの反射面には偶関数からなる膜厚分布の傾斜膜を適用する。回転対称軸から半径rの位置の膜厚dは、以下の式(3)によって表される。ここでC0,C1,C2は係数であり、iは反射面番号である。
... (2)
In addition, since the second reflecting surface M2, the fifth reflecting surface M5, and the sixth reflecting surface M6 include the rotational center position of the reflecting film in the reflecting region, these reflecting surfaces have an inclined film having a film thickness distribution composed of an even function. Apply. The film thickness d at the position of the radius r from the rotational symmetry axis is expressed by the following formula (3). Here, C0, C1, and C2 are coefficients, and i is a reflection surface number.

・・・(3)
表1は、このEUV投影光学系1に用いた各ミラーの反射面の設計値を示した表である。第1反射面M1、第3反射面M3、第4反射面M4は1次項を有しており(すなわち、C1≠0であり、奇関数を含んでいる。)、第2反射面M2、第5反射面M5、第6反射面M6は1次項を有していない(すなわち、C1=0である。)。表中のA〜Gは非球面係数を示し、C0〜C1は式(2)及び式(3)に示す係数に対応している。
... (3)
Table 1 is a table showing design values of the reflecting surfaces of the mirrors used in the EUV projection optical system 1. The first reflecting surface M1, the third reflecting surface M3, and the fourth reflecting surface M4 have a first-order term (that is, C1 ≠ 0 and include an odd function), the second reflecting surface M2, the second reflecting surface M2, and the second reflecting surface M2. The fifth reflecting surface M5 and the sixth reflecting surface M6 do not have a primary term (that is, C1 = 0). A to G in the table indicate aspheric coefficients, and C0 to C1 correspond to the coefficients shown in Expression (2) and Expression (3).

また、C1の項(1次項)を含めた上記実施例1のEUV投影光学系1の効果を確認するため、比較例1として第1反射面M1、第3反射面M3、第4反射面M4の各膜厚関数にC1の項がないとした場合を想定した。表2に、比較例1の光学系の各設計値を示す。この比較例1では、上記のEUV投影光学系1に対して、反射膜の勾配関数と反射面間隔が変更されている。 Further, in order to confirm the effect of the EUV projection optical system 1 of Example 1 including the term C1 (primary term), the first reflecting surface M1, the third reflecting surface M3, and the fourth reflecting surface M4 are used as Comparative Example 1. It was assumed that there was no C1 term in each film thickness function. Table 2 shows design values of the optical system of Comparative Example 1. In the comparative example 1, the gradient function of the reflective film and the distance between the reflective surfaces are changed with respect to the EUV projection optical system 1 described above.

表1に示した実施例1としてのEUV投影光学系1及び表2で示した比較例1としての光学系の各瞳における波面収差のティルトを図3に、反射率性能を図4〜図6に示した。図4は物体高(125〜135mm)における透過率の平均値を示している。図5、図6は物体高ごとの透過率の分布をそれぞれRMS、PV/MAXで示している。反射膜の傾斜に1次項を加えることで、反射率性能を低下させずにティルトの低減が可能であることが確認できる。 The tilt of wavefront aberration in each pupil of the EUV projection optical system 1 as Example 1 shown in Table 1 and the optical system as Comparative Example 1 shown in Table 2 is shown in FIG. 3, and the reflectance performance is shown in FIGS. It was shown to. FIG. 4 shows an average value of transmittance at an object height (125 to 135 mm). 5 and 6 show the distribution of transmittance for each object height in RMS and PV / MAX, respectively. By adding a first-order term to the inclination of the reflective film, it can be confirmed that the tilt can be reduced without deteriorating the reflectance performance.

[実施例2]
反射膜の膜厚関数に奇関数を考慮することによりパラメータが増加するので、反射率性能を向上させることも可能となる。本実施例2は、上記実施例1と同様にEUV投影光学系1の第1反射面M1、第3反射面M3、第4反射面M4に奇関数を含む膜厚分布の傾斜膜を適用し、反射率向上を図ったものである。表3は、実施例2に係る各ミラーの反射面の設計値を示した表である。実施例1の場合と同様に、第2反射面M2、第5反射面M5、第6反射面M6は1次項を有していない(すなわち、C1=0である。)。表中のA〜Gは非球面係数を示し、C0〜C1は式(2)及び式(3)に示す係数に対応している。
[Example 2]
Considering an odd function in the film thickness function of the reflective film increases the parameters, so that the reflectance performance can be improved. In the second embodiment, as in the first embodiment, an inclined film having a film thickness distribution including an odd function is applied to the first reflecting surface M1, the third reflecting surface M3, and the fourth reflecting surface M4 of the EUV projection optical system 1. This is to improve the reflectance. Table 3 is a table showing design values of the reflecting surfaces of the mirrors according to Example 2. As in the case of the first embodiment, the second reflecting surface M2, the fifth reflecting surface M5, and the sixth reflecting surface M6 do not have a primary term (that is, C1 = 0). A to G in the table indicate aspheric coefficients, and C0 to C1 correspond to the coefficients shown in Expression (2) and Expression (3).

実施例2に対する比較例2として第1反射面M1、第3反射面M3、第4反射面M4の各膜厚関数にC1の項がないとした場合を想定した。表4に、比較例2の光学系の各設計値を示す。 As Comparative Example 2 with respect to Example 2, it was assumed that there was no C1 term in each film thickness function of the first reflecting surface M1, the third reflecting surface M3, and the fourth reflecting surface M4. Table 4 shows design values of the optical system of Comparative Example 2.

表3に示した実施例2としてのEUV投影光学系1及び表4で示した比較例2としての光学系の反射率性能を図7〜図9に示した。図7は物体高(125〜135mm)における透過率の平均値を示している。図8、図9は物体高ごとの透過率の分布をそれぞれRMS、PV/MAXで示している。反射膜の傾斜に1次項を加えることによって、波面収差を劣化させることなく反射率性能を向上させることが可能であることが確認できる。 The reflectance performance of the EUV projection optical system 1 as Example 2 shown in Table 3 and the optical system as Comparative Example 2 shown in Table 4 are shown in FIGS. FIG. 7 shows an average value of transmittance at an object height (125 to 135 mm). FIGS. 8 and 9 show the transmittance distribution for each object height in RMS and PV / MAX, respectively. It can be confirmed that the reflectance performance can be improved without deteriorating the wavefront aberration by adding the first order term to the inclination of the reflective film.

[実施の形態2]
図10は、本発明の実施の形態2に係る露光装置を概略的に示した図である。この露光装置Sは、露光原版としてのレチクル51上の回路パターンを被処理体としてのウエハ52上に露光するためのものである。この露光装置Sは、例えばEUV光源53からの光をレチクル(マスク)51上に導く照明光学系54、レチクル51上の回路パターン像をウエハ52上に投影する投影光学系55を有して構成される。
[Embodiment 2]
FIG. 10 is a view schematically showing an exposure apparatus according to Embodiment 2 of the present invention. The exposure apparatus S is for exposing a circuit pattern on a reticle 51 serving as an exposure original onto a wafer 52 serving as an object to be processed. The exposure apparatus S includes an illumination optical system 54 that guides light from an EUV light source 53 onto a reticle (mask) 51 and a projection optical system 55 that projects a circuit pattern image on the reticle 51 onto a wafer 52, for example. Is done.

照明光学系54は光学素子としてのミラー54a,54bを有している。投影光学系55も光学素子としてのミラー55a,55bを有している。これらのミラー54a,54b,55a,55bには、上述の実施の形態1に係る薄膜が成膜されている。したがって、ミラーの収差が低減し、露光装置Sは高精度に露光を行うことができる。   The illumination optical system 54 has mirrors 54a and 54b as optical elements. The projection optical system 55 also has mirrors 55a and 55b as optical elements. On these mirrors 54a, 54b, 55a, 55b, the thin film according to the first embodiment is formed. Therefore, the aberration of the mirror is reduced, and the exposure apparatus S can perform exposure with high accuracy.

[実施の形態3]
次に、図11及び図12を参照して、上述の露光装置Sを利用したデバイスの製造方法の実施例を説明する。図11は、デバイス(ICやLSIなどの半導体チップ、LCD、CCD等)の製造を説明するためのフローチャートである。ここでは、半導体チップの製造を例に説明する。ステップ101(回路設計)ではデバイスの回路設計を行う。ステップ102(レチクル製作)では、設計した回路パターンを形成したレチクルを製作する。ステップ103(ウエハ製造)ではシリコンなどの材料を用いてウエハ(基板)を製造する。ステップ104(ウエハプロセス)は前工程と呼ばれ、レチクルとウエハを用いてリソグラフィ技術によってウエハ上に実際の回路を形成する。ステップ105(組み立て)は後工程と呼ばれ、ステップ104によって作成されたウエハを用いて半導体チップ化する工程であり、アッセンブリ工程(ダイシング、ボンディング)、パッケージング工程(チップ封入)等の工程を含む。ステップ106(検査)では、ステップ105で作成された半導体デバイスの動作確認テスト、耐久性テストなどの検査を行う。こうした工程を経て半導体デバイスが完成し、これが出荷(ステップ107)される。
[Embodiment 3]
Next, an embodiment of a device manufacturing method using the above-described exposure apparatus S will be described with reference to FIGS. FIG. 11 is a flowchart for explaining how to fabricate devices (ie, semiconductor chips such as IC and LSI, LCDs, CCDs, etc.). Here, the manufacture of a semiconductor chip will be described as an example. In step 101 (circuit design), a device circuit is designed. In step 102 (reticle fabrication), a reticle on which the designed circuit pattern is formed is fabricated. In step 103 (wafer manufacture), a wafer (substrate) is manufactured using a material such as silicon. Step 104 (wafer process) is called a pre-process, and an actual circuit is formed on the wafer by lithography using the reticle and wafer. Step 105 (assembly) is called a post-process, and is a process for forming a semiconductor chip using the wafer created in step 104, and includes processes such as an assembly process (dicing and bonding) and a packaging process (chip encapsulation). . In step 106 (inspection), inspections such as an operation confirmation test and a durability test of the semiconductor device created in step 105 are performed. Through these steps, the semiconductor device is completed and shipped (step 107).

図12は、ステップ104のウエハプロセスの詳細なフローチャートである。ステップ111(酸化)ではウエハの表面を酸化させる。ステップ112(CVD)では、ウエハの表面に絶縁膜を形成する。ステップ113(電極形成)では、ウエハ上に電極を蒸着などによって形成する。ステップ114(イオン打ち込み)ではウエハにイオンを打ち込む。ステップ115(レジスト処理)ではウエハに感光剤を塗布する。ステップ116(露光)では、露光装置Sによってレチクルの回路パターンをウエハに露光する。ステップ117(現像)では、露光したウエハを現像する。ステップ118(エッチング)では、現像したレジスト像以外の部分を削り取る。ステップ119(レジスト剥離)では、エッチングが済んで不要となったレジストを取り除く。これらのステップを繰り返し行うことによってウエハ上に多重に回路パターンが形成される。本実施の形態の製造方法によれば従来よりも高品位かつ高集積度のデバイスを低コストに製造することができる。   FIG. 12 is a detailed flowchart of the wafer process in Step 104. In step 111 (oxidation), the wafer surface is oxidized. In step 112 (CVD), an insulating film is formed on the surface of the wafer. In step 113 (electrode formation), an electrode is formed on the wafer by vapor deposition or the like. In step 114 (ion implantation), ions are implanted into the wafer. In step 115 (resist process), a photosensitive agent is applied to the wafer. Step 116 (exposure) uses the exposure apparatus S to expose a reticle circuit pattern onto the wafer. In step 117 (development), the exposed wafer is developed. In step 118 (etching), portions other than the developed resist image are removed. In step 119 (resist stripping), the resist that has become unnecessary after the etching is removed. By repeatedly performing these steps, multiple circuit patterns are formed on the wafer. According to the manufacturing method of the present embodiment, it is possible to manufacture a device with higher quality and higher integration than conventional devices at low cost.

以上、本発明の好ましい実施の形態を説明したが、本発明はこれらに限定されるものではなく、その要旨の範囲内で様々な変形や変更が可能である。   As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to these, A various deformation | transformation and change are possible within the range of the summary.

本発明の実施の形態1に係る反射膜の膜厚分布を説明するための図であって、(a)は、膜厚関数にC1の項を使用した場合を示す模式図であり、(b)は膜厚関数にC1の項を使用しない場合を示す模式図である。It is a figure for demonstrating the film thickness distribution of the reflecting film which concerns on Embodiment 1 of this invention, Comprising: (a) is a schematic diagram which shows the case where the term of C1 is used for a film thickness function, (b ) Is a schematic diagram showing a case where the C1 term is not used in the film thickness function. 本発明の実施例に係るEUV投影光学系の光路図である。It is an optical path figure of the EUV projection optical system which concerns on the Example of this invention. 実施例1及び比較例1の各瞳における波面収差のティルトを示したグラフである。6 is a graph showing tilt of wavefront aberration in each pupil of Example 1 and Comparative Example 1. 実施例1及び比較例1の各瞳における反射率性能を示したグラフであり、物体高(125〜135mm)における透過率の平均値を示したものである。It is the graph which showed the reflectance performance in each pupil of Example 1 and Comparative Example 1, and shows the average value of the transmittance | permeability in object height (125-135 mm). 実施例1及び比較例1の各瞳における反射率性能を示したグラフであり、物体高ごとの透過率の分布をRMSで示したものである。It is the graph which showed the reflectance performance in each pupil of Example 1 and Comparative Example 1, and shows the distribution of transmittance for each object height in RMS. 実施例1及び比較例1の各瞳における反射率性能を示したグラフであり、物体高ごとの透過率の分布をPV/MAXで示したものである。It is the graph which showed the reflectance performance in each pupil of Example 1 and Comparative Example 1, and shows the distribution of transmittance for each object height in PV / MAX. 実施例2及び比較例2の各瞳における反射率性能を示したグラフであり、物体高(125〜135mm)における透過率の平均値を示したものである。It is the graph which showed the reflectance performance in each pupil of Example 2 and Comparative Example 2, and shows the average value of the transmittance | permeability in object height (125-135 mm). 実施例2及び比較例2の各瞳における反射率性能を示したグラフであり、物体高ごとの透過率の分布をRMSで示したものである。It is the graph which showed the reflectance performance in each pupil of Example 2 and Comparative Example 2, and showed the distribution of the transmittance | permeability for every object height by RMS. 実施例2及び比較例2の各瞳における反射率性能を示したグラフであり、物体高ごとの透過率の分布をPV/MAXで示したものである。It is the graph which showed the reflectance performance in each pupil of Example 2 and Comparative Example 2, and shows the transmittance distribution for each object height in PV / MAX. 本発明の実施の形態2に係る露光装置の概略構成図である。It is a schematic block diagram of the exposure apparatus which concerns on Embodiment 2 of this invention. 図10に示す露光装置によるデバイス製造方法を説明するためのフローチャートである。It is a flowchart for demonstrating the device manufacturing method by the exposure apparatus shown in FIG. 図11に示すステップ104の詳細なフローチャートである。12 is a detailed flowchart of step 104 shown in FIG. 11. 従来のEUV投影光学系の光路図である。It is an optical path figure of the conventional EUV projection optical system.

符号の説明Explanation of symbols

S:露光装置
1:EUV投影光学系
M1〜M6:反射面
51:レチクル
52:ウエハ(被処理体)
53:EUV光源
54:照明光学系
54a,54b:ミラー
55:投影光学系
55a,55b:ミラー
S: exposure apparatus 1: EUV projection optical systems M1 to M6: reflecting surface 51: reticle 52: wafer (object to be processed)
53: EUV light source 54: illumination optical system 54a, 54b: mirror 55: projection optical system 55a, 55b: mirror

Claims (9)

入射光を反射する反射面に薄膜が形成された光学素子であって、
前記薄膜の膜厚が、前記反射面の中央を通り前記反射面に垂直な線を中心として回転対称に分布し、かつ、
該回転対称軸を中心とした半径に対して奇関数を含むように分布していることを特徴とする光学素子。
An optical element in which a thin film is formed on a reflecting surface that reflects incident light,
The film thickness of the thin film is distributed rotationally symmetrically about a line passing through the center of the reflecting surface and perpendicular to the reflecting surface; and
An optical element that is distributed so as to include an odd function with respect to a radius around the rotational symmetry axis.
前記薄膜が多層膜であることを特徴とする請求項1に記載の光学素子。   The optical element according to claim 1, wherein the thin film is a multilayer film. 前記多層膜が、シリコン層及びモリブデン層からなる2層を繰り返し積層して構成されていることを特徴とする請求項2に記載の光学素子。   The optical element according to claim 2, wherein the multilayer film is configured by repeatedly laminating two layers including a silicon layer and a molybdenum layer. 前記繰り返し数が40であることを特徴とする請求項3に記載の光学素子。   The optical element according to claim 3, wherein the number of repetitions is 40. 請求項1から請求項4のうちいずれか1項に記載の光学素子を有し、かつ該光学素子の反射面のうち入射光を反射する反射領域が前記光軸を含まないことを特徴とする光学系。   5. The optical element according to claim 1, wherein a reflection region that reflects incident light out of a reflection surface of the optical element does not include the optical axis. Optical system. 光源からの光でレチクルを照明する照明光学系と、
前記レチクルのパターンを基板上に投影する投影光学系とを備えた露光装置であって、
前記照明光学系又は前記投影光学系の少なくともいずれか一方が請求項1から請求項4のうちいずれか1項に記載の光学素子を有することを特徴とする露光装置。
An illumination optical system that illuminates the reticle with light from a light source;
An exposure apparatus comprising: a projection optical system that projects the reticle pattern onto a substrate;
An exposure apparatus, wherein at least one of the illumination optical system and the projection optical system includes the optical element according to any one of claims 1 to 4.
請求項6に記載の露光装置によって基板を露光する工程と、
露光された前記基板に所定のプロセスを行う工程とを有するデバイスの製造方法。
Exposing the substrate with the exposure apparatus according to claim 6;
And a step of performing a predetermined process on the exposed substrate.
入射光を反射する反射光学素子の反射面に成膜された薄膜であって、
その膜厚が、前記反射面の中央を通り前記反射面に垂直な線を中心として回転対称に分布し、かつ、
該光軸を中心とした半径に対して奇関数を含むように分布していることを特徴とする薄膜。
A thin film formed on a reflective surface of a reflective optical element that reflects incident light,
The film thickness is distributed rotationally symmetrically about a line that passes through the center of the reflecting surface and is perpendicular to the reflecting surface; and
A thin film distributed so as to include an odd function with respect to a radius around the optical axis.
入射光を反射する反射光学素子の反射面に薄膜を成膜する成膜方法であって、
該薄膜の膜厚が、前記反射面の中央を通り前記反射面に垂直な線を中心として回転対称に分布させ、かつ、
該回転対称軸を中心とした半径に対して奇関数を含んで分布させたことを特徴とする成膜方法。

A film forming method for forming a thin film on a reflective surface of a reflective optical element that reflects incident light,
The thickness of the thin film is distributed rotationally symmetrically about a line passing through the center of the reflecting surface and perpendicular to the reflecting surface; and
A film forming method, wherein an odd function is distributed with respect to a radius around the rotational symmetry axis.

JP2004237241A 2004-08-17 2004-08-17 Optical element, exposure apparatus and film forming method Expired - Fee Related JP4498059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004237241A JP4498059B2 (en) 2004-08-17 2004-08-17 Optical element, exposure apparatus and film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004237241A JP4498059B2 (en) 2004-08-17 2004-08-17 Optical element, exposure apparatus and film forming method

Publications (3)

Publication Number Publication Date
JP2006058023A true JP2006058023A (en) 2006-03-02
JP2006058023A5 JP2006058023A5 (en) 2007-09-27
JP4498059B2 JP4498059B2 (en) 2010-07-07

Family

ID=36105620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004237241A Expired - Fee Related JP4498059B2 (en) 2004-08-17 2004-08-17 Optical element, exposure apparatus and film forming method

Country Status (1)

Country Link
JP (1) JP4498059B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013157636A (en) * 2013-05-07 2013-08-15 Carl Zeiss Smt Gmbh Projection objective having mirror elements with reflective coatings
WO2013175835A1 (en) * 2012-05-21 2013-11-28 株式会社ニコン Reflector, projection optical system, exposure apparatus, and device manufacturing method
US9013678B2 (en) 2007-08-20 2015-04-21 Carl Zeiss Smt Gmbh Projection objective having mirror elements with reflective coatings
KR20160046740A (en) * 2014-10-21 2016-04-29 아사히 가라스 가부시키가이샤 Reflective mask blank for euv lithography and process for its production, as well as substrate with reflective layer for such mask blank and process for its production
CN115145033A (en) * 2021-03-31 2022-10-04 精工爱普生株式会社 Virtual image display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09251097A (en) * 1996-03-15 1997-09-22 Nikon Corp Reflection reduction image-forming optical system for x-ray lithography
JP2002162566A (en) * 2000-11-27 2002-06-07 Nikon Corp Method for designing optical system, the optical system and projection aligner
JP2003177319A (en) * 2001-08-01 2003-06-27 Carl Zeiss Semiconductor Manufacturing Technologies Ag Reflective projection lens for euv-photolithography
JP2004031808A (en) * 2002-06-27 2004-01-29 Nikon Corp Projection optical system of aligner, aligner equipped with the same, and method for exposure using the aligner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09251097A (en) * 1996-03-15 1997-09-22 Nikon Corp Reflection reduction image-forming optical system for x-ray lithography
JP2002162566A (en) * 2000-11-27 2002-06-07 Nikon Corp Method for designing optical system, the optical system and projection aligner
JP2003177319A (en) * 2001-08-01 2003-06-27 Carl Zeiss Semiconductor Manufacturing Technologies Ag Reflective projection lens for euv-photolithography
JP2004031808A (en) * 2002-06-27 2004-01-29 Nikon Corp Projection optical system of aligner, aligner equipped with the same, and method for exposure using the aligner

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9013678B2 (en) 2007-08-20 2015-04-21 Carl Zeiss Smt Gmbh Projection objective having mirror elements with reflective coatings
WO2013175835A1 (en) * 2012-05-21 2013-11-28 株式会社ニコン Reflector, projection optical system, exposure apparatus, and device manufacturing method
JP2013157636A (en) * 2013-05-07 2013-08-15 Carl Zeiss Smt Gmbh Projection objective having mirror elements with reflective coatings
KR20160046740A (en) * 2014-10-21 2016-04-29 아사히 가라스 가부시키가이샤 Reflective mask blank for euv lithography and process for its production, as well as substrate with reflective layer for such mask blank and process for its production
KR102476861B1 (en) 2014-10-21 2022-12-12 에이지씨 가부시키가이샤 Reflective mask blank for euv lithography and process for its production, as well as substrate with reflective layer for such mask blank and process for its production
CN115145033A (en) * 2021-03-31 2022-10-04 精工爱普生株式会社 Virtual image display device
CN115145033B (en) * 2021-03-31 2024-01-12 精工爱普生株式会社 Virtual image display device

Also Published As

Publication number Publication date
JP4498059B2 (en) 2010-07-07

Similar Documents

Publication Publication Date Title
US9013678B2 (en) Projection objective having mirror elements with reflective coatings
TWI260470B (en) Cataoptric projection optical system, exposure apparatus and device fabrication method
US7511888B2 (en) Projection optical system, exposure apparatus, device manufacturing method, and device manufactured by using the same
US20060056038A1 (en) Aberration correcting optical system
JP2004252363A (en) Reflection type projection optical system
JP2004252358A (en) Reflective projection optical system and exposing device
JP2002311198A (en) Method for manufacturing multilayer reflecting mirror
US6462875B1 (en) Diffractive optical element
US7543948B2 (en) Multilayer mirror manufacturing method, optical system manufacturing method, exposure apparatus, and device manufacturing method
US20030039029A1 (en) Reflection type demagnification optical system, exposure apparatus, and device fabricating method
JP4498059B2 (en) Optical element, exposure apparatus and film forming method
JP2010257998A (en) Reflective projection optical system, exposure apparatus, and method of manufacturing device
KR100514063B1 (en) Projection optical system and exposure apparatus
JP4498060B2 (en) Projection optical system, exposure apparatus, and optical element manufacturing method
JP2005340553A (en) Mask for exposure
JP3715751B2 (en) Residual aberration correction plate and projection exposure apparatus using the same
JP6551869B2 (en) Illumination optical system, exposure apparatus, and device manufacturing method
JP2007059743A (en) Multilayer film reflector and aligner
JP2004258178A (en) Projection optical system and aligner provided with the projection optical system
JP2004252359A (en) Reflection type projection optical system and aligner having the same
JP2012124214A (en) Reflective mask and method of manufacturing the same
JP2009086038A (en) Projection optical system, exposure device, and device manufacturing method
JP2002134386A (en) Multilayer film reflector and device using the reflector
JP2003233003A (en) Reflective projection optical system, exposure device, and method for manufacturing device
JP2004252361A (en) Reflection type projection optical system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070813

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070813

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100413

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees