JP2006055681A - Composite oxide catalyst - Google Patents

Composite oxide catalyst Download PDF

Info

Publication number
JP2006055681A
JP2006055681A JP2004236956A JP2004236956A JP2006055681A JP 2006055681 A JP2006055681 A JP 2006055681A JP 2004236956 A JP2004236956 A JP 2004236956A JP 2004236956 A JP2004236956 A JP 2004236956A JP 2006055681 A JP2006055681 A JP 2006055681A
Authority
JP
Japan
Prior art keywords
oxide catalyst
composite oxide
catalyst
component
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004236956A
Other languages
Japanese (ja)
Other versions
JP5263855B2 (en
Inventor
Takaaki Kato
高明 加藤
Satoshi Fukushima
聡史 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2004236956A priority Critical patent/JP5263855B2/en
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to EP05780202.7A priority patent/EP1806178B1/en
Priority to PCT/JP2005/014919 priority patent/WO2006019078A1/en
Priority to KR1020077003890A priority patent/KR100893429B1/en
Priority to US11/659,335 priority patent/US8642501B2/en
Priority to CN2005800278209A priority patent/CN101005892B/en
Priority to MYPI20053856A priority patent/MY154500A/en
Priority to TW094128071A priority patent/TWI280153B/en
Publication of JP2006055681A publication Critical patent/JP2006055681A/en
Application granted granted Critical
Publication of JP5263855B2 publication Critical patent/JP5263855B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To produce a composite oxide catalyst having high selectivity with respect to a target substance and used for producing an unsaturated acid or unsaturated nitrile. <P>SOLUTION: This composite oxide catalyst is constituted by supporting at least Mo, V and a component X (X being at least one kind of element selected from alkaline earth metal elements and rare earth elements) on a silica-containing carrier and characterized in that the component X is uniformly distributed in catalyst particles. A degree of the distribution uniformity of the component X in the composite oxide catalyst is set so that the dispersion value D<SB>x</SB>of a signal intensity ratio of the component X to Si when the cross section of the particles of the composite oxide catalyst is compositionally analyzed is within a range of 0<D<SB>x</SB><0.5. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、プロパンまたはイソブタンの気相接触酸化または気相接触アンモ酸化反応に用いる複合酸化物触媒、および該複合酸化物触媒を用いる不飽和酸または不飽和ニトリルの製造方法に関する。   The present invention relates to a composite oxide catalyst used for gas phase catalytic oxidation or gas phase catalytic ammoxidation reaction of propane or isobutane, and a method for producing an unsaturated acid or an unsaturated nitrile using the composite oxide catalyst.

従来、プロピレンまたはイソブチレンを気相接触酸化または気相接触アンモ酸化して対応する不飽和カルボン酸または不飽和ニトリルを製造する方法が良く知られているが、近年、プロピレンまたはイソブチレンに替わってプロパンまたはイソブタンを気相接触酸化または気相接触アンモ酸化によって対応する不飽和カルボン酸または不飽和ニトリルを製造する方法が着目されており、種々の酸化物触媒が提案されている。例えば、Mo−V−Nb−(Sb/Te)を含む酸化物触媒が、特許文献1、2などに開示されている。   Conventionally, a process for producing a corresponding unsaturated carboxylic acid or unsaturated nitrile by vapor-phase catalytic oxidation or vapor-phase catalytic ammoxidation of propylene or isobutylene is well known, but in recent years propane or isobutylene is replaced by propane or isobutylene. A method for producing a corresponding unsaturated carboxylic acid or unsaturated nitrile by gas phase catalytic oxidation or gas phase catalytic ammoxidation of isobutane has attracted attention, and various oxide catalysts have been proposed. For example, Patent Documents 1 and 2 disclose oxide catalysts containing Mo-V-Nb- (Sb / Te).

また、Mo、Vを含有する触媒に対して、希土類元素等を添加し、更なる触媒性能の向上を達成した例が、特許文献1、3〜6に開示されている。
すなわち、プロパンまたはイソブタンを気相接触酸化または気相接触アンモ酸化し、対応する不飽和カルボン酸または不飽和ニトリルを製造するにあたり、Mo−Vを含有する酸化物触媒に希土類元素等を添加した触媒が有効であり、従来から多くの研究がなされてきた。
Further, Patent Documents 1 and 3 to 6 disclose examples in which a rare earth element or the like is added to a catalyst containing Mo and V to further improve the catalyst performance.
That is, a catalyst in which a rare earth element or the like is added to an oxide catalyst containing Mo-V for producing a corresponding unsaturated carboxylic acid or unsaturated nitrile by subjecting propane or isobutane to gas phase catalytic oxidation or gas phase catalytic ammoxidation. Is effective, and many studies have been made.

特許文献1、3、5、6に開示された希土類元素等の成分を添加したMo−V含有酸化物触媒を、プロパンまたはイソブタンの気相接触酸化または気相接触アンモ酸化反応に用いるとき、未だ目的物の収率は不十分であった。特に、流動床反応に好適な担持触媒は、目的物の収率が低下しがちである。その反応性能が不十分である原因は、特許文献6に開示されているように、希土類元素等の添加成分がスラリー調合工程において他の金属成分と好ましくない相互作用を起こすことが知られている。   When the Mo-V-containing oxide catalyst added with components such as rare earth elements disclosed in Patent Documents 1, 3, 5, and 6 is used for gas phase catalytic oxidation or gas phase catalytic ammoxidation reaction of propane or isobutane, it is still The yield of the target product was insufficient. In particular, the supported catalyst suitable for the fluidized bed reaction tends to decrease the yield of the target product. The reason why the reaction performance is insufficient is known that, as disclosed in Patent Document 6, an additive component such as a rare earth element causes an undesirable interaction with other metal components in the slurry preparation step. .

例えば、特許文献1、3、5、6では、比較的平均粒径の大きい、水不溶性の固体を使用すれば、スラリー調合工程での好ましくない相互作用が低減し、目的物の収率が向上する旨を教示している。しかしながら、上記の公報においては、添加元素の触媒成分への均一な分散性に関する記載が一切ないばかりか、使用している固体原料は水不溶性であるため、工業的な触媒製造時に、配管中での詰まりを生ずる恐れがあった。また、過剰に希土類元素等を添加すれば、添加成分から成る酸化物粒子が触媒表面に露出し、目的物の分解反応を促進させ、収率を低下させる。
特許文献4では、焼成後に得られた触媒に、溶液として所望の元素を添加する含浸法について開示されている。この場合、触媒粒子表面および細孔表面にのみ添加成分が分布するため、粒子内部での均一性が良好でないばかりか、含浸操作後に再度焼成が必要となり、操作が煩雑と考えられるばかりか、含浸溶液中に、他の金属成分が溶出し、反応性能が低下する恐れがあること等の問題点があった。
For example, in Patent Documents 1, 3, 5, and 6, if a water-insoluble solid having a relatively large average particle size is used, undesirable interactions in the slurry preparation process are reduced, and the yield of the target product is improved. Teaching to do so. However, in the above publication, there is no description about the uniform dispersibility of the additive element in the catalyst component, and since the solid raw material used is water-insoluble, There was a risk of clogging. Moreover, if rare earth elements or the like are added excessively, oxide particles composed of the added components are exposed on the catalyst surface, promoting the decomposition reaction of the target product and reducing the yield.
Patent Document 4 discloses an impregnation method in which a desired element is added as a solution to a catalyst obtained after calcination. In this case, since the additive component is distributed only on the catalyst particle surface and the pore surface, not only the uniformity inside the particle is not good, but it is necessary to calcinate again after the impregnation operation, and the operation is considered to be complicated. There were problems such as other metal components eluting into the solution and the reaction performance being likely to deteriorate.

一方、工業的触媒においては、初期の反応性能だけでなく、反応を長時間実施した場合にも反応性能を維持することが重要である。劣化した触媒を抜き出し、新しい触媒を補充できればよいが、操作に手間がかかる上、連続運転の妨げになるほか、経済的にも不利である。また、劣化した触媒を抜き出して、再生して補充する方法も考えられるが、再生に時間がかかったり、複雑な再生装置が必要であったり、充分に再生できない等の問題点がある。このため、収率低下の少ない触媒が求められている。例えば、特許文献2においては、Mo−V−Nb−Te触媒を1300時間、プロパンの気相接触アンモ酸化反応させ、アクリロニトリル収率をほぼ維持する触媒例が開示されている。しかしながら、上記の公報における反応評価は1300時間程度の比較的短い期間のものであり、工業的に必要とされる性能を十分には満足していない。また、希土類元素等を添加したMo−V含有触媒に関しては、長時間の反応を実施することに関して、何ら記載されていない。   On the other hand, in an industrial catalyst, it is important to maintain not only the initial reaction performance but also the reaction performance when the reaction is carried out for a long time. It is sufficient if the deteriorated catalyst can be extracted and replenished with a new catalyst. However, it is troublesome in operation, hinders continuous operation, and is economically disadvantageous. A method of extracting and replenishing a deteriorated catalyst is also conceivable, but there are problems such as that it takes time to regenerate, a complicated regenerator is required, and sufficient regeneration cannot be performed. For this reason, a catalyst with little yield reduction is calculated | required. For example, Patent Document 2 discloses a catalyst example in which a Mo—V—Nb—Te catalyst is subjected to a gas phase catalytic ammoxidation reaction of propane for 1300 hours to substantially maintain an acrylonitrile yield. However, the reaction evaluation in the above publication is of a relatively short period of about 1300 hours and does not sufficiently satisfy the industrially required performance. In addition, regarding the Mo-V-containing catalyst to which rare earth elements or the like are added, there is no description regarding performing a long-time reaction.

特開平9−157241号公報Japanese Patent Laid-Open No. 9-157241 特開平11−169716号公報JP-A-11-169716 特開平6−228074号公報JP-A-6-228074 特開平10−28862号公報JP-A-10-28862 特開2000−202293号公報JP 2000-202293 A 特開2002−301373号公報JP 2002-301373 A

本発明は、少なくともMo、Vおよび成分X(成分Xはアルカリ土類金属元素および希土類元素から選ばれる少なくとも1種以上の元素)を含む不飽和酸または不飽和ニトリルの製造に用いる複合酸化物触媒において、成分Xが触媒粒子内で均一に分布した、目的物の選択率が高い、新規な複合酸化物触媒を提供することを目的とする。本発明は、更には、上記の複合酸化物触媒を用いて、プロパンまたはイソブタンを気相接触酸化または気相接触アンモ酸化反応させ、対応する不飽和酸または不飽和ニトリルを製造する方法を提供することを目的とする。   The present invention relates to a composite oxide catalyst used for producing an unsaturated acid or unsaturated nitrile containing at least Mo, V and component X (component X is at least one element selected from alkaline earth metal elements and rare earth elements). An object of the present invention is to provide a novel composite oxide catalyst in which the component X is uniformly distributed in the catalyst particles and the selectivity of the target product is high. The present invention further provides a process for producing a corresponding unsaturated acid or unsaturated nitrile by subjecting propane or isobutane to gas phase catalytic oxidation or gas phase catalytic ammoxidation reaction using the above complex oxide catalyst. For the purpose.

本発明者らは上記目的を達成するために鋭意検討した結果、本発明に到達した。すなわち、本発明は、下記のとおりである。
(1)少なくともMo、Vおよび成分X(成分Xはアルカリ土類金属元素および希土類元素から選ばれる少なくとも1種以上の元素)を含む複合酸化物触媒であって、シリカを含む担体に担持され、成分Xが触媒粒子内で均一に分布していることを特徴とする複合酸化物触媒。
(2)該複合酸化物触媒において、該複合酸化物触媒粒子の断面を組成分析した時の成分XとSiの信号強度比の分散値Dが、0<D<0.5の範囲にあることを特徴とする上記(1)の複合酸化物触媒。
(3)該複合酸化物触媒が成分Y(成分YはTe、Sbから選ばれる少なくとも1種以上の元素)を含むことを特徴とする上記(1)、(2)の複合酸化物触媒。
(4)該複合酸化物触媒がNbを含むことを特徴とする上記(1)〜(3)の複合酸化物触媒。
(5)成分XがSc、Y(イットリウム)、La、Ce、Pr、Ybから選ばれる少なくとも1種以上の元素であることを特徴とする上記(1)〜(4)の複合酸化物触媒。
(6)該複合酸化物触媒が、SiO換算で20〜60重量%のシリカに担持されていることを特徴とする上記(1)〜(5)の複合酸化物触媒。
(7)該複合酸化物触媒がプロパンまたはイソブタンの気相接触酸化反応または気相接触アンモ酸化反応に用いられることを特徴とする上記(1)〜(6)の複合酸化物触媒。
(8)上記(1)〜(7)の複合酸化物触媒を用いることを特徴とする不飽和酸または不飽和ニトリルの製造方法。
(9)少なくともMo化合物、V化合物およびX化合物を含む混合液にシリカを混合し、得られた原料調合液を噴霧乾燥して乾燥粉体を得て、この乾燥粉体を焼成することを特徴とする上記(1)〜(7)に記載の複合酸化物触媒の製造方法。
The inventors of the present invention have reached the present invention as a result of intensive studies to achieve the above object. That is, the present invention is as follows.
(1) A composite oxide catalyst containing at least Mo, V and component X (component X is at least one element selected from alkaline earth metal elements and rare earth elements), supported on a support containing silica, A composite oxide catalyst, wherein the component X is uniformly distributed in the catalyst particles.
(2) In the composite oxide catalyst, the dispersion value D x of the signal intensity ratio between the component X and Si when the cross section of the composite oxide catalyst particle is compositionally analyzed is in the range of 0 <D x <0.5. The composite oxide catalyst according to (1) above, wherein
(3) The composite oxide catalyst according to (1) or (2) above, wherein the composite oxide catalyst contains component Y (component Y is at least one element selected from Te and Sb).
(4) The composite oxide catalyst according to (1) to (3) above, wherein the composite oxide catalyst contains Nb.
(5) The composite oxide catalyst according to (1) to (4) above, wherein the component X is at least one element selected from Sc, Y (yttrium), La, Ce, Pr, and Yb.
(6) The composite oxide catalyst according to (1) to (5) above, wherein the composite oxide catalyst is supported on 20 to 60% by weight of silica in terms of SiO 2 .
(7) The composite oxide catalyst according to the above (1) to (6), wherein the composite oxide catalyst is used for a gas phase catalytic oxidation reaction or a gas phase catalytic ammoxidation reaction of propane or isobutane.
(8) A method for producing an unsaturated acid or an unsaturated nitrile, comprising using the composite oxide catalyst according to the above (1) to (7).
(9) Silica is mixed with a mixed solution containing at least a Mo compound, a V compound and an X compound, the obtained raw material preparation solution is spray-dried to obtain a dry powder, and the dry powder is fired. The method for producing a composite oxide catalyst according to the above (1) to (7).

本発明によれば、成分Xを担体粒子内に均一に分布させた、新規な複合酸化物触媒を提供できる。更には、本発明により得られる複合酸化物触媒を用いることにより、プロパンまたはイソブタンから対応する不飽和酸または不飽和ニトリルを高い収率で製造することができる。   According to the present invention, it is possible to provide a novel composite oxide catalyst in which component X is uniformly distributed in the carrier particles. Furthermore, by using the composite oxide catalyst obtained by the present invention, the corresponding unsaturated acid or unsaturated nitrile can be produced in high yield from propane or isobutane.

以下、本発明を詳細に説明する。本発明の複合酸化物触媒は、少なくともMo、Vおよび成分X(成分Xはアルカリ土類金属元素および希土類元素から選ばれる少なくとも1種以上の元素)を含む複合酸化物触媒であって、シリカを含む担体に担持され、成分Xが触媒粒子内で均一に分布していることを特徴とする複合酸化物触媒であり、好ましい複合酸化物触媒の具体例としては下記の一般組成式(1)で示されるものを例示することができる。
MoNb (1)
(式中、a、b、c、d、nはMo1原子当たりの原子比を表し、aは0.01≦a≦1、bは0.01≦b≦1、cは0.01≦c≦1、dは0<d<1、そしてnは構成金属の原子価によって決まる数である。)
Hereinafter, the present invention will be described in detail. The composite oxide catalyst of the present invention is a composite oxide catalyst containing at least Mo, V and component X (component X is at least one element selected from alkaline earth metal elements and rare earth elements), The composite oxide catalyst is characterized in that the component X is supported on the carrier, and the component X is uniformly distributed in the catalyst particles. A specific example of a preferable composite oxide catalyst is represented by the following general composition formula (1): What is shown can be exemplified.
Mo 1 V a Nb b Y c X d O n (1)
(Wherein, a, b, c, d and n represent atomic ratios per Mo atom, a is 0.01 ≦ a ≦ 1, b is 0.01 ≦ b ≦ 1, and c is 0.01 ≦ c. ≦ 1, d is 0 <d <1, and n is a number determined by the valence of the constituent metals.

また、Mo1原子当たりの原子比a〜cは、それぞれ、0.1〜0.4、0.01〜0.2、0.1〜0.5が好ましい。
成分XのMo1原子当たりの原子比であるdは、0.001≦d<1が好ましく、0.001≦d<0.1が更に好ましく、0.002≦d<0.01が特に好ましい。成分Xの元素としては、Sr、Ba、Sc、Y(イットリウム)、La、Ce、Pr、Ybが好ましく、Ceが特に好ましい。
成分YのMo1原子当たりの原子比であるcは、0.01〜0.6が好ましく、0.1〜0.4が更に好ましい。成分Yの元素としては、Te、Sbが好適に用いられるが、工業的にはSbを用いることが好ましい。
The atomic ratios a to c per Mo atom are preferably 0.1 to 0.4, 0.01 to 0.2, and 0.1 to 0.5, respectively.
D which is an atomic ratio per Mo atom of the component X is preferably 0.001 ≦ d <1, more preferably 0.001 ≦ d <0.1, and particularly preferably 0.002 ≦ d <0.01. As the element of component X, Sr, Ba, Sc, Y (yttrium), La, Ce, Pr, and Yb are preferable, and Ce is particularly preferable.
C, which is an atomic ratio per Mo atom of the component Y, is preferably 0.01 to 0.6, and more preferably 0.1 to 0.4. Te and Sb are preferably used as the element of component Y, but Sb is preferably used industrially.

本発明の製造方法により得られる複合酸化物触媒は、シリカを主成分とする担体によって担持された担持触媒であることが好ましい。複合酸化物触媒がシリカを主成分とする担体によって担持された触媒の場合、高い機械的強度を有するので、流動床反応器を用いた気相接触酸化反応または気相接触アンモ酸化反応に好適である。シリカを主成分とする担体中のシリカの含有量は、触媒構成元素の酸化物と担体から成る担持酸化物触媒の全重量に対して、SiO換算で20〜60重量%であることが好ましく、より好ましくは25〜55重量%である。 The composite oxide catalyst obtained by the production method of the present invention is preferably a supported catalyst supported by a support mainly composed of silica. In the case where the composite oxide catalyst is a catalyst supported by a support containing silica as a main component, it has high mechanical strength and is suitable for gas phase catalytic oxidation reaction or gas phase catalytic ammoxidation reaction using a fluidized bed reactor. is there. The content of silica in the support mainly composed of silica is preferably 20 to 60% by weight in terms of SiO 2 with respect to the total weight of the supported oxide catalyst comprising the oxide of the catalyst constituent element and the support. More preferably, it is 25 to 55% by weight.

本発明の複合酸化物触媒において、特に重要な点の一つは、成分Xが触媒粒子内で均一に分布していることである。ここで、均一とは、触媒粒子中で成分Xの分布に偏りがないことを言う。好ましくは、成分Xを含有する酸化物粒子の80%以上(重量比率)が1μm以下の粒径を有する微粒子として、触媒粒子内に存在することを言う。なお好適に均一を定義すれば、均一とは、該触媒粒子の断面を組成分析した時に成分X(成分Xはアルカリ土類金属元素および希土類元素から選ばれる少なくとも1種以上の元素)とSiとの信号強度比の分散値(標準偏差を平均値で除した値)が0〜0.5の範囲にあることを言う。また、該分散値はDxと表すことにする。   In the composite oxide catalyst of the present invention, one particularly important point is that the component X is uniformly distributed in the catalyst particles. Here, “uniform” means that the distribution of the component X is not biased in the catalyst particles. Preferably, 80% or more (weight ratio) of the oxide particles containing component X are present in the catalyst particles as fine particles having a particle size of 1 μm or less. In addition, if uniformly defined, preferably, uniform means component X (component X is at least one element selected from alkaline earth metal elements and rare earth elements) and Si when composition of the cross section of the catalyst particles is analyzed. The signal intensity ratio variance (the value obtained by dividing the standard deviation by the average value) is in the range of 0 to 0.5. The variance value is represented as Dx.

上記の組成分析には、一般的な組成分析方法、例えば、SEM−EDX、XPS、SIMS、EPMA等を用いることができる。好ましくはEPMAを用いることができる。
ここで、EPMAとは、Electron Probe X−ray Microanalyzer (但し、このX−rayを省略して呼ばれることもある。)の通称であり、この分析装置は、加速された電子線を物質に照射することによって得られる特性X線を観測することにより、電子線を当てた微小領域(スポット)の組成分析を行うことができる装置である。このEPMAによって、一般に、触媒粒子や担体粒子等の固体粒子の断面について、特定元素の濃度分布や組成変化の情報が得られる。
For the above composition analysis, a general composition analysis method such as SEM-EDX, XPS, SIMS, EPMA or the like can be used. Preferably, EPMA can be used.
Here, EPMA is a common name of Electron Probe X-ray Microanalyzer (sometimes called by omitting this X-ray), and this analyzer irradiates a substance with an accelerated electron beam. By observing characteristic X-rays obtained in this way, the apparatus can perform composition analysis of a minute region (spot) irradiated with an electron beam. This EPMA generally provides information on the concentration distribution and composition change of a specific element with respect to the cross section of solid particles such as catalyst particles and carrier particles.

なお、本発明において、上記EPMAによる成分XとSiの強度比の分散値(D)は、測定しようとする粒子の断面について、通常の触媒分野で行われる粒子断面のEPMAによる面分析の手法に従って、次のようにして測定・算出されたものである。すなわち、まず、その触媒粒子断面の任意の位置(x,y)に対するSiのX線ピーク強度(カウント数ISi)の分布の測定を、触媒粒子断面の全領域をカバーするように行う。ついで、同様に、成分Xについても触媒粒子断面の全領域をカバーするようにX線ピーク強度(カウント数I)の分布を測定する。得られたSiおよび成分Xに関する一連のデータ(x,y,ISi、I)を基に、同一の位置(x、y)での成分XおよびSiのピーク強度比I(I=I/ISi)を求め、Iの単純平均(Iavおよび標準偏差Sを求める。その標準偏差Sを単純平均(Iavで除した値を前記の分散値(D)とする。この時、単純平均及び標準偏差は通常の方法で求めればよい。 In the present invention, the dispersion value (D X ) of the intensity ratio between the component X and Si by the above-mentioned EPMA is the method of surface analysis by EPMA of the particle cross section performed in the normal catalyst field for the cross section of the particle to be measured. According to the above, it was measured and calculated as follows. That is, first, the distribution of the X-ray peak intensity (count number I Si ) of Si at an arbitrary position (x, y) in the catalyst particle cross section is measured so as to cover the entire area of the catalyst particle cross section. Next, similarly, the distribution of the X-ray peak intensity (count number I X ) is also measured for the component X so as to cover the entire region of the catalyst particle cross section. Based on the series of data (x, y, I Si , I X ) on the obtained Si and component X, the peak intensity ratio I R (I R = I) of the component X and Si at the same position (x, y) I X / I Si ), and a simple average (I R ) av and standard deviation S of I R are obtained. A value obtained by dividing the standard deviation S by a simple average (I R ) av is defined as the variance value (D X ). At this time, the simple average and standard deviation may be obtained by ordinary methods.

なお、この測定における粒子断面のエッジ効果によるデータの不確定さを避けるべく、触媒粒子断面における断面積の10%の領域であって、粒子外周部分に相当する領域を除外し、触媒粒子断面における中心から90%の領域のデータを有効領域として算出することが好ましい。もちろん、始めから、粒子外周部の10%分の領域を除した触媒粒子断面の内部のみについて、EPMAによる上記の面分析を行い、そのデータから、上記のように分散値Dを求めてもよい。 In order to avoid the uncertainty of the data due to the edge effect of the particle cross section in this measurement, the area corresponding to 10% of the cross sectional area in the cross section of the catalyst particle and excluding the area corresponding to the outer peripheral portion of the particle is excluded. It is preferable to calculate data in an area 90% from the center as an effective area. Of course, from the beginning, the only internal catalyst particle cross sections obtained by dividing 10% of the area of the particle outer peripheral portion, perform the above surface analysis by EPMA, from that data, be calculated variance value D X as above Good.

上記触媒粒子断面の面分析は、上記したように通常の触媒分野で行われている手法に準じて行えばよいのであるが、通常、次のようにして好適に行うことができる。
すなわち、まず、測定しようとする粒子を適当なマトリックス樹脂中に包埋させ、これを研磨し、埋設した触媒粒子の断面が見えるまで全体を削る。次いで、断面の見えた触媒粒子について次のようにしてEPMA測定を行う。
(1)EPMA測定における観測視野内に上記触媒粒子の断面がくるように試料の位置を設定する。
(2)該触媒粒子断面に電子線を照射し、電子線を当てた部分から出てくるシリコンまたは成分Xの特性X線の強度をカウントし、分析する領域を電子線で走査することによって面分析を行う。
The surface analysis of the cross section of the catalyst particles may be performed in accordance with the method used in the normal catalyst field as described above, but can be suitably performed as follows.
That is, first, the particles to be measured are embedded in an appropriate matrix resin, polished, and the whole is shaved until a section of the embedded catalyst particles can be seen. Next, EPMA measurement is performed on the catalyst particles whose cross section is visible as follows.
(1) The position of the sample is set so that the cross section of the catalyst particle comes within the observation field of view in EPMA measurement.
(2) Irradiate the cross section of the catalyst particles with an electron beam, count the intensity of the characteristic X-rays of silicon or component X coming out from the portion irradiated with the electron beam, and scan the area to be analyzed with the electron beam Perform analysis.

本発明の複合酸化物触媒は、一般的な方法で調製することができ、例えば次の3つの工程を経て製造することができる。
(I)原料を調合する工程
(II)工程(I)で得られた原料調合液を乾燥し、触媒前駆体を得る工程
(III)工程(II)で得られた触媒前駆体を焼成する工程
The composite oxide catalyst of the present invention can be prepared by a general method, and can be produced, for example, through the following three steps.
(I) Step of preparing raw materials (II) Step of drying the raw material preparation liquid obtained in step (I) to obtain a catalyst precursor (III) Step of firing the catalyst precursor obtained in step (II)

本発明における調合とは、水性溶媒に、触媒構成元素の原料を溶解または分散させることである。
原料とは、工程(I)で用いるものである。本発明の複合酸化物触媒を調製するにあたり、金属の原料は特に限定されないが、例えば、下記の化合物を用いることができる。
The preparation in the present invention is to dissolve or disperse the raw material of the catalyst constituent element in the aqueous solvent.
The raw material is used in step (I). In preparing the composite oxide catalyst of the present invention, the metal raw material is not particularly limited. For example, the following compounds can be used.

MoとVの原料は、それぞれ、ヘプタモリブデン酸アンモニウム[(NHMo24・4HO]とメタバナジン酸アンモニウム[NHVO]を好適に用いることができる。
Nbの原料としては、ニオブ酸、ニオブの無機酸塩およびニオブの有機酸塩を用いることができる。特にニオブ酸が良い。ニオブ酸はNb・nHOで表され、ニオブ水酸化物または酸化ニオブ水和物とも称される。更にジカルボン酸/ニオブのモル比が1〜4のNb原料液として用いることが好ましい。ジカルボン酸はシュウ酸が好ましい。
Sbの原料としては三酸化二アンチモン〔Sb〕が好ましい。
Teの原料としてはテルル酸〔HTeO〕が好ましい。
As the raw materials for Mo and V, ammonium heptamolybdate [(NH 4 ) 6 Mo 7 O 24 · 4H 2 O] and ammonium metavanadate [NH 4 VO 3 ] can be preferably used, respectively.
As a raw material of Nb, niobic acid, an inorganic acid salt of niobium, and an organic acid salt of niobium can be used. Niobic acid is particularly good. Niobic acid is represented by Nb 2 O 5 .nH 2 O and is also referred to as niobium hydroxide or niobium oxide hydrate. Furthermore, it is preferable to use as a Nb raw material liquid having a dicarboxylic acid / niobium molar ratio of 1 to 4. The dicarboxylic acid is preferably oxalic acid.
As a raw material of Sb, diantimony trioxide [Sb 2 O 3 ] is preferable.
As a raw material of Te, telluric acid [H 6 TeO 6 ] is preferable.

成分Xの原料としては、これらの元素を含む物質であれば特に制限はないが、これらの元素を含む化合物やこれらの元素の金属を適当な試薬で可溶化したものを使用することができる。これらの元素を含む化合物としては、通常、硝酸塩、カルボン酸塩、カルボン酸アンモニウム塩、ペルオキソカルボン酸塩、ペルオキソカルボン酸アンモニウム塩、ハロゲン化アンモニウム塩、ハロゲン化物、アセチルアセトナート、アルコキシド等を使用することができる、好ましくは硝酸塩、カルボン酸塩等の水溶性原料が使用される。
シリカの原料にはシリカゾルを用いることができるが、シリカ原料の一部または全量に、粉体シリカを用いることもできる。該粉体シリカは、高熱法で製造されたものが好ましい。さらに、該粉体シリカは水に分散させて使用することが尚好ましい。
以下に、工程(I)〜(III)からなる本発明の好ましい触媒調製例を説明する。
The raw material of component X is not particularly limited as long as it is a substance containing these elements, but compounds containing these elements or metals obtained by solubilizing these elements with a suitable reagent can be used. As compounds containing these elements, nitrates, carboxylates, ammonium carboxylates, peroxocarboxylates, ammonium peroxocarboxylates, ammonium halides, halides, acetylacetonates, alkoxides, etc. are usually used. Preferably, water-soluble raw materials such as nitrates and carboxylates are used.
Silica sol can be used as the silica raw material, but powdered silica can also be used for a part or all of the silica raw material. The powder silica is preferably produced by a high heat method. Further, it is more preferable to use the powdered silica dispersed in water.
Below, the preferable catalyst preparation example of this invention which consists of process (I)-(III) is demonstrated.

(工程I:原料を調合する工程)
Mo化合物、V化合物、X成分、必要によりその他原料となる成分を水に添加し、加熱して混合液(A)を調製する。この時、容器内は窒素雰囲気でもよい。Nbを含ませる場合には、Nb化合物とジカルボン酸を水中で加熱撹拌して混合液(B)を調製する。更に、混合液(B)に、過酸化水素を添加し、混合液(B)を調製してもよい。この時、H/Nb(モル比)は0.5〜20、特に、1〜10が好ましい。混合液(B)又は(B)には更にシュウ酸を加えることもできる。
目的とする組成に合わせて、混合液(A)、混合液(B)又は(B)を好適に混合して、原料調合液を得る。
本発明のアンモ酸化用触媒がシリカ担持触媒の場合、シリカゾルを含むように原料調合液が調製される。シリカゾルは適宜添加することができる。
(Process I: Process of preparing raw materials)
Mo compound, V compound, X component, and other ingredients as necessary are added to water and heated to prepare a mixed solution (A). At this time, the inside of the container may be a nitrogen atmosphere. When Nb is included, the Nb compound and dicarboxylic acid are heated and stirred in water to prepare a mixed solution (B 0 ). Further, the mixture (B 0), adding hydrogen peroxide, a mixed solution (B) may be prepared. At this time, H 2 O 2 / Nb (molar ratio) is 0.5 to 20, especially 1 to 10 are preferred. Oxalic acid can also be added to the mixed solution (B 0 ) or (B).
According to the target composition, the mixed solution (A), the mixed solution (B 0 ) or (B) is suitably mixed to obtain a raw material preparation solution.
When the catalyst for ammoxidation of the present invention is a silica-supported catalyst, the raw material preparation liquid is prepared so as to contain silica sol. Silica sol can be added as appropriate.

(工程II:乾燥工程)
工程(I)で得られた原料調合液を噴霧乾燥法によって乾燥させ、乾燥粉体を得る。噴霧乾燥法における噴霧化は遠心方式、二流体ノズル方式または高圧ノズル方式を採用することができる。乾燥熱源は、スチーム、電気ヒーターなどによって加熱された空気を用いることができる。熱風の乾燥機入口温度は150〜300℃が好ましい。
(Process II: Drying process)
The raw material preparation liquid obtained in the step (I) is dried by a spray drying method to obtain a dry powder. The atomization in the spray drying method can employ a centrifugal method, a two-fluid nozzle method, or a high-pressure nozzle method. As the drying heat source, air heated by steam, an electric heater or the like can be used. The dryer inlet temperature of hot air is preferably 150 to 300 ° C.

(工程III:焼成工程)
乾燥工程で得られた乾燥粉体を焼成することによって酸化物触媒を得る。焼成は窒素ガス、アルゴンガス、ヘリウムガスなどの実質的に酸素を含まない不活性ガス雰囲気下、好ましくは、不活性ガスを流通させながら、500〜800℃、好ましくは600〜700℃で実施する。焼成時間は0.5〜20時間、好ましくは1〜8時間である。
焼成は、回転炉、トンネル炉、管状炉、流動焼成炉等を用いて行うことができる。焼成は反復することができる。
焼成工程の前に、乾燥粉体を大気雰囲気下または空気流通下で200〜400℃、1〜5時間で前焼成することも好ましい。
(Process III: Firing process)
An oxide catalyst is obtained by firing the dry powder obtained in the drying step. Firing is performed in an inert gas atmosphere substantially free of oxygen such as nitrogen gas, argon gas, helium gas, preferably at 500 to 800 ° C., preferably 600 to 700 ° C. while circulating the inert gas. . The firing time is 0.5 to 20 hours, preferably 1 to 8 hours.
Firing can be performed using a rotary furnace, tunnel furnace, tubular furnace, fluidized firing furnace, or the like. Firing can be repeated.
Prior to the firing step, it is also preferable to pre-fire the dry powder at 200 to 400 ° C. for 1 to 5 hours in an air atmosphere or air circulation.

このようにして製造された酸化物触媒の存在下、プロパンまたはイソブタンを気相接触酸化または気相接触アンモ酸化反応させて、対応する不飽和酸または不飽和ニトリルを製造する。
プロパンまたはイソブタンとアンモニアの供給原料は必ずしも高純度である必要はなく、工業グレードのガスを使用できる。
Propane or isobutane is subjected to gas phase catalytic oxidation or gas phase catalytic ammoxidation reaction in the presence of the oxide catalyst thus prepared to produce the corresponding unsaturated acid or unsaturated nitrile.
The feedstock for propane or isobutane and ammonia does not necessarily have to be high purity, and industrial grade gases can be used.

供給酸素源として空気、酸素を富化した空気または純酸素を用いることができる。更に、希釈ガスとしてヘリウム、アルゴン、炭酸ガス、水蒸気、窒素などを供給してもよい。
プロパンまたはイソブタンの気相接触酸化は以下の条件で行うことが出来る。
反応に供給する酸素のプロパンまたはイソブタンに対するモル比は0.1〜6、好ましくは0.5〜4である。
Air, oxygen-enriched air, or pure oxygen can be used as the supply oxygen source. Further, helium, argon, carbon dioxide gas, water vapor, nitrogen or the like may be supplied as a dilution gas.
The gas phase catalytic oxidation of propane or isobutane can be carried out under the following conditions.
The molar ratio of oxygen supplied to the reaction to propane or isobutane is 0.1 to 6, preferably 0.5 to 4.

反応温度は300〜500℃、好ましくは350〜450℃である。
反応圧力は5×10〜5×10Pa、好ましくは1×10〜3×10Paである。
接触時間は0.1〜10(sec・g/cc)、好ましくは0.5〜5(sec・g/cc)である。本発明において、接触時間は次式で決定される。
接触時間(sec・g/cc)=(W/F)×273/(273+T)
ここで、W、F及びTは次のように定義される。
W=充填触媒量(g)
F=標準状態(0℃、1.013×105Pa)での原料混合ガス流量(Ncc/sec)
T=反応温度(℃)
The reaction temperature is 300 to 500 ° C, preferably 350 to 450 ° C.
The reaction pressure is 5 × 10 4 to 5 × 10 5 Pa, preferably 1 × 10 5 to 3 × 10 5 Pa.
The contact time is 0.1 to 10 (sec · g / cc), preferably 0.5 to 5 (sec · g / cc). In the present invention, the contact time is determined by the following equation.
Contact time (sec · g / cc) = (W / F) × 273 / (273 + T)
Here, W, F, and T are defined as follows.
W = filled catalyst amount (g)
F = Raw material mixed gas flow rate (Ncc / sec) under standard conditions (0 ° C, 1.013 x 10 5 Pa)
T = reaction temperature (° C.)

プロパンまたはイソブタンの気相接触アンモ酸化は以下の条件で行うことが出来る。
反応に供給する酸素のプロパンまたはイソブタンに対するモル比は0.1〜6、好ましくは0.5〜4である。
反応に供給するアンモニアのプロパンまたはイソブタンに対するモル比は0.3〜1.5、好ましくは0.7〜1.2である。
反応温度は350〜500℃、好ましくは380〜470℃である。
反応圧力は5×10〜5×10Pa、好ましくは1×10〜3×10Paである。
接触時間は0.1〜10(sec・g/cc)、好ましくは0.5〜5(sec・g/cc)である。
反応方式は、固定床、流動床、移動床など従来の方式を採用できるが、反応熱の除去が容易な流動床反応器が好ましい。
また、本発明の反応は、単流式であってもリサイクル式であってもよい。
The gas phase catalytic ammoxidation of propane or isobutane can be carried out under the following conditions.
The molar ratio of oxygen supplied to the reaction to propane or isobutane is 0.1 to 6, preferably 0.5 to 4.
The molar ratio of ammonia to propane or isobutane supplied to the reaction is 0.3 to 1.5, preferably 0.7 to 1.2.
The reaction temperature is 350 to 500 ° C, preferably 380 to 470 ° C.
The reaction pressure is 5 × 10 4 to 5 × 10 5 Pa, preferably 1 × 10 5 to 3 × 10 5 Pa.
The contact time is 0.1 to 10 (sec · g / cc), preferably 0.5 to 5 (sec · g / cc).
As the reaction method, a conventional method such as a fixed bed, a fluidized bed, or a moving bed can be adopted, but a fluidized bed reactor in which reaction heat can be easily removed is preferable.
The reaction of the present invention may be a single flow type or a recycle type.

<実施例>
以下に本発明の複合酸化物触媒について、触媒の調製実施例およびプロパンの気相接触アンモ酸化反応によるアクリロニトリルの製造実施例を用いて説明するが、本発明はその要旨を越えない限りこれら実施例に限定されるものではない。
<Example>
Hereinafter, the composite oxide catalyst of the present invention will be described with reference to preparation examples of the catalyst and examples of production of acrylonitrile by the gas-phase catalytic ammoxidation reaction of propane. It is not limited to.

プロパンのアンモ酸化反応の成績は反応ガスを分析した結果を基に、次式で定義されるプロパン転化率およびアクリロニトリル選択率を指標として評価した。   The results of the propane ammoxidation reaction were evaluated based on the results of analysis of the reaction gas, using the propane conversion and acrylonitrile selectivity defined by the following equations as indicators.

Figure 2006055681
Figure 2006055681

(ニオブ混合液の調製)
特開平11−253801号公報に倣って、以下の方法でニオブ混合液を調製した。
水2552gにNbとして80重量%を含有するニオブ酸352gとシュウ酸二水和物〔H・2HO〕1344gを混合した。仕込みのシュウ酸/ニオブのモル比は5.03、仕込みのニオブ濃度は0.50(mol−Nb/Kg−液)である。この液を95℃で1時間加熱撹拌することによって、ニオブが溶解した混合液を得た。この混合液を静置、氷冷後、固体を吸引濾過によって濾別し、均一なニオブ混合液を得た。このニオブ混合液のシュウ酸/ニオブのモル比は下記の分析により2.52であった。
るつぼにこのニオブ混合液10gを精秤し、95℃で一夜乾燥後、600℃で1時間熱処理し、Nb0.8228gを得た。この結果から、ニオブ濃度は0.618(mol−Nb/Kg−液)であった。
300mlのガラスビーカーにこのニオブ混合液3gを精秤し、約80℃の熱水200mlを加え、続いて1:1硫酸10mlを加えた。得られた混合液をホットスターラー上で液温70℃に保ちながら、攪拌下、1/4規定KMnOを用いて滴定した。KMnOによるかすかな淡桃色が約30秒以上続く点を終点とした。シュウ酸の濃度は、滴定量から次式に従って計算した結果、1.558(mol−シュウ酸/Kg)であった。
2KMnO+3HSO+5H→KSO+2MnSO+10CO+8H
得られたニオブ混合液は、下記の触媒調製のニオブ混合液(B)として用いた。
(Preparation of niobium mixture)
According to Japanese Patent Laid-Open No. 11-253801, a niobium mixed solution was prepared by the following method.
To 552 g of water, 352 g of niobic acid containing 80% by weight as Nb 2 O 5 and 1344 g of oxalic acid dihydrate [H 2 C 2 O 4 .2H 2 O] were mixed. The molar ratio of the charged oxalic acid / niobium is 5.03, and the charged niobium concentration is 0.50 (mol-Nb / Kg-solution). This solution was heated and stirred at 95 ° C. for 1 hour to obtain a mixed solution in which niobium was dissolved. The mixture was allowed to stand and ice-cooled, and then the solid was separated by suction filtration to obtain a uniform niobium mixture. The molar ratio of oxalic acid / niobium in this niobium mixed solution was 2.52 according to the following analysis.
10 g of this niobium mixed solution was precisely weighed in a crucible, dried overnight at 95 ° C., and then heat-treated at 600 ° C. for 1 hour to obtain 0.8228 g of Nb 2 O 5 . From this result, the niobium concentration was 0.618 (mol-Nb / Kg-solution).
3 g of this niobium mixture was precisely weighed into a 300 ml glass beaker, 200 ml of hot water at about 80 ° C. was added, and then 10 ml of 1: 1 sulfuric acid was added. The obtained mixed liquid was titrated with 1 / 4N KMnO 4 under stirring while maintaining the liquid temperature at 70 ° C. on a hot stirrer. The end point was a point where a faint pale pink color by KMnO 4 lasted for about 30 seconds or more. The concentration of oxalic acid was 1.558 (mol-oxalic acid / Kg) as a result of calculation according to the following formula from titration.
2KMnO 4 + 3H 2 SO 4 + 5H 2 C 2 O 4 → K 2 SO 4 + 2MnSO 4 + 10CO 2 + 8H 2 O
The obtained niobium mixed solution was used as a niobium mixed solution (B 0 ) for catalyst preparation described below.

(触媒の調製)
仕込み組成式がMo0.21Nb0.09Sb0.25Ce0.005/45.0wt%−SiOで示される酸化物触媒を次のようにして製造した。
水4584gにヘプタモリブデン酸アンモニウム〔(NHMo24・4HO〕を915.0g、メタバナジン酸アンモニウム〔NHVO〕を127.3g、三酸化二アンチモン〔Sb〕を188.8g、および硝酸セリウム6水和物[Ce(NO・6HO]を11.25g加え、攪拌しながら90℃で2時間30分に加熱して混合液A−1を得た。
ニオブ混合液(B)754.6gに、Hとして30wt%を含有する過酸化水素水を105.8g添加し、室温で10分間攪拌混合して、混合液B−1を調製した。
得られた混合液A−1を70℃に冷却した後にSiOとして30.2wt%を含有するシリカゾル2980gを添加し、更に、Hとして30wt%含有する過酸化水素水220.4gを添加し、50℃で1時間撹拌を続けた。次に混合液B−1を添加して原料調合液を得た。
得られた原料調合液を、遠心式噴霧乾燥器に供給して乾燥し、微小球状の乾燥粉体を得た。乾燥機の入口温度は210℃、そして出口温度は120℃であった。
得られた乾燥粉体480gを直径3インチのSUS製焼成管に充填し、5.0NL/minの窒素ガス流通下、管を回転させながら、640℃で2時間焼成して触媒を得た。
(Preparation of catalyst)
Mixing composition formula was produced by the oxide catalyst represented by Mo 1 V 0.21 Nb 0.09 Sb 0.25 Ce 0.005 O n /45.0wt%-SiO 2 as follows.
Water 4584g ammonium heptamolybdate [(NH 4) 6 Mo 7 O 24 · 4H 2 O ] was 915.0g, 127.3g of ammonium metavanadate [NH 4 VO 3], antimony trioxide [Sb 2 O 3 ] And 11.25 g of cerium nitrate hexahydrate [Ce (NO 3 ) 3 · 6H 2 O] were added, and the mixture was heated at 90 ° C. for 2 hours and 30 minutes with stirring to obtain a mixed solution A-1. Got.
105.8 g of hydrogen peroxide containing 30 wt% as H 2 O 2 was added to 754.6 g of the niobium mixed solution (B 0 ), and the mixture was stirred and mixed at room temperature for 10 minutes to prepare a mixed solution B-1. .
After cooling the obtained mixed liquid A-1 to 70 ° C., 2980 g of silica sol containing 30.2 wt% as SiO 2 was added, and further, 220.4 g of hydrogen peroxide containing 30 wt% as H 2 O 2 was added. The mixture was added and stirring was continued at 50 ° C. for 1 hour. Next, the mixed solution B-1 was added to obtain a raw material preparation solution.
The obtained raw material mixture was supplied to a centrifugal spray dryer and dried to obtain a microspherical dry powder. The dryer inlet temperature was 210 ° C and the outlet temperature was 120 ° C.
480 g of the obtained dry powder was filled in a SUS calcining tube having a diameter of 3 inches, and calcined at 640 ° C. for 2 hours while rotating the tube under a nitrogen gas flow of 5.0 NL / min to obtain a catalyst.

(組成分析)
得られた酸化物触媒に対して、島津製作所製EPMA1600を用いてEPMA測定を行った。測定条件は、加速電圧0−30kV、Step幅1.0μm、スポット径1.0μmであった。Si測定時の分光結晶にはLIF(フッ化リチウム)(200面を使用)、Ce測定時にはPET(ポリエチレンテレフタラート)(002面を使用)を用いた。検出器には、Krイグザトロン検出器(比例計数管)を使用した。得られた結果を表1に示す。
(Composition analysis)
EPMA measurement was performed on the obtained oxide catalyst using EPMA 1600 manufactured by Shimadzu Corporation. The measurement conditions were an acceleration voltage of 0-30 kV, a step width of 1.0 μm, and a spot diameter of 1.0 μm. LIF (lithium fluoride) (using the 200 plane) was used as the spectral crystal during the Si measurement, and PET (polyethylene terephthalate) (using the 002 plane) was used during the Ce measurement. A Kr igzatron detector (proportional counter) was used as a detector. The obtained results are shown in Table 1.

(プロパンのアンモ酸化反応)
内径25mmのバイコールガラス流動床型反応管に調製して得られた触媒を35g充填し、反応温度440℃、反応圧力常圧下にプロパン:アンモニア:酸素:ヘリウム=1:1:3:18のモル比の混合ガスを接触時間2.8(sec・g/cc)で供給した。反応開始後、5時間後に得られた結果を表1に、1200時間後および2400時間後に得られた結果を表2に示す。
(Propane ammoxidation reaction)
Filled with 35 g of the catalyst prepared in a Vycor glass fluidized bed reaction tube having an inner diameter of 25 mm, and at a reaction temperature of 440 ° C. and a reaction pressure of normal pressure, a molar ratio of propane: ammonia: oxygen: helium = 1: 1: 3: 18 The mixed gas with a specific ratio was supplied at a contact time of 2.8 (sec · g / cc). The results obtained 5 hours after the start of the reaction are shown in Table 1, and the results obtained after 1200 hours and 2400 hours are shown in Table 2.

[比較例1]
(触媒の調製)
仕込み組成式がMo0.21Nb0.09Sb0.25Ce0.005/45.0wt%−SiOで示される酸化物触媒を次のようにして製造した。
水4602gにヘプタモリブデン酸アンモニウム〔(NHMo24・4HO〕を918.5g、メタバナジン酸アンモニウム〔NHVO〕を127.8g、三酸化二アンチモン〔Sb〕を189.6g、および水酸化セリウム[Ce(OH)]を4.46g加え、攪拌しながら90℃で2時間30分に加熱して混合液A−2を得た。
ニオブ混合液(B)757.5gに、Hとして30wt%を含有する過酸化水素水を106.2g添加し、室温で10分間攪拌混合して、混合液B−2を調製した。
得られた混合液A−2を70℃に冷却した後にSiOとして30.2wt%を含有するシリカゾル2980gを添加し、次に混合液B−2を添加して原料調合液を得た。
得られた原料調合液を、遠心式噴霧乾燥器に供給して乾燥し、微小球状の乾燥粉体を得た。乾燥機の入口温度は210℃、そして出口温度は120℃であった。
得られた乾燥粉体480gを直径3インチのSUS製焼成管に充填し、5.0NL/minの窒素ガス流通下、管を回転させながら、640℃で2時間焼成して触媒を得た。
[Comparative Example 1]
(Preparation of catalyst)
Mixing composition formula was produced by the oxide catalyst represented by Mo 1 V 0.21 Nb 0.09 Sb 0.25 Ce 0.005 O n /45.0wt%-SiO 2 as follows.
918.5 g of ammonium heptamolybdate [(NH 4 ) 6 Mo 7 O 24 · 4H 2 O], 127.8 g of ammonium metavanadate [NH 4 VO 3 ], 4antimony trioxide [Sb 2 O 3] 189.6 g and 4.46 g of cerium hydroxide [Ce (OH) 4 ] were added, and the mixture was heated at 90 ° C. for 2 hours 30 minutes with stirring to obtain a mixed solution A-2.
107.5 g of hydrogen peroxide containing 30 wt% as H 2 O 2 was added to 757.5 g of the niobium mixed solution (B 0 ), and the mixture was stirred and mixed at room temperature for 10 minutes to prepare a mixed solution B-2. .
After the obtained mixed liquid A-2 was cooled to 70 ° C., 2980 g of silica sol containing 30.2 wt% as SiO 2 was added, and then mixed liquid B-2 was added to obtain a raw material preparation liquid.
The obtained raw material mixture was supplied to a centrifugal spray dryer and dried to obtain a microspherical dry powder. The dryer inlet temperature was 210 ° C and the outlet temperature was 120 ° C.
480 g of the obtained dry powder was filled in a SUS calcining tube having a diameter of 3 inches, and calcined at 640 ° C. for 2 hours while rotating the tube under a nitrogen gas flow of 5.0 NL / min to obtain a catalyst.

(組成分析)
得られた酸化物触媒に対して実施例1と同様の方法でEPMA測定を行った。得られた結果を表1に示す。
(Composition analysis)
The obtained oxide catalyst was subjected to EPMA measurement in the same manner as in Example 1. The obtained results are shown in Table 1.

(プロパンのアンモ酸化反応)
内径25mmのバイコールガラス流動床型反応管に調製して得られた触媒を35g充填し、反応温度440℃、反応圧力常圧下にプロパン:アンモニア:酸素:ヘリウム=1:1:3:18のモル比の混合ガスを接触時間2.8(sec・g/cc)で供給した。反応開始後、5時間後に得られた結果を表1に、1200時間後および2400時間後に得られた結果を表2に示す。
(Propane ammoxidation reaction)
Filled with 35 g of the catalyst prepared in a Vycor glass fluidized bed reaction tube having an inner diameter of 25 mm, and at a reaction temperature of 440 ° C. and a reaction pressure of normal pressure, a molar ratio of propane: ammonia: oxygen: helium = 1: 1: 3: 18 The mixed gas with a specific ratio was supplied at a contact time of 2.8 (sec · g / cc). The results obtained 5 hours after the start of the reaction are shown in Table 1, and the results obtained after 1200 hours and 2400 hours are shown in Table 2.

[比較例2]
(触媒の調製)
仕込み組成式がMo0.21Nb0.09Sb0.25Ce0.05/45.0wt%−SiOで示される酸化物触媒を次のようにして製造した。
セリウム原料として水酸化セリウム[Ce(OH)]44.6gを添加した以外の調製操作は実施例1と同様に行った。
(組成分析)
得られた酸化物触媒に対して実施例1と同様の方法でEPMA測定を行った。得られた結果を表1に示す。
(プロパンのアンモ酸化反応)
得られた酸化物触媒に対して、プロパンのアンモ酸化反応を実施例1と同様に行った。得られた結果を表1に示す。
[Comparative Example 2]
(Preparation of catalyst)
Mixing composition formula was produced by the oxide catalyst represented by Mo 1 V 0.21 Nb 0.09 Sb 0.25 Ce 0.05 O n /45.0wt%-SiO 2 as follows.
The preparation operation was performed in the same manner as in Example 1 except that 44.6 g of cerium hydroxide [Ce (OH) 4 ] was added as a cerium raw material.
(Composition analysis)
The obtained oxide catalyst was subjected to EPMA measurement in the same manner as in Example 1. The obtained results are shown in Table 1.
(Propane ammoxidation reaction)
The ammoxidation reaction of propane was performed on the obtained oxide catalyst in the same manner as in Example 1. The obtained results are shown in Table 1.

(触媒の調製)
仕込み組成式がMo0.21Nb0.09Sb0.25Ce0.005/45.0wt%−SiOで示される酸化物触媒を次のようにして製造した。
水4584gにヘプタモリブデン酸アンモニウム〔(NHMo24・4HO〕を915.0g、メタバナジン酸アンモニウム〔NHVO〕を127.3g、三酸化二アンチモン〔Sb〕を188.8g、および硝酸セリウム6水和物[Ce(NO・6HO]を11.25g加え、攪拌しながら90℃で2時間30分に加熱して混合液A−4を得た。
ニオブ混合液(B)754.6gに、Hとして30wt%を含有する過酸化水素水を105.8g添加し、室温で10分間攪拌混合して、混合液B−4を調製した。
得られた混合液A−4を70℃に冷却した後にSiOとして30.2wt%を含有するシリカゾル1490gを添加し、更に、Hとして30wt%含有する過酸化水素水220.4gを添加し、50℃で1時間撹拌を続けた。次に混合液B−4、粉体シリカ450gを水6300gに分散させた分散液を順次添加して原料調合液を得た。
得られた原料調合液を、遠心式噴霧乾燥器に供給して乾燥し、微小球状の乾燥粉体を得た。乾燥機の入口温度は210℃、そして出口温度は120℃であった。
得られた乾燥粉体480gを直径3インチのSUS製焼成管に充填し、5.0NL/minの窒素ガス流通下、管を回転させながら、640℃で2時間焼成して触媒を得た。
(Preparation of catalyst)
Mixing composition formula was produced by the oxide catalyst represented by Mo 1 V 0.21 Nb 0.09 Sb 0.25 Ce 0.005 O n /45.0wt%-SiO 2 as follows.
Water 4584g ammonium heptamolybdate [(NH 4) 6 Mo 7 O 24 · 4H 2 O ] was 915.0g, 127.3g of ammonium metavanadate [NH 4 VO 3], antimony trioxide [Sb 2 O 3 ] And 11.25 g of cerium nitrate hexahydrate [Ce (NO 3 ) 3 · 6H 2 O] were added, and the mixture was heated at 90 ° C. for 2 hours and 30 minutes with stirring to obtain a mixed solution A-4 Got.
105.8 g of hydrogen peroxide containing 30 wt% as H 2 O 2 was added to 754.6 g of the niobium mixed solution (B 0 ), and the mixture was stirred and mixed at room temperature for 10 minutes to prepare a mixed solution B-4. .
After cooling the obtained mixed liquid A-4 to 70 ° C., 1490 g of silica sol containing 30.2 wt% as SiO 2 was added, and further, 220.4 g of hydrogen peroxide containing 30 wt% as H 2 O 2 was added. The mixture was added and stirring was continued at 50 ° C. for 1 hour. Next, a mixed liquid B-4 and a dispersion obtained by dispersing 450 g of powdered silica in 6300 g of water were sequentially added to obtain a raw material preparation liquid.
The obtained raw material mixture was supplied to a centrifugal spray dryer and dried to obtain a microspherical dry powder. The dryer inlet temperature was 210 ° C and the outlet temperature was 120 ° C.
480 g of the obtained dry powder was filled in a SUS calcining tube having a diameter of 3 inches, and calcined at 640 ° C. for 2 hours while rotating the tube under a nitrogen gas flow of 5.0 NL / min to obtain a catalyst.

(組成分析)
得られた酸化物触媒に対して実施例1と同様の方法でEPMA測定を行った。得られた結果を表1に示す。
(Composition analysis)
The obtained oxide catalyst was subjected to EPMA measurement in the same manner as in Example 1. The obtained results are shown in Table 1.

(プロパンのアンモ酸化反応)
内径25mmのバイコールガラス流動床型反応管に調製して得られた触媒を35g充填し、反応温度440℃、反応圧力常圧下にプロパン:アンモニア:酸素:ヘリウム=1:1:3:18のモル比の混合ガスを接触時間2.8(sec・g/cc)で供給した。得られた結果を表1に示す。
(Propane ammoxidation reaction)
Filled with 35 g of the catalyst prepared in a Vycor glass fluidized bed reaction tube having an inner diameter of 25 mm, and at a reaction temperature of 440 ° C. and a reaction pressure of normal pressure, a molar ratio of propane: ammonia: oxygen: helium = 1: 1: 3: 18 The mixed gas with a specific ratio was supplied at a contact time of 2.8 (sec · g / cc). The obtained results are shown in Table 1.

(触媒の調製)
仕込み組成式がMo0.21Nb0.09Sb0.25Sc0.005/45.0wt%−SiOで示される酸化物触媒を次のようにして製造した。
硝酸セリウムに代えて硝酸スカンジウム4水和物[Sc(NO・4HO]7.85gを添加した以外の調製操作は実施例2と同様に行った。
(Preparation of catalyst)
Mixing composition formula was produced by the oxide catalyst represented by Mo 1 V 0.21 Nb 0.09 Sb 0.25 Sc 0.005 O n /45.0wt%-SiO 2 as follows.
The preparation operation was performed in the same manner as in Example 2 except that 7.85 g of scandium nitrate tetrahydrate [Sc (NO 3 ) 3 .4H 2 O] was added instead of cerium nitrate.

(組成分析)
得られた酸化物触媒に対して、島津製作所製EPMA1600を用いてEPMA測定を行った。測定条件は、加速電圧0−30kV、Step幅1.0μm、スポット径1.0μmであった。SiおよびSc測定時の分光結晶にはLIF(フッ化リチウム)(200面を使用)を用いた。検出器には、Krイグザトロン検出器(比例計数管)を使用した。得られた結果を表1に示す。
(Composition analysis)
EPMA measurement was performed on the obtained oxide catalyst using EPMA 1600 manufactured by Shimadzu Corporation. The measurement conditions were an acceleration voltage of 0-30 kV, a step width of 1.0 μm, and a spot diameter of 1.0 μm. LIF (lithium fluoride) (using the 200 plane) was used as the spectroscopic crystal when measuring Si and Sc. A Kr igzatron detector (proportional counter) was used as a detector. The obtained results are shown in Table 1.

(プロパンのアンモ酸化反応)
得られた酸化物触媒に対して、プロパンのアンモ酸化反応を実施例1と同様に行った。得られた結果を表1に示す。
(Propane ammoxidation reaction)
The ammoxidation reaction of propane was performed on the obtained oxide catalyst in the same manner as in Example 1. The obtained results are shown in Table 1.

(触媒の調製)
仕込み組成式がMo0.21Nb0.09Sb0.250.005/45.0wt%−SiOで示される酸化物触媒を次のようにして製造した。
硝酸セリウム6水和物に代えて、硝酸イットリウム6水和物[Y(NO・6HO]9.92gを添加した以外の調製操作は実施例2と同様に行った。
(Preparation of catalyst)
Mixing composition formula was produced by the oxide catalyst represented by Mo 1 V 0.21 Nb 0.09 Sb 0.25 Y 0.005 O n /45.0wt%-SiO 2 as follows.
A preparation operation was performed in the same manner as in Example 2 except that 9.92 g of yttrium nitrate hexahydrate [Y (NO 3 ) 3 .6H 2 O] was added instead of cerium nitrate hexahydrate.

(組成分析)
得られた酸化物触媒に対して、島津製作所製EPMA1600を用いてEPMA測定を行った。測定条件は、加速電圧0−30kV、Step幅1.0μm、スポット径1.0μmであった。Si測定時の分光結晶にはLIF(フッ化リチウム)(200面を使用)、Y測定時にはPET(ポリエチレンテレフタラート)(002面を使用)を用いた。検出器には、Krイグザトロン検出器(比例計数管)を使用した。得られた結果を表1に示す。
(Composition analysis)
EPMA measurement was performed on the obtained oxide catalyst using EPMA 1600 manufactured by Shimadzu Corporation. The measurement conditions were an acceleration voltage of 0-30 kV, a step width of 1.0 μm, and a spot diameter of 1.0 μm. LIF (lithium fluoride) (using the 200 plane) was used as the spectroscopic crystal during the Si measurement, and PET (polyethylene terephthalate) (using the 002 plane) was used during the Y measurement. A Kr igzatron detector (proportional counter) was used as a detector. The obtained results are shown in Table 1.

(プロパンのアンモ酸化反応)
得られた酸化物触媒に対して、プロパンのアンモ酸化反応を実施例1と同様に行った。
反応開始後、5時間後に得られた結果を表1に、1200時間後および2400時間後に得られた結果を表2に示す。
(Propane ammoxidation reaction)
The ammoxidation reaction of propane was performed on the obtained oxide catalyst in the same manner as in Example 1.
The results obtained 5 hours after the start of the reaction are shown in Table 1, and the results obtained after 1200 hours and 2400 hours are shown in Table 2.

(触媒の調製)
仕込み組成式がMo0.21Nb0.09Sb0.25La0.005/45.0wt%−SiOで示される酸化物触媒を次のようにして製造した。
硝酸セリウム6水和物に代えて、硝酸ランタン6水和物[La(NO・6HO]11.21gを添加した以外の調製操作は実施例2と同様に行った。
(Preparation of catalyst)
Mixing composition formula was produced by the oxide catalyst represented by Mo 1 V 0.21 Nb 0.09 Sb 0.25 La 0.005 O n /45.0wt%-SiO 2 as follows.
The preparation operation was performed in the same manner as in Example 2 except that 11.21 g of lanthanum nitrate hexahydrate [La (NO 3 ) 3 .6H 2 O] was added instead of cerium nitrate hexahydrate.

(組成分析)
得られた酸化物触媒に対して、島津製作所製EPMA1600を用いてEPMA測定を行った。測定条件は、加速電圧0−30kV、Step幅1.0μm、スポット径1.0μmであった。SiおよびLa測定時の分光結晶にはLIF(フッ化リチウム)(200面を使用)を用いた。検出器には、Krイグザトロン検出器(比例計数管)を使用した。得られた結果を表1に示す。
(Composition analysis)
EPMA measurement was performed on the obtained oxide catalyst using EPMA 1600 manufactured by Shimadzu Corporation. The measurement conditions were an acceleration voltage of 0-30 kV, a step width of 1.0 μm, and a spot diameter of 1.0 μm. LIF (lithium fluoride) (using the 200 plane) was used as the spectroscopic crystal when measuring Si and La. A Kr igzatron detector (proportional counter) was used as a detector. The obtained results are shown in Table 1.

(プロパンのアンモ酸化反応)
得られた酸化物触媒に対して、プロパンのアンモ酸化反応を実施例1と同様に行った。得られた結果を表1に示す。
(Propane ammoxidation reaction)
The ammoxidation reaction of propane was performed on the obtained oxide catalyst in the same manner as in Example 1. The obtained results are shown in Table 1.

(触媒の調製)
仕込み組成式がMo0.21Nb0.09Sb0.25Pr0.005/45.0wt%−SiOで示される酸化物触媒を次のようにして製造した。
硝酸セリウム6水和物に代えて、硝酸プラセオジム6水和物[Pr(NO・6HO]11.27gを添加した以外の調製操作は実施例2と同様に行った。
(Preparation of catalyst)
Mixing composition formula was produced by the oxide catalyst represented by Mo 1 V 0.21 Nb 0.09 Sb 0.25 Pr 0.005 O n /45.0wt%-SiO 2 as follows.
The preparation operation was performed in the same manner as in Example 2 except that 11.27 g of praseodymium nitrate hexahydrate [Pr (NO 3 ) 3 .6H 2 O] was added instead of cerium nitrate hexahydrate.

(組成分析)
得られた酸化物触媒に対して、島津製作所製EPMA1600を用いてEPMA測定を行った。測定条件は、加速電圧0−30kV、Step幅1.0μm、スポット径1.0μmであった。SiおよびPr測定時の分光結晶にはLIF(フッ化リチウム)(200面を使用)を用いた。検出器には、Krイグザトロン検出器(比例計数管)を使用した。得られた結果を表1に示す。
(Composition analysis)
EPMA measurement was performed on the obtained oxide catalyst using EPMA 1600 manufactured by Shimadzu Corporation. The measurement conditions were an acceleration voltage of 0-30 kV, a step width of 1.0 μm, and a spot diameter of 1.0 μm. LIF (lithium fluoride) (using the 200 plane) was used as the spectral crystal during the measurement of Si and Pr. A Kr igzatron detector (proportional counter) was used as a detector. The obtained results are shown in Table 1.

(プロパンのアンモ酸化反応)
得られた酸化物触媒に対して、プロパンのアンモ酸化反応を実施例1と同様に行った。得られた結果を表1に示す。
(Propane ammoxidation reaction)
The ammoxidation reaction of propane was performed on the obtained oxide catalyst in the same manner as in Example 1. The obtained results are shown in Table 1.

(触媒の調製)
仕込み組成式がMo0.21Nb0.09Sb0.25Yb0.005/45.0wt%−SiOで示される酸化物触媒を次のようにして製造した。
硝酸セリウム6水和物に代えて、硝酸イッテルビウム3水和物[Yb(NO・3HO]10.70gを添加した以外の調製操作は実施例2と同様に行った。
(Preparation of catalyst)
Mixing composition formula was produced by the oxide catalyst represented by Mo 1 V 0.21 Nb 0.09 Sb 0.25 Yb 0.005 O n /45.0wt%-SiO 2 as follows.
The preparation operation was performed in the same manner as in Example 2 except that 10.70 g of ytterbium nitrate trihydrate [Yb (NO 3 ) 3 .3H 2 O] was added instead of cerium nitrate hexahydrate.

(組成分析)
得られた酸化物触媒に対して、島津製作所製EPMA1600を用いてEPMA測定を行った。測定条件は、加速電圧0−30kV、Step幅1.0μm、スポット径1.0μmであった。SiおよびYb測定時の分光結晶にはLIF(フッ化リチウム)(200面を使用)を用いた。検出器には、Krイグザトロン検出器(比例計数管)を使用した。得られた結果を表1に示す。
(Composition analysis)
EPMA measurement was performed on the obtained oxide catalyst using EPMA 1600 manufactured by Shimadzu Corporation. The measurement conditions were an acceleration voltage of 0-30 kV, a step width of 1.0 μm, and a spot diameter of 1.0 μm. LIF (lithium fluoride) (using the 200 plane) was used as the spectral crystal during the measurement of Si and Yb. A Kr igzatron detector (proportional counter) was used as a detector. The obtained results are shown in Table 1.

(プロパンのアンモ酸化反応)
得られた酸化物触媒に対して、プロパンのアンモ酸化反応を実施例1と同様に行った。得られた結果を表1に示す。
(Propane ammoxidation reaction)
The ammoxidation reaction of propane was performed on the obtained oxide catalyst in the same manner as in Example 1. The obtained results are shown in Table 1.

(触媒の調製)
仕込み組成式がMo0.21Nb0.09Sb0.25Sr0.005/45.0wt%−SiOで示される酸化物触媒を次のようにして製造した。
硝酸セリウム6水和物に代えて、硝酸ストロンチウム[Sr(NO]5.48gを添加した以外の調製操作は実施例2と同様に行った。
(組成分析)
得られた酸化物触媒に対して、島津製作所製EPMA1600を用いてEPMA測定を行った。測定条件は、加速電圧0−30kV、Step幅1.0μm、スポット径1.0μmであった。SiおよびSr測定時の分光結晶にはLIF(フッ化リチウム)(200面を使用)を用いた。検出器には、Krイグザトロン検出器(比例計数管)を使用した。得られた結果を表1に示す。
(プロパンのアンモ酸化反応)
得られた酸化物触媒に対して、プロパンのアンモ酸化反応を実施例1と同様に行った。得られた結果を表1に示す。
(Preparation of catalyst)
Mixing composition formula was produced by the oxide catalyst represented by Mo 1 V 0.21 Nb 0.09 Sb 0.25 Sr 0.005 O n /45.0wt%-SiO 2 as follows.
The preparation operation was carried out in the same manner as in Example 2 except that 5.48 g of strontium nitrate [Sr (NO 3 ) 2 ] was added instead of cerium nitrate hexahydrate.
(Composition analysis)
EPMA measurement was performed on the obtained oxide catalyst using EPMA 1600 manufactured by Shimadzu Corporation. The measurement conditions were an acceleration voltage of 0-30 kV, a step width of 1.0 μm, and a spot diameter of 1.0 μm. LIF (lithium fluoride) (using the 200 plane) was used as the spectral crystal during the measurement of Si and Sr. A Kr igzatron detector (proportional counter) was used as a detector. The obtained results are shown in Table 1.
(Propane ammoxidation reaction)
The ammoxidation reaction of propane was performed on the obtained oxide catalyst in the same manner as in Example 1. The obtained results are shown in Table 1.

[実施例9]
(触媒の調製)
仕込み組成式がMo0.21Nb0.09Sb0.25Ba0.005/45.0wt%−SiOで示される酸化物触媒を次のようにして製造した。
硝酸セリウム6水和物に代えて、硝酸バリウム[Ba(NO]6.77gを添加した以外の調製操作は実施例2と同様に行った。
(組成分析)
得られた酸化物触媒に対して、島津製作所製EPMA1600を用いてEPMA測定を行った。測定条件は、加速電圧0−30kV、Step幅1.0μm、スポット径1.0μmであった。SiおよびBa測定時の分光結晶にはLIF(フッ化リチウム)(200面を使用)を用いた。検出器には、Krイグザトロン検出器(比例計数管)を使用した。得られた結果を表1に示す。
(プロパンのアンモ酸化反応)
得られた酸化物触媒に対して、プロパンのアンモ酸化反応を実施例1と同様に行った。反応開始後、5時間後に得られた結果を表1に、1200時間後および2400時間後に得られた結果を表2に示す。
[Example 9]
(Preparation of catalyst)
Mixing composition formula was produced by the oxide catalyst represented by Mo 1 V 0.21 Nb 0.09 Sb 0.25 Ba 0.005 O n /45.0wt%-SiO 2 as follows.
The preparation operation was performed in the same manner as in Example 2 except that 6.77 g of barium nitrate [Ba (NO 3 ) 2 ] was added instead of cerium nitrate hexahydrate.
(Composition analysis)
EPMA measurement was performed on the obtained oxide catalyst using EPMA 1600 manufactured by Shimadzu Corporation. The measurement conditions were an acceleration voltage of 0-30 kV, a step width of 1.0 μm, and a spot diameter of 1.0 μm. LIF (lithium fluoride) (using the 200 plane) was used as the spectroscopic crystal when measuring Si and Ba. A Kr igzatron detector (proportional counter) was used as a detector. The obtained results are shown in Table 1.
(Propane ammoxidation reaction)
The ammoxidation reaction of propane was performed on the obtained oxide catalyst in the same manner as in Example 1. The results obtained 5 hours after the start of the reaction are shown in Table 1, and the results obtained after 1200 hours and 2400 hours are shown in Table 2.

Figure 2006055681
Figure 2006055681

Figure 2006055681
Figure 2006055681

本発明は、プロパンまたはイソブタンを気相接触酸化反応または気相接触アンモ酸化反応させて対応する不飽和酸または不飽和ニトリルを製造する工業的製造プロセスに有用に利用できる。   INDUSTRIAL APPLICABILITY The present invention can be usefully applied to an industrial production process for producing a corresponding unsaturated acid or unsaturated nitrile by subjecting propane or isobutane to a gas phase catalytic oxidation reaction or a gas phase catalytic ammoxidation reaction.

Claims (9)

少なくともMo、Vおよび成分X(成分Xはアルカリ土類金属元素および希土類元素から選ばれる少なくとも1種以上の元素)を含む複合酸化物触媒であって、シリカを含む担体に担持され、成分Xが触媒粒子内で均一に分布していることを特徴とする複合酸化物触媒。   A composite oxide catalyst containing at least Mo, V and component X (component X is at least one element selected from alkaline earth metal elements and rare earth elements), supported on a support containing silica, A composite oxide catalyst characterized by being uniformly distributed in catalyst particles. 該複合酸化物触媒において、該複合酸化物触媒粒子の断面を組成分析した時の成分XとSiの信号強度比の分散値Dが、0<D<0.5の範囲にあることを特徴とする請求項1に記載の複合酸化物触媒。 In the composite oxide catalyst, the dispersion value D x of the signal intensity ratio between the component X and Si when the cross section of the composite oxide catalyst particle is compositionally analyzed is in the range of 0 <D x <0.5. The composite oxide catalyst according to claim 1, wherein the catalyst is a composite oxide catalyst. 該複合酸化物触媒が成分Y(成分YはTe、Sbから選ばれる少なくとも1種以上の元素)を含むことを特徴とする請求項1又は2に記載の複合酸化物触媒。   The composite oxide catalyst according to claim 1 or 2, wherein the composite oxide catalyst contains a component Y (the component Y is at least one element selected from Te and Sb). 該複合酸化物触媒がNbを含むことを特徴とする請求項1〜3のいずれか1項に記載の複合酸化物触媒。   The composite oxide catalyst according to claim 1, wherein the composite oxide catalyst contains Nb. 該成分XがSc、Y(イットリウム)、La、Ce、Pr、Ybから選ばれる少なくとも1種以上の元素であることを特徴とする請求項1〜4のいずれか1項に記載の複合酸化物触媒。   5. The composite oxide according to claim 1, wherein the component X is at least one element selected from Sc, Y (yttrium), La, Ce, Pr, and Yb. catalyst. 該複合酸化物触媒が、SiO換算で20〜60重量%のシリカに担持されていることを特徴とする請求項1〜5のいずれか1項に記載の複合酸化物触媒。 6. The composite oxide catalyst according to claim 1, wherein the composite oxide catalyst is supported on 20 to 60% by weight of silica in terms of SiO 2 . 該複合酸化物触媒がプロパンまたはイソブタンの気相接触酸化反応または気相接触アンモ酸化反応に用いられることを特徴とする請求項1〜6のいずれか1項に記載の複合酸化物触媒。   The composite oxide catalyst according to any one of claims 1 to 6, wherein the composite oxide catalyst is used for a gas phase catalytic oxidation reaction or a gas phase catalytic ammoxidation reaction of propane or isobutane. 請求項1〜7のいずれか1項に記載の複合酸化物触媒を用いることを特徴とする不飽和酸または不飽和ニトリルの製造方法。   A method for producing an unsaturated acid or an unsaturated nitrile, wherein the composite oxide catalyst according to claim 1 is used. 少なくともMo化合物、V化合物およびX化合物を含む混合液にシリカを混合し、得られた原料調合液を噴霧乾燥して乾燥粉体を得て、この乾燥粉体を焼成することを特徴とする請求項1〜7のいずれかに記載の複合酸化物触媒の製造方法。   Silica is mixed with a mixed solution containing at least a Mo compound, a V compound and an X compound, and the obtained raw material preparation solution is spray-dried to obtain a dry powder, and the dry powder is fired. Item 8. A method for producing a composite oxide catalyst according to any one of Items 1 to 7.
JP2004236956A 2004-08-17 2004-08-17 Catalyst made of complex oxide Active JP5263855B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2004236956A JP5263855B2 (en) 2004-08-17 2004-08-17 Catalyst made of complex oxide
PCT/JP2005/014919 WO2006019078A1 (en) 2004-08-17 2005-08-15 Catalyst composed of complex oxide
KR1020077003890A KR100893429B1 (en) 2004-08-17 2005-08-15 Catalyst composed of complex oxide
US11/659,335 US8642501B2 (en) 2004-08-17 2005-08-15 Composite oxide catalyst
EP05780202.7A EP1806178B1 (en) 2004-08-17 2005-08-15 Catalyst composed of complex oxide
CN2005800278209A CN101005892B (en) 2004-08-17 2005-08-15 Catalyst composed of complex oxide
MYPI20053856A MY154500A (en) 2004-08-17 2005-08-17 Catalyst composed of complex oxide
TW094128071A TWI280153B (en) 2004-08-17 2005-08-17 Composite oxide catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004236956A JP5263855B2 (en) 2004-08-17 2004-08-17 Catalyst made of complex oxide

Publications (2)

Publication Number Publication Date
JP2006055681A true JP2006055681A (en) 2006-03-02
JP5263855B2 JP5263855B2 (en) 2013-08-14

Family

ID=36103605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004236956A Active JP5263855B2 (en) 2004-08-17 2004-08-17 Catalyst made of complex oxide

Country Status (2)

Country Link
JP (1) JP5263855B2 (en)
CN (1) CN101005892B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007050404A (en) * 2005-08-15 2007-03-01 China Petrochemical Corp Fluid-bed catalyst for preparation of ethylene and propylene by catalytic cracking
JP2014196318A (en) * 2007-02-16 2014-10-16 イネオス ユーエスエイ リミテッド ライアビリティ カンパニー Method for ammoxidation of propane and isobutane using mixed metal oxide catalyst
WO2015133510A1 (en) * 2014-03-06 2015-09-11 旭化成ケミカルズ株式会社 Oxide catalyst, production method therefor, and unsaturated-nitrile production method
WO2015151726A1 (en) * 2014-03-31 2015-10-08 旭化成ケミカルズ株式会社 Method for producing oxide catalyst and method for producing unsaturated nitrile
CN114471596A (en) * 2020-10-27 2022-05-13 中国石油化工股份有限公司 Catalyst for preparing acrylic acid and method for preparing catalyst
EP4098362A4 (en) * 2020-01-31 2023-07-19 Asahi Kasei Kabushiki Kaisha Composition for catalyst production, production method of composition for catalyst production, and production method for producing oxide catalyst

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106881103A (en) * 2015-12-15 2017-06-23 上海华谊新材料有限公司 The application method of composite oxide catalysts

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11244702A (en) * 1997-10-15 1999-09-14 Asahi Chem Ind Co Ltd Catalyst for manufacture of acrylonitrile or methacrylonitrile
JP2000202293A (en) * 1999-01-19 2000-07-25 Asahi Chem Ind Co Ltd Catalyst and production of unsaturated nitrile using same
JP2002292284A (en) * 2001-04-03 2002-10-08 Mitsubishi Chemicals Corp Compound metal oxide catalyst and method for gaseous phase catalytic oxidizing reaction using the same
JP2002316052A (en) * 2001-04-24 2002-10-29 Mitsubishi Chemicals Corp Method for manufacturing complex metallic oxide catalyst

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA51701C2 (en) * 1997-10-15 2002-12-16 Асахі Касеі Когіо Кабусікі Кайся catalyst of ammoxidation and method of obtaining acrylonitrile or metacrylonitrile

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11244702A (en) * 1997-10-15 1999-09-14 Asahi Chem Ind Co Ltd Catalyst for manufacture of acrylonitrile or methacrylonitrile
JP2000202293A (en) * 1999-01-19 2000-07-25 Asahi Chem Ind Co Ltd Catalyst and production of unsaturated nitrile using same
JP2002292284A (en) * 2001-04-03 2002-10-08 Mitsubishi Chemicals Corp Compound metal oxide catalyst and method for gaseous phase catalytic oxidizing reaction using the same
JP2002316052A (en) * 2001-04-24 2002-10-29 Mitsubishi Chemicals Corp Method for manufacturing complex metallic oxide catalyst

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007050404A (en) * 2005-08-15 2007-03-01 China Petrochemical Corp Fluid-bed catalyst for preparation of ethylene and propylene by catalytic cracking
JP2014196318A (en) * 2007-02-16 2014-10-16 イネオス ユーエスエイ リミテッド ライアビリティ カンパニー Method for ammoxidation of propane and isobutane using mixed metal oxide catalyst
WO2015133510A1 (en) * 2014-03-06 2015-09-11 旭化成ケミカルズ株式会社 Oxide catalyst, production method therefor, and unsaturated-nitrile production method
JP6087471B2 (en) * 2014-03-06 2017-03-01 旭化成株式会社 Oxide catalyst and method for producing the same, and method for producing unsaturated nitrile
RU2673892C2 (en) * 2014-03-06 2018-12-03 Асахи Касеи Кабусики Кайся Oxide catalyst, method for production thereof and method of obtaining unsaturated nitrile
US10179763B2 (en) 2014-03-06 2019-01-15 Asahi Kasei Kabushiki Kaisha Oxide catalyst and method for producing same, and method for producing unsaturated nitrile
WO2015151726A1 (en) * 2014-03-31 2015-10-08 旭化成ケミカルズ株式会社 Method for producing oxide catalyst and method for producing unsaturated nitrile
JPWO2015151726A1 (en) * 2014-03-31 2017-04-13 旭化成株式会社 Method for producing oxide catalyst and method for producing unsaturated nitrile
EP4098362A4 (en) * 2020-01-31 2023-07-19 Asahi Kasei Kabushiki Kaisha Composition for catalyst production, production method of composition for catalyst production, and production method for producing oxide catalyst
CN114471596A (en) * 2020-10-27 2022-05-13 中国石油化工股份有限公司 Catalyst for preparing acrylic acid and method for preparing catalyst
CN114471596B (en) * 2020-10-27 2023-09-29 中国石油化工股份有限公司 Catalyst for preparing acrylic acid and method for preparing catalyst

Also Published As

Publication number Publication date
JP5263855B2 (en) 2013-08-14
CN101005892B (en) 2010-06-09
CN101005892A (en) 2007-07-25

Similar Documents

Publication Publication Date Title
KR100893429B1 (en) Catalyst composed of complex oxide
RU2601990C1 (en) Multicomponent oxide catalyst, method of making and same method of producing unsaturated nitrile
US8785675B2 (en) Mixed catalyst
RU2675603C1 (en) Catalyst production method and the unsaturated nitrile production method
JP5694727B2 (en) Method for producing unsaturated acid or unsaturated nitrile
CN101005892B (en) Catalyst composed of complex oxide
JP5730984B2 (en) Process for producing unsaturated nitrile
JP4187837B2 (en) Method for producing catalyst for producing unsaturated nitrile
RU2655167C2 (en) Method for manufacturing oxide catalyst and method for producing unsaturated nitrile
KR102353075B1 (en) Method for producing oxide catalyst, and method for producing unsaturated nitriles and unsaturated acids
JP4187856B2 (en) Catalyst and method for producing unsaturated nitrile using the same
JP5078222B2 (en) Composite oxide catalyst
JP2007216081A (en) Manufacturing method for oxide catalyst
JP2002316052A (en) Method for manufacturing complex metallic oxide catalyst
JP2007326036A (en) Oxide catalyst for oxidation or amm oxidation
JP4318331B2 (en) Catalyst and method for producing unsaturated nitrile using the same
JP4111715B2 (en) Method for producing ammoxidation catalyst
JP2007326034A (en) Catalyst for oxidation reaction or amm oxidation reaction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100922

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130425

R150 Certificate of patent or registration of utility model

Ref document number: 5263855

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350