JP2006057275A - Water stop material of underground structure and cut-off method making use of the water stop material - Google Patents

Water stop material of underground structure and cut-off method making use of the water stop material Download PDF

Info

Publication number
JP2006057275A
JP2006057275A JP2004238267A JP2004238267A JP2006057275A JP 2006057275 A JP2006057275 A JP 2006057275A JP 2004238267 A JP2004238267 A JP 2004238267A JP 2004238267 A JP2004238267 A JP 2004238267A JP 2006057275 A JP2006057275 A JP 2006057275A
Authority
JP
Japan
Prior art keywords
water
stopping
underground structure
bentonite
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004238267A
Other languages
Japanese (ja)
Other versions
JP4464224B2 (en
Inventor
Tomoaki Takeuchi
友章 竹内
Akira Takahashi
晃 高橋
Hideo Watabiki
秀夫 綿引
Yasushi Sakakibara
康史 榊原
Yoshiharu Ichino
義治 市野
Keisuke Fukazawa
景介 深沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kandenko Co Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Kandenko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Kandenko Co Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP2004238267A priority Critical patent/JP4464224B2/en
Publication of JP2006057275A publication Critical patent/JP2006057275A/en
Application granted granted Critical
Publication of JP4464224B2 publication Critical patent/JP4464224B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water stop material capable of maintaining a cut-off function excellent over a long period of time at a low cost. <P>SOLUTION: The water stop material for stopping water by providing it in a void in an underground structure is formed by compounding bentonite, a thermoplastic resin, a plasticizer and a water absorptive resin as main ingredients. The bentonite of 30 to 40 wt.%, the thermoplastic resin of 30 to 35 wt.%, the water absorptive resin of 5 to 15 wt.% and the plasticizer of 15 to 20 wt.% are respectively compounded to mold the water stop material. It is heated at a high temperature after the mixture of the thermoplastic resin and the plasticizer, and the thermoplastic resin heated at the high temperature is compounded with other main ingredients to mold the water stop material. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、電力、電信ケーブル管路又は下水道管路等のトンネルのセグメント部材を組み合わせて構築される構造物、その他の地下構造物の間隙に貼り付け、又は圧縮等して介在させて、この地下構造物における間隙などの漏水個所の水みちを塞いで漏水を止める止水材及び当該止水材を使用した止水方法に関するものである。   The present invention is a structure constructed by combining tunnel segment members such as electric power, telegraph cable pipes or sewer pipes, and is attached to the gaps of other underground structures, or is interposed by compression or the like. The present invention relates to a water-stopping material that stops water leakage by closing water leaks such as gaps in underground structures and a water-stop method using the water-stopping material.

地下構造物、特にトンネル用セグメント(以下、単に「セグメント」と言う。)の構築の際、地山とこのセグメントとの間に注入材の裏込め注入を行うので、この注入材が固化するまでの一次止水と、その後、長期的な地山からトンネル内への漏水を防止する二次止水が必要となる。その為、図13に示す様な湾曲した板体であって四辺の端縁を一定長垂下して継手面を設けて成るセグメントの隣接する二辺の継手面22の継ぎ目の接続に際しては、通常、止水材が用いられており、これらの両者の作用により、水はセグメントの内側に入ってこられない。
この様な止水材としては、水膨張ゴムから成る止水材Bが施工性や止水性能の面から優れており、多く採用されている(市場のおよそ90%と思われる。)。この水膨張ゴムから成る止水材Bは、高吸水性ポリマー等の水膨張樹脂と合成ゴムを加硫成形した定形のもので、施工に際し、接着剤を用い、セグメント21の継手面22に貼り付けて施工される。
When constructing an underground structure, especially a tunnel segment (hereinafter simply referred to as a “segment”), the backfilling of the injected material is performed between the ground and this segment, until the injected material solidifies. Primary water stop and then secondary water stop to prevent long-term groundwater leakage into the tunnel. For this reason, when connecting the joints of the joint surfaces 22 on the two adjacent sides of a segment which is a curved plate body as shown in FIG. Water stop material is used, and water does not enter the inside of the segment due to the action of both of them.
As such a water-stopping material, the water-stopping material B made of water-expanded rubber is excellent in terms of workability and water-stopping performance, and is often used (it seems to be about 90% of the market). The water-stopping material B made of water-swelling rubber is a fixed-form material obtained by vulcanization molding of water-swelling resin such as a highly water-absorbing polymer and synthetic rubber, and is attached to the joint surface 22 of the segment 21 using an adhesive during construction. It will be installed.

この継手面に貼り付けられた水膨張ゴムから成る止水材は、施工時のセグメントの組み立ての際に、ボルトとナットの締め付け力により圧縮され、止水材が有する弾性反発力によって止水を行う。また後日、継ぎ目に目開きが生じ、弾性反発力が低下しても、図14に示す様に、水を吸収すると自己膨張して、矢印方向に膨張する力が作用する。この弾性反発力又は自己膨張による接面応力σがセグメントの外側から加えられる水圧Pより大きいと止水機能は維持される。すなわちパッキン効果による止水の基本的な条件は、接面応力σ>水圧Pと言うことである。   The water-stopping material made of water-expanded rubber affixed to the joint surface is compressed by the tightening force of the bolts and nuts when assembling the segments during construction, and the water-stopping material is stopped by the elastic repulsive force of the water-stopping material. Do. Even if the seam opens at the seam at a later date and the elastic repulsive force is reduced, as shown in FIG. 14, when water is absorbed, it self-expands and a force that expands in the direction of the arrow acts. If the surface stress σ due to this elastic repulsion force or self-expansion is greater than the water pressure P applied from the outside of the segment, the water stop function is maintained. That is, the basic condition of water stoppage due to the packing effect is that the contact stress σ> water pressure P.

また止水材としてベントナイト系のものがある。これは、アスファルトや石油系ワックス等と、水膨潤性粘土であるベントナイトを混練し、これらを成形して形成した可塑性の止水材である。この止水材は、アスファルトや石油系ワックス等の水密性、柔軟性、粘着性と吸水した際のベントナイトの膨張により止水を行う。ここで使用するベントナイトは、天然に産し、土木建築材料として古くから使用されており、止水材としても安価なものとなっている。
特開2000−110496 特開2001−20692
In addition, there is a bentonite type as a water stop material. This is a plastic water-stopping material formed by kneading asphalt, petroleum-based wax or the like and bentonite, which is a water-swellable clay, and molding them. This water-stopping material performs water-stopping by the expansion of bentonite when it absorbs water, such as asphalt and petroleum wax, water tightness, flexibility, and adhesiveness. The bentonite used here is naturally produced, has been used for a long time as a civil engineering building material, and is inexpensive as a water-stopping material.
JP2000-110696 JP 2001-20692 A

しかしながら、この様な止水材が用いられる地下構造物が施工される地下は、深度が深くなるにつれて地中水圧が高くなり、この止水材を地下構造物の間隙に用いて長期間にわたって止水機能を維持することに課題があった。すなわち上記前者の水膨張ゴムから成る止水材の場合、長期的な応力緩和に伴う弾性反発力の低下、又は吸水乾燥の繰り返しにより高吸水性ポリマーの流出に伴う水膨張性の低下等から止水機能が低下する恐れがあった。またこの水膨張ゴムから成る止水材の場合、価格が高価なため工事費の高騰を招いた。   However, the underground water pressure where underground structures using such water-stopping materials are constructed increases the underground water pressure as the depth increases, and this water-stopping material is used as a gap between underground structures for a long period of time. There was a problem in maintaining the water function. That is, in the case of the water-stopping material made of the above-mentioned water-swelling rubber, the water-stopping material is stopped from a drop in elastic resilience accompanying long-term stress relaxation or a drop in water-swelling property due to outflow of superabsorbent polymer due to repeated water-absorbing drying. There was a risk that the water function would deteriorate. Moreover, in the case of the water-stopping material made of this water-expanded rubber, the construction cost was increased due to the high price.

