JP2006051831A - Method for producing hollow molded body - Google Patents

Method for producing hollow molded body Download PDF

Info

Publication number
JP2006051831A
JP2006051831A JP2005316283A JP2005316283A JP2006051831A JP 2006051831 A JP2006051831 A JP 2006051831A JP 2005316283 A JP2005316283 A JP 2005316283A JP 2005316283 A JP2005316283 A JP 2005316283A JP 2006051831 A JP2006051831 A JP 2006051831A
Authority
JP
Japan
Prior art keywords
parison
hollow molded
molded body
polypropylene
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005316283A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Aiba
光弘 相場
Tadahiro Kaminari
忠宏 神成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2005316283A priority Critical patent/JP2006051831A/en
Publication of JP2006051831A publication Critical patent/JP2006051831A/en
Pending legal-status Critical Current

Links

Landscapes

  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing with good productivity a hollow molded body which has a surface layer composed of polypropylene, is shaped by accurately reflecting the design of a mold cavity and provides a good surface gloss and a superior appearance. <P>SOLUTION: In this hollow molded body producing method in which the molten parison of a thermoplastic resin is fed into a cavity between molding molds and clamped and a pressurized fluid is blown into the parison to force the parison to contact with a mold shaping face to solidify the thermoplastic resin, the polypropylene, in which the melt index (230°C, 2.16 kgf) is 0.5 to 20 g/minute, the molecular-weight distribution is less than 8, the spherulite diameter is 40 μm or less after an elapse of three minutes after melting at 220°C for three minutes then lowered in temperature to 130°C at 10°C/minute, and the growth rate of spherulite is less than 12 μm/minute, is used at least as the thermoplastic resin for the surface layer of the parison. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、中空成形体の製造方法に関する。さらに詳しくは、少なくとも中空成形体
の表面層を特定の物性を有するポリプロピレンで構成することによって、優れた外観を有する中空成形体を製造する方法に関する。
The present invention relates to a method for producing a hollow molded body. More specifically, the present invention relates to a method for producing a hollow molded article having an excellent appearance by constituting at least the surface layer of the hollow molded article with polypropylene having specific physical properties.

熱可塑性樹脂からなる中空成形体は、軽量で機械的強度にも優れていることから、広汎な産業分野で使用されている。ことにポリプロピレンを成形素材とする中空成形体は、剛性に優れることから各種容器類のほか、バンパーなどの自動車部品や家庭用電気製品、住宅設備などの分野においても幅広く用いられるようになってきている。   Hollow molded bodies made of thermoplastic resins are used in a wide range of industrial fields because they are lightweight and excellent in mechanical strength. In particular, hollow molded products made of polypropylene are excellent in rigidity, so they are widely used not only in various containers but also in fields such as automobile parts such as bumpers, household electrical appliances, and housing equipment. Yes.

これら用途分野においては、製品の表面性の良否が商品外観の良否にあたることから、より優れた表面性を有する中空成形体の製造方法の開発が強く要請されている。このような要請に応えるため、例えば、特公平2−40498号公報においては、表面光沢に優れた中空成形体を成形するにあたり、表面に2〜100ミクロンの深さの微細な凹凸を多数形成したパリソンを、鏡面仕上げしてあり、かつ樹脂の結晶化温度以上に加熱してある金型に挟み、吹き込み成形をした後、金型の温度を該結晶化温度以下に冷却する方法が提案されている。   In these application fields, since the quality of the product surface quality is the quality of the product appearance, development of a method for producing a hollow molded body having a more excellent surface property is strongly demanded. In order to meet such a demand, for example, in Japanese Patent Publication No. 2-40498, when forming a hollow molded article having excellent surface gloss, a large number of fine irregularities having a depth of 2 to 100 microns were formed on the surface. A method has been proposed in which the parison is mirror-finished and sandwiched between molds heated to a temperature higher than the crystallization temperature of the resin, blow molded, and then the mold temperature is cooled to the crystallization temperature or lower. Yes.

しかしながら、この方法では、パリソンの形成に特殊な制御が必要であるほか、大型成形品では成形サイクルが長く、生産性が低いという難点がある。また、特開平4−77231号公報には、成形型の間に結晶性樹脂のパリソンを供給し、型締め後、パリソン内部に圧力流体を注入して成形型面に密着させ、冷却する中空成形法において、成形型の温度を結晶性樹脂の結晶化速度が最大となる温度の近傍から融点までの間に保ち、パリソン内部に冷媒となる流体を注入して、この冷媒を加圧下に循環させる方法が提案されている。   However, in this method, special control is required for forming the parison, and a large molded product has a disadvantage that a molding cycle is long and productivity is low. Further, JP-A-4-77231 discloses a hollow molding in which a parison of a crystalline resin is supplied between molds, and after clamping, a pressure fluid is injected into the parison so as to adhere to the mold surface and cool. In this method, the temperature of the mold is maintained between the vicinity of the temperature at which the crystallization speed of the crystalline resin is maximized and the melting point, a fluid serving as a refrigerant is injected into the parison, and the refrigerant is circulated under pressure. A method has been proposed.

このような成形方法を採用すると、成形品表面のダイラインやウエルドラインを減少させることはできるが、金型キャビティー意匠の転写性や表面光沢については満足し得るまでには至っていないという難点がある。   By adopting such a molding method, it is possible to reduce the die line and weld line on the surface of the molded product, but there is a problem that the transferability of the mold cavity design and the surface gloss are not satisfactory. .

本発明は、中空成形体表面に金型キャビティー意匠が正確に反映され、かつ表面光沢も良好であって、優れた外観を有する成形品を製造することのできる中空形体の製造方法を提供することを目的とするものである。   The present invention provides a method for producing a hollow body that can accurately produce a mold cavity design on the surface of the hollow body and that has a good surface gloss and can produce a molded product having an excellent appearance. It is for the purpose.

本発明者らは、前記目的を達成するため、中空成形法における成形条件とともに、優れた外観の中空成形体に形成し得る中空成形素材として具備すべき物性につき、種々検討を重ねた結果、特定の物性を有するポリプロピレンが中空成形体の表面層の素材として好適であることを見出し、かかる知見に基づいて本発明を完成するに至った。   In order to achieve the above object, the present inventors have conducted various studies on the physical properties to be provided as a hollow molding material that can be formed into a hollow molded article having an excellent appearance, together with the molding conditions in the hollow molding method. The present inventors have found that polypropylene having the above physical properties is suitable as a material for the surface layer of a hollow molded body, and have completed the present invention based on such knowledge.

すなわち、本発明の要旨は下記のとおりである。
〔1〕成形金型の間に熱可塑性樹脂の溶融パリソンを供給して型締めし、パリソンの内部に加圧流体を吹き込んで金型成形面と密着させ、熱可塑性樹脂を固化させる中空成形体の製造方法において、少なくとも該パリソンの表面層の熱可塑性樹脂として、メルトインデックス(230℃、2.16kgf)が0.5〜20g/10分であり、分子量分布(重量平均分子量/数平均分子量)が8未満であるとともに、220℃で3分間融解した後10℃/分の降温速度で130℃にしてから3分後の球晶径が40ミクロン以下で、かつその球晶径の成長速度が12ミクロン/分以下であるポリプロピレンを用いることを特徴とする中空成形体の製造方法。
〔2〕上記〔1〕記載のポリプロピレンが造核剤を10〜3000ppm含有するものである上記〔1〕記載の中空成形体の製造方法。
〔3〕金型成形面と密着させる際の金型成形面の温度を、上記〔1〕記載のポリプロピレンの結晶化温度よりも10℃低い温度と融点との間の温度範囲とする上記〔1〕または〔2〕記載の中空成形体の製造方法。
〔4〕熱可塑性樹脂を固化させる際に、パリソン内部に吹き込む加圧流体として室温以下の温度のものを用い、かつ加圧流体をパリソン内部に流通させて冷却する上記〔1〕〜〔3〕のいずれかに記載の中空成形体の製造方法。
That is, the gist of the present invention is as follows.
[1] A hollow molded body in which a molten parison of a thermoplastic resin is supplied between molds and clamped, and a pressurized fluid is blown into the parison so as to be in close contact with the mold molding surface to solidify the thermoplastic resin. In the production method, at least the thermoplastic resin of the surface layer of the parison has a melt index (230 ° C., 2.16 kgf) of 0.5 to 20 g / 10 min, and a molecular weight distribution (weight average molecular weight / number average molecular weight). Is less than 8, and after melting at 220 ° C. for 3 minutes, the temperature drop rate is 10 ° C./min and the temperature drop rate is 130 ° C., and after 3 minutes the spherulite diameter is 40 microns or less and the growth rate of the spherulite diameter is A method for producing a hollow molded article, characterized by using polypropylene of 12 microns / min or less.
[2] The method for producing a hollow molded article according to the above [1], wherein the polypropylene according to the above [1] contains 10 to 3000 ppm of a nucleating agent.
[3] The temperature of the mold molding surface in close contact with the mold molding surface is set to a temperature range between a temperature lower by 10 ° C. than the crystallization temperature of the polypropylene described in [1] above and a melting point [1]. ] Or the manufacturing method of the hollow molded object of [2].
[4] When the thermoplastic resin is solidified, the pressurized fluid blown into the parison is one having a temperature of room temperature or lower, and the pressurized fluid is circulated inside the parison to be cooled [1] to [3] The manufacturing method of the hollow molded object in any one of.

本発明における中空成形体の製造方法は、型開きした成形金型の間に熱可塑性樹脂の溶融パリソンを供給して型締めをする工程、該パリソンの内部に加圧流体を吹き込んで金型成形面と密着させる工程、および熱可塑性樹脂を固化させる工程を有し、その成形素材の熱可塑性樹脂として少なくとも該パリソンの表面層に特定の物性を有するポリプロピレンを用いる方法である。   The method for producing a hollow molded body according to the present invention includes a step of supplying a molten resin parison of a thermoplastic resin between molds that are opened, and mold clamping by blowing a pressurized fluid into the interior of the parison. It is a method of using a polypropylene having a specific physical property at least on the surface layer of the parison as a thermoplastic resin of the molding material, including a step of closely adhering to a surface and a step of solidifying a thermoplastic resin.

ここで、中空成形体の製造に用いる熱可塑性樹脂の溶融パリソンは、その全体が特定の物性を有するポリプロピレンのみから形成されていてもよい。また、このポリブロピレンを表面層とし他の樹脂を内層とする二層構造、あるいはさらに他の樹脂からなる中間層を含む三層構造をなすように構成されたパリソンを用いてもよい。これら二層構造あるいは三層構造のパリソンを用いる場合には、その内層や中間層としては、高密度ポリエチレンや低密度ポリエチレン、ポリアミドなど耐衝撃性に優れた樹脂との組合せが好都合であり、このようなパリソンは、通常の多層中空成形機を用いて成形することができる。   Here, the thermoplastic parison of the thermoplastic resin used for the production of the hollow molded body may be formed entirely of polypropylene having specific physical properties. Moreover, you may use the parison comprised so that the polypropylene may be used as a surface layer, and it may have a two-layer structure which uses other resin as an inner layer, or a three-layer structure including the intermediate layer which consists of another resin. When these two-layer or three-layer parisons are used, the inner layer or intermediate layer is advantageously combined with a resin having excellent impact resistance such as high-density polyethylene, low-density polyethylene, or polyamide. Such a parison can be molