JP2006055175A - Method for highly amplifying target gene in mammalian cells and vector for performing the method - Google Patents

Method for highly amplifying target gene in mammalian cells and vector for performing the method Download PDF

Info

Publication number
JP2006055175A
JP2006055175A JP2005313532A JP2005313532A JP2006055175A JP 2006055175 A JP2006055175 A JP 2006055175A JP 2005313532 A JP2005313532 A JP 2005313532A JP 2005313532 A JP2005313532 A JP 2005313532A JP 2006055175 A JP2006055175 A JP 2006055175A
Authority
JP
Japan
Prior art keywords
gene
cells
vector
mammalian
locus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005313532A
Other languages
Japanese (ja)
Inventor
Noriaki Shimizu
典明 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
Original Assignee
Hiroshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC filed Critical Hiroshima University NUC
Priority to JP2005313532A priority Critical patent/JP2006055175A/en
Publication of JP2006055175A publication Critical patent/JP2006055175A/en
Pending legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for mass production of protein products by amplifying a target gene in mammalian cells irrespective of its chain length or structure, wherein the method is available to any mammalian cells and convenient. <P>SOLUTION: A vector having a mammalian replication point and a nuclear matrix binding region is used. The target gene desired to be amplified is arranged in a cis (an identical structure with the vector) or trans (a different structure from the vector) conformation to such vector and introduced into the mammalian cells. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、哺乳類細胞内において目的とする遺伝子を高度に増幅させる方法、および該方法を実施するために用いるベクターに関する。   The present invention relates to a method for highly amplifying a target gene in mammalian cells, and a vector used for carrying out the method.

哺乳類細胞で導入遺伝子の細胞内コピー数を増加させる方法として、唯一知られている方法は、チャイニーズハムスター卵巣(CHO; Chinese Hamster Ovary)細胞等を宿主とし、これに目的遺伝子をジヒドロ葉酸リダクターゼ(DHFR; Dihydrofolate reductase)遺伝子と同時に導入し、ジヒドロ葉酸リダクターゼ遺伝子産物の阻害剤であるメトトレキセート(MTx; Methotrexate)を培養液中に加えて選択する方法である。この方法は、現在、広く医薬品等有用物質の大量生産に利用され、重要な技術となっている。   The only known method for increasing the intracellular copy number of a transgene in a mammalian cell is to use a Chinese hamster ovary (CHO) cell or the like as a host, and the target gene is dihydrofolate reductase (DHFR). A dihydrofolate reductase) gene, which is selected by adding methotrexate (MTx), an inhibitor of the dihydrofolate reductase gene product, to the culture medium. This method is now widely used for mass production of useful substances such as pharmaceuticals and has become an important technique.

しかしこの方法は、適用できる宿主細胞がCHO細胞等に限定され、汎用性に欠ける問題がある。また、選択薬剤であるメトトレキセートを用いて長期間にわたって選択する必要があり、しかも、メトトレキセートの細胞毒性作用を考慮しつつ、濃度を少しずつ増加させ選択しなければならない等の配慮が必要なので、経験および熟練をも必要とする。さらに、この方法は目的遺伝子として比較的短いDNAにのみ適用可能であり、適用範囲が狭いという問題がある。   However, this method has a problem that the applicable host cells are limited to CHO cells and the like and lacks versatility. In addition, it is necessary to select for a long period of time using methotrexate, which is a selective drug, and it is necessary to consider increasing the concentration gradually while considering the cytotoxic effect of methotrexate. And skill is also required. Further, this method is applicable only to a relatively short DNA as a target gene, and there is a problem that the application range is narrow.

一般に、蛋白質はその種類によってリン酸化、アセチル化等の種々の修飾をうけることが多く、同じ蛋白質でも、発現する細胞、発現時期、細胞への刺激等の条件によって修飾の種類および修飾をうける部位が異なることが知られている。従って、発現させる目的蛋白質をコードする遺伝子を、本来は該蛋白質が発現されていない組織由来の宿主細胞等に異所的および/または異時的に発現させようとする場合に、その蛋白質の本来の性状を正確に反映する保証はない。一般的に、蛋白質の機能発現には特異的な修飾が必要とされることが多いから、目的蛋白質を発現させるための宿主細胞は、導入される蛋白質遺伝子に応じて適宜選択できることが好ましい。従って、上述した従来技術のように、適用できる細胞がCHO細胞等に限られることは、哺乳動物細胞内において医薬品等の有用蛋白質を生産する上での大きな障害になる。   In general, proteins are often subjected to various modifications such as phosphorylation and acetylation depending on the type of the protein, and even with the same protein, the type of modification and the site to be modified depending on conditions such as the cell in which it is expressed, the time of expression, and stimulation of the cell. Are known to be different. Therefore, when the gene encoding the target protein to be expressed is to be expressed ectopically and / or chronologically in a host cell derived from a tissue where the protein is not originally expressed, There is no guarantee that it will accurately reflect the nature of the. In general, specific modifications are often required for the functional expression of proteins. Therefore, it is preferable that the host cell for expressing the target protein can be appropriately selected according to the protein gene to be introduced. Therefore, as in the prior art described above, the fact that applicable cells are limited to CHO cells or the like is a great obstacle to producing useful proteins such as pharmaceuticals in mammalian cells.

本発明は上記事情に鑑みてなされたものであり、その解決しようとする課題は、宿主として広範な哺乳類細胞を使用でき、経験および熟練を必要とせず、目的遺伝子を、その核酸の鎖長にかかわらず簡便な操作で増幅することである。   The present invention has been made in view of the above circumstances, and the problem to be solved is that a wide range of mammalian cells can be used as a host, and experience and skill are not required. Regardless, it is a simple procedure to amplify.

本発明は、この課題を達成するために有用なベクターと、該ベクターを用いて目的遺伝子を哺乳類宿主細胞内で増幅する方法を提供するものである。   The present invention provides a vector useful for achieving this object and a method for amplifying a target gene in a mammalian host cell using the vector.

本発明の一つの側面によれば、哺乳動物細胞内で目的遺伝子を高度に増幅および/または発現させるためのベクターであって、真核細胞内で機能する複製起点および核マトリックス結合領域を具備し、トランスフェクションされた細胞内において自律複製可能で、且つ娘細胞に安定して分配されることを特徴とするベクターが提供される。   According to one aspect of the present invention, a vector for highly amplifying and / or expressing a gene of interest in mammalian cells, comprising a replication origin that functions in eukaryotic cells and a nuclear matrix-binding region. A vector is provided that is capable of autonomous replication in transfected cells and stably distributed to daughter cells.

また、本発明の他の側面によれば、哺乳動物細胞内で目的遺伝子を高度に増幅および/または発現させる方法であって、前記目的遺伝子を上記本発明のベクターに対してシスに配置すると共に、これを適切な哺乳類宿主細胞にトランスフェクションして増幅および/または発現させることを特徴とする方法が提供される。   According to another aspect of the present invention, there is provided a method for highly amplifying and / or expressing a target gene in a mammalian cell, wherein the target gene is placed in cis with respect to the vector of the present invention. There is provided a method characterized in that it is transfected into a suitable mammalian host cell for amplification and / or expression.

本発明のもう一つの側面によれば、哺乳動物細胞内で目的遺伝子を高度に増幅および/または発現させる方法であって、前記目的遺伝子を本発明の上記ベクターに対してトランスに配置すると共に、これを前記ベクターと共に適切な哺乳類宿主細胞にトランスフェクションして増幅および/または発現させることを特徴とする方法が提供される。   According to another aspect of the present invention, there is provided a method for highly amplifying and / or expressing a target gene in mammalian cells, wherein the target gene is placed in trans with respect to the vector of the present invention, There is provided a method characterized in that this is transfected into a suitable mammalian host cell together with said vector for amplification and / or expression.

本発明において、「目的遺伝子をベクターに対してシスに配置する」とは、目的遺伝子を当該ベクターの中に配置することを言う。また、「目的遺伝子をベクターに対してトランスに配置する」とは、目的遺伝子を当該ベクターとは異なる構造体に配置することを言う。   In the present invention, “arranging the target gene in cis with respect to the vector” means that the target gene is disposed in the vector. Also, “arranging the target gene in trans with respect to the vector” means that the target gene is disposed in a different structure from the vector.

本発明による方法は、どのような哺乳動物細胞にも適用可能であり、極めて簡単な操作で目的遺伝子を細胞内で数千から一万コピー以上にまで増幅させることが可能となる。さらに、本発明による方法は、原理上、どのような長さの遺伝子でも増幅させることが可能であるため、ゲノム上の広範な目的遺伝子領域を増幅させることが可能となる。   The method according to the present invention can be applied to any mammalian cell, and the target gene can be amplified from several thousand to 10,000 copies or more in the cell by a very simple operation. Furthermore, since the method according to the present invention can amplify a gene of any length in principle, a wide range of target gene regions on the genome can be amplified.

以下、本発明を詳細に説明する。なお、以下の説明では、括弧内の数字によって種々の公知文献が参照される。これら文献の書誌的事項は、発明の詳細な説明の項の末尾に列記する。   Hereinafter, the present invention will be described in detail. In the following description, various known documents are referred to by numbers in parentheses. Bibliographic items of these documents are listed at the end of the detailed description section.

本発明は、腫瘍細胞等における遺伝子増幅現象で認められた知見に依拠している。遺伝子増幅は、腫瘍細胞が無制限の成長または薬剤抵抗性を獲得する主要な機構である(1)、細胞遺伝学的に言えば、増幅遺伝子は、インビボにおいて、染色体外のダブルマイニュート染色体(DM)上で最も頻繁に検出される(しかし、長期にわたるインビトロでの継代によって、通常は染色体の均一染色領域(HSR;homogeneously staining region)を有する細胞の優勢的増殖に至る)。これまでの研究により、腫瘍細胞からDM上の増幅された遺伝子を除去すると、腫瘍表現型および細胞分化を呈する状態から正常状態に復帰することが示されている(2-4)。この種の除去過程は、分裂細胞から放出される微小核へのDMの選択的取り込みによって仲介される(3、5、6)。このような微小核形成(micronucleation)過程は、細胞周期の際におけるDMの細胞内挙動と密接に関連していることが理解されている(7)。DMは様々なサイズの無動原体環状DNAから構成され(8)、無動原体性であるにもかかわらず、有糸分裂する染色体に付着して娘細胞へと安定に分離される(7-9)。最近の関連する重要な知見として、牛パピローマウイルス(10)、EBウイルス (11)、カポジ肉腫関連ヘルペスウイルス(12)およびSV40(13)を含むいくつかのウィルス性核内プラスミド(viral nuclear plasmid)が、細胞分裂の際に同様の機構を利用することが示されている。さらに、最近の興味深い研究では、EBウイルス・レプリコンを有するプラスミドが、腫瘍細胞でDMに組込まれ得ることが示されている(14)。また、複製のSV40起点を有するプラスミドでの付着過程の成立には、ウィルスのラージT抗原の発現を必要とするが、プラスミドにコードされたラージT遺伝子が細胞由来の核マトリックス結合領域(MAR; matrix attachment region)で代用されれば分離は達成され得ることが示されている(13)。実際に、核マトリックス結合領域は哺乳類ゲノムの複製起点の近傍で頻繁に認められており、この事実はマトリックス付着のゲノム複製における役割を示唆するものである(15)。   The present invention relies on the findings observed in gene amplification phenomena in tumor cells and the like. Gene amplification is a major mechanism by which tumor cells acquire unlimited growth or drug resistance (1). Cytogenetically speaking, amplified genes are extrachromosomal double chromosomal chromosomes (DM) in vivo. ) Most frequently detected (but long-term in vitro passage usually leads to a dominant growth of cells with a homogeneously stained region (HSR) of chromosomes). Previous studies have shown that removal of amplified genes on DM from tumor cells reverts from a state exhibiting tumor phenotype and cell differentiation to a normal state (2-4). This type of removal process is mediated by selective uptake of DM into micronuclei released from dividing cells (3, 5, 6). It is understood that such a micronucleation process is closely related to the intracellular behavior of DM during the cell cycle (7). DM is composed of acrocentric circular DNAs of various sizes (8) and, despite being acentromeric, adheres to mitotic chromosomes and is stably separated into daughter cells ( 7-9). Several recent important findings include several viral nuclear plasmids, including bovine papillomavirus (10), EB virus (11), Kaposi's sarcoma-associated herpesvirus (12), and SV40 (13). However, it has been shown to utilize similar mechanisms during cell division. Furthermore, recent interesting studies have shown that plasmids carrying the EB virus replicon can be integrated into DM in tumor cells (14). In addition, the establishment of the attachment process in the plasmid having the SV40 origin of replication requires the expression of the viral large T antigen, but the large T gene encoded by the plasmid is a cell-derived nuclear matrix-binding region (MAR; It has been shown that separation can be achieved if a matrix attachment region) is substituted (13). Indeed, nuclear matrix-binding regions are frequently found near the origin of replication in the mammalian genome, suggesting a role for matrix attachment in genome replication (15).

本発明では、上記に説明した遺伝子増幅現象で認められた基礎的知見に基づいて、哺乳動物複製起点および核マトリックス結合領域(MAR)を有するベクターを使用することにより、目的遺伝子を導入した前記ベクターを含むDMのde novo形成を達成した。本発明のベクターは、哺乳類細胞において長鎖長の目的遺伝子を増幅し、且つその増幅された遺伝子を有するベクターの安定した娘細胞への分離が可能となり、その結果として、遺伝子の増幅に伴った蛋白質産生量の増大効果を得ることができる。   In the present invention, based on the basic knowledge recognized in the gene amplification phenomenon described above, the vector into which the target gene has been introduced by using a vector having a mammalian replication origin and a nuclear matrix binding region (MAR) De novo formation of DM was achieved. The vector of the present invention amplifies a long chain target gene in mammalian cells, and enables separation of the vector having the amplified gene into stable daughter cells, and as a result, accompanied with gene amplification. The effect of increasing protein production can be obtained.

本発明は、以上の特徴を有するベクターを新たに適用することによって、従来技術における汎用性、導入遺伝子の核酸鎖長の制限、実施の簡便性等の課題を克服した。即ち、本発明のベクターは、哺乳動物複製起点および核マトリックス結合領域(MAR)を有することを特徴とするものである。   The present invention has overcome the problems such as versatility, restriction of the nucleic acid chain length of the transgene, and ease of implementation by newly applying a vector having the above characteristics. That is, the vector of the present invention is characterized by having a mammalian replication origin and a nuclear matrix binding region (MAR).

哺乳動物複製起点および核マトリックス結合領域は、両者の組み合わせにより哺乳類細胞内でベクターに導入された目的遺伝子が増幅して、それが娘細胞へ分離・分配されるものであればどんなものでもよいが、好ましくはそれぞれ、EBウイルス潜在複製起点(EBV latent origin)、c-myc遺伝子座、ジヒドロ葉酸リダクターゼ遺伝子座、β-グロビン遺伝子座等の複製起点、および、Igκ遺伝子座、SV40初期領域、ジヒドロ葉酸リダクターゼ遺伝子座等の核マトリックス結合領域に由来する配列を有するものである。   The mammalian origin of replication and the nuclear matrix binding region may be any combination as long as the target gene introduced into the vector in the mammalian cell is amplified and separated and distributed to the daughter cells. EBV latent origin, c-myc locus, dihydrofolate reductase locus, β-globin locus, etc., and Igκ locus, SV40 early region, dihydrofolate, respectively It has a sequence derived from a nuclear matrix binding region such as a reductase locus.

加えて、前記ベクターは適宜目的に応じて、大腸菌内でクローニングを行うために必要な配列、或いは、マーカー蛋白質として薬剤耐性遺伝子(ブラスティサイジン抵抗性、ネオマイシン抵抗性等)または緑色蛍光蛋白質遺伝子等の形質転換細胞を選択するための遺伝子を有してもよい。これらのマーカー蛋白質が導入されたベクターにより形質転換された細胞は、薬剤耐性遺伝子に基づく薬剤選択またはセルソータ等によりマーカー蛋白質発現細胞を選択または分離することによって選別できる。   In addition, the vector may be a sequence necessary for cloning in Escherichia coli according to the purpose, or a drug resistance gene (blasticidine resistance, neomycin resistance, etc.) or a green fluorescent protein gene as a marker protein. It may have a gene for selecting the transformed cells. Cells transformed with a vector into which these marker proteins have been introduced can be selected by selecting or separating marker protein-expressing cells using drug selection based on drug resistance genes or a cell sorter.

前記ベクターは哺乳動物複製起点および核マトリックス結合領域を有していれば、プラスミッドであってもよく、またはコスミドの形態であってもよい。   The vector may be a plasmid or a cosmid as long as it has a mammalian origin of replication and a nuclear matrix binding region.

前記ベクターを導入する宿主細胞は哺乳類細胞であればよいが、好ましくはCOLO 320細胞、Hela細胞等の細胞株が使用される。   The host cell into which the vector is introduced may be a mammalian cell, but preferably a cell line such as COLO 320 cell or Hela cell is used.

本発明では、上記ベクターを用いることにより、哺乳類宿主細胞において、目的とする遺伝子を増幅する。その第一の態様では、前記ベクターに目的遺伝子を適切なプロモーター配列の支配下に、直接組み込み、哺乳動物細胞に導入される。つまりこの態様においては目的遺伝子がシス(前記ベクターと同一の構造体)に配置される。   In the present invention, a target gene is amplified in a mammalian host cell by using the above vector. In the first embodiment, the gene of interest is directly integrated into the vector under the control of an appropriate promoter sequence and introduced into a mammalian cell. That is, in this embodiment, the target gene is arranged in cis (the same structure as the vector).

また、本発明による遺伝子増幅の第二の態様では、ラムダファージ、コスミド等の、粘着末端を持ち自己環状化できる核酸に目的遺伝子を適切なプロモーターとともに組み込み、これを、前記の自律複製できるベクター(プラスミド等)と混合し、哺乳動物宿主細胞に共にトランスフェクションして導入する。つまり、この態様においては目的遺伝子がトランス(前記ベクターとは異なる構造体)に配置される。この態様においては2種類の核酸を混合して共にトランスフェクションすればよいが、両者の重量比は1対1であることが最も好ましい。この第二の態様では、第一の態様に比べて、より長鎖長の目的遺伝子を増幅させることができる。   In the second aspect of gene amplification according to the present invention, a target gene is incorporated together with a suitable promoter into a nucleic acid such as lambda phage, cosmid, etc., which has a sticky end and can be self-circulated, and this is a vector capable of autonomous replication. Mixed with a plasmid or the like) and transfected into a mammalian host cell for introduction. That is, in this embodiment, the target gene is arranged in trans (a structure different from the vector). In this embodiment, two types of nucleic acids may be mixed and transfected together, but the weight ratio of the two is most preferably 1: 1. In this second aspect, the target gene having a longer chain length can be amplified compared to the first aspect.