また後者のベントナイト系止水材は安価であるが、水膨潤性物質であるベントナイトが無機系であるため耐久性などの信頼性はあったが、膨潤性能が低かったため、水分を吸収し膨張後の追従性に劣っていた。つまり膨潤が期待される程度まで行われていない。その結果、長期的な使用による信頼性に劣っていた。さらにこの止水材は、可塑性を有するため復元力や弾性反発力が不足しており、トンネル掘進用ジャッキの圧力(推力)などの圧縮力を受けると塑性変形を起こし、止水機能の維持が困難になるといった問題を有していた。   In addition, the latter bentonite water-stopping material is inexpensive, but the bentonite, which is a water-swellable substance, is inorganic, so it has reliability such as durability, but its swelling performance is low, so it absorbs moisture and after expansion It was inferior to the following ability. That is, it is not performed to such an extent that swelling is expected. As a result, it was inferior in reliability by long-term use. Furthermore, since this water-stopping material has plasticity, it does not have sufficient restoring force and elastic repulsive force. When it receives a compressive force such as pressure (thrust) of a jack for tunneling, it will cause plastic deformation and maintain the water-stop function. It had the problem of becoming difficult.

そこでこの発明は、長期間にわたって優れた止水機能を維持し、かつ安価な止水材及びこの止水材を使用した止水方法を提供して上記課題を解決するものである。   Therefore, the present invention solves the above-mentioned problems by providing an inexpensive water-stopping material that maintains an excellent water-stop function over a long period of time and a water-stop method using the water-stopping material.

請求項1の発明は、地下構造物における間隙に設けて止水する止水材であって、ベントナイト、熱可塑性樹脂、可塑剤、吸水性樹脂を主原料として配合して成形した地下構造物の止水材とした。また請求項2の発明は、上記ベントナイトを30〜40重量%、上記熱可塑性樹脂を30〜35重量%、上記吸水性樹脂を5〜15重量%、上記可塑剤を15〜20重量%夫々配合して成形した上記請求項1に記載の地下構造物の止水材とした。さらに請求項3の発明は、上記熱可塑性樹脂を上記可塑剤と混合後高温加熱し、当該高温加熱した熱可塑性樹脂を上記他の主原料と配合して成形した上記請求項1又は2の何れかに記載の地下構造物の止水材とした。   The invention of claim 1 is a water-stopping material that is provided in a gap in an underground structure to stop water, and is an underground structure formed by blending bentonite, a thermoplastic resin, a plasticizer, and a water-absorbing resin as main raw materials. A waterstop material was used. Further, the invention of claim 2 contains 30-40% by weight of the bentonite, 30-35% by weight of the thermoplastic resin, 5-15% by weight of the water-absorbing resin, and 15-20% by weight of the plasticizer. The water-stopping material for the underground structure according to claim 1 was molded. Further, the invention according to claim 3 is the method according to claim 1 or 2, wherein the thermoplastic resin is mixed with the plasticizer and heated at a high temperature, and the thermoplastic resin heated at the high temperature is blended with the other main raw material. A water-stopping material for the underground structure described in Crab.

請求項4の発明は、上記請求項1乃至3の何れかに記載の地下構造物の止水材を地下構造物の間隙に介在させ、当該地下構造物の間隙から浸透してくる漏水を当該止水材のベントナイト及び吸水性樹脂が吸水することにより膨張して当該間隙を閉鎖して止水する地下構造物の止水方法とした。また請求項5の発明は、上記請求項1乃至3の何れかに記載の地下構造物の止水材を地下構造物の間隙に圧縮して介在させて当該間隙を塞いで止水し、当該箇所にさらに間隙が生じ漏水があった際には、短期的には当該止水材の復元力及び弾性反発力によって止水し、長期的には当該止水材のベントナイト及び吸水性樹脂が吸水することにより膨潤して当該間隙を閉鎖して止水する地下構造物の止水方法とした。   According to a fourth aspect of the present invention, there is provided the water stoppage material for the underground structure according to any one of the first to third aspects, interposed in a gap between the underground structures, and leaking water that permeates through the gaps in the underground structure. It was set as the water-stopping method of the underground structure which expands by the water-absorbing material bentonite and the water-absorbing resin absorbing water and closes the gap to stop the water. According to a fifth aspect of the present invention, the water-stopping material for the underground structure according to any one of the first to third aspects is compressed and interposed in the gap between the underground structures to close the gap and stop the water. If there is further gap in the location and there is water leakage, water will be stopped by the restoring force and elastic repulsion of the water stop material in the short term, and the bentonite and water absorbent resin will absorb water in the long term. The water-stopping method of the underground structure that swells and closes the gap to stop the water.

請求項1乃至5の各発明によれば、適度なゴム弾性を有し、施工時の追従性に優れ、また、施工後に地下構造物の変動により、地下構造物の継ぎ目に目開きによる間隙が生じたとしても、止水材の膨張による追従性により当該間隙を閉鎖する。さらに止水材に亀裂等が生じたとしても自己シールすることにより、止水機能を維持することが出来る。この様に優れた止水効果を発揮しながらも、ベントナイトを用いているので安価であり、地下構造物における止水に広く使用することが出来、工事費の低減に大きく寄与するものである。またこの止水材に用いられるベントナイトは、劣化や腐敗が起こらないので長期的に安定しており、吸水と乾燥の繰り返しによっても膨張性が低下しないため耐久性に優れるなど、優れた性能を有する。   According to each of the first to fifth aspects of the present invention, the rubber has an appropriate rubber elasticity, has excellent followability at the time of construction, and the gap due to the openings of the joints of the underground structure due to the fluctuation of the underground structure after the construction. Even if it occurs, the gap is closed due to the followability by the expansion of the water stop material. Furthermore, even if a crack or the like occurs in the water-stopping material, the water-stopping function can be maintained by self-sealing. While exhibiting such an excellent water-stopping effect, it is inexpensive because it uses bentonite and can be widely used for water-stopping in underground structures, greatly contributing to a reduction in construction costs. In addition, bentonite used in this water-stopping material is stable for a long time because it does not deteriorate or rot, and has excellent performance such as excellent durability because it does not decrease expandability due to repeated water absorption and drying. .

請求項2の発明によれば、各配合材の構成を限定したので、より確実に止水効果を発揮することが出来る。また請求項3の発明によれば、可塑剤と混合後、高温加熱した熱可塑性樹脂を他の主原料と配合して成形したので、この止水材の弾性力を確実に発揮することができる。さらに請求項4及び5の各発明によれば、止水材を地下構造物の間隙に設けてこの間隙を塞いで止水し、この箇所にさらに間隙が生じ漏水があった際には、短期的には当該止水材の復元力及び弾性反発力によって止水し、長期的にはこの止水材のベントナイト及び吸水性樹脂が吸水することにより膨潤して間隙を閉鎖するので、より確実に止水効果を発揮することが出来る。   According to invention of Claim 2, since the structure of each compounding material was limited, the water stop effect can be exhibited more reliably. According to the invention of claim 3, since the thermoplastic resin heated at a high temperature after being mixed with the plasticizer is blended with the other main raw material and molded, the elastic force of the waterstop material can be surely exhibited. . Furthermore, according to each of the inventions of claims 4 and 5, when a water-stopping material is provided in the gap of the underground structure and the gap is closed to stop the water, and when there is a gap in this portion and water leakage occurs, The water-stopping material is stopped by the restoring force and elastic repulsion, and in the long term, the bentonite and the water-absorbing resin of the water-stopping material swell and absorb the water to close the gap. The water stop effect can be demonstrated.

ベントナイトを30〜40重量%、熱可塑性樹脂を30〜35重量%、吸水性樹脂を5〜15重量%、可塑剤を15〜20重量%を主原料として夫々配合して成形した。また上記可塑剤と混合後、高温加熱した上記熱可塑性樹脂を上記他の主原料と配合して止水材を成形した。   30 to 40% by weight of bentonite, 30 to 35% by weight of thermoplastic resin, 5 to 15% by weight of water-absorbing resin, and 15 to 20% by weight of plasticizer were blended as main raw materials, respectively. Further, after mixing with the plasticizer, the thermoplastic resin heated at high temperature was blended with the other main raw material to form a water-stopping material.

さらにこれらの地下構造物の止水材を地下構造物の間隙に圧縮して介在させて当該間隙を塞いで止水し、当該箇所にさらに間隙が生じ漏水があった際には、短期的には当該止水材の復元力及び弾性反発力によって止水し、長期的には当該止水材のベントナイト及び吸水性樹脂が吸水することにより膨潤して当該間隙を閉鎖して止水する。   Furthermore, when the water-stopping material of these underground structures is compressed and interposed in the gaps of the underground structures to close the gaps and stop the water, and when there are further gaps in the areas and there is water leakage, The water is stopped by the restoring force and elastic repulsion of the water-stopping material, and in the long term, the bentonite and the water-absorbing resin of the water-stopping material swell to absorb water and close the gap to stop the water.

以下、この発明の実施例を図に基づいて説明する。
この発明の止水材は、ベントナイト、熱可塑性樹脂、可塑剤、吸水性樹脂を主原料とし、これらを配合して成形する。ベントナイトは、モンモリロナイトを主成分としたもので、膨潤性並びに止水性、粘着性等の特性を発揮させることを目的として配合するが、ベントナイトの配合量をあまり多くすると止水材全体の弾性性能が低下する。また成形された止水材としては、上記熱可塑性樹脂などの粒子にベントナイトの粒子が均一に分散した状態になっている。
Embodiments of the present invention will be described below with reference to the drawings.
The waterstop material of the present invention is mainly molded from bentonite, a thermoplastic resin, a plasticizer, and a water-absorbing resin, and these are blended and molded. Bentonite is mainly composed of montmorillonite and is formulated for the purpose of exhibiting properties such as swelling, water-stopping properties, and adhesiveness. However, if the amount of bentonite is too large, the elastic performance of the water-stopping material as a whole will increase. descend. The molded water-stopping material has bentonite particles uniformly dispersed in the thermoplastic resin particles and the like.

また上記熱可塑性樹脂(TPR)は、常温ではゴム弾性を有するが、高温では可塑化するため、この止水材では、弾性力を発揮させる目的で高温過熱後他の材料と混合して使用する。この熱可塑性樹脂はその主成分よって、オレフィン系(TPO)、スチレン系(TPS)、ジエン系、エステル系(TPEE)、ウレタン系(TPU)、アミド系(TPEA)、塩化ビニル系(TPVC)等多くの種類のものがあり使用出来る。スチレン系樹脂としては、SEEPタイプなどがあり、ジエン系樹脂としては、1,3−ペンタジエン系などがある。   The thermoplastic resin (TPR) has rubber elasticity at normal temperature but plasticizes at high temperature. Therefore, this water-stopping material is used by mixing with other materials after high-temperature overheating for the purpose of exerting elastic force. . Depending on the main component of this thermoplastic resin, olefin (TPO), styrene (TPS), diene, ester (TPEE), urethane (TPU), amide (TPEA), vinyl chloride (TPVC), etc. There are many types available. Examples of the styrene resin include SEEP type, and examples of the diene resin include 1,3-pentadiene.

上記可塑剤は、一般的には、プロセスオイルと呼ばれるものであって、石油を精製して得られるオイルの一種であり、上記熱可塑性樹脂に配合することで、その加工性を容易にし、又は柔軟性を付与するために配合されるが、合成樹脂の種類毎に可塑剤の種類は限定される。   The plasticizer is generally called process oil and is a kind of oil obtained by refining petroleum, and by blending it with the thermoplastic resin, the processability is facilitated, or Although it mix | blends in order to provide a softness | flexibility, the kind of plasticizer is limited for every kind of synthetic resin.

上記吸水性樹脂は、基本的には、一般的な水膨張止水材に使用されているものと同等のもので、膨潤性能を期待して配合する。その種類は膨潤スピード、膨潤後の硬度の面から、ここでは、ポリエチレンオキサイド(PEO)を使用する。   The water-absorbent resin is basically the same as that used for a general water-swelling water-stopping material, and is blended with the expectation of swelling performance. In view of swelling speed and hardness after swelling, polyethylene oxide (PEO) is used here.

これらの配合物を混合して止水材は得られるが、夫々の配合物の粒子が均一になるように充分に混合することが望ましい。またこの止水材は、その性状を改善するために、さらに必要に応じて従来の止水材に用いられてきた各種添加物を配合することが出来る。この添加物としては、例えば軟化剤(鉱油、合成油、脂肪性油等)、安定剤(界面活性剤、アミン、フェノール類等)、酸化防止剤、着色剤、充填剤などが挙げられる。   Although a water-stopping material can be obtained by mixing these blends, it is desirable to mix them sufficiently so that the particles of each blend are uniform. Moreover, in order to improve the properties of this water-stopping material, various additives that have been used in conventional water-stopping materials can be blended as necessary. Examples of the additive include softeners (mineral oil, synthetic oil, fatty oil, etc.), stabilizers (surfactants, amines, phenols, etc.), antioxidants, colorants, fillers and the like.

この止水材を成形する方法は、従来の止水材と同様であり、押出成形法、プレス成形法等を用いることが出来る。またここで成形される止水材の形状は様々であるが、充分な止水機能が得られる形状を選択するとともに、施工に支障を来たさない最適な形状を選択するのが望ましい。   The method of forming this water-stopping material is the same as that of a conventional water-stopping material, and an extrusion molding method, a press molding method, or the like can be used. Although the shape of the water-stopping material formed here is various, it is desirable to select a shape that can provide a sufficient water-stopping function and an optimal shape that does not hinder the construction.

次にこれらの主原料の配合例を示す。
Next, the compounding example of these main raw materials is shown.

上記の通り、この実施例の止水材の配合例としては、Bt−1、Bt−2、Bt−3及びBt−4の4つを成形した。さらに比較例として、従来の水膨張ゴムから成る止水材であるRb−1及びRb−2を成形した。これらのRb−1及びRb−2は、加硫ゴム(クロロプレン、ブチル、ニトリルなど、以下同じ)をベースとして、吸水性樹脂(SAP:ポリアクリル酸ソーダ、以下同じ)を配合したものであり、Rb−1及びRb−2に於ける相違は、Rb−1における吸水性樹脂の配合量をRb−2における吸水性樹脂の配合量より多く配合したものである。   As described above, four examples of Bt-1, Bt-2, Bt-3, and Bt-4 were molded as blending examples of the water-stopping material of this example. Further, as comparative examples, Rb-1 and Rb-2, which are water-stopping materials made of conventional water-expanded rubber, were molded. These Rb-1 and Rb-2 are based on vulcanized rubber (chloroprene, butyl, nitrile, etc.) and a water-absorbing resin (SAP: sodium polyacrylate, hereinafter the same). The difference between Rb-1 and Rb-2 is that the blending amount of the water-absorbing resin in Rb-1 is blended more than the blending amount of the water-absorbing resin in Rb-2.

そしてこれらの6つの止水材の耐水圧試験を行い、比較した。ここでの耐水圧試験は、セグメントの接続の際、その継ぎ目に使用することで行ったが、当該セグメントに溝が無い平坦なものの場合を想定して行った。ここで使用する最高作用水圧としては、地下100mのものに相当する1.0Mpa≒10kgf/cmとした。止水の基本条件は、作用水圧<接面応力であり、作用水圧は地下水圧とした。また接面応力は、短期的には当該止水材の復元力及び弾性反発力により発生し、長期的には当該止水材が膨張して発生すると考えた。その結果を図1及び図2に示す。 These six water-stopping materials were subjected to a water pressure resistance test and compared. The water pressure resistance test here was performed by using the joint at the time of connecting the segments. However, the water pressure test was performed on the assumption that the segments were flat without grooves. The maximum working water pressure used here was 1.0 Mpa≈10 kgf / cm 2 corresponding to 100 m underground. The basic condition of the water stop was working water pressure <surface stress, and working water pressure was groundwater pressure. Further, it was considered that the contact stress is generated by the restoring force and elastic repulsion force of the water-stopping material in the short term, and is generated by the expansion of the water-stopping material in the long term. The results are shown in FIGS.

まず従来の止水材であるRb−1及びRb−2の試験結果を図2に示す。この図2では、縦軸に接面応力(Mpa)をとり、横軸に作用水圧(Mpa)をとった。また作用水圧(地下水圧)の小さな動きに対する接面応力の動きを見るために、目盛は、横軸の単位を縦軸のものより小さな値の間隔でとった。よって、作用水圧=接面応力とする線が0の位置から小さな角度で右上がりに伸びている。これに対して、Rb−1の線5は、この線5を越える大きな値の線となっており、作用水圧0(Mpa)の時、接面応力約6.2(Mpa)であり、この位置から作用水圧1.0(Mpa)、接面応力約5.0(Mpa)の位置まで緩やかに下降する線となっている。またRb−2の線6は、Rb−1と同様に作用水圧の線を越える値の線6となっており、作用水圧0(Mpa)の時、接面応力約4.0(Mpa)であり、この位置から作用水圧1.0(Mpa)、接面応力約3.4(Mpa)の位置まで緩やかに下降する線となっている。これらのことは、Rb−1及びRb−2が何れもこの試験での作用水圧に耐えられ、かつ耐水圧試験(長期的なものではない。)において良好であったことを示している。   First, the test results of Rb-1 and Rb-2, which are conventional water-stopping materials, are shown in FIG. In FIG. 2, the vertical stress is the contact stress (Mpa), and the horizontal axis is the working hydraulic pressure (Mpa). In addition, in order to see the movement of the contact stress with respect to the small movement of the working water pressure (groundwater pressure), the scale is taken at intervals of a value smaller than that of the vertical axis. Therefore, the line of working hydraulic pressure = contact stress extends to the right from a position of 0 at a small angle. On the other hand, the line 5 of Rb-1 is a large value exceeding this line 5, and when the working water pressure is 0 (Mpa), the contact stress is about 6.2 (Mpa). It is a line that gently falls from the position to a position where the working hydraulic pressure is 1.0 (Mpa) and the contact stress is about 5.0 (Mpa). Further, the line 6 of Rb-2 is a line 6 having a value exceeding the working hydraulic pressure line as in Rb-1, and when the working hydraulic pressure is 0 (Mpa), the contact stress is about 4.0 (Mpa). There is a line that gradually falls from this position to a position where the working water pressure is 1.0 (Mpa) and the contact stress is about 3.4 (Mpa). These facts indicate that both Rb-1 and Rb-2 were able to withstand the working water pressure in this test and were good in the water pressure resistance test (not long-term).

また図1は、同様にBt−1、Bt−2、Bt−3及びBt−4の試験結果を示す。この図1では、縦軸に接面応力(Mpa)をとり、横軸に作用水圧(Mpa)をとったのは、上記図2と同様であるが、縦軸を図2より、小さな値の間隔でとった。これは、Bt−1、Bt−2、Bt−3及びBt−4の試験結果が接面応力1.0〜2.0(Mpa)の間に集中しているためである。ここでも作用水圧=接面応力とする線が0の位置から小さな角度で右上がりに伸びており、Bt−1、Bt−2、Bt−3及びBt−4の各線は、何れもこの線を越えた値を示している。   FIG. 1 also shows the test results of Bt-1, Bt-2, Bt-3, and Bt-4. In FIG. 1, the tangential stress (Mpa) is taken on the vertical axis and the working hydraulic pressure (Mpa) is taken on the horizontal axis, as in FIG. 2, but the vertical axis has a smaller value than FIG. I took it at intervals. This is because the test results of Bt-1, Bt-2, Bt-3, and Bt-4 are concentrated between the contact stresses of 1.0 to 2.0 (Mpa). Again, the line with working hydraulic pressure = contact stress extends to the right from a position of 0 at a small angle, and each of Bt-1, Bt-2, Bt-3 and Bt-4 lines is this line. Exceeds value.

ここで、Bt−1の線1は、作用水圧0(Mpa)の時、接面応力約1.9(Mpa)であり、この位置から作用水圧1.0(Mpa)、接面応力約1.9(Mpa)の位置まで殆ど変化の無い線となっている。Bt−2の線2は、作用水圧0(Mpa)の時、接面応力約1.5(Mpa)であり、この位置から作用水圧1.0(Mpa)、接面応力約1.7(Mpa)の位置まであまり変化の無い線となっている。またBt−3の線3は、作用水圧0(Mpa)の時、接面応力約0.9(Mpa)であり、この位置から作用水圧1.0(Mpa)、接面応力約1.2(Mpa)の位置まであまり変化の無い線となっている。さらにBt−4の線4は、作用水圧0(Mpa)の時、接面応力約1.25(Mpa)であり、この位置から作用水圧1.0(Mpa)、接面応力約1.5(Mpa)の位置まであまり変化の無い線となっている。
これらのことは、Bt−1、Bt−2、Bt−3及びBt−4が何れも作用水圧に耐えられ、かつ耐水圧試験(長期的なものではない。)において良好であったことを示している。
Here, the line 1 of Bt-1 has a contact stress of about 1.9 (Mpa) when the working water pressure is 0 (Mpa). From this position, the working water pressure is 1.0 (Mpa) and the contact stress is about 1 The line is almost unchanged up to a position of .9 (Mpa). The line 2 of Bt-2 has a contact stress of about 1.5 (Mpa) when the working water pressure is 0 (Mpa). From this position, the working water pressure is 1.0 (Mpa) and the contact stress is about 1.7 (Mpa). The line does not change much up to the position of Mpa). The line 3 of Bt-3 has a contact stress of about 0.9 (Mpa) when the working water pressure is 0 (Mpa). From this position, the working water pressure is 1.0 (Mpa) and the contact surface stress is about 1.2. The line is not much changed up to the position of (Mpa). Further, the line 4 of Bt-4 has a contact stress of about 1.25 (Mpa) when the working water pressure is 0 (Mpa). From this position, the working water pressure is 1.0 (Mpa) and the contact surface stress is about 1.5. The line is not much changed up to the position of (Mpa).
These indicate that all of Bt-1, Bt-2, Bt-3 and Bt-4 were able to withstand the working water pressure and were good in the water pressure resistance test (not long-term). ing.

これらの耐水圧試験では、この実施例のBt−1、Bt−2、Bt−3及びBt−4は、従来のRb−1、Rb−2ほど接面応力は高くないが、Rb−1、Rb−2と共に地下100m相当の水圧に耐え得ることが明らかになった。さらに図1のRb−1、Rb−2の各線は、右下がりなって、作用水圧を上げた場合の値が何れも下降傾向であり、これらの点での接面応力が弱かったことを示しているが、Bt−1、Bt−2、Bt−3及びBt−4の各線は、ほぼ変わらないか又は上昇傾向にあり、作用水圧の上昇があっても許容範囲内ならば安定していることが分かった   In these water pressure resistance tests, Bt-1, Bt-2, Bt-3 and Bt-4 in this example are not as high in contact stress as conventional Rb-1, Rb-2, but Rb-1, It became clear that it could withstand water pressure equivalent to 100m underground with Rb-2. Furthermore, each line of Rb-1 and Rb-2 in FIG. 1 is lowered to the right, and the values when the working hydraulic pressure is increased are both decreasing, indicating that the contact stress at these points was weak. However, the Bt-1, Bt-2, Bt-3, and Bt-4 lines are almost unchanged or tend to increase, and even if the working hydraulic pressure increases, it is stable if it is within the allowable range. I found out

次にこの実施例の止水材のBt−1、Bt−2、Bt−3及びBt−4と、Rb−1及びRb−2の各止水材に水道水を浸潤した際の浸漬日数における体積膨張倍率を試験し比較した。その結果を図3に示す。この図3に示す様にRb−1の線11は、他の止水材と比べずば抜けた高い値を示し、浸漬した12、3日頃から、約6.5倍の体積膨張倍率であり、その後57、8日頃まではこのまま安定した体積膨張倍率であった。Rb−2の線12は、Rb−1に比べかなり緩やかな右上がりの線と成っており、今回試験をした止水材の中では、最も低い体積膨張倍率であった。この試験を始めて57、8日頃には、体積膨張倍率は、およそ2倍程度となっている。またBt−1の線7とBt−2の線8は、Rb−2より高い体積膨張倍率を示し、互いに似た線と成っており、試験を始めて8日頃まで、Bt−1の線7が約3.1倍、Bt−2の線8が3.7倍という比較的大きな値を示し、その後は下降傾向を示し、57、8日頃には、体積膨張倍率は、およそ夫々2.6倍程度となっている。さらにBt−3の線9とBt−4の線10もRb−2の線12より高い体積膨張倍率を示し、互いに似た線と成っており、試験を開始から緩やかな上昇傾向を示し、57、8日頃には、体積膨張倍率は、およそ2.2倍程度となっている。   Next, Bt-1, Bt-2, Bt-3, and Bt-4 of the waterstop material of this example, and the number of days of immersion when tap water was infiltrated into each waterstop material of Rb-1 and Rb-2 The volume expansion ratio was tested and compared. The result is shown in FIG. As shown in FIG. 3, the Rb-1 line 11 shows a very high value compared to other water-stopping materials, and has a volume expansion ratio of about 6.5 times since about 12 and 3 days after immersion. Until about 57th and 8th days, the volume expansion ratio remained stable. The line 12 of Rb-2 is a moderately upward line compared to Rb-1, and was the lowest volume expansion ratio among the water-stopping materials tested this time. Around 57 and 8 days after the start of this test, the volume expansion ratio is about twice. Also, the Bt-1 line 7 and the Bt-2 line 8 show volume expansion ratios higher than Rb-2 and are similar to each other. About 3.1 times, Bt-2 line 8 shows a relatively large value of 3.7 times, and then shows a downward trend. Around 57 and 8 days, the volume expansion ratio is about 2.6 times, respectively. It is about. Further, the Bt-3 line 9 and the Bt-4 line 10 also show higher volume expansion ratios than the Rb-2 line 12, and are similar to each other, showing a moderate upward trend from the start of the test, 57 The volume expansion ratio is about 2.2 times around the 8th.

