JP2006052906A - Flow-down type ice maker - Google Patents

Flow-down type ice maker Download PDF

Info

Publication number
JP2006052906A
JP2006052906A JP2004235598A JP2004235598A JP2006052906A JP 2006052906 A JP2006052906 A JP 2006052906A JP 2004235598 A JP2004235598 A JP 2004235598A JP 2004235598 A JP2004235598 A JP 2004235598A JP 2006052906 A JP2006052906 A JP 2006052906A
Authority
JP
Japan
Prior art keywords
ice making
ice
flow
down type
making surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004235598A
Other languages
Japanese (ja)
Inventor
Masao Sanuki
政夫 佐貫
Kazumi Toritani
千美 鳥谷
Yuji Wakatsuki
勇二 若槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP2004235598A priority Critical patent/JP2006052906A/en
Priority to US11/201,720 priority patent/US20060032263A1/en
Publication of JP2006052906A publication Critical patent/JP2006052906A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/12Producing ice by freezing water on cooled surfaces, e.g. to form slabs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/22Construction of moulds; Filling devices for moulds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2400/00Auxiliary features or devices for producing, working or handling ice
    • F25C2400/02Freezing surface state
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/02Apparatus for disintegrating, removing or harvesting ice
    • F25C5/04Apparatus for disintegrating, removing or harvesting ice without the use of saws
    • F25C5/08Apparatus for disintegrating, removing or harvesting ice without the use of saws by heating bodies in contact with the ice
    • F25C5/10Apparatus for disintegrating, removing or harvesting ice without the use of saws by heating bodies in contact with the ice using hot refrigerant; using fluid heated by refrigerant

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flow-down type ice maker capable of promoting falling of an ice mass, without generating strain on an ice making surface. <P>SOLUTION: A pair of ice making plates 12 and 12 are oppositely arranged by sandwiching an evaporation pipe 14 for circularly supplying a refrigerant. A plurality of vertical ribs 16 are separately formed in the width direction on the ice making plates 12. An ice making area is defined between the vertical ribs 16 and 16 opposed in the width direction. Projections 18 separately projecting to the ice making area side in the vertical direction, are formed in an extension part 16a for constituting the vertical ribs 16. The ice mass generated in the ice making area quickly falls, by separating from the ice making surface 12a by running on the projections 18 and 18, when a freezing part with the ice making surface 12a melts and falls in an ice removing process. Since the projections 18 are formed in the extension part 16a, processing strain is not generated on the ice making surface 12a, and adverse influence such as reducing ice making capacity is not caused. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、裏面に蒸発管が配設された製氷板の製氷領域に製氷水を流下供給することで、該製氷領域に氷塊を生成する流下式製氷機に関するものである。   The present invention relates to a flow-down type ice making machine that generates ice blocks in an ice making region by supplying ice making water down to an ice making region of an ice making plate having an evaporation tube on the back surface.

氷塊を連続的に製造する製氷機として、冷凍系を構成する蒸発管を挟んで一対の製氷板を垂直に対向配置し、前記蒸発管に循環供給される冷媒により冷却される前記各製氷板の表面(製氷面)に製氷水を散布供給して氷塊を形成し、得られた氷塊を剥離して落下放出させる流下式製氷機が知られている。   As an ice making machine that continuously manufactures ice blocks, a pair of ice making plates are arranged vertically opposite to each other with an evaporation tube constituting a refrigeration system interposed therebetween, and each ice making plate cooled by a refrigerant circulated and supplied to the evaporation tube There is known a flow-down type ice making machine in which ice making water is sprayed and supplied to the surface (ice making surface) to form ice blocks, and the resulting ice blocks are peeled off and released.

前記流下式製氷機の除氷運転は、前記蒸発管にホットガスを循環供給すると共に、製氷板の裏面に常温の除氷水を流下させることで該製氷板を加温し、製氷面と氷塊との氷結部を融解することで、氷塊を自重によって落下させている。この場合において、氷塊は製氷面に沿って落下するが、下側に位置する別の氷塊が落下していない場合は、該氷塊に引掛かって上側の氷塊も落下せず、その氷塊が必要以上に融解されてしまう問題があった。そこで、製氷面における上下の氷塊が形成される位置の間に、外方に突出する突起を設け、上側の氷塊が落下する際に突起に乗り上げることで、下側の氷塊に引掛かることなく落下させるようにしている(例えば、特許文献1参照)。
実公平3−28280号公報
The deicing operation of the flow-down type ice making machine circulates and supplies hot gas to the evaporation pipe, and warms the ice making plate by causing normal temperature deicing water to flow down to the back side of the ice making plate, The ice mass is dropped by its own weight by melting the icing part. In this case, the ice block falls along the ice making surface, but when another ice block located on the lower side is not falling, the ice block is caught by the ice block and the upper ice block does not fall. There was a problem of melting. Therefore, a protrusion protruding outward is provided between the positions where the upper and lower ice blocks are formed on the ice making surface, and the upper ice block falls on the protrusion when it falls, so that it falls without being caught by the lower ice block. (For example, refer to Patent Document 1).
Japanese Utility Model Publication No. 3-28280

前記突起の製氷面からの突出高さは、該突起を乗り越えた氷塊が下側の氷塊に引掛かることのない充分な寸法とする必要ある。すなわち、突出高さが不充分であれば、下側の氷塊に引掛かって速やかに落下しなくなり、除氷時間が長くなって日産製氷能力が低下したり、製氷面上で無駄に融ける氷塊の量が増えることで日産製氷能力が低下すると共に異形氷が発生したり、消費電力や消費水量が増加する等の問題を招く。   The protrusion height of the protrusion from the ice making surface needs to be a sufficient dimension so that the ice block over the protrusion does not catch on the lower ice block. In other words, if the protrusion height is insufficient, it will not catch the ice block on the lower side and fall quickly, the ice removal time will become longer, the ice making capacity will decrease, and the amount of ice block that will melt unnecessarily on the ice making surface The increase in the number of ice causes problems such as a decrease in Nissan ice making capacity and generation of deformed ice and an increase in power consumption and water consumption.

ここで、前記製氷板は、冷却と加温とを繰り返す過酷な条件で使用されるため、前記突起は一般にプレス加工により一体的に成形される。しかるに、プレス加工により製氷面に高い突起を成形すると、製氷面に歪み等が発生して製氷能力に影響する問題を招くため、充分な高さの突起を成形することができないのが現状であった。   Here, since the ice making plate is used under severe conditions in which cooling and heating are repeated, the protrusions are generally integrally formed by press working. However, if high protrusions are formed on the ice making surface by press working, distortion or the like occurs on the ice making surface, resulting in a problem that affects the ice making capacity. Therefore, it is currently impossible to form protrusions of sufficient height. It was.

すなわち本発明は、前述した従来の技術に内在している前記課題に鑑み、これを好適に解決するべく提案されたものであって、製氷面に歪み等を発生させることなく、氷塊の落下を促進し得る流下式製氷機を提供することを目的とする。   That is, the present invention has been proposed to solve this problem in view of the above-mentioned problems inherent in the prior art described above, and it is possible to drop ice blocks without causing distortion or the like on the ice making surface. An object is to provide a flow-down ice maker that can be accelerated.

前述した課題を克服し、所期の目的を好適に達成するため、本発明に係る流下式製氷機は、
幅方向に離間して製氷面から突出する一対の縦リブ間に製氷領域が画成された製氷板と、該製氷板の製氷面とは反対の裏面に蛇行配置されて冷媒が循環供給される蒸発管とからなり、該蒸発管に冷媒を循環供給することで冷却した製氷板の製氷領域に製氷水を流下供給して氷塊を生成する流下式製氷機において、
前記縦リブに、製氷領域側に突出すると共に、その上面に製氷面から離間するにつれて上方から下方に向けて傾斜する傾斜面を形成した突起を設けたことを特徴とする。
In order to overcome the above-mentioned problems and achieve the desired purpose suitably, the flow down type ice making machine according to the present invention is:
An ice making plate in which an ice making region is defined between a pair of vertical ribs that are spaced apart in the width direction and project from the ice making surface, and a refrigerant is circulated and supplied on the back surface opposite to the ice making surface of the ice making plate In a flow-down type ice making machine that consists of an evaporation pipe and that generates ice blocks by supplying ice-making water to the ice-making region of the ice-making plate cooled by circulatingly supplying the refrigerant to the evaporation pipe,
The vertical rib is provided with a protrusion that protrudes toward the ice making region and has an upper surface formed with an inclined surface that inclines downward from the ice making surface.

請求項1に係る流下式製氷機によれば、製氷領域を画成する縦リブに突起を設けたから、製氷面に歪み等を発生させることなく、該突起の頂部を製氷面に対して離れた位置に臨ませることができ、氷塊を速やかに落下させ得る。すなわち、除氷時間が長くなって日産製氷能力が低下したり、製氷面上で無駄に融ける氷塊の量が増えることで日産製氷能力が低下すると共に異形氷が発生したり、消費電力や消費水量が増加する等の問題が発生するのを防止することができる。また製氷面には突起がないから、該製氷面と氷塊との間に空気が入り易くなり、該氷塊の落下をより促進し得る。   According to the flow-down type ice making machine according to claim 1, since the protrusion is provided on the vertical rib defining the ice making region, the top of the protrusion is separated from the ice making surface without causing distortion or the like on the ice making surface. It can be put in place and the ice mass can fall quickly. In other words, the ice removal time is reduced due to longer deicing time, and the amount of ice that melts unnecessarily on the ice making surface decreases, resulting in a decrease in Nissan ice making capability and generation of deformed ice, power consumption and water consumption. It is possible to prevent the occurrence of problems such as an increase in. Further, since there are no protrusions on the ice making surface, air can easily enter between the ice making surface and the ice block, and the ice block can be further promoted to fall.

請求項2に係る流下式製氷機によれば、製氷面における氷塊が形成されない位置に対応して突起を設けたから、該突起によって氷塊の形状が変わることはない。請求項3に係る流下式製氷機によれば、製氷面における氷塊が形成される位置に対応して突起を設けたから、製氷面との氷結部が融解した氷塊を製氷面から速やかに離すことができる。請求項4に係る流下式製氷機によれば、製氷領域を挟む両縦リブに対向的に突起を設けたから、氷塊を傾くかせることなく円滑に落下させ得る。   According to the flow-down type ice making machine according to the second aspect, since the protrusion is provided corresponding to the position where the ice block is not formed on the ice making surface, the shape of the ice block is not changed by the protrusion. According to the flow-down type ice maker according to claim 3, since the protrusion is provided corresponding to the position where the ice block is formed on the ice making surface, the ice block in which the frozen portion with the ice making surface is melted can be quickly separated from the ice making surface. it can. According to the flow-down type ice making machine according to the fourth aspect, since the protrusions are provided opposite to the vertical ribs sandwiching the ice making region, the ice block can be smoothly dropped without being inclined.

次に、本発明に係る流下式製氷機につき、好適な実施例を挙げて、添付図面を参照しながら以下説明する。   Next, the flow-down type ice making machine according to the present invention will be described below with reference to the accompanying drawings by giving a preferred embodiment.

図1は、実施例1に係る流下式製氷機の製氷部を示すものであって、該製氷部10は、垂直に配置した一対の製氷板12,12と、両製氷板12,12の対向面間(裏面間)に挟持されて、その直線部14aが横方向に延在するように蛇行する冷凍系を構成する蒸発管14とから基本的に構成され、製氷工程時に該蒸発管14に冷媒を循環させて製氷板12,12を強制冷却するよう構成される。なお、製氷部10の上部には、製氷工程に際して各製氷板12の表面(製氷面)に製氷水を供給する製氷水供給手段および除氷工程に際して両製氷板12,12の対向面間(裏面)に除氷水を供給する除氷水供給手段(何れも図示せず)が配設される。また除氷工程に際しては、冷凍系の弁切換えにより蒸発管14にホットガス(高温冷媒)が供給されるようになっている。前記製氷板12,12は、相対的に熱伝導率が低い例えばステンレス板で構成され、前記蒸発管14は、相対的に熱伝導率が高い例えば銅管で構成されるが、その他の材質であってもよい。   FIG. 1 shows an ice making unit of a flow-down type ice making machine according to a first embodiment. The ice making unit 10 is a pair of ice making plates 12 and 12 arranged vertically and opposed to both ice making plates 12 and 12. It is basically composed of an evaporation tube 14 constituting a refrigeration system sandwiched between the surfaces (between the back surfaces) and meandering so that the linear portion 14a extends in the lateral direction. The ice making plates 12 and 12 are forcibly cooled by circulating the refrigerant. An ice making water supply means for supplying ice making water to the surface (ice making surface) of each ice making plate 12 during the ice making process and an opposing surface (rear surface) of both ice making plates 12 and 12 during the deicing process are provided above the ice making unit 10. ) Is provided with deicing water supply means (none of which is shown). In the deicing process, hot gas (high-temperature refrigerant) is supplied to the evaporation pipe 14 by switching the valve of the refrigeration system. The ice making plates 12 and 12 are made of, for example, a stainless steel plate having a relatively low thermal conductivity, and the evaporation pipe 14 is made of, for example, a copper tube having a relatively high thermal conductivity. There may be.

前記各製氷板12は、その幅方向(蒸発管14における直線部14aの延在方向)に所定間隔で、上下方向に平行に延びる複数の縦リブ16が表面側に突出するよう形成されて、幅方向に隣り合う一対の縦リブ16,16の間に製氷領域が夫々画成されて、該製氷領域に前記製氷水供給手段を介して製氷水が供給されて流下するようになっている。縦リブ16は、幅方向に隣り合う製氷領域における上下方向に延在して前記蒸発管14と略平行に位置する各製氷面(表面)12aから前方に向けて折曲形成された一対の延出部16a,16aから構成されて、平断面においてV字形状を呈している。そして、各延出部16a,16aにおける製氷領域側の面には、図2に示す如く、上下方向に所定間隔で複数の突起18が形成されている。なお、製氷領域を挟む両延出部16a,16aに形成される突起18,18は同一レベルで対向するよう位置している。   Each of the ice making plates 12 is formed such that a plurality of vertical ribs 16 extending in the vertical direction at a predetermined interval in the width direction (extending direction of the straight portion 14a in the evaporation tube 14) protrude to the surface side, An ice making area is defined between a pair of vertical ribs 16 and 16 adjacent in the width direction, and ice making water is supplied to the ice making area via the ice making water supply means and flows down. The vertical ribs 16 extend in the vertical direction in the ice making regions adjacent to each other in the width direction, and are formed as a pair of bent portions that are bent forward from each ice making surface (surface) 12a positioned substantially parallel to the evaporation pipe 14. It is comprised from the protrusion parts 16a and 16a, and is exhibiting V shape in a plane cross section. As shown in FIG. 2, a plurality of protrusions 18 are formed at predetermined intervals in the vertical direction on the surface of each extension portion 16a, 16a on the ice making region side. In addition, the protrusions 18 and 18 formed on the two extending portions 16a and 16a sandwiching the ice making region are positioned so as to face each other at the same level.

前記突起18は、前記蒸発管14における上下に位置する直線部14a,14aの間に臨むよう設定される。また突起18は、図3に示す如く、延出部16aと製氷面12aとの折曲縁(境界)を底面とする側面視において略三角形状を呈し、その上側の傾斜面18aは、製氷面12aから離間するにつれて上方から下方へ傾斜するよう設定され、該傾斜面18aに案内されて氷塊Cが製氷面12aから離間されるようになっている。なお、傾斜面18aの傾斜角度としては、例えば30〜45°に設定される。前記突起18の頂部(製氷面12aから最も離間する部位)は、該突起18を氷塊Cが乗り越る際に下側に位置する氷塊Cに引掛かることのない位置に設定される(図3参照)。また、突起18の延出部16aからの突出寸法(製氷領域側への突出寸法)は、プレス加工に際して歪みを発生させることのない値に設定される(例えば1mm程度)。   The protrusion 18 is set so as to face between the straight portions 14 a and 14 a located above and below the evaporation pipe 14. Further, as shown in FIG. 3, the protrusion 18 has a substantially triangular shape in a side view with the bent edge (boundary) between the extending portion 16a and the ice making surface 12a as a bottom surface, and the upper inclined surface 18a has an ice making surface. It is set to incline from the upper side to the lower side as it is separated from 12a, and the ice block C is separated from the ice making surface 12a by being guided by the inclined surface 18a. In addition, as an inclination | tilt angle of the inclined surface 18a, it sets to 30-45 degrees, for example. The top part of the protrusion 18 (the part farthest from the ice making surface 12a) is set at a position where the protrusion 18 is not caught by the ice block C located on the lower side when the ice block C gets over the protrusion 18 (FIG. 3). reference). Further, the projecting dimension of the protrusion 18 from the extending portion 16a (projecting dimension toward the ice making region) is set to a value that does not cause distortion during press working (for example, about 1 mm).

〔実施例1の作用〕
次に、前述した実施例1に係る流下式製氷機の作用について説明する。
[Operation of Example 1]
Next, the operation of the flow-down ice making machine according to the first embodiment will be described.

前記製氷部10が組込まれた流下式製氷機の製氷工程を開始すると、前記蒸発管14に冷媒が循環供給されると共に、前記製氷水供給手段を介して各製氷板12の製氷面12a(製氷領域)に製氷水が供給される。各製氷領域を流下する製氷水は冷却され、前記蒸発管14と接触する部位で徐々に氷結を開始し、最終的に半円状の氷塊Cが、各製氷領域において上下方向に離間して複数生成される。   When the ice making process of the flow-down type ice making machine in which the ice making unit 10 is incorporated is started, the refrigerant is circulated and supplied to the evaporation pipe 14 and the ice making surfaces 12a (ice making) of each ice making plate 12 through the ice making water supply means. Ice making water is supplied to the area. The ice making water flowing down each ice making region is cooled, and gradually freezes at a portion in contact with the evaporation pipe 14, and finally a semicircular ice block C is separated in the vertical direction in each ice making region. Generated.

除氷工程に移行すると、前記蒸発管14にホットガスが循環供給されると共に、前記除氷水供給手段を介して一対の製氷板12,12の対向面間に除氷水が供給され、各製氷面12aと氷塊Cとの氷結部が融解され、該氷塊Cは製氷面12aを自重でずり落ちる。このとき、氷塊Cは製氷領域を挟む両側の前記突起18,18に乗り上げ、製氷面12aから離間する外方に移動する。この突起18,18の頂部は、製氷面12aから充分に離間して位置しているから、該突起18,18を乗り越えた氷塊Cが、下側で未だに氷結している氷塊Cに引掛って落下が阻害されることはなく、速やかに落下する。従って、除氷時間が長くなって日産製氷能力が低下したり、製氷面上で無駄に氷塊Cが融けて異形氷が発生したりすることはなく、しかも消費電力や消費水量が増加することも防止し得る。   When the deicing process is started, hot gas is circulated and supplied to the evaporation pipe 14 and deicing water is supplied between the opposing surfaces of the pair of ice making plates 12 and 12 via the deicing water supply means. The freezing part of 12a and the ice block C is melted, and the ice block C slides down the ice making surface 12a by its own weight. At this time, the ice block C rides on the protrusions 18 and 18 on both sides of the ice making region and moves outward away from the ice making surface 12a. Since the tops of the protrusions 18 and 18 are located sufficiently away from the ice making surface 12a, the ice block C over the protrusions 18 and 18 is caught by the ice block C that is still frozen on the lower side. The fall is not hindered and falls quickly. Therefore, the deicing time is not prolonged and the Nissan ice making capacity is not reduced, or the ice block C is not melted on the ice making surface and the deformed ice is not generated, and the power consumption and the water consumption are increased. Can be prevented.

また製氷面12aをずり落ちる氷塊Cの左右両側を突起18,18で案内するから、該氷塊Cが左右に傾いて円滑な落下が阻害されることはない。しかも、製氷面12aには突出する部分はないから、氷塊Cが突起18,18に乗り上げた際には、該氷塊Cと製氷面12aとの間に空気が入り込み易く、該氷塊Cの落下がより促進される。   Further, since the left and right sides of the ice block C sliding down the ice making surface 12a are guided by the protrusions 18 and 18, the ice block C is tilted to the left and right and the smooth fall is not hindered. Moreover, since the ice making surface 12a has no protruding portion, when the ice block C rides on the protrusions 18 and 18, air easily enters between the ice block C and the ice making surface 12a, and the ice block C falls. More promoted.

更に、前記突起18は、延出部16aにプレス加工により成形されるが、その延出部16aからの突出寸法を少なく抑えたもとで、前記頂部の位置を製氷面12aから充分離した位置に設定することができる。すなわち、プレス加工に際して製氷板12に歪みを発生するのは抑制され、製氷能力が低下する等の悪影響を生ずることはない。   Further, the protrusion 18 is formed on the extended portion 16a by press working, and the position of the top portion is set at a position that is fully charged and separated from the ice making surface 12a while suppressing the protruding dimension from the extended portion 16a. can do. That is, the occurrence of distortion in the ice making plate 12 during press working is suppressed, and there is no adverse effect such as a decrease in ice making capacity.

〔実施例1の変更例〕
前記突起の形状は、三角形状に限定されるものでなく、少なくとも上面が下方傾斜する形状であればよく、例えば図4に示すように、製氷面12aと延出部16aとの折曲縁から外方(製氷面12aから離間する側)に向けて下方傾斜する直線状のものであってもよい。そして、この直線状の突起20においても、その傾斜面20aに沿って氷塊Cを製氷面12aから離間させることができる。しかも、当該突起20の延出部16aからの突出寸法を小さく抑えたもとで、その先端(傾斜下端)の位置を製氷面12aから充分離すことができ、氷塊Cを速やかに落下させ得る。
[Modification of Example 1]
The shape of the protrusion is not limited to a triangular shape, and may be any shape as long as at least the upper surface is inclined downward. For example, as shown in FIG. 4, from the bent edge between the ice making surface 12a and the extending portion 16a. It may be a straight line that is inclined downward (to the side away from the ice making surface 12a). And also in this linear processus | protrusion 20, the ice block C can be spaced apart from the ice making surface 12a along the inclined surface 20a. In addition, the position of the tip (inclined lower end) can be charged / separated from the ice making surface 12a while keeping the protruding dimension of the protrusion 20 from the extending portion 16a small, and the ice block C can be quickly dropped.

実施例1では、製氷領域を挟む両側の延出部(縦リブ)に対向的に突起を設けたが、少なくとも一方の側の延出部(縦リブ)に突起を設けたものであってもよい。また実施例1では、製氷板を一体物とした場合で説明したが、平断面においてコ字状に形成された複数の製氷部材を幅方向に並列に連結することで構成した製氷板であってもよく、この場合は製氷部材の対向する側板部(縦リブ)に突起を設ければよい。更に、実施例1では蒸発管を一対の製氷板で挟持した製氷部で説明したが、一枚の製氷板の裏面に蒸発管を配設して構成した製氷部であってもよい。   In the first embodiment, the protrusions are provided oppositely to the extending portions (vertical ribs) on both sides sandwiching the ice making region. However, the protrusions may be provided on at least one of the extending portions (vertical ribs). Good. In the first embodiment, the ice making plate is described as an integral unit. However, the ice making plate is configured by connecting a plurality of ice making members formed in a U-shape in a cross section in parallel in the width direction. In this case, a protrusion may be provided on the opposing side plate portion (vertical rib) of the ice making member. Furthermore, in the first embodiment, the ice making section in which the evaporation tube is sandwiched between a pair of ice making plates has been described. However, an ice making portion in which an evaporation tube is disposed on the back surface of one ice making plate may be used.

図5は、実施例2に係る流下式製氷機の製氷部を示すものである。なお、前述した実施例1と同一部材については、同じ符号を付して詳細説明は省略する。   FIG. 5 shows an ice making unit of a flow-down type ice making machine according to the second embodiment. In addition, about the same member as Example 1 mentioned above, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.

実施例2に係る製氷部22では、前記製氷板12に設けられた縦リブ16における各延出部16aに形成される突起18は、製氷板12の裏面に配設される蒸発管14と対応する位置に設定されている。すなわち、実施例2の製氷部22での製氷工程においては、製氷領域に生成される氷塊Cに突起18,18が内包されるようになっている。そして、除氷工程に移行して前記蒸発管14にホットガスを循環供給すると共に製氷板12の裏面に除氷水を供給することで、製氷面12aと氷塊Cとの氷結部が融解されると、該氷塊Cは突起18,18における傾斜面18a,18aに沿って製氷面12aから離間する方向に自重でずり落ちる。   In the ice making unit 22 according to the second embodiment, the protrusions 18 formed on the extending portions 16 a of the vertical ribs 16 provided on the ice making plate 12 correspond to the evaporation pipes 14 provided on the back surface of the ice making plate 12. It is set to the position to perform. That is, in the ice making process in the ice making unit 22 of the second embodiment, the protrusions 18 are included in the ice block C generated in the ice making region. Then, the process moves to the deicing step, and hot gas is circulated and supplied to the evaporation pipe 14 and deicing water is supplied to the back surface of the ice making plate 12, so that the icing portion between the ice making surface 12 a and the ice block C is melted. The ice block C slides under its own weight along the inclined surfaces 18a and 18a of the protrusions 18 and 18 in a direction away from the ice making surface 12a.

すなわち、実施例2の場合は、氷塊Cと製氷面12aとの氷結部が融解すると直ぐに該氷塊Cは製氷面12aから離間するから、両者C,12aの間に空気が入り込んで速やかな落下が可能となり、除氷工程に要する時間を短縮し得る。従って、日産製氷能力が向上すると共に、消費電力や消費水量等を低減し得る。なお、その他、実施例1と同様な作用効果も奏する。   That is, in the case of Example 2, since the ice block C is separated from the ice making surface 12a as soon as the icing portion between the ice block C and the ice making surface 12a is melted, air enters between the two C and 12a and quickly falls. This makes it possible to shorten the time required for the deicing process. Therefore, Nissan ice making capacity can be improved, and power consumption, water consumption, and the like can be reduced. In addition, the same effects as those of the first embodiment can be obtained.

また実施例2の構成においても、実施例1に関連して前述した変更例を適宜に採用することができる。   Also in the configuration of the second embodiment, the above-described modification example related to the first embodiment can be appropriately employed.

実施例1に係る流下式製氷機の製氷部を示す要部概略斜視図である。1 is a schematic perspective view of an essential part showing an ice making part of a flow-down type ice making machine according to Embodiment 1. FIG. 実施例1に係る製氷部の要部正面図である。1 is a front view of a main part of an ice making unit according to Example 1. FIG. 実施例1に係る製氷部の要部縦断側面図である。It is a principal part vertical side view of the ice making part which concerns on Example 1. FIG. 実施例1の変更例に係る製氷部の要部縦断側面図である。It is a principal part vertical side view of the ice making part which concerns on the example of a change of Example 1. FIG. 実施例2に係る流下式製氷機における製氷部の要部縦断側面図である。It is a principal part vertical side view of the ice making part in the flow-down type ice making machine which concerns on Example 2. FIG.

符号の説明Explanation of symbols

12 製氷板,12a 製氷面,14 蒸発管,14a 直線部,16 縦リブ
18 突起,18a 傾斜面,20 突起,20a 傾斜面,C 氷塊
12 ice making plate, 12a ice making surface, 14 evaporating tube, 14a straight part, 16 vertical rib 18 protrusion, 18a inclined surface, 20 protrusion, 20a inclined surface, C ice block

Claims (4)

幅方向に離間して製氷面(12a)から突出する一対の縦リブ(16,16)間に製氷領域が画成された製氷板(12)と、該製氷板(12)の製氷面(12a)とは反対の裏面に蛇行配置されて冷媒が循環供給される蒸発管(14)とからなり、該蒸発管(14)に冷媒を循環供給することで冷却した製氷板(12)の製氷領域に製氷水を流下供給して氷塊(C)を生成する流下式製氷機において、
前記縦リブ(16)に、製氷領域側に突出すると共に、その上面に製氷面(12a)から離間するにつれて上方から下方に向けて傾斜する傾斜面(18a,20a)を形成した突起(18,20)を設けた
ことを特徴とする流下式製氷機。
An ice making plate (12) in which an ice making region is defined between a pair of vertical ribs (16, 16) protruding from the ice making surface (12a) spaced apart in the width direction, and an ice making surface (12a) of the ice making plate (12) ) And an evaporating pipe (14) meanderingly arranged on the back surface opposite to the refrigerant pipe, and the refrigerant is circulated and supplied, and the ice making region of the ice making plate (12) cooled by circulating and supplying the refrigerant to the evaporating pipe (14) In a flow-down ice maker that generates ice blocks (C) by supplying ice-making water to
The vertical rib (16) has a protrusion (18, 20a) that protrudes toward the ice making region and has an inclined surface (18a, 20a) that is inclined downward from above as the distance from the ice making surface (12a) increases. 20) A flow-down type ice maker characterized by providing.
前記突起(18,20)は、前記蒸発管(14)における横方向に延在して上下に離間する直線部(14a,14a)の間に位置している請求項1記載の流下式製氷機。   The flow-down type ice maker according to claim 1, wherein the protrusions (18, 20) are positioned between linear portions (14a, 14a) extending in a lateral direction and spaced apart from each other in the evaporation pipe (14). . 前記突起(18,20)は、前記蒸発管(14)の配設位置に対応している請求項1記載の流下式製氷機。   The flow-down type ice maker according to claim 1, wherein the protrusions (18, 20) correspond to positions where the evaporation pipes (14) are arranged. 前記突起(18,20)は、製氷領域を挟む両側の前記縦リブ(16,16)に対向的に設けられている請求項1〜3の何れかに記載の流下式製氷機。
The flow-down type ice maker according to any one of claims 1 to 3, wherein the protrusions (18, 20) are provided to face the vertical ribs (16, 16) on both sides of the ice making region.
JP2004235598A 2004-08-12 2004-08-12 Flow-down type ice maker Pending JP2006052906A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004235598A JP2006052906A (en) 2004-08-12 2004-08-12 Flow-down type ice maker
US11/201,720 US20060032263A1 (en) 2004-08-12 2005-08-11 Stream down type ice making machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004235598A JP2006052906A (en) 2004-08-12 2004-08-12 Flow-down type ice maker

Publications (1)

Publication Number Publication Date
JP2006052906A true JP2006052906A (en) 2006-02-23

Family

ID=35798700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004235598A Pending JP2006052906A (en) 2004-08-12 2004-08-12 Flow-down type ice maker

Country Status (2)

Country Link
US (1) US20060032263A1 (en)
JP (1) JP2006052906A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009123133A1 (en) 2008-04-01 2009-10-08 ホシザキ電機株式会社 Ice making unit for flow down type ice maker
CN103712391A (en) * 2014-01-21 2014-04-09 上海久景制冷设备有限公司 Ice tray
KR20200144360A (en) * 2019-06-18 2020-12-29 주식회사 태성 Built-in ice maker harmless to human body

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080216490A1 (en) * 2007-03-08 2008-09-11 Hoshizaki Denki Kabushiki Kaisha Operation method for automatic ice maker
NL1034074C2 (en) * 2007-07-02 2009-01-05 Schoonen Beheer B V W Device and method for manufacturing ice cubes.
US10107538B2 (en) * 2012-09-10 2018-10-23 Hoshizaki America, Inc. Ice cube evaporator plate assembly
EP3717846B1 (en) 2017-11-28 2022-05-11 Ram Prakash Sharma An evaporator assembly for a vertical flow type ice making machine and a vertical flow type ice making machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61165564A (en) * 1985-01-17 1986-07-26 三洋電機株式会社 Cooler for flow-down type ice machine
JP2004198040A (en) * 2002-12-19 2004-07-15 Hoshizaki Electric Co Ltd Ice-making method of vertical ice-making machine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3430452A (en) * 1966-12-05 1969-03-04 Manitowoc Co Ice cube making apparatus
SE8002064L (en) * 1980-03-17 1981-09-18 Electrolux Ab DEVICE ON A HEAT PUMP
JPS6082765A (en) * 1983-10-12 1985-05-10 星崎電機株式会社 Ice machine
JPS6089562U (en) * 1983-11-24 1985-06-19 星崎電機株式会社 ice machine
US4869075A (en) * 1987-11-16 1989-09-26 Sanyo Electric Co., Ltd. Air conditioner
US6311501B1 (en) * 1999-11-11 2001-11-06 Scotsman Ice Systems Ice machine water distribution and cleaning system and method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61165564A (en) * 1985-01-17 1986-07-26 三洋電機株式会社 Cooler for flow-down type ice machine
JP2004198040A (en) * 2002-12-19 2004-07-15 Hoshizaki Electric Co Ltd Ice-making method of vertical ice-making machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009123133A1 (en) 2008-04-01 2009-10-08 ホシザキ電機株式会社 Ice making unit for flow down type ice maker
EP2261582A1 (en) * 2008-04-01 2010-12-15 Hoshizaki Denki Kabushiki Kaisha Ice making unit for flow down type ice maker
EP2261582A4 (en) * 2008-04-01 2014-11-12 Hoshizaki Electric Co Ltd Ice making unit for flow down type ice maker
CN103712391A (en) * 2014-01-21 2014-04-09 上海久景制冷设备有限公司 Ice tray
KR20200144360A (en) * 2019-06-18 2020-12-29 주식회사 태성 Built-in ice maker harmless to human body
KR102279415B1 (en) * 2019-06-18 2021-07-20 주식회사 태성 Built-in ice maker harmless to human body

Also Published As

Publication number Publication date
US20060032263A1 (en) 2006-02-16

Similar Documents

Publication Publication Date Title
JP5405168B2 (en) Ice making unit of a flow-down type ice machine
US8677777B2 (en) Flow-down-type ice making machine
US4366679A (en) Evaporator plate for ice cube making apparatus
US20150059396A1 (en) Ice maker
JP4994198B2 (en) Flowing ice machine
US20060032263A1 (en) Stream down type ice making machine
KR20180117790A (en) Ice maker and refrigerator including the same
CN110953806A (en) Heat exchanger assembly with anti-blocking structure and refrigerator
CN204718241U (en) Ducting assembly and there is its refrigerator
KR20140006488A (en) Evaporator for ice making
JP2011038706A (en) Ice-making unit for flow-down type ice making machine
JP5027393B2 (en) Ice making part of a flow-down ice machine
WO2019111364A1 (en) Refrigerator
JP2013061120A (en) Evaporator and refrigerator with the same
CN104776667A (en) Air channel assembly and refrigerator comprising same
JP2006214706A (en) Ice making portion of falling-type ice making machine
JP4225463B2 (en) Vertical ice machine
US20090165490A1 (en) Ice-making unit for flow-down type ice maker
JP2006275481A (en) Ice making section of flow-down type ice maker
JP2009250491A (en) Refrigerator
JP2010133629A (en) Chill tray evaporator and ice-making machine
JP2001091117A (en) Vertical ice machine
JP2006064317A (en) Ice making part of flow-down type ice making machine
JP2005195259A (en) Automatic ice machine
JPS61250475A (en) Water circulation type ice machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100824