ベクターの細胞への導入は電気穿孔法、リポフェクション等の当業者に周知の方法によりおこなうことができる。   Introduction of a vector into cells can be performed by methods well known to those skilled in the art, such as electroporation and lipofection.

増幅した目的遺伝子より転写・翻訳された蛋白質は、使用目的によって様々な方法で調製し得る。例えば、細胞を回収後に適切な緩衝液中で破砕し、抽出して粗抽出物として使用してもいいし、また周知の各種クロマトグラフ等の方法により精製して使用してもよい。   Proteins transcribed and translated from the amplified target gene can be prepared by various methods depending on the purpose of use. For example, the cells may be crushed in an appropriate buffer after recovery, extracted and used as a crude extract, or may be used after purification by various known chromatograph methods.

以下、本発明の実施例を詳細に説明する。なお、以下の実施例は本発明を限定するものではない。   Hereinafter, embodiments of the present invention will be described in detail. The following examples do not limit the present invention.

<材料および方法>
〔プラスミド〕
図1で使用したプラスミド構築物を説明する。プラスミドpEPBG(11.0kbp)およびpSFVdhfr(11.0kbp)は、John Kolman 博士および Geoffrey M. Wahl 博士(The Salk Institute, San Diego, CA)から供与された。前者のプラスミドは、複製のEBウイルス潜在複製起点(EBV latent origin)(OriP)およびEBNA-1、加えて緑色蛍光蛋白質とG関連ポリペプチド(G-associated polypeptide)(GFP-GAP)の融合遺伝子を有し、後者のプラスミドはジヒドロ葉酸リダクターゼに対して3'-下流の領域に由来するOriβを含む4.6kbp断片を有している(16)。複製起点を欠くpSFV-Vプラスミド(6.4kbp)は、NotI消化で全てのジヒドロ葉酸リダクターゼ由来配列を削除することによってpSFVdhfrから構築された。pNeo.Myc-2.4プラスミド(9.0kbp;参照文献 17)は、Michael Leffak博士(Wright State University, Dayton, OH)から供与された。このプラスミドは、c-mycのプロモーター領域由来の2.4kbp HindIII/XhoI断片を含むものであり、NotI/HindIII消化してc-mycに由来する配列のほとんど全てを削除したpNeo-V(複製起点を欠く)の構築に使用した。pNeo.MycΔSVプラスミド(核マトリックス結合領域を欠く)は、BamHI/BsmI消化によって核マトリックス結合活性(18)を呈する大部分のSV40由来配列を削除して構築した。Igκ遺伝子のイントロン性エンハンサー核マトリックス結合領域(Intronic enhancer MAR)はpG19/45プラスミドを鋳型としたPCRによって増幅され、その増幅産物からpAR1プラスミドを構築した(19)。pNeo.MycΔSV AR1プラスミドは、pNeo.MycΔSVにpAR1の核マトリックス結合領域配列(AR1)を挿入することによって作成した。この操作によって核マトリックス結合領域類似SV40由来配列が置換される。
<Materials and methods>
[Plasmid]
The plasmid construct used in FIG. 1 is described. Plasmids pEPBG (11.0 kbp) and pSFVdhfr (11.0 kbp) were a gift from Dr. John Kolman and Dr. Geoffrey M. Wahl (The Salk Institute, San Diego, Calif.). The former plasmid contains a fusion gene of EBV latent origin of replication (OriP) and EBNA-1, plus a green fluorescent protein and a G-associated polypeptide (GFP-GAP). The latter plasmid has a 4.6 kbp fragment containing Oriβ derived from a region 3′-downstream of dihydrofolate reductase (16). The pSFV-V plasmid (6.4 kbp) lacking the origin of replication was constructed from pSFVdhfr by deleting all dihydrofolate reductase derived sequences with NotI digestion. The pNeo.Myc-2.4 plasmid (9.0 kbp; reference 17) was provided by Dr. Michael Leffak (Wright State University, Dayton, OH). This plasmid contains a 2.4 kbp HindIII / XhoI fragment derived from the promoter region of c-myc, and digested with NotI / HindIII to delete almost all the sequence derived from c-myc (pNeo-V (with the origin of replication). Used to build). The pNeo.MycΔSV plasmid (which lacks the nuclear matrix binding region) was constructed by deleting most of the SV40-derived sequences exhibiting nuclear matrix binding activity (18) by BamHI / BsmI digestion. The intronic enhancer nuclear matrix binding region (Intronic enhancer MAR) of the Igκ gene was amplified by PCR using the pG19 / 45 plasmid as a template, and a pAR1 plasmid was constructed from the amplified product (19). The pNeo.MycΔSV AR1 plasmid was prepared by inserting the nuclear matrix binding region sequence (AR1) of pAR1 into pNeo.MycΔSV. This operation replaces the SV40-derived sequence similar to the nuclear matrix binding region.

〔その他の実験方法〕
ヒト結腸直腸のCOLO 320DMおよびCOLO 320HSR腫瘍細胞株を文献の記載に従い獲得し、維持した(5)。
[Other experimental methods]
Human colorectal COLO 320DM and COLO 320HSR tumor cell lines were acquired and maintained as described in the literature (5).

HeLa細胞株は、アメリカンタイプカルチャーコレクション(American Type Culture Collection)(CCL-2)から入手した。全てのプラスミドをQiagenプラスミド精製キット(Qiagen Inc., Valencia, CA)により精製し、GenePorter 2リポフェクションキット(Gene Therapy Systems, San Diego, CA)により細胞にトランスフェクトした。   The HeLa cell line was obtained from the American Type Culture Collection (CCL-2). All plasmids were purified with Qiagen plasmid purification kit (Qiagen Inc., Valencia, Calif.) And transfected into cells with GenePorter 2 lipofection kit (Gene Therapy Systems, San Diego, Calif.).

ブラスティサイジン(Blasticidine)(10 μg/ml; Funakoshi, Tokyo, Japan;pEPBG、pSFVdhfr、および、その変異体に対して)または500μg/mlネオマイシン(Neomycin) (Life Technologies, Inc., Rockville, MD; pNeo.Myc-2.4 および、その変異体に対して)が形質転換体を選択するために使用された。我々が出版したプロトコルに従って、COLO 320のアンプリコン(amplicons)を検出するビオチン標識された微小核プローブを調製した(5)。既刊のプロトコル(20)に従い、分裂中期試料の作成、DIG標識プローブの調製およびFISHを実施した(インビトロ核マトリックス結合アッセイ(19)と同様に)。   Blasticidine (10 μg / ml; Funakoshi, Tokyo, Japan; for pEPBG, pSFVdhfr, and variants thereof) or 500 μg / ml Neomycin (Life Technologies, Inc., Rockville, MD; pNeo.Myc-2.4 and its variants) were used to select transformants. Biotin-labeled micronuclear probes that detect COLO 320 amplicons were prepared according to the protocol we published (5). Preparation of metaphase samples, preparation of DIG-labeled probes and FISH were performed according to the published protocol (20) (similar to in vitro nuclear matrix binding assay (19)).

<結果および考察>
EBウイルス・レプリコンを有するプラスミドはDMに組み込まれる哺乳類のレプリコンを調べる前に、我々は最も特性が調べられたエピゾーム性(episomal)のベクター(すなわち、EBウイルス・レプリコン(pEPBG)に準拠するもの)を試験した。このプラスミドは、ウィルスのシス作動性(cis-acting)OriP配列から自律的に複製し、分裂期染色体への付着にウィルスEBNA-1遺伝子の発現を必要とする(11)。我々は、このプラスミドを多数のDMを有するヒトCOLO 320DM腫瘍細胞にトランスフェクトし、安定に形質転換されたコロニー混合物をFISH法により分析した。その結果、前記プラスミドの配列が若干の分裂中期細胞中の様々なサイズのDMで主に検出された(図2、AおよびB;表1)。また、染色体に組み込まれた徴候は認められなかった。これらの観察は最近の報告に記載された結果と同質のものであり、EBウイルス・レプリコンを有するプラスミドがDMと選択的に組換を起すことを示すものである(14)。混合コロニーを用いた実験ではDMへプラスミドが組み込まれた細胞の割合は小さい(13%)が、前記プラスミドによってコードされるGFP-GAP融合蛋白質の高レベルな発現を呈するクローンを検査した際には、10クローン中の10クローンがDMへの組み込みを呈するものであった。この現象は、DMに組み込まれた配列が高レベルで発現されることを示唆している。また、この結果は腫瘍細胞の増幅遺伝子の大部分がDMに局在するという観察と一致するものである(1)。
<Results and discussion>
Before investigating mammalian replicons that incorporate EB virus replicons into DM, we will examine the most characterized episomal vectors (ie compliant with EB virus replicons (pEPBG)) Was tested. This plasmid replicates autonomously from the viral cis-acting OriP sequence and requires expression of the viral EBNA-1 gene for attachment to the mitotic chromosome (11). We transfected this plasmid into human COLO 320DM tumor cells with a large number of DM and analyzed the stably transformed colony mixture by FISH method. As a result, the sequence of the plasmid was mainly detected in various sizes of DM in some metaphase cells (FIGS. 2, A and B; Table 1). There were no signs of chromosome integration. These observations are similar to the results described in a recent report, indicating that plasmids carrying the EB virus replicon selectively recombine with DM (14). In experiments using mixed colonies, the percentage of cells that incorporated the plasmid into DM was small (13%), but when clones exhibiting high level expression of the GFP-GAP fusion protein encoded by the plasmid were examined. 10 clones out of 10 exhibited integration into DM. This phenomenon suggests that sequences incorporated into DM are expressed at high levels. This result is also consistent with the observation that most of the tumor cell amplification genes are localized in DM (1).

哺乳類レプリコンを有するプラスミドもDMに組み込まれた同様に、我々はそれぞれジヒドロ葉酸リダクターゼ(16)およびc-myc遺伝子座(17)の起点配列を有する、pSFVdhfrおよびpNeo.Myc-2.4プラスミドを試験した(図1)。我々は、これらのプラスミドもまたCOLO 320DM細胞において様々なサイズのDMに組み込まれ、そして、それらは選択的に微小核に組み込まれることを見出した(図2C)。   Similarly, plasmids with mammalian replicons were also incorporated into DM, and we tested the pSFVdhfr and pNeo.Myc-2.4 plasmids with origin sequences for the dihydrofolate reductase (16) and c-myc loci (17), respectively ( Figure 1). We have found that these plasmids are also incorporated into various sizes of DM in COLO 320DM cells and that they are selectively incorporated into micronuclei (FIG. 2C).

また、プラスミドおよびアンプリコン配列の同時検出により、プラスミド配列を有するDMがトランスフェクションされていないCOLO 320DM細胞に存在するDMに由来することが示された(図2D)。混合形質転換コロニーでのDMの組み込みの頻度は、pSFVdhfr(60%)において高く、pNeo.Myc-2.4(4.3%)において低かった(組み込まれている配列が、如何にして頻度に影響をおよぼすかについては明白となってない)。   Also, simultaneous detection of plasmid and amplicon sequences showed that the DM with the plasmid sequence was derived from DM present in untransfected COLO 320DM cells (FIG. 2D). The frequency of DM integration in mixed transformed colonies was high in pSFVdhfr (60%) and low in pNeo.Myc-2.4 (4.3%) (how the integrated sequence affects the frequency) Is not clear).

DMへの組み込みはプラスミドの自律的複製を必要とする哺乳類の起点配列がプラスミド(pSFV-VおよびpNeo-V;図1)から削除された場合に、前記プラスミドがDM(表1)と組換えを生じなかったことは重要な知見である。また、我々はpSFVdhfr(〜800コロニー/106細胞)と比較してpSFV-V(〜30コロニー/106細胞)の形質転換効率が非常に低いことをも見出しており、これらの事実は自律的に複製する能力がDMへのプラスミドの組み込みに重要であること、そしてこの能力が形質転換効率を増大することを示唆するものである。なぜ自律的に複製するプラスミドが頻繁にDMと組換えを生じるかについては現在推論中の問題であるが、1つの仮説はプラスミドおよびDMが共通の分配様式を共有するという事実に基づくものである。DMは引続く細胞周期のG1期に核内の周辺部に局在する傾向にあり、複製時には核の内部に移動し、その後、染色体に付着することにより分離される(14、20、21)。したがって、間期核で起こりうるDMおよびプラスミドの共局在化(colocalization)によって、これら2つのDNA種間の組換え頻度が増加する可能性がある。 Integration into DM causes the plasmid to recombine with DM (Table 1) when the mammalian origin sequences that require autonomous replication of the plasmid are deleted from the plasmid (pSFV-V and pNeo-V; Figure 1). It is an important finding that it did not occur. We have also found that the transformation efficiency of pSFV-V (~ 30 colonies / 10 6 cells) is very low compared to pSFVdhfr (~ 800 colonies / 10 6 cells), and these facts are autonomous This suggests that the ability to replicate specifically is important for plasmid integration into DM and that this ability increases transformation efficiency. While the question of why autonomously replicating plasmids frequently recombine with DM is an ongoing issue, one hypothesis is based on the fact that plasmids and DM share a common mode of distribution. . DM tends to localize in the periphery of the nucleus during the G1 phase of the subsequent cell cycle, moves to the inside of the nucleus during replication, and then is separated by attaching to the chromosome (14, 20, 21) . Thus, DM and plasmid colocalization that can occur in interphase nuclei may increase the frequency of recombination between these two DNA species.

核マトリックス結合領域は哺乳類の起点によって駆動される染色体外複製に必要である核マトリックス結合領域はジヒドロ葉酸リダクターゼ遺伝子座上の複製開始部位付近に存在するという報告がある(16)、pSFVdhfrの4.6kbp挿入物には報告がない。それにもかかわらず、核マトリックス結合領域検索プログラム(22)分析は前記挿入物内部での潜在的な核マトリックス結合領域の存在可能性を予測した、そして、実際に予測された断片がインビトロで核マトリックスに結合することが認められた(図3)。また、核マトリックス結合領域検索プログラムはpNeo.Myc-2.4のc-myc遺伝子座由来の2.4kbp挿入物に核マトリックス結合領域の候補を検出できなかった。しかし、前記プラスミドは核マトリックス結合活性を呈するSV40初期領域由来の配列を含んでおり(18)、我々のインビトロでのマトリックス結合アッセイによって核マトリックス結合活性を有することが立証された(図3)。形質転換効率およびDMへの組み込みにおける核マトリックス結合領域の役割を調査するため、我々はpNeo.Myc-2.4のSV40由来の核マトリックス結合領域類似配列を削除した(これにより、pNeo.MycΔSVが作成される;図1)、一方、我々は他の構築物(pNeo.MycΔSV AR1)の該部位をIgκ遺伝子由来の核マトリックス結合領域と置換した(19)。予想したとおり、インビトロ結合アッセイによって、前者プラスミド(pNeo.MycΔSV)から生成するNcoI/HindIII断片は核マトリックス結合活性を示さないが、一方、後者(pNeo.MycΔSV AR1)から生成したものは核マトリックスに結合することが示された(図3)。COLO 320DM細胞がこれらのプラスミドでトランスフェクトされた際に、形質転換効率はpNeo.MycΔSV AR1(〜800コロニー/106細胞)と対比して、pNeo.MycΔSV(〜90コロニー/106細胞)で非常に低かった。さらに、前者プラスミド(pNeo.Myc ΔSV)はDMに組み込まれなかったが、一方、後者(pNeo.Myc ΔSV AR1)は組み込まれた(表1;図2E)。これらの観察結果はDMへの組み込みがシス作動性核マトリックス結合領域に依存することを示すものである。このようなことから、核マトリックス結合領域はプラスミドの自律的複製に重要な役割を担うと思われる。 The nuclear matrix binding region is required for extrachromosomal replication driven by the mammalian origin. There is a report that the nuclear matrix binding region exists near the replication initiation site on the dihydrofolate reductase locus (16), 4.6 kbp of pSFVdhfr. There is no report on the insert. Nevertheless, nuclear matrix binding region search program (22) analysis predicted the potential presence of a potential nuclear matrix binding region within the insert, and the actual predicted fragment was detected in vitro in the nuclear matrix (Fig. 3). Moreover, the nuclear matrix binding region search program could not detect a candidate nuclear matrix binding region in the 2.4 kbp insert derived from the c-myc locus of pNeo.Myc-2.4. However, the plasmid contains a sequence derived from the SV40 early region that exhibits nuclear matrix binding activity (18) and was demonstrated to have nuclear matrix binding activity by our in vitro matrix binding assay (FIG. 3). To investigate the role of nuclear matrix binding region in transformation efficiency and integration into DM, we deleted the SV40-derived nuclear matrix binding region-like sequence of pNeo.Myc-2.4 (this created pNeo.MycΔSV Figure 1), on the other hand, we replaced the site of another construct (pNeo.MycΔSV AR1) with a nuclear matrix binding region from the Igκ gene (19). As expected, by in vitro binding assay, the NcoI / HindIII fragment generated from the former plasmid (pNeo.MycΔSV) does not show nuclear matrix binding activity, whereas that generated from the latter (pNeo.MycΔSV AR1) It was shown to bind (Figure 3). When COLO 320DM cells were transfected with these plasmids, the transformation efficiency was pNeo.MycΔSV (˜90 colonies / 10 6 cells) compared to pNeo.MycΔSV AR1 (˜800 colonies / 10 6 cells). It was very low. Furthermore, the former plasmid (pNeo.Myc ΔSV) was not incorporated into DM, while the latter (pNeo.Myc ΔSV AR1) was incorporated (Table 1; FIG. 2E). These observations indicate that DM incorporation is dependent on the cis-acting nuclear matrix binding region. Thus, the nuclear matrix binding region appears to play an important role in autonomous replication of the plasmid.

〔自律複製するプラスミドは遺伝子増幅類似の現象を惹起する〕
予想外の現象が異なる細胞株(すなわち、COLO 320HSR細胞)をトランスフェクションに使用した際に認められた。この細胞株は通常DMを含まないが、pSFVdhfrまたはpNeo.MycΔSV AR1でトランスフェクトした際に多くのプラスミド配列を有するDMが観察された(それぞれ、図2GおよびH)(すなわち、多くの微小クロマチン・ペアが分裂中期で観察された)。これらのDMがCOLO 320細胞に認められるオリジナルのアンプリコン配列を含まないことが2色FISH分析により示され(図2G)、この事実はDMがde novoに発生したことを意味している。DMを有する細胞は、起点と核マトリックス結合領域の両方を有するプラスミドでトランスフェクトした場合のみ頻繁に存在した(表1)。また、これらの現象はHeLa(DMを欠く他の腫瘍細胞株)が使用された場合にも認められた(図2I)。プラスミドが内在性の染色体外閉環型DNAと頻繁に組換えを生じるとの解釈がこの現象を説明しうるもっともらしい解釈である。実際に、多くの哺乳類体細胞はゲノムの柔軟性に依拠した染色体外の閉環型DNAを含んでいる(23)。我々の観察は、DMが顕微鏡で検出不可能なエピソーム間の組換えによって発生することを示唆するモデルを直接的に支持するものである(24)。
[A self-replicating plasmid causes a phenomenon similar to gene amplification]
An unexpected phenomenon was observed when different cell lines (ie COLO 320HSR cells) were used for transfection. This cell line usually does not contain DM, but DM with many plasmid sequences was observed when transfected with pSFVdhfr or pNeo.MycΔSV AR1 (FIGS. 2G and H, respectively) (ie, many microchromatin Pairs were observed at metaphase). Two-color FISH analysis shows that these DMs do not contain the original amplicon sequence found in COLO 320 cells (FIG. 2G), which means that DM occurred de novo. Cells with DM were frequently present only when transfected with a plasmid having both an origin and a nuclear matrix binding region (Table 1). These phenomena were also observed when HeLa (another tumor cell line lacking DM) was used (FIG. 2I). The interpretation that plasmids frequently recombine with endogenous extrachromosomal DNA is a plausible interpretation that can explain this phenomenon. Indeed, many mammalian somatic cells contain extrachromosomal closed-loop DNA that relies on genomic flexibility (23). Our observations directly support a model that suggests that DM occurs by recombination between episomes that cannot be detected under a microscope (24).

また、我々は染色体均一染色領域(腫瘍細胞で見つけられる)に類似する染色体腕に沿った非常に強いプラスミド・シグナルを呈する細胞群を見出した(図2F、矢印)。このような細胞群は、起点と核マトリックス結合領域両方を有するプラスミドが使用された場合に限り観察された。興味深いことに、この細胞群の発生頻度は、COLO 320HSR細胞と対比してCOLO 320DM細胞にトランスフェクトした際にはるかに高率であった(表1)。この知見は、均一染色領域が染色体腕へのDMの縦列組み込み(tandem integration)によって形成されることを提示するモデルと一致するものである(24)。   We also found a group of cells exhibiting a very strong plasmid signal along the chromosomal arm similar to the homogenous chromosome staining region (found in tumor cells) (Figure 2F, arrow). Such cell populations were observed only when a plasmid having both an origin and a nuclear matrix binding region was used. Interestingly, the frequency of this cell population was much higher when transfected into COLO 320DM cells compared to COLO 320HSR cells (Table 1). This finding is consistent with a model that suggests that the uniformly stained region is formed by tandem integration of DM into the chromosome arm (24).

以上のように我々は本発明の基礎研究過程で、ヒト腫瘍形成で重大な役割を演ずる遺伝子増幅の機構における新規インビトロ・モデルを明らかにした。このモデルは哺乳類の複製起点の機能分析に有用と思われる、というのも今日まで本課題の研究の多くは、周囲のクロマチンによって影響される染色体上に組み込まれた配列を使用してなされてきたからである。   As described above, in the basic research process of the present invention, we have clarified a novel in vitro model in the mechanism of gene amplification that plays a critical role in human tumorigenesis. This model appears to be useful for functional analysis of mammalian origins of replication, since most of the work to date has been done using sequences integrated on chromosomes that are affected by surrounding chromatin. It is.

本発明で我々は、前記インビトロ・モデルによりDM組込みまたはDM生成がプラスミド上のシス作動性複製起点および核マトリックス結合領域を必要とすることを示した。この結果は、組換えが自律的複製し得るプラスミドを必要とすることを強く示唆するものである。このような染色体外複製の研究は、遺伝子治療に必要とされる哺乳類レプリコンを有する安定したプラスミド開発等を促進するものと思われる。   In the present invention we have shown by the in vitro model that DM integration or DM production requires a cis-acting origin of replication and a nuclear matrix binding region on the plasmid. This result strongly suggests that recombination requires a plasmid capable of autonomous replication. Such extrachromosomal replication studies are likely to facilitate the development of stable plasmids with mammalian replicons required for gene therapy.

<参照文献>
1.Benner, S. E., Wahl, G. M., and Von Hoff, D. D. Double minute chromosomes and homogeneously staining regions in tumors taken directly from patients versus in human tumor cell lines. Anti-Cancer Drugs,
2.11−25, 1991.2. Shimizu, N., Nakamura, H., Kadota, T., Kitajima, K., Oda, T., Hirano,T., and Utiyama, H. Loss of amplified c-myc genes in the spontaneouslydifferentiated HL-60 cells. Cancer Res., 54: 3561−3567, 1994.
3.Von Hoff, D. D., McGill, J. R., Forseth, B. J., Davidson, K. K., Bradley, T. P., Van Devanter, D. R., and Wahl, G. M. Elimination of extrachromosomally amplified MYC genes from human tumor cells reduces their tumorigenicity. Proc. Natl. Acad. Sci. USA, 89: 8165−8169, 1992.
4.Eckhardt, S. G., Dai, A., Davidson, K. K., Forseth, B. J., Wahl, G. M., and Von Hoff, D. D. Induction of differentiation in HL60 cells by thereduction of extrachromosomally amplified c-myc. Proc. Natl. Acad. Sci.USA, 91: 6674 − 6678, 1994.
5.Shimizu, N., Kanda, T., and Wahl, G. M. Selective capture of acentricfragments by micronuclei provides a rapid method for purifying extrachromosomally amplified DNA. Nat. Genet., 12: 65−71, 1996.
6.Shimizu, N., Shimura, T., and Tanaka, T. Selective elimination of acentric double minutes from cancer cells through the extrusion of micronuclei. Mutat. Res., 448: 81−90, 2000.
7.Tanaka, T., and Shimizu, N. Induced detachment of acentric chromatinfrom mitotic chromosomes leads to their cytoplasmic localization at G1 and the micronucleation by lamin reorganization at S phase. J. Cell Sci.,113: 697−707, 2000.
8.Levan, A., and Levan, G. Have double minutes functioning centromeres?Hereditas, 88: 81−92, 1978.
9.Kanda, T., Sullivan, K. F., and Wahl, G. M. Histone-GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammaliancells. Curr. Biol., 8: 377−385, 1998.
10.Lehman, C. W., and Botchan, M. R. Segregation of viral plasmids depends on tethering to chromosomes and is regulated by phosphorylation. Proc. Natl. Acad. Sci. USA, 95: 4338−4343, 1998.
11.Marechal, V., Dehee, A., Chikhi-Brachet, R., Piolot, T., Coppey-Moisan, M., and Nicolas, J. C. Mapping EBNA-1 domains involved in binding tometaphase chromosomes. J. Virol., 73: 4385−4392, 1999.
12.Ballestas, M. E., Chatis, P. A., and Kaye, K. M. Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science (Wash. DC), 284: 641−644, 1999.
13.Baiker, A., Maercker, C., Piechaczek, C., Schmidt, S. B., Bode, J.,Benham, C., and Lipps, H. J. Mitotic stability of an episomal vector containing a human scaffold/ matrix-attached region is provided by association with nuclear matrix. Nature Cell Biol., 2: 182−184, 2000.
14.Kanda, T., Otter, M., and Wahl, G. M. Mitotic segregation of viral and cellular acentric extrachromosomal molecules by chromosome tethering.J. Cell Sci., 114: 49−58, 2001.
15.Brylawski, B. P., Cohen, S. M., Cordeiro-Stone, M., Schell, M. J., and Kaufman, D. G. On the relationship of matrix association and DNA replication. Crit. Rev. Eukaryot. Gene Expr., 10: 91−99, 2000.
16.Dijkwel, P. A., and Hamlin, J. L. Matrix attachment regions are positioned near replication initiation sites, genes, and an interamplicon junction in the amplified dihydrofolate reductase domain of Chinese hamster ovary cells. Mol. Cell Biol., 8: 5398−5409, 1988.
17.McWhinney, C., and Leffak, M. Autonomous replication of a DNA fragment containing the chromosomal replication origin of the human c-myc gene. Nucleic Acids Res.,
18.1233−1242, 1990.18. Pommier, Y., Cockerill, P. N., Kohn, K. W., and Garrard, W. T. Identification within the simian virus 40 genome of a chromosomal loop attachment site that contains topoisomerase II cleavage sites. J. Virol., 64:419−423, 1990.
19.Tsutsui, K., Okada, S., Watarai, S., Seki, S., Yasuda, T., and Shohmori, T. Identification and characterization of a nuclear scaffold protein that binds the matrix attachment region DNA. J. Biol. Chem., 268: 12886−12894, 1993.
20.Shimizu, N., Itoh, N., Utiyama, H., and Wahl, G. Selective entrapment of extrachromosomally amplified DNA by nuclear budding and micronucleation during S-phase. J. Cell Biol., 140: 1307−1320, 1998.
21.Itoh, N., and Shimizu, N. DNA replication-dependent intranuclear relocation of double minute chromatin. J. Cell Sci., 111: 3275−3285, 1998.
22.Kramer, J. A., Singh, G. B., and Krawetz, S. A. Computer-assisted search for sites of nuclear matrix attachment. Genomics, 33: 305−308, 1996.
23.Wahl, G. M. The importance of circular DNA in mammalian gene amplification. Cancer Res., 49: 1333−1340, 1989.
24.Gaubatz, J. W. Extrachromosomal circular DNAs and genomic sequence plasticity in eukaryotic cells. Mutat. Res., 237: 271−292, 1990.
<References>
1. Benner, SE, Wahl, GM, and Von Hoff, DD Double minute chromosomes and homogeneously staining regions in tumors taken directly from patients versus in human tumor cell lines.Anti-Cancer Drugs,
2.1-25, 1991.2. Shimizu, N., Nakamura, H., Kadota, T., Kitajima, K., Oda, T., Hirano, T., and Utiyama, H. Loss of amplified c-myc genes in the spontaneouslydifferentiated HL-60 cells.Cancer Res., 54: 3561-3567, 1994.
3. Von Hoff, DD, McGill, JR, Forseth, BJ, Davidson, KK, Bradley, TP, Van Devanter, DR, and Wahl, GM Elimination of extrachromosomally amplified MYC genes from human tumor cells reduces their tumorigenicity.Proc. Natl. Acad. Sci. USA, 89: 8165-8169, 1992.
Four. Eckhardt, SG, Dai, A., Davidson, KK, Forseth, BJ, Wahl, GM, and Von Hoff, DD Induction of differentiation in HL60 cells by thereduction of extrachromosomally amplified c-myc.Proc. Natl. Acad. Sci. USA , 91: 6674 − 6678, 1994.
Five. Shimizu, N., Kanda, T., and Wahl, GM Selective capture of acentricfragments by micronuclei provides a rapid method for purifying extrachromosomally amplified DNA. Nat. Genet., 12: 65−71, 1996.
6. Shimizu, N., Shimura, T., and Tanaka, T. Selective elimination of acentric double minutes from cancer cells through the extrusion of micronuclei. Mutat.Res., 448: 81−90, 2000.
7. Tanaka, T., and Shimizu, N. Induced detachment of acentric chromatinfrom mitotic chromosomes leads to their cytoplasmic localization at G1 and the micronucleation by lamin reorganization at S phase.J. Cell Sci., 113: 697-707, 2000.
8. Levan, A., and Levan, G. Have double minutes functioning centromeres? Hereditas, 88: 81−92, 1978.
9. Kanda, T., Sullivan, KF, and Wahl, GM Histone-GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammaliancells. Curr. Biol., 8: 377-385, 1998.
Ten. Lehman, CW, and Botchan, MR Segregation of viral plasmids depends on tethering to chromosomes and is regulated by phosphorylation.Proc. Natl. Acad. Sci. USA, 95: 4338-4343, 1998.
11. Marechal, V., Dehee, A., Chikhi-Brachet, R., Piolot, T., Coppey-Moisan, M., and Nicolas, JC Mapping EBNA-1 domains involved in binding tometaphase chromosomes. J. Virol., 73 : 4385-4392, 1999.
12. Ballestas, ME, Chatis, PA, and Kaye, KM Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen.Science (Wash.DC), 284: 641--644, 1999.
13. Baiker, A., Maercker, C., Piechaczek, C., Schmidt, SB, Bode, J., Benham, C., and Lipps, HJ Mitotic stability of an episomal vector containing a human scaffold / matrix-attached region is provided by association with nuclear matrix.Nature Cell Biol., 2: 182-284, 2000.
14. Kanda, T., Otter, M., and Wahl, GM Mitotic segregation of viral and cellular acentric extrachromosomal molecules by chromosome tethering. J. Cell Sci., 114: 49-58, 2001.
15. Brylawski, BP, Cohen, SM, Cordeiro-Stone, M., Schell, MJ, and Kaufman, DG On the relationship of matrix association and DNA replication.Crit. Rev. Eukaryot. Gene Expr., 10: 91-99, 2000 .
16. Dijkwel, PA, and Hamlin, JL Matrix attachment regions are positioned near replication initiation sites, genes, and an interamplicon junction in the amplified dihydrofolate reductase domain of Chinese hamster ovary cells.Mol. Cell Biol., 8: 5398-5409, 1988.
17. McWhinney, C., and Leffak, M. Autonomous replication of a DNA fragment containing the chromosomal replication origin of the human c-myc gene.Nucleic Acids Res.,
18.1233-1242, 1990.18. Pommier, Y., Cockerill, PN, Kohn, KW, and Garrard, WT Identification within the simian virus 40 genome of a chromosomal loop attachment site that contains topoisomerase II cleavage sites. J. Virol., 64: 419-423, 1990.
19. Tsutsui, K., Okada, S., Watarai, S., Seki, S., Yasuda, T., and Shohmori, T. Identification and characterization of a nuclear scaffold protein that binds the matrix attachment region DNA.J. Biol. Chem., 268: 12886-12894, 1993.
20. Shimizu, N., Itoh, N., Utiyama, H., and Wahl, G. Selective entrapment of extrachromosomally amplified DNA by nuclear budding and micronucleation during S-phase.J. Cell Biol., 140: 1307-1320, 1998.
twenty one. Itoh, N., and Shimizu, N. DNA replication-dependent intranuclear relocation of double minute chromatin. J. Cell Sci., 111: 3275-3285, 1998.
twenty two. Kramer, JA, Singh, GB, and Krawetz, SA Computer-assisted search for sites of nuclear matrix attachment.Genomics, 33: 305-308, 1996.
twenty three. Wahl, GM The importance of circular DNA in mammalian gene amplification.Cancer Res., 49: 1333-1340, 1989.
twenty four. Gaubatz, JW Extrachromosomal circular DNAs and genomic sequence plasticity in eukaryotic cells. Mutat. Res., 237: 271-292, 1990.

本発明は、遺伝子工学的手法により、哺乳動物細胞内において医薬品等の有用蛋白質を生産するために有用である。   The present invention is useful for producing useful proteins such as pharmaceuticals in mammalian cells by genetic engineering techniques.

図1は、本研究で使用したプラスミドを示す図である。図には、EBウイルス・レプリコン(OriPおよびEBNA-1)、ジヒドロ葉酸リダクターゼ遺伝子座、およびc-myc遺伝子座由来の哺乳類複製起点を有するpEPBG、pSFVdhfrおよびpNeo.Myc-2.4の構成が示されている。本研究における他のプラスミドは、pSFVdhfrまたはpNeo.Myc-2.4から構築された。SV40初期領域またはIgκ遺伝子(AR1)由来のイントロニック配列は、核マトリックス結合活性を呈した(黒四角で示される)。ジヒドロ葉酸リダクターゼ Oriβは、その内部に核マトリックス結合活性を呈する配列を含む(図3参照)。GFP-GAP(GFPとGAPの融合遺伝子); BS(ブラスティサイジン S耐性); Hyg(ハイグロマイシン耐性); Neo(ネオマイシン耐性); MMTI(マウスのメタロチオネインの5'フランキングDNAおよびプロモーター領域)。白四角は細菌細胞の成育に必要なベクター領域を表す。FIG. 1 shows the plasmids used in this study. The figure shows the organization of pEPBG, pSFVdhfr and pNeo.Myc-2.4 with mammalian origins of replication from the EB virus replicon (OriP and EBNA-1), the dihydrofolate reductase locus, and the c-myc locus Yes. Other plasmids in this study were constructed from pSFVdhfr or pNeo.Myc-2.4. Intronic sequences derived from the SV40 early region or Igκ gene (AR1) exhibited nuclear matrix binding activity (indicated by black squares). Dihydrofolate reductase Oriβ contains a sequence exhibiting nuclear matrix binding activity therein (see FIG. 3). GFP-GAP (GFP and GAP fusion gene); BS (blasticidin S resistance); Hyg (hygromycin resistance); Neo (neomycin resistance); MMTI (5 'flanking DNA and promoter region of mouse metallothionein). Open squares represent vector regions necessary for bacterial cell growth. 図2は、プラスミドで形質転換された腫瘍細胞のFISH分析の結果を示す蛍光顕微鏡写真である。COLO 320DM (A-F), COLO 320HSR (G and H), および HeLa (I)細胞が、pEPBG(A および B), pSFVdhfr (C, D, G, および I), または pNeo.Myc ΔSV AR1 (E,F, および H)でトランスフェクトされた。安定形質転換体を培養30日経過後に選択し、分裂中期の染色体標本を作成した。トランスフェクションするプラスミドから調製したDIG標識プローブを染色体標本とのハイブリダイズに使用し、緑色蛍光で検出した。DおよびGはトランスフェクションしていないCOLO 320DM細胞の精製微小核から調製したビオチン標識プローブとDIG標識プラスミドプローブを同時にハイブリダイズし、赤色蛍光で検出した結果を示す。白矢印は、DM(A-EおよびG-I)または分裂中期の均一染色領域に相当する間期核(F)の巨大シグナル(Fの挿入図)を示す。アローヘッド(FおよびH)は、プラスミド由来の配列を蓄積した微小核を示す。プロピディウムイオダイド(propidium iodide)により赤色(A-CおよびI)に、または4',6-ジアミノ-2-フェニルインドール(4',6-diamidino-2-phenylindole)により青色(D-H)にDNAを対比染色した。緑色および赤色の重複部は黄色を、緑色および青色の重複部はシアン色を、そして3色全部の重複は白色を呈する。Dにおいて、プラスミド配列(緑色)は、DM(青色で検出、白矢印)に局在するアンプリコン配列(赤色)と局在が一致した。Gにおいて、アンプリコン配列(赤色)は、細胞中のマーカー均一染色領域で主に検出(黄色の矢印I、IIおよびIII)されたが、プラスミド配列(緑色、白矢印で示される)を有するDM(青色)では検出されなかった。バーは10μmを表す。FIG. 2 is a fluorescence micrograph showing the results of FISH analysis of tumor cells transformed with a plasmid. COLO 320DM (AF), COLO 320HSR (G and H), and HeLa (I) cells become pEPBG (A and B), pSFVdhfr (C, D, G, and I), or pNeo.Myc ΔSV AR1 (E, F, and H). Stable transformants were selected after 30 days of culture, and metaphase chromosome samples were prepared. A DIG-labeled probe prepared from the plasmid to be transfected was used for hybridization with a chromosome specimen and detected with green fluorescence. D and G show the results of detection of red fluorescence by simultaneously hybridizing a biotin-labeled probe prepared from purified micronuclei of untransfected COLO 320DM cells and a DIG-labeled plasmid probe. White arrows indicate DM (A-E and G-I) or a large signal (F inset) in the interphase nucleus (F) corresponding to a homogeneous staining region at metaphase. Arrowheads (F and H) indicate micronuclei that have accumulated plasmid-derived sequences. DNA in red (AC and I) with propidium iodide or blue (DH) with 4 ', 6-diamino-2-phenylindole (4', 6-diamidino-2-phenylindole) Counterstained. Green and red overlaps are yellow, green and blue overlaps are cyan, and all three overlaps are white. In D, the plasmid sequence (green) coincided with the amplicon sequence (red) localized in DM (detected in blue, white arrow). In G, the amplicon sequence (red) was detected mainly in the marker uniformly stained region in the cells (yellow arrows I, II and III), but DM with the plasmid sequence (shown in green, white arrows) It was not detected in (blue). Bar represents 10 μm. 図3は、インビトロ・マトリックス結合アッセイの結果を示すPAGE電気泳動写真である。プラスミドを各々BamHI/ HindIII (pAR1)、NcoI/HindIII (pNeo.Myc-2.4, pNeo.Myc ΔSV および pNeo.Myc ΔSV AR1;制限酵素認識部位は図1を参照)、HinfI (pSFVdhfr)で消化し、末端充填反応(end-filling reaction) により[α-32P]dATPで標識した。標識DNA断片を種々の濃度の未標識競合物(大腸菌DNAおよびpUC18 DNAが20:1の混合物)の存在下で、核マトリックスとともにインキュベーションした。遠心分離を繰り返してマトリックスを洗浄後、マトリックスに結合したDNA断片を5%-PAGEで分離し、オートラジオグラフィーによって視覚化した。レーン1、インプットDNA;Lanes 2-4、競合DNA(それぞれ、4、8、16μg)存在下の反応。アローヘッドは、マトリックスに特異的に結合したバンドを示す。pAR1はコントロールとして使用したプラスミドであり、マウスIgκ遺伝子(アローヘッド)に由来する核マトリックス結合領域を含む。核マトリックス結合活性を呈するpNeo.Myc-2.4断片は、核マトリックス結合領域(18)であることが証明されたSV40初期領域を具備している。この配列の削除は、完全に核マトリックス結合活性を破壊した(pNeo.MycΔSV)。しかし、このプラスミドへのIgκ核マトリックス結合領域配列の挿入は、核マトリックス結合活性を復活させた(pNeo.MycΔSV AR1)。マトリックスに結合したpSFVdhfr断片(a)は、核マトリックス結合領域検索プログラムによって予測された潜在的核マトリックス結合領域と一致するジヒドロ葉酸リダクターゼ挿入物の中心部由来の886bp断片と同定された。断片(b)の素性は同定されなかったが、同様に挿入物に由来する断片であるとの解釈がもっともらしい。FIG. 3 is a PAGE electrophoresis photograph showing the results of an in vitro matrix binding assay. The plasmids were digested with BamHI / HindIII (pAR1), NcoI / HindIII (pNeo.Myc-2.4, pNeo.Myc ΔSV and pNeo.Myc ΔSV AR1, respectively; see FIG. 1 for restriction enzyme recognition sites), HinfI (pSFVdhfr), It was labeled with [α-32P] dATP by an end-filling reaction. The labeled DNA fragments were incubated with the nuclear matrix in the presence of various concentrations of unlabeled competitor (20: 1 mixture of E. coli DNA and pUC18 DNA). After washing the matrix by repeated centrifugation, DNA fragments bound to the matrix were separated by 5% -PAGE and visualized by autoradiography. Lane 1, input DNA; reaction in the presence of Lanes 2-4, competing DNA (4, 8, 16 μg, respectively). The arrowhead shows a band specifically bound to the matrix. pAR1 is a plasmid used as a control and contains a nuclear matrix-binding region derived from the mouse Igκ gene (arrowhead). The pNeo.Myc-2.4 fragment exhibiting nuclear matrix binding activity has an SV40 early region that has proven to be a nuclear matrix binding region (18). Deletion of this sequence completely destroyed nuclear matrix binding activity (pNeo.MycΔSV). However, insertion of the Igκ nuclear matrix binding region sequence into this plasmid restored nuclear matrix binding activity (pNeo.MycΔSV AR1). The pSFVdhfr fragment (a) bound to the matrix was identified as a 886 bp fragment from the center of the dihydrofolate reductase insert that matches the potential nuclear matrix binding region predicted by the nuclear matrix binding region search program. The identity of fragment (b) was not identified, but it is likely to be interpreted as a fragment derived from the insert as well.

Claims (14)

DMおよび/またはHSRの形態で目的遺伝子を増幅させるための方法であって、
前記目的遺伝子、哺乳動物複製起点、核マトリックス結合領域、および形質転換細胞を選択するための遺伝子を具備するベクターであり、かつ前記目的遺伝子がベクターに対してシスに配置されているベクターを哺乳動物細胞にトランスフェクションする工程と、
トランスフェクションされた哺乳動物細胞を培養する工程と、
前記形質転換細胞を選択するための遺伝子に基づいて選択もしくは分離して、目的遺伝子がDMおよび/またはHSRの形態で増幅された哺乳動物細胞を分離する工程と、
を含む方法。
A method for amplifying a gene of interest in the form of DM and / or HSR, comprising:
A vector comprising the gene of interest, a mammalian replication origin, a nuclear matrix binding region, and a gene for selecting a transformed cell, and the vector in which the gene of interest is placed in cis with respect to the vector Transfection into cells;
Culturing the transfected mammalian cells;
Selecting or separating based on a gene for selecting the transformed cells, and separating mammalian cells in which the target gene is amplified in the form of DM and / or HSR;
Including methods.
前記形質転換細胞を選択するための遺伝子が、ブラスティサイジン抵抗性遺伝子、ネオマイシン抵抗性遺伝子、および緑色蛍光蛋白質遺伝子からなる群から選択される1以上の遺伝子である、請求項1に記載の方法。   The method according to claim 1, wherein the gene for selecting the transformed cell is one or more genes selected from the group consisting of a blasticidin resistance gene, a neomycin resistance gene, and a green fluorescent protein gene. . 前記哺乳動物複製起点が、c−myc遺伝子座、ジヒドロ葉酸リダクターゼ遺伝子座、およびβ−グロビン遺伝子座の複製起点の何れか1つに由来する、請求項1または2に記載の方法。   The method according to claim 1 or 2, wherein the origin of mammalian replication is derived from any one of the origin of replication of the c-myc locus, the dihydrofolate reductase locus, and the β-globin locus. 前記核マトリックス結合領域が、Igκ遺伝子座、SV40初期領域、およびジヒドロ葉酸リダクターゼ遺伝子座の核マトリックス結合領域の何れか1つに由来する、請求項1ないし3のいずれか1項に記載の方法。   The method according to any one of claims 1 to 3, wherein the nuclear matrix-binding region is derived from any one of an Igκ locus, an SV40 early region, and a nuclear matrix-binding region of a dihydrofolate reductase locus. 前記哺乳動物細胞が、COLO 320DM細胞、COLO 320HSR細胞、およびHela細胞からなる群から選択される、請求項1ないし4のいずれか1項に記載の方法。   The method according to any one of claims 1 to 4, wherein the mammalian cells are selected from the group consisting of COLO 320DM cells, COLO 320HSR cells, and Hela cells. DMおよび/またはHSRの形態で目的遺伝子を、哺乳動物細胞内で増幅させるためのベクターセットであって、
哺乳動物複製起点、核マトリックス結合領域、および形質転換細胞を選択するための遺伝子を具備するベクターと、
前記ベクターに対してトランスに配置された目的遺伝子と、
を含むことを特徴とするベクターセット。
A vector set for amplifying a gene of interest in the form of DM and / or HSR in mammalian cells,
A vector comprising a mammalian origin of replication, a nuclear matrix binding region, and a gene for selecting transformed cells;
A target gene placed in trans with respect to the vector;
A vector set comprising:
前記形質転換細胞を選択するための遺伝子が、ブラスティサイジン抵抗性遺伝子、ネオマイシン抵抗性遺伝子、および緑色蛍光蛋白質遺伝子からなる群から選択される1以上の遺伝子である、請求項6に記載のベクターセット。   The vector according to claim 6, wherein the gene for selecting transformed cells is one or more genes selected from the group consisting of a blasticidin resistance gene, a neomycin resistance gene, and a green fluorescent protein gene. set. 前記哺乳動物複製起点が、c−myc遺伝子座、ジヒドロ葉酸リダクターゼ遺伝子座、およびβ−グロビン遺伝子座の複製起点の何れか1つに由来する、請求項6または7に記載のベクターセット。   The vector set according to claim 6 or 7, wherein the origin of mammalian replication is derived from any one of the origin of replication of a c-myc locus, a dihydrofolate reductase locus, and a β-globin locus. 前記核マトリックス結合領域が、Igκ遺伝子座、SV40初期領域、およびジヒドロ葉酸リダクターゼ遺伝子座の核マトリックス結合領域の何れか1つに由来する、請求項6ないし8のいずれか1項に記載のベクターセット。   The vector set according to any one of claims 6 to 8, wherein the nuclear matrix-binding region is derived from any one of an Igκ locus, an SV40 early region, and a nuclear matrix-binding region of a dihydrofolate reductase locus. . 目的遺伝子、哺乳動物複製起点、核マトリックス結合領域、および形質転換細胞を選択するための遺伝子を具備するベクターが導入された哺乳動物細胞の形質転換体であって、
当該目的遺伝子がDMおよび/またはHSRの形態で増幅されている、形質転換体。
A transformant of a mammalian cell into which a vector comprising a gene for selecting a target gene, a mammalian replication origin, a nuclear matrix-binding region, and a transformed cell has been introduced,
A transformant in which the gene of interest is amplified in the form of DM and / or HSR.
前記哺乳動物複製起点が、c−myc遺伝子座、ジヒドロ葉酸リダクターゼ遺伝子座、およびβ−グロビン遺伝子座の複製起点の何れか1つに由来する、請求項10に記載の形質転換体。   The transformant according to claim 10, wherein the mammalian origin of replication is derived from any one of the origin of replication of the c-myc locus, the dihydrofolate reductase locus, and the β-globin locus. 前記核マトリックス結合領域が、Igκ遺伝子座、SV40初期領域、およびジヒドロ葉酸リダクターゼ遺伝子座の核マトリックス結合領域の何れか1つに由来する、請求項10または11に記載の形質転換体。   The transformant according to claim 10 or 11, wherein the nuclear matrix-binding region is derived from any one of an Igκ locus, an SV40 early region, and a nuclear matrix-binding region of a dihydrofolate reductase locus. 前記哺乳動物細胞が、COLO 320DM細胞、COLO 320HSR細胞、およびHela細胞からなる群から選択される、請求項10ないし12のいずれか1項に記載の形質転換体。   The transformant according to any one of claims 10 to 12, wherein the mammalian cells are selected from the group consisting of COLO 320DM cells, COLO 320HSR cells, and Hela cells. 前記形質転換細胞を選択するための遺伝子が、ブラスティサイジン抵抗性遺伝子、ネオマイシン抵抗性遺伝子、および緑色蛍光蛋白質遺伝子からなる群から選択される1以上の遺伝子である、請求項10ないし13のいずれか1項に記載の形質転換体。   The gene for selecting the transformed cells is one or more genes selected from the group consisting of a blasticidin resistance gene, a neomycin resistance gene, and a green fluorescent protein gene. A transformant according to claim 1.
JP2005313532A 2005-10-27 2005-10-27 Method for highly amplifying target gene in mammalian cells and vector for performing the method Pending JP2006055175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005313532A JP2006055175A (en) 2005-10-27 2005-10-27 Method for highly amplifying target gene in mammalian cells and vector for performing the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005313532A JP2006055175A (en) 2005-10-27 2005-10-27 Method for highly amplifying target gene in mammalian cells and vector for performing the method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002048187A Division JP3755028B2 (en) 2002-02-25 2002-02-25 Method for highly amplifying a gene of interest in mammalian cells

Publications (1)

Publication Number Publication Date
JP2006055175A true JP2006055175A (en) 2006-03-02

Family

ID=36103151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005313532A Pending JP2006055175A (en) 2005-10-27 2005-10-27 Method for highly amplifying target gene in mammalian cells and vector for performing the method

Country Status (1)

Country Link
JP (1) JP2006055175A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007312656A (en) * 2006-05-24 2007-12-06 Hiroshima Univ Method for increasing efficiency of genetic amplification and kit for the method
WO2008023671A1 (en) * 2006-08-24 2008-02-28 Hiroshima University Method for highly amplifying target gene in mammalian cell and vector therefor
WO2010110340A1 (en) 2009-03-27 2010-09-30 国立大学法人広島大学 Method for amplification and high-level expression of target gene in mammalian cell, and kit for achieving the method
JP2012034698A (en) * 2011-09-16 2012-02-23 Hiroshima Univ Method for increasing efficiency of amplifying gene, and kit for implementing the same
JP2012157293A (en) * 2011-02-01 2012-08-23 Hiroshima Univ Method for highly expressing target gene by putting amplification structure of the same under control in mammalian cell

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007312656A (en) * 2006-05-24 2007-12-06 Hiroshima Univ Method for increasing efficiency of genetic amplification and kit for the method
WO2008023671A1 (en) * 2006-08-24 2008-02-28 Hiroshima University Method for highly amplifying target gene in mammalian cell and vector therefor
KR101093835B1 (en) 2006-08-24 2011-12-13 고쿠리츠다이가쿠호진 히로시마다이가쿠 Method for highly amplifying target gene in mammalian cell and vector therefor
US8137963B2 (en) 2006-08-24 2012-03-20 Hiroshima University Method for highly amplifying target gene in mammalian cell and vector therefor
JP5124737B2 (en) * 2006-08-24 2013-01-23 国立大学法人広島大学 Method and vector for highly amplifying a gene of interest in mammalian cells
WO2010110340A1 (en) 2009-03-27 2010-09-30 国立大学法人広島大学 Method for amplification and high-level expression of target gene in mammalian cell, and kit for achieving the method
JP5688771B2 (en) * 2009-03-27 2015-03-25 国立大学法人広島大学 A method for amplifying and highly expressing a target gene in mammalian cells, and a kit used for carrying out the method
JP2012157293A (en) * 2011-02-01 2012-08-23 Hiroshima Univ Method for highly expressing target gene by putting amplification structure of the same under control in mammalian cell
JP2012034698A (en) * 2011-09-16 2012-02-23 Hiroshima Univ Method for increasing efficiency of amplifying gene, and kit for implementing the same

Similar Documents

Publication Publication Date Title
AU738156B2 (en) Viral vectors and their uses
CA2594834C (en) Vectors, cell lines and their use in obtaining extended episomal maintenance replication of hybrid plasmids and expression of gene products
Stehle et al. Exploiting a minimal system to study the epigenetic control of DNA replication: the interplay between transcription and replication
Nehlsen et al. Replicating minicircles: Generation of nonviral episomes for the efficient modification of dividing cells
JP3755028B2 (en) Method for highly amplifying a gene of interest in mammalian cells
Shimizu et al. Plasmids with a mammalian replication origin and a matrix attachment region initiate the event similar to gene amplification
EP2907875A1 (en) A novel method to load a mammalian artificial chromosome with multiple genes
WO2002057447A2 (en) Methods and reagents for amplification and manipulation of vector and target nucleic acid sequences
JP2006055175A (en) Method for highly amplifying target gene in mammalian cells and vector for performing the method
JP2019505209A (en) Gene modification assay
Kurtti et al. Transgene expression and silencing in a tick cell line: a model system for functional tick genomics
US20130150262A1 (en) Method and Kit for Identifying Compounds Capable of Inhibiting Human Papilloma Virus Replication
Van Doorslaer et al. Novel recombinant papillomavirus genomes expressing selectable genes
JP2018508223A (en) A system for stable gene expression
Angulo et al. Identification of a boundary domain adjacent to the potent human cytomegalovirus enhancer that represses transcription of the divergent UL127 promoter
JP3882042B2 (en) Vectors and methods for improving amplification of genes transfected into mammalian cells
CA2434118A1 (en) Spliceosome mediated rna trans-splicing
Norris et al. A fluorescent p53GFP fusion protein facilitates its detection in mammalian cells while retaining the properties of wild-type p53
JP5098014B2 (en) Method, kit, and transformant for expressing a protein whose expression is suppressed from a repetitive sequence formed by gene amplification
JP2007312782A (en) Method and kit for expressing protein under regulation of expression from repeated sequence formed by gene amplification and transformant
Lufino et al. The infectious BAC genomic DNA expression library: a high capacity vector system for functional genomics
JP4119986B2 (en) Vectors and methods for improving the stability of genes transfected into mammalian cells
Dutia et al. A novel Cre recombinase imaging system for tracking lymphotropic virus infection in vivo
TW201114897A (en) Three-component gene expression reporting system for mammalian cells and applications of the same
Geiss et al. Recombination-ready Sindbis replicon expression vectors for transgene expression

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100202