これらの体積膨張倍率の試験では、Bt−1、Bt−2、Bt−3及びBt−4の夫々の値は何れも、Rb−1及びRb−2の夫々の各値の間に在り、Bt−1、Bt−2、Bt−3及びBt−4の体積膨張倍率は、Rb−1の体積膨張倍率には及ばないが、Rb−2の体積膨張倍率より高いものであることが分かった。
これらの耐水圧試験及び体積膨張倍率試験の結果から、この実施例のBt−1、Bt−2、Bt−3及びBt−4の各止水材は、従来のRbの止水材と比べ、耐水圧及び体積膨張倍率の点において、何等遜色の無いものであることが分かった。
In these volume expansion ratio tests, the values of Bt-1, Bt-2, Bt-3, and Bt-4 are all between the values of Rb-1 and Rb-2. The volume expansion ratios of -1, Bt-2, Bt-3, and Bt-4 did not reach the volume expansion ratio of Rb-1, but were found to be higher than the volume expansion ratio of Rb-2.
From the results of these water pressure resistance tests and volume expansion ratio tests, the water-stopping materials of Bt-1, Bt-2, Bt-3 and Bt-4 of this example are compared with conventional water-stopping materials of Rb, It was found that there was no inferiority in terms of water pressure resistance and volume expansion ratio.

この様な止水材をセグメント21、21同士の接続において使用する。図4に示す様に、この止水材Aを一方のセグメント21の継手面22に自身の粘着性又は別途接着剤を使用して貼り付け、当該箇所と他方のセグメント21の継手面22とを接合させ、二つのセグメント21、21の継手面22、22をボルト23とナット24により、締め付けて行う。なおこの継手面の締め付けは、ばね鋼製のクリップ等を用いる場合もある。また止水材Aが自身の粘着性を保護する保護膜等を有する場合は、セグメント21を接合する前に、この保護膜等を取り外して締め付け作業を行う。   Such a water stop material is used in the connection between the segments 21 and 21. As shown in FIG. 4, the water-stopping material A is attached to the joint surface 22 of one segment 21 using its own adhesiveness or a separate adhesive, and the portion and the joint surface 22 of the other segment 21 are attached. The joint surfaces 22, 22 of the two segments 21, 21 are fastened by bolts 23 and nuts 24. The joint surface may be tightened using a spring steel clip or the like. Further, when the water-stopping material A has a protective film or the like that protects its own adhesiveness, the protective film or the like is removed before the segment 21 is joined.

この止水材Aを設けたセグメント21の止水構造では、セグメント21の継ぎ目に侵入してきた水分は、セグメント21の継手面22に貼り付けられたこの止水材Aの持つ適度なゴム弾性、追従性、粘着性により、当該箇所から内側への水分の浸入が遮断され、止水が為される。また熱可塑性樹脂を加えたことにより弾性力を強化し、圧縮力や水圧を繰り返し受けても、過度の塑性変形を起こして止水機能が低下するということが無い。さらにセグメント21の変動等により、二次的に目開きによる間隙が生じたとしても止水材中のベントナイトや吸水性樹脂が水を吸水して膨潤し、この目開きによる間隙を塞いで止水が為される。   In the water-stopping structure of the segment 21 provided with the water-stopping material A, the moisture that has entered the seam of the segment 21 has an appropriate rubber elasticity that the water-stopping material A attached to the joint surface 22 of the segment 21 has. Due to the followability and adhesiveness, the ingress of moisture from the relevant part to the inside is blocked, and the water is stopped. Moreover, even if the elastic force is strengthened by adding the thermoplastic resin and the compressive force or the water pressure is repeatedly applied, there is no possibility that the water stop function is deteriorated due to excessive plastic deformation. Further, even if a gap due to the opening is generated secondarily due to fluctuations in the segment 21, the bentonite or the water-absorbent resin in the water-stopping material absorbs water and swells, and the gap due to the opening is blocked to stop the water. Is done.

また図5に示すのは、他のタイプのセグメント25の接続におけるものである。上記セグメント21と異なるところは、セグメント25の継手面26に凹部27を設けており、この凹部27に止水材Aを貼り付けてセグメント25、25同士をボルト23とナット24で固定する。凹部27に止水材Aを貼り付けたことにより、接続した二つのセグメント25、25の凹部27、27によって成形された空間内で膨張するため、この空間内において確実な止水が出来る。また図5のセグメント25の場合、膨張する方向性が規制されるので体積膨張倍率の高い上記Bt−1又はBt−2の止水材が適しており、上記図4のセグメント21の場合、膨張する方向性が規制されないので体積膨張倍率の低い上記Bt−3及びBt−4の止水材が適している。   Also shown in FIG. 5 is the connection of other types of segments 25. The difference from the segment 21 is that a concave portion 27 is provided on the joint surface 26 of the segment 25, and the water stop material A is attached to the concave portion 27 and the segments 25, 25 are fixed to each other with the bolt 23 and the nut 24. By sticking the water stop material A to the recess 27, the space expands in the space formed by the recesses 27, 27 of the two connected segments 25, 25, so that the water can be reliably stopped in this space. Further, in the case of the segment 25 in FIG. 5, the directionality of expansion is restricted, so that the water-stopping material of Bt-1 or Bt-2 having a high volume expansion ratio is suitable. In the case of the segment 21 in FIG. Therefore, the Bt-3 and Bt-4 water-stopping materials having a low volume expansion ratio are suitable.

さらに図6乃至図11に示すのは、この止水材Aの断面形状を示すものであり、長方形の他、何れの形状でもよく、状況に合わせて最適な形状の断面のものを選択すればよい。図6に示すのは、断面が長方形になるように成形した止水材A1で一方の面に保護膜28を被覆している。この保護膜28は、このセグメントが梱包され、運搬等される時や施工時に止水材の粘着性が作業性を悪くすることを防ぐと共に、止水性能が低下するのを防ぐために有効であり、セグメントを接続される前に取り外される。また図7に示すのは、断面が長方形になるように成形された止水材の一方の面上に半円形の畝29を二条設けた止水材A2であり、図8に示すのは、断面が台形になるように成形した止水材A3であり、図9に示すのは、同様に、断面が半円形になるように成形した止水材A4である。   Further, FIG. 6 to FIG. 11 show the cross-sectional shape of the water-stopping material A, and any shape other than the rectangular shape may be used. Good. In FIG. 6, a protective film 28 is coated on one surface with a water-stopping material A1 formed so that its cross section is rectangular. This protective film 28 is effective for preventing the adhesiveness of the water-stopping material from deteriorating workability when the segment is packed and transported, etc., and during construction, and to prevent the water-stopping performance from being deteriorated. , Removed before the segments are connected. Moreover, what is shown in FIG. 7 is the water stop material A2 which provided two strips of semicircular ridges 29 on one surface of the water stop material formed so that the cross section is rectangular. FIG. 9 shows a water-stopping material A4 formed so that the cross section becomes a semicircular shape.

図10に示すのは、断面が長方形になるように成形されたものの中心にゴム弾性物質層30を設けた止水材A5であり、図11に示すのは、板状のゴム弾性物質層31の表裏の各面に夫々凹部32を設け、これらの凹部32にこの止水材を設けて一体化した止水材A6である。   FIG. 10 shows a water-stopping material A5 provided with a rubber elastic material layer 30 at the center of a material formed so as to have a rectangular cross section. FIG. 11 shows a plate-like rubber elastic material layer 31. This is a water-stopping material A6 in which concave portions 32 are provided on the respective front and back surfaces, and the water-stopping material is provided in these concave portions 32 and integrated.

この様な止水材Aをセグメントの継手面に粘着又は接着剤により固定し、その後セグメントの継手面がボルト23とナット24により、引き締められることにより、適度なゴム弾性追従性により止水すると共に、継手板の間の継ぎ目に目開き等が発生した場合は、止水材中のベントナイトや吸水性樹脂が吸水して膨張し、間隙を塞ぐことにより、水圧や圧縮力を繰り返し受けても過度な塑形変形を起こすことが無く、止水機能は、低下しない。さらに止水材中のベントナイトは、無機の鉱物であり、耐久性に優れることから、信頼性の高い止水効果を長期間に渡って得られると共に、安価であることから経済的にも優れる。   Such a water-stopping material A is fixed to the joint surface of the segment with an adhesive or an adhesive, and then the joint surface of the segment is tightened by a bolt 23 and a nut 24 to stop water with an appropriate rubber elastic followability. In the case where an opening or the like is generated at the joint between the joint plates, the bentonite or the water-absorbing resin in the water-stopping material absorbs water and expands and closes the gap, so that excessive plasticity can be obtained even if it is repeatedly subjected to water pressure and compressive force. There is no shape deformation and the water stop function does not deteriorate. Furthermore, bentonite in the water-stopping material is an inorganic mineral and has excellent durability, so that a highly reliable water-stopping effect can be obtained over a long period of time, and since it is inexpensive, it is economically excellent.

なお上記実施例では、Bt−1、Bt−2、Bt−3及びBt−4として、止水材の具体的な配合例を記載しているが、止水材Aの配合例は、これらのものに限定するものではない。またこの止水材Aをセグメント21、25の継手面22、26の継ぎ目に貼り付け、セグメント21、25同士の接続において説明しているが、この止水材Aの用途は、セグメント21、25同士の接続に限らず、図12に示す様な開削工法におけるコンクリート40打ちの継ぎ目の止水材A、二次覆工などのコンクリート打ちの継ぎ目の止水材、既設構造物における漏水箇所の補修用の止水材、地下構造物におけるクラックの止水材、その他、既設又は新設の地下構造物用の止水材など様々な用途の止水材として使用出来る。さらに吸水性樹脂として、ポリエチレンオキサイド(PEO)を使用しているが、吸水性樹脂はポリエチレンオキサイド(PEO)に限定するものではない。また止水材Aの形状について具体的に記載しているが、これらはこの発明の必須要件ではない。   In addition, in the said Example, although the specific compounding example of a water stop material is described as Bt-1, Bt-2, Bt-3, and Bt-4, the compounding example of the water stop material A is these. It is not limited to things. Moreover, although this water-stopping material A is affixed to the joint of the joint surfaces 22 and 26 of the segments 21 and 25, and it demonstrates in connection of the segments 21 and 25, the use of this water-stopping material A is the segments 21 and 25 Not only the connection between them, but also the waterproofing material A of 40-concrete joints in the open-cut method as shown in FIG. 12, the waterproofing material of concrete-seamed joints such as secondary lining, and repair of leaked points in existing structures It can be used as a water-stopping material for various purposes, such as a water-stopping material for underground use, a water-stopping material for cracks in underground structures, and other water-stopping materials for existing or newly installed underground structures. Furthermore, although polyethylene oxide (PEO) is used as the water absorbent resin, the water absorbent resin is not limited to polyethylene oxide (PEO). Although the shape of the water blocking material A is specifically described, these are not essential requirements of the present invention.

この発明の実施例の止水材の耐水圧試験の結果を示すグラフ図である。It is a graph which shows the result of the water-proof pressure test of the water stop material of the Example of this invention. 従来の止水材の耐水圧試験の結果を示すグラフ図である。It is a graph which shows the result of the water-proof pressure test of the conventional water stop material. この発明の実施例の止水材と従来の止水材の体積膨張倍率の試験の結果を示すグラフ図である。It is a graph which shows the result of the test of the volume expansion ratio of the water stop material of the Example of this invention, and the conventional water stop material. この発明の実施例の止水材をセグメント同士の接続に際して使用している状態を示す断面図である。It is sectional drawing which shows the state which is using the water stop material of the Example of this invention at the time of the connection of segments. この発明の実施例の止水材を他のセグメント同士の接続に際して使用している状態を示す断面図である。It is sectional drawing which shows the state which uses the water stop material of the Example of this invention at the time of the connection of other segments. この発明の実施例の止水材を断面が長方形になるように成形した状態の斜視図である。It is a perspective view of the state which shape | molded the water stop material of the Example of this invention so that a cross section might become a rectangle. この発明の実施例の止水材を断面が長方形になるように成形し、一方の面上に半円形の畝を二条設けた状態の斜視図である。It is a perspective view of the state where the water stop material of the example of this invention was formed so that a section might become a rectangle, and two semicircular ridges were provided on one side. この発明の実施例の止水材を断面が台形になるように成形した状態の斜視図である。It is a perspective view of the state which shape | molded the water stop material of the Example of this invention so that a cross section might become trapezoid. この発明の実施例の止水材を断面が半円形になるように成形した状態の斜視図である。It is a perspective view of the state which shape | molded the water stop material of the Example of this invention so that a cross section might become a semicircle. この発明の実施例の止水材を断面が長方形になるように成形し、その中心にゴム弾性物質層を設けた状態の斜視図である。It is a perspective view of the state which formed the water stop material of the example of this invention so that a section might become a rectangle, and provided the rubber elastic substance layer in the center. この発明の実施例の止水材であって、板状のゴム弾性物質層の表裏の各面に設けた凹部止水材を設けて一体化した状態の斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a water-stopping material according to an embodiment of the present invention, in which a recessed water-stopping material provided on each of the front and back surfaces of a plate-like rubber elastic material layer is provided and integrated. この発明の実施例の止水材を開削工法におけるコンクリート打ちの継ぎ目に使用した状態の説明図である。It is explanatory drawing of the state which used the water stop material of the Example of this invention for the joint seam of the concrete casting in an open-cut method. セグメントに止水材を貼り付けた状態を示す説明図である。It is explanatory drawing which shows the state which affixed the water stop material on the segment. 止水の基本的な条件である、止水材の復元力、弾性反発力及び膨張による接面応力σ>水圧Pを示す説明図である。It is explanatory drawing which shows the surface pressure (sigma)> water pressure P by the restoring force of a water stop material, an elastic repulsive force, and expansion which are the basic conditions of water stop.

符号の説明Explanation of symbols

A 止水材
21 セグメント 22 セグメントの継手面
23 ボルト 24 ナット
25 セグメント 26 セグメントの継手面
27 凹部 28 セグメントの保護膜
29 セグメントの畝 30 ゴム弾性物質層
31 ゴム弾性物質層 32 凹部
A Water-stopping material 21 Segment 22 Segment joint surface 23 Bolt 24 Nut 25 Segment 26 Segment joint surface 27 Recess 28 Segment protective film 29 Segment flange 30 Rubber elastic material layer 31 Rubber elastic material layer 32 Recess

Claims (5)

地下構造物における間隙に設けて止水する止水材であって、
ベントナイト、熱可塑性樹脂、可塑剤、吸水性樹脂を主原料として配合して成形したことを特徴とする、地下構造物の止水材。
A water-stopping material that is provided in a gap in an underground structure and stops water,
A water-stopping material for underground structures, which is formed by blending bentonite, thermoplastic resin, plasticizer, and water-absorbing resin as main raw materials.
上記ベントナイトを30〜40重量%、上記熱可塑性樹脂を30〜35重量%、上記吸水性樹脂を5〜15重量%、上記可塑剤を15〜20重量%夫々配合して成形したことを特徴とする、上記請求項1に記載の地下構造物の止水材。 30 to 40% by weight of the bentonite, 30 to 35% by weight of the thermoplastic resin, 5 to 15% by weight of the water absorbent resin, and 15 to 20% by weight of the plasticizer, respectively. The waterstop material for an underground structure according to claim 1. 上記熱可塑性樹脂を上記可塑剤と混合後高温加熱し、当該高温加熱した熱可塑性樹脂を上記他の主原料と配合して成形したことを特徴とする、上記請求項1又は2の何れかに記載の地下構造物の止水材。 The thermoplastic resin is mixed with the plasticizer and heated at a high temperature, and the thermoplastic resin heated at a high temperature is blended with the other main raw material and molded. The waterproof material for the underground structure described. 上記請求項1乃至3の何れかに記載の地下構造物の止水材を地下構造物の間隙に介在させ、当該地下構造物の間隙から浸透してくる漏水を当該止水材のベントナイト及び吸水性樹脂が吸水することにより膨張して当該間隙を閉鎖して止水することを特徴とする、地下構造物の止水方法。 The water stoppage material for an underground structure according to any one of claims 1 to 3 is interposed in a gap between the underground structures, and water leaking from the gaps in the underground structure is caused by bentonite and water absorption of the waterstop material. A water-stopping method for an underground structure, wherein the water-soluble resin expands by absorbing water and closes the gap to stop the water. 上記請求項1乃至3の何れかに記載の地下構造物の止水材を地下構造物の間隙に圧縮して介在させて当該間隙を塞いで止水し、当該箇所にさらに間隙が生じ漏水があった際には、短期的には当該止水材の復元力及び反発弾性力によって止水し、長期的には当該止水材のベントナイト及び吸水性樹脂が吸水することにより膨潤して当該間隙を閉鎖して止水することを特徴とする、地下構造物の止水方法。
The water-stopping material for an underground structure according to any one of claims 1 to 3 is compressed and interposed in a gap in the underground structure to block the gap and stop the water. In such a case, the water stoppage is stopped by the restoring force and rebound resilience of the waterstop material in the short term, and the bentonite and water absorbent resin of the waterstop material swell and absorb the water in the long term. A method for water-stopping an underground structure, characterized in that the water is closed and water-stopped.
JP2004238267A 2004-08-18 2004-08-18 Water-stopping material for underground structures and water-stopping method using the water-stopping material Expired - Fee Related JP4464224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004238267A JP4464224B2 (en) 2004-08-18 2004-08-18 Water-stopping material for underground structures and water-stopping method using the water-stopping material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004238267A JP4464224B2 (en) 2004-08-18 2004-08-18 Water-stopping material for underground structures and water-stopping method using the water-stopping material

Publications (2)

Publication Number Publication Date
JP2006057275A true JP2006057275A (en) 2006-03-02
JP4464224B2 JP4464224B2 (en) 2010-05-19

Family

ID=36104978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004238267A Expired - Fee Related JP4464224B2 (en) 2004-08-18 2004-08-18 Water-stopping material for underground structures and water-stopping method using the water-stopping material

Country Status (1)

Country Link
JP (1) JP4464224B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008223336A (en) * 2007-03-13 2008-09-25 Tokyo Electric Power Co Inc:The Water cutoff material for underground structure
EP3106489A1 (en) * 2015-06-16 2016-12-21 Atarfil, S.L. Synthetic polymer waterproofing membrane with self-repair properties
JP2017181066A (en) * 2016-03-28 2017-10-05 日鐵住金建材株式会社 Device for confirming and testing water stop performance of pipe joint, testing method, and method for setting control value of water stop

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008223336A (en) * 2007-03-13 2008-09-25 Tokyo Electric Power Co Inc:The Water cutoff material for underground structure
EP3106489A1 (en) * 2015-06-16 2016-12-21 Atarfil, S.L. Synthetic polymer waterproofing membrane with self-repair properties
WO2016203086A1 (en) * 2015-06-16 2016-12-22 Atarfil, S.L. Self-supporting, synthetic polymer waterproof membrane with self-healing ability
CN108207112A (en) * 2015-06-16 2018-06-26 阿塔菲尔有限公司 Self-supporting synthetic polymer waterproof membrane with self-healing properties
JP2017181066A (en) * 2016-03-28 2017-10-05 日鐵住金建材株式会社 Device for confirming and testing water stop performance of pipe joint, testing method, and method for setting control value of water stop

Also Published As

Publication number Publication date
JP4464224B2 (en) 2010-05-19

Similar Documents

Publication Publication Date Title
EP0037717B2 (en) An aqueously-swelling water stopper and a process of stopping water thereby
EP0050906B1 (en) Sealant compositions and seals which expand upon absorption of water and processes for their use
JPH0228032B2 (en)
JP4464224B2 (en) Water-stopping material for underground structures and water-stopping method using the water-stopping material
CN212001292U (en) Self-adhesion waterstop
CN112939519B (en) Floor concrete for enhancing seepage-proofing and anti-cracking functions and production process thereof
JP4535902B2 (en) Seismic joint for concrete structure and its construction method
JP2774319B2 (en) Adhesive water-swelling waterproof material
JP4937797B2 (en) Waterproof tape for joints between concrete casting forms for underground structures
CN110423409A (en) A kind of preparation method of dilatancy composite rubber water stop
JP2004169327A (en) Water sealing material
JP2006299205A (en) Water-stop material for concrete
EP1953438B1 (en) Pipe-surrounding water-sealing material
JP2008013995A (en) Water cut-off material
JP2001003436A (en) Cut-off joint structure
JP3153973U (en) Water swellable clay still water rubber
JP2009155973A (en) Shield method segment caulking material
JP2001020692A (en) Cut-off method for joint in underground structure and cut-off structure
CN110204834A (en) A kind of water swelling rubber and preparation method thereof
EP2436660B1 (en) A system and a method for stopping in an opening a flow of a fluid
JP2774353B2 (en) Adhesive water-swelling waterproof material
JPH1162027A (en) High modulus cut off rubber plate
JP3270854B2 (en) Elastic joint structure for box culvert construction
JP2878680B1 (en) Elastic joint structure for box culvert construction
JP2001032396A (en) Joint member for concrete structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees