JP2006055863A - Flash welding equipment and flash welding method - Google Patents

Flash welding equipment and flash welding method Download PDF

Info

Publication number
JP2006055863A
JP2006055863A JP2004237844A JP2004237844A JP2006055863A JP 2006055863 A JP2006055863 A JP 2006055863A JP 2004237844 A JP2004237844 A JP 2004237844A JP 2004237844 A JP2004237844 A JP 2004237844A JP 2006055863 A JP2006055863 A JP 2006055863A
Authority
JP
Japan
Prior art keywords
welding member
side welding
moving
flash
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004237844A
Other languages
Japanese (ja)
Inventor
Koji Yoshii
孝次 吉井
Kazuyoshi Watanabe
和義 渡辺
Mitsuru Fujii
充 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Koken Co Ltd
Original Assignee
JFE Koken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Koken Co Ltd filed Critical JFE Koken Co Ltd
Priority to JP2004237844A priority Critical patent/JP2006055863A/en
Publication of JP2006055863A publication Critical patent/JP2006055863A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flash welding equipment and a flash welding method in which a portion to be welded is heated and joined without retraction by repeating only advancement and stop to repeat the discharge and arc scattering. <P>SOLUTION: In a flush step, a control unit 17 calculates the target position of a moving side welding member 3 in a predetermined period based on the target displacement curve to indicate the position of the moving side welding member 3 with respect to the elapsed time (Step S20), and when it is detected that the position of the moving side welding member 3 measured by a position measurement unit 15 does not reach the target position (Step S21), the moving side welding member 3 is advanced (Step S22). When the position of the moving side welding member 3 measured by the position measurement unit 15 reaches the target position, the moving side welding member 3 is stopped. By repeating the flush step before reaching the final target position, the advance and the stop of the moving side welding member 3 are repeated. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、電圧を印加した2つの溶接部材を接合するフラッシュ溶接装置及びフラッシュ溶接方法に関する。   The present invention relates to a flash welding apparatus and a flash welding method for joining two welding members to which a voltage is applied.

鋼管杭やH形鋼杭等の鋼杭は、打込貫通力が大きく、継手の施工が確実であるとともに水平荷重に対する曲げ抵抗が強いので深い基礎に用いられている。鋼管杭を接合するとき、特許文献1に示すように、接合強度が高い溶接継手を高能率で作成するフラッシュ溶接法が用いられている。特許文献1に示された接合方法は、接合する鋼管杭と地盤に圧入した鋼管杭の内周面をそれぞれクランプ装置で保持し、溶接用電極を、両鋼管杭の溶接部近傍の外周部にそれぞれ取り付け、溶接用トランスから溶接用電極に電力を供給しながら、接合する鋼管杭を上方から前後退させて溶接部の離接を繰り返して溶接部を加熱した後、溶接部を加圧して両鋼管杭を接合している。
特開2004−176431号公報
Steel piles such as steel pipe piles and H-shaped steel piles are used for deep foundations because they have a high driving penetration force, a reliable construction, and strong bending resistance against horizontal loads. When joining steel pipe piles, as shown in Patent Document 1, a flash welding method is used in which a welded joint with high joint strength is created with high efficiency. In the joining method shown in Patent Document 1, the steel pipe pile to be joined and the inner peripheral surface of the steel pipe pile press-fitted into the ground are each held by a clamping device, and the welding electrode is placed on the outer circumference in the vicinity of the welded part of both steel pipe piles. While attaching and supplying power from the welding transformer to the welding electrode, the steel pipe piles to be joined are moved forward and backward from the top and the welded parts are repeatedly detached and heated to heat the welded parts. Steel pipe piles are joined.
JP 2004-176431-A

特許文献1のように鋼管杭を重力に逆らって高速に前後退させるためには、高性能な油圧設備や制御装置が必要となる。また、レール材を水平な状態で溶接する場合、レール材を高速に前後退させると振動が発生するため、前後退するレール材を強固に固定する必要があり、固定するための設備及び油圧設備が大掛かりとなる。   In order to move the steel pipe pile forward and backward at high speed against the gravity as in Patent Document 1, high-performance hydraulic equipment and a control device are required. Also, when the rail material is welded in a horizontal state, vibration occurs when the rail material is moved forward and backward at high speed. Therefore, it is necessary to firmly fix the rail material that is moved forward and backward. Is a big issue.

本発明は、高速な前後退を不要とし前進及び停止のみで溶接部材を接合するフラッシュ溶接装置及びフラッシュ溶接方法を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a flash welding apparatus and a flash welding method that do not require a high-speed forward and backward movement, and that join welding members only by advancing and stopping.

この発明のフラッシュ溶接装置は、固定された溶接部材と移動可能な溶接部材とに電圧を印加しながら、経過時間に対する移動可能な溶接部材の位置を示す目標変位曲線に追従するように前進及び停止のみを繰り返すことにより放電及び火花の飛散を発生させて溶接部を加熱し、加熱した溶接部を圧接する。目標変位曲線は、溶接部において部分的な放電から徐々に均一な放電を発生させ、発生した均一な放電を保つように移動する移動可能な溶接部材の経過時間に対する位置を表すようにするとよい。溶接部が均一に放電するまであらかじめ加熱しておくとよい。   The flash welding apparatus of the present invention advances and stops so as to follow a target displacement curve indicating the position of the movable welding member with respect to the elapsed time while applying a voltage to the fixed welding member and the movable welding member. By repeating only this, discharge and spark scattering are generated to heat the welded portion, and the heated welded portion is pressed. It is preferable that the target displacement curve represents a position with respect to an elapsed time of a movable welding member that gradually generates a uniform discharge from a partial discharge in the weld and moves so as to keep the generated uniform discharge. It is good to heat in advance until the weld is uniformly discharged.

この発明のフラッシュ溶接方法は、固定された溶接部材と移動可能な溶接部材とに電圧を印加しながら、経過時間に対する移動可能な溶接部材の位置を示す目標変位曲線に追従するように前進及び停止のみを繰り返すことにより放電及び火花の飛散を発生させて溶接部を加熱し、加熱した溶接部を圧接する。   The flash welding method of the present invention advances and stops so as to follow a target displacement curve indicating the position of the movable welding member with respect to the elapsed time while applying a voltage to the fixed welding member and the movable welding member. By repeating only this, discharge and spark scattering are generated to heat the welded portion, and the heated welded portion is pressed.

このフラッシュ溶接装置によれば、前進及び停止のみを繰り返すことで後退動作を行わずに溶接部材の放電及び火花の飛散を繰り返すことができ、前後退を高速で行うための高度な油圧設備や制御装置を不要とする。目標変位曲線を、溶接部において部分的な放電から徐々に均一な放電を発生させ、発生した均一な放電を保つように移動する移動可能な溶接部材の位置を表すようにするため、フリーズを防いでスムーズに接合することができる。あらかじめ加熱しておくことで、放電開始当所の不安定な動作を低減して早く接合することができる。このフラッシュ溶接方法によれば、前進及び停止のみを繰り返すことで後退動作を行わずに溶接部材の放電及び火花の飛散を繰り返すことができ、前後退を高速で行う必要が無い。   According to this flash welding apparatus, by repeating only forward and stop, it is possible to repeat the discharge of the welding member and the scattering of the spark without performing the backward movement, and advanced hydraulic equipment and control for performing the forward and backward movement at high speed. Equipment is unnecessary. Freezing is prevented by making the target displacement curve represent the position of a movable weld that moves gradually to generate a uniform discharge from a partial discharge in the weld and keep the generated uniform discharge. Can be joined smoothly. By heating in advance, the unstable operation at the start of discharge can be reduced and bonding can be performed quickly. According to this flash welding method, by repeating only forward and stop, the discharge of the welding member and the scattering of the spark can be repeated without performing the backward operation, and there is no need to perform forward and backward at high speed.

フラッシュ溶接装置1は、2つの溶接部材をフラッシュ溶接により接合して長い溶接部材を製造する。本実施形態では、固定側溶接部材に長手方向を鉛直方向に向けて埋設されたH形鋼杭を用い、移動側溶接部材に長手方向を鉛直方向に向けたH形鋼杭を用い、固定側溶接部材の後端部に移動側溶接部材の先端部を溶接する。   The flash welding apparatus 1 manufactures a long welded member by joining two welded members by flash welding. In the present embodiment, an H-shaped steel pile embedded in the fixed-side welding member with the longitudinal direction oriented in the vertical direction is used, and an H-shaped steel pile in which the longitudinal direction is directed in the vertical direction is used in the moving-side welding member. The front end portion of the moving side welding member is welded to the rear end portion of the welding member.

フラッシュ溶接装置1は、図1(a)の正面図及び図1(b)の側面図に示すように、固定側クランプ10と移動側クランプ11と移動ユニット12と固定側電極13と移動側電極14と位置計測部15と電源16と制御部17とを備える。   As shown in the front view of FIG. 1A and the side view of FIG. 1B, the flash welding apparatus 1 includes a fixed side clamp 10, a moving side clamp 11, a moving unit 12, a fixed side electrode 13, and a moving side electrode. 14, a position measurement unit 15, a power supply 16, and a control unit 17.

固定側クランプ10は固定側溶接部材2の後端部を固定し、移動側クランプ11は移動側溶接部材3の先端部に固定されている。移動ユニット12は、図2の機能ブロック図に示すように油圧シリンダ121と油圧インバータポンプ122と方向切替弁123とポンプ用インバータ124とを有する。移動側クランプ11と固定側クランプ10との間に接続された油圧シリンダ121に油圧インバータポンプ122からオイルを送るとともに、油圧シリンダ121と油圧インバータポンプ122との間に接続された方向切替弁123でオイルの流れを切り替えることにより、油圧シリンダ121を伸縮させて、移動側溶接部材3の固定側溶接部材2に対する位置を変動させる。オイル用インバータ124は、油圧インバータポンプ122にパルスを送ることにより、油圧インバータポンプ122の動作タイミングと一回の動作量とを制御し、移動側溶接部材3を移動させる。   The fixed side clamp 10 fixes the rear end portion of the fixed side welding member 2, and the moving side clamp 11 is fixed to the leading end portion of the moving side welding member 3. As shown in the functional block diagram of FIG. 2, the moving unit 12 includes a hydraulic cylinder 121, a hydraulic inverter pump 122, a direction switching valve 123, and a pump inverter 124. Oil is sent from the hydraulic inverter pump 122 to the hydraulic cylinder 121 connected between the moving side clamp 11 and the fixed side clamp 10, and the direction switching valve 123 is connected between the hydraulic cylinder 121 and the hydraulic inverter pump 122. By switching the oil flow, the hydraulic cylinder 121 is expanded and contracted to change the position of the moving side welding member 3 relative to the fixed side welding member 2. The oil inverter 124 sends a pulse to the hydraulic inverter pump 122 to control the operation timing and the operation amount of the hydraulic inverter pump 122 to move the moving side welding member 3.

固定側溶接部材2の後端部には固定側電極13が接続され、移動側溶接部材3の先端部には移動側電極14が接続されている。固定側クランプ10と移動側クランプ11とに接続された位置計測部15は、固定側クランプ10と移動側クランプ11との距離に応じて可変するポテンショメータの抵抗値を測定することにより、移動側溶接部材3の位置を計測する。   A fixed side electrode 13 is connected to the rear end portion of the fixed side welding member 2, and a moving side electrode 14 is connected to the tip end portion of the moving side welding member 3. The position measuring unit 15 connected to the fixed-side clamp 10 and the moving-side clamp 11 measures the resistance value of the potentiometer that varies according to the distance between the fixed-side clamp 10 and the moving-side clamp 11, thereby moving-side welding. The position of the member 3 is measured.

電源16は、三相交流発電機161と整流器162とインバータ駆動回路163と電源用インバータ164と変圧器165とダイオード整流器166とを有し、400Vの三相交流発電機161からの交流電圧を整流器162で整流し、インバータ駆動回路163で制御される電源用インバータ164により矩形波交流電圧に変換し、変圧器165で降圧してダイオード整流器166で直流電圧に変換し、直流電圧を固定側電極13と移動側電極14とを通じて固定側溶接部材2と移動側溶接部材3との間に印加する。   The power supply 16 includes a three-phase AC generator 161, a rectifier 162, an inverter drive circuit 163, a power source inverter 164, a transformer 165, and a diode rectifier 166, and rectifies the AC voltage from the 400V three-phase AC generator 161. The voltage is rectified by 162, converted to a rectangular wave AC voltage by a power source inverter 164 controlled by an inverter drive circuit 163, stepped down by a transformer 165, converted to a DC voltage by a diode rectifier 166, and the DC voltage is converted to a fixed side electrode 13. And the moving-side electrode 14, and applied between the fixed-side welding member 2 and the moving-side welding member 3.

制御部17は、電源16のインバータ駆動回路163を制御することにより、固定側電極13と移動側電極14とを通じた固定側溶接部材2と移動側溶接部材3との間の電圧の印加及び停止を制御するとともに、移動ユニット12のポンプ用インバータ124及び方向切替弁123を制御することにより、移動側溶接部材3を前進させて固定側溶接部材2に近づけたり、移動側溶接部材3を固定側溶接部材2に対して停止させることにより、図3のフロー図に示すように、溶接部となる固定側溶接部材2の後端部と移動側溶接部材2の先端部とを適温まで加熱するフラッシュ工程(ステップS10)と、加熱された溶接部を急激に圧接するアップセット工程(ステップS11)とを含むフラッシュ溶接方法を実行する。   The control unit 17 controls the inverter drive circuit 163 of the power supply 16 to apply and stop the voltage between the fixed side welding member 2 and the moving side welding member 3 through the fixed side electrode 13 and the moving side electrode 14. And by controlling the pump inverter 124 and the direction switching valve 123 of the moving unit 12, the moving side welding member 3 is moved forward to approach the fixed side welding member 2, or the moving side welding member 3 is fixed to the fixed side. By stopping the welding member 2, as shown in the flowchart of FIG. 3, the flash that heats the rear end portion of the fixed-side welding member 2 serving as a welded portion and the front end portion of the moving-side welding member 2 to an appropriate temperature. A flash welding method including a process (step S10) and an upset process (step S11) for rapidly pressing the heated weld is performed.

フラッシュ工程では、固定側溶接部材2の後端部と移動側溶接部材3の先端部との間に放電を起こして短絡することにより大電流を流し、放電した部分を集中的に加熱して溶融させる。加熱溶融した短絡した部分の部材が火花となって飛び散る(フラッシュする)と放電が弱まり、あるいは絶たれるため、さらに移動側溶接部材3を固定側溶接部材2に近づけて放電と火花の飛散とを繰り返す必要がある。制御部17は、経過時間に対する移動側溶接部材3の位置を表す目標変位曲線に追従するように、移動側溶接部材3を前進させる。   In the flash process, a large current is caused to flow by causing a short circuit between the rear end portion of the fixed-side welding member 2 and the front end portion of the moving-side welding member 3, and the discharged portion is intensively heated and melted. Let When the member in the short-circuited portion that has been heated and melted scatters (flashes) as a spark, the discharge is weakened or discontinued, so that the moving-side welding member 3 is brought closer to the fixed-side welding member 2 and the discharge and sparks are scattered. Need to repeat. The control part 17 advances the movement side welding member 3 so that the target displacement curve showing the position of the movement side welding member 3 with respect to elapsed time may be followed.

フラッシュ工程では、移動側溶接部材3が固定側溶接部材2に近づくと、放電が発生し、短絡した溶接部が集中的に加熱、溶融される。加熱溶融した接合点の部材が火花となって飛び散ると放電が絶たれるが、移動側溶接部材3をさらに固定側溶接部材2に近づけることにより再度放電し、放電と火花飛散とが繰り返されて溶接部が加熱される。移動側溶接部材3と固定側溶接部材2との間を流れる電流は、例えば図4に示すように、フラッシュ工程の初期には、溶接部の粗さにより局部的に電流が流れて全体的にはあまり流れず、放電により火花の飛散を繰り返すことにより放電する部分が多くなり、徐々に電流が増加して最終的には溶接部の全面がほぼ均一に放電するようになる。   In the flash process, when the moving-side welding member 3 approaches the fixed-side welding member 2, a discharge is generated, and the short-circuited welded portion is intensively heated and melted. When the heated and melted member at the joining point scatters as a spark, the discharge is interrupted, but the discharge is stopped again by moving the moving-side welding member 3 closer to the fixed-side welding member 2, and the discharge and the spark scatter are repeated and welded. The part is heated. For example, as shown in FIG. 4, the current flowing between the moving-side welding member 3 and the fixed-side welding member 2 flows locally due to the roughness of the welded portion at the initial stage of the flash process. Does not flow so much, and by repeating the sparks scattered by the discharge, there are many portions to be discharged, the current gradually increases, and eventually the entire surface of the welded portion is discharged almost uniformly.

経過時間に対する移動側溶接部材3の位置を表す目標変位曲線はあらかじめ実験により計測して求められる。フラッシュ工程の初期の段階では、移動側溶接部材3をわずかに前進させながら局部的な放電と火花の飛散とを連続的に発生させるように制御し、時間の経過に従って一回の動作で移動側溶接部材3が前進する距離を段階的に増加させ、溶接部の粗さがとれて放電が均一に発生するようになると、均一さを保ったままほぼ一定の速さで前進するように制御する。目標変位曲線は、移動側溶接部材3を移動させて計測された、経過時間t(秒)に対する移動側溶接部材3の位置y(mm)を1次式や2次式で近似して求められる。例えば、断面積約8000mm2の鋼材を、平均電力60kW、溶接時間170秒で溶接する場合、計測結果を最小二乗法で近似すると目標変位曲線は、図5(a)に示すように式1a〜式1dの4つの2次式の組み合わせ、図5(b)に示すように式2a〜式2eの5つの1次式の組み合わせ、あるいは、式3aの2次式と式3bの1次式との組み合わせ等により表される。 A target displacement curve representing the position of the moving side welding member 3 with respect to the elapsed time is obtained by measurement in advance by experiments. In the initial stage of the flash process, the moving side welding member 3 is controlled so as to continuously generate local discharge and spark scattering while slightly moving the moving side welding member 3, and the moving side is moved in a single operation over time. When the distance to which the welding member 3 advances is increased stepwise and the welded portion becomes rough and discharge is uniformly generated, control is performed to advance at a substantially constant speed while maintaining uniformity. . The target displacement curve is obtained by approximating the position y (mm) of the moving-side welding member 3 with respect to the elapsed time t (seconds) measured by moving the moving-side welding member 3 by a linear expression or a quadratic expression. . For example, when welding a steel material having a cross-sectional area of about 8000 mm 2 with an average power of 60 kW and a welding time of 170 seconds, when the measurement result is approximated by the least square method, the target displacement curve is expressed by equations 1a to 1 as shown in FIG. A combination of four quadratic formulas of Formula 1d, a combination of five primary formulas of Formula 2a to Formula 2e as shown in FIG. 5B, or a quadratic formula of Formula 3a and a primary formula of Formula 3b It is represented by a combination of

Figure 2006055863
Figure 2006055863

フラッシュ溶接方法を実行する制御部17は、インバータ駆動回路163を制御して固定側溶接部材2と移動側溶接部材3との間に電圧を印加し、目標変位曲線の初期位置に移動側溶接部材3を配置し、方向切替弁123を前進に切り替え、まずフラッシュ工程を実行する。   The control unit 17 that executes the flash welding method controls the inverter drive circuit 163 to apply a voltage between the fixed-side welding member 2 and the moving-side welding member 3, and moves the moving-side welding member to the initial position of the target displacement curve. 3 is arranged, the direction switching valve 123 is switched to the forward direction, and the flush process is first executed.

フラッシュ工程において制御部17は図6のフロー図に示すように、経過時間に対する移動側溶接部材3の位置を示す目標変位曲線に基づいて、一定の微小な時間周期、例えば0.1秒周期で経過時間に応じた移動側溶接部材3の目標位置を算出する(ステップS20)。目標変位曲線が図5(a)のような2次式の組み合わせで表される場合、約0秒以上約90秒未満では式1aに基づき、約90秒以上約115秒未満では式1bに基づき、約115秒以上約134秒未満では式1cに基づき、約134秒以上約170秒未満では式1dに基づいて目標位置を算出する。目標変位曲線が図5(b)のような1次式の組み合わせで表される場合、約0秒以上約43秒未満では式2aに基づき、約43秒以上約87秒未満では式2bに基づき、約87秒以上約125秒未満では式2cに基づき、約125秒以上約143秒未満では式2dに基づき、約143秒以上約170秒未満では式2eに基づいて目標位置を算出する。目標変位曲線が式3a及び式3bのように2次式と1次式との組み合わせで表される場合、約0秒以上約140秒未満では式3aに基づき、約140秒以上約170秒未満では式3bに基づいて目標位置を算出する。   In the flash process, as shown in the flowchart of FIG. 6, the control unit 17 determines the elapsed time at a constant minute time period, for example, a 0.1 second period, based on the target displacement curve indicating the position of the moving side welding member 3 with respect to the elapsed time. The target position of the moving-side welding member 3 corresponding to is calculated (step S20). When the target displacement curve is represented by a combination of quadratic equations as shown in FIG. 5A, it is based on Formula 1a when it is about 0 second or more and less than about 90 seconds, and based on Formula 1b when it is about 90 seconds or more and less than about 115 seconds. The target position is calculated based on Formula 1c for about 115 seconds to less than about 134 seconds, and based on Formula 1d for about 134 seconds to less than about 170 seconds. When the target displacement curve is represented by a combination of linear equations as shown in FIG. 5B, it is based on Equation 2a when it is about 0 second or more and less than about 43 seconds, and based on Equation 2b when it is about 43 seconds or more and less than about 87 seconds. The target position is calculated based on Expression 2c when it is about 87 seconds or more and less than about 125 seconds, based on Expression 2d when it is about 125 seconds or more and less than about 143 seconds, and based on Expression 2e when it is about 143 seconds or more and less than about 170 seconds. When the target displacement curve is expressed by a combination of a quadratic expression and a linear expression as in Expression 3a and Expression 3b, if it is about 0 seconds or more and less than about 140 seconds, it is about 140 seconds or more and less than about 170 seconds based on Expression 3a. Then, a target position is calculated based on Formula 3b.

位置計測部15で計測された移動側溶接部材3の位置が算出された目標位置に達していないことを検出すると(ステップS21)、移動側溶接部材3を前進させ(ステップS22)、位置計測部15で計測された移動側溶接部材3の位置が算出された目標位置に達している場合には移動側溶接部材3を停止させる。最終的な目標位置に到達するまで移動側溶接部材3の前進及び停止のみを繰り返す。   When it is detected that the position of the moving welding member 3 measured by the position measuring unit 15 has not reached the calculated target position (step S21), the moving welding member 3 is advanced (step S22), and the position measuring unit If the position of the moving welding member 3 measured at 15 has reached the calculated target position, the moving welding member 3 is stopped. Only advance and stop of the moving side welding member 3 are repeated until the final target position is reached.

フラッシュ工程を終えると制御部17はアプセット工程を実行する。アプセット工程を実行する制御部17は、図7のフロー図に示すように、油圧インバータポンプ122を急激に作動させて移動側溶接部材3と固定側溶接部材2とを強い圧力で押し付けてアプセットを開始する(ステップS30)、アプセットの開始から設定時間経過後にインバータ駆動回路163を制御して電圧の印加を停止し(ステップS31)、所定の距離まで圧力を加えた後、所定の時間保持する(ステップS32)。電圧をしばらく印加することにより、固定側溶接部材2と移動側溶接部材3との境界面に残留する不純物や加熱金属を押し出して健全な高温金属で溶接することができる。アプセット工程を終えた後、必要に応じて移動側クランプ11を解放してバリ抜きバイトを前進させることにより、溶接箇所のバリ抜きを実行するとよい。   When the flash process is finished, the control unit 17 executes the upset process. As shown in the flowchart of FIG. 7, the control unit 17 that executes the upset process suddenly operates the hydraulic inverter pump 122 and presses the moving-side welding member 3 and the fixed-side welding member 2 with a strong pressure. Start (step S30), after the set time has elapsed from the start of upset, the inverter drive circuit 163 is controlled to stop the application of voltage (step S31), and after applying pressure to a predetermined distance, it is held for a predetermined time ( Step S32). By applying the voltage for a while, impurities and heated metal remaining on the boundary surface between the fixed-side welding member 2 and the moving-side welding member 3 can be pushed out and welded with a healthy high-temperature metal. After the upset process is completed, the deburring of the welded portion may be performed by releasing the moving side clamp 11 and advancing the deburring tool as necessary.

このフラッシュ溶接装置1によれば、溶接部材の前進と停止のみを繰り返すことで、高速な前後退を行わずに溶接部材の放電及び火花の飛散を繰り返すことができ、高速に前後退を行うための高度な油圧設備を不要とする。特に、垂直に溶接部材を接合する場合には、重力に反して高速な前後退を行わないことにより油圧設備が複雑化することを防止できる。さらに電力制御方式における溶接部材の軌跡に近似した1次式または2次式で表される動作とすることにより、大面積でもフリージングを防止することができる。なお、本発明は、H形鋼杭に限らずシートパイル、鋼管、レール材等の溶接部材を溶接することができる。   According to the flash welding apparatus 1, by repeating only the advancement and stop of the welding member, it is possible to repeat the discharge of the welding member and the sparks without performing the forward and backward movement at high speed, and to perform the forward and backward movement at high speed. No need for advanced hydraulic equipment. In particular, when welding members are joined vertically, it is possible to prevent the hydraulic equipment from becoming complicated by not performing high-speed forward retreating against gravity. Furthermore, by performing an operation represented by a linear expression or a quadratic expression that approximates the trajectory of the welding member in the power control method, it is possible to prevent freezing even in a large area. In addition, this invention can weld not only H-shaped steel pile but welding members, such as a sheet pile, a steel pipe, and a rail material.

なお、フラッシュ工程の開始からしばらくは固定側溶接部材2及び移動側溶接部材3に十分に熱が入っておらず火花が飛び難いため、例えばフラッシュ工程の前に固定側溶接部材2と移動側溶接部材3とを短絡し、抵抗により溶接部をあらかじめ加熱して火花を飛びやすくしておくことが望ましい。   Note that, for a while after the start of the flashing process, the fixed-side welding member 2 and the moving-side welding member 3 are not sufficiently heated, and it is difficult for sparks to fly. It is desirable that the member 3 is short-circuited, and the weld is heated in advance by resistance so that the sparks can fly easily.

フラッシュ溶接装置の正面図及び側面図である。It is the front view and side view of a flash welding apparatus. 電気系統の機能ブロック図である。It is a functional block diagram of an electric system. フラッシュ溶接方法のフロー図である。It is a flowchart of a flash welding method. 電流値と時間との関係を示す図である。It is a figure which shows the relationship between an electric current value and time. 経過時間に対する移動側溶接部材の位置の軌跡を示す図である。It is a figure which shows the locus | trajectory of the position of the movement side welding member with respect to elapsed time. フラッシュ工程のフロー図である。It is a flowchart of a flash process. アプセット工程のフロー図である。It is a flowchart of an upset process.

符号の説明Explanation of symbols

1;フラッシュ溶接装置、2;固定側溶接部材、3;移動側溶接部材、
10;固定側クランプ、11;移動側クランプ、12;移動ユニット、
13;固定側電極、14;移動側電極、15;位置計測部、16;電源、
17;制御部、121;油圧シリンダ、122;油圧インバータポンプ、
123;方向切替弁、124;ポンプ用インバータ、161;三相交流発電機、
162;整流部、163;インバータ駆動回路、164;電源用インバータ、
165;変圧器、166;ダイオード整流器。

DESCRIPTION OF SYMBOLS 1; Flash welding apparatus, 2; Fixed side welding member, 3; Moving side welding member,
10; fixed side clamp, 11; moving side clamp, 12; moving unit,
13; stationary electrode, 14; moving electrode, 15; position measuring unit, 16; power supply,
17; control unit, 121; hydraulic cylinder, 122; hydraulic inverter pump,
123; Direction switching valve, 124; Pump inverter, 161; Three-phase AC generator,
162; rectification unit; 163; inverter drive circuit; 164; inverter for power supply;
165; transformer, 166; diode rectifier.

Claims (4)

固定された溶接部材と移動可能な溶接部材とに電圧を印加しながら、経過時間に対する移動可能な溶接部材の位置を示す目標変位曲線に追従するように前進及び停止のみを繰り返すことにより放電及び火花の飛散を発生させて溶接部を加熱し、加熱した溶接部を圧接することを特徴とするフラッシュ溶接装置。   While applying a voltage to the fixed welding member and the movable welding member, the discharge and spark are repeated by repeating only forward and stop so as to follow the target displacement curve indicating the position of the movable welding member with respect to the elapsed time. A flash welding apparatus that heats a welded portion by causing scattering of the heat and presses the heated welded portion. 前記目標変位曲線は、前記溶接部において部分的な放電から徐々に均一な放電を発生させ、発生した均一な放電を保つように移動する移動可能な溶接部材の経過時間に対する位置を表す請求項1に記載のフラッシュ溶接装置。   The said target displacement curve represents the position with respect to the elapsed time of the movable welding member which produces | generates a uniform discharge gradually from the partial discharge in the said welding part, and moves so that the generated uniform discharge may be maintained. The flash welding apparatus according to. 前記溶接部が均一に放電するまであらかじめ加熱しておく請求項1または請求項2に記載のフラッシュ溶接装置。   The flash welding apparatus according to claim 1, wherein heating is performed in advance until the welded portion is uniformly discharged. 固定された溶接部材と移動可能な溶接部材とに電圧を印加しながら、経過時間に対する移動可能な溶接部材の位置を示す目標変位曲線に追従するように前進及び停止のみを繰り返すことにより放電及び火花の飛散を発生させて溶接部を加熱し、
加熱した溶接部を圧接することを特徴とするフラッシュ溶接方法。
While applying a voltage to the fixed welding member and the movable welding member, the discharge and spark are repeated by repeating only forward and stop so as to follow the target displacement curve indicating the position of the movable welding member with respect to the elapsed time. Heat the weld to generate splashes,
A flash welding method characterized by press-contacting a heated weld.
JP2004237844A 2004-08-18 2004-08-18 Flash welding equipment and flash welding method Pending JP2006055863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004237844A JP2006055863A (en) 2004-08-18 2004-08-18 Flash welding equipment and flash welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004237844A JP2006055863A (en) 2004-08-18 2004-08-18 Flash welding equipment and flash welding method

Publications (1)

Publication Number Publication Date
JP2006055863A true JP2006055863A (en) 2006-03-02

Family

ID=36103778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004237844A Pending JP2006055863A (en) 2004-08-18 2004-08-18 Flash welding equipment and flash welding method

Country Status (1)

Country Link
JP (1) JP2006055863A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052562A1 (en) * 2009-10-30 2011-05-05 新日本製鐵株式会社 Flash-butt welding method for rail steel
KR101477227B1 (en) * 2013-01-03 2014-12-30 주식회사 투시파워 Electric pressure welding apparatus and method, and system using thereof
JP2015089566A (en) * 2013-11-07 2015-05-11 株式会社白山製作所 Resistance welding apparatus
CN109623211A (en) * 2018-12-30 2019-04-16 杭州翰融智能科技有限公司 A kind of wheel hub baiting method and equipment
CN113162203A (en) * 2021-03-19 2021-07-23 常州市瑞泰工程机械有限公司 Power supply method for rail flash welding

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052562A1 (en) * 2009-10-30 2011-05-05 新日本製鐵株式会社 Flash-butt welding method for rail steel
JP4902021B2 (en) * 2009-10-30 2012-03-21 新日本製鐵株式会社 Flash butt welding method for rail steel
CN102665994A (en) * 2009-10-30 2012-09-12 新日本制铁株式会社 Flash-butt welding method for rail steel
US20120234806A1 (en) * 2009-10-30 2012-09-20 Nippon Steel Corporation Flash butt welding method of rail steel
RU2507045C2 (en) * 2009-10-30 2014-02-20 Ниппон Стил Энд Сумитомо Метал Корпорейшн Method of flush-butt welding of rail steel
US9617690B2 (en) 2009-10-30 2017-04-11 Nippon Steel & Sumitomo Metal Corporation Flash butt welding method of rail steel
KR101477227B1 (en) * 2013-01-03 2014-12-30 주식회사 투시파워 Electric pressure welding apparatus and method, and system using thereof
JP2015089566A (en) * 2013-11-07 2015-05-11 株式会社白山製作所 Resistance welding apparatus
CN109623211A (en) * 2018-12-30 2019-04-16 杭州翰融智能科技有限公司 A kind of wheel hub baiting method and equipment
CN113162203A (en) * 2021-03-19 2021-07-23 常州市瑞泰工程机械有限公司 Power supply method for rail flash welding
CN113162203B (en) * 2021-03-19 2023-12-01 常州中车瑞泰装备科技有限公司 Power supply method for track flash welding

Similar Documents

Publication Publication Date Title
KR102056043B1 (en) Arc-welding method and arc-welding apparatus
US6512200B2 (en) Welding control system
KR102285103B1 (en) Metal heating and working systems and method with heating and/or cooling using an induction heating head
JP5793495B2 (en) Resistance spot welding method and system using DC micropulse
CN102216019A (en) Waveform control in drawn arc fastener welding
JP3379965B2 (en) Plasma arc welding apparatus and method
JP6110023B2 (en) Projection welding of metal sheets
US10518350B2 (en) Arc welding apparatus, arc welding system, and arc welding method
CN109483033B (en) Resistance welding method and resistance welding device
Potluri et al. Comparison of electrically-assisted and conventional friction stir welding processes by feed force and torque
JP2006055863A (en) Flash welding equipment and flash welding method
US20130284705A1 (en) Welding head rail squaring process
US20110253681A1 (en) Method of controlling an indentation depth of an electrode into a metal substrate during welding
JP2019136748A (en) Resistance spot welding method
US20110290766A1 (en) System and method for flash-welding
JP5919399B2 (en) Apparatus and method for initiating an arc welding process that involves pulsing the wire prior to the start of the arc
JP2013111633A (en) One-side spot welding equipment and one-side spot welding method
JP2005193298A (en) Electrode for resistance welding, method for resistance welding and welding structure
KR101221052B1 (en) Resistance spot welding method
CA2916004C (en) Resistance welding method for sucker rod
JP2006192447A (en) Flash-butt welding method and equipment
JP2019150833A (en) Resistance-welding method
KR101726173B1 (en) Vibration spot welding method and device performing this
JP3960025B2 (en) Welding method
EP1118777A2 (en) Heat-assisted method of installing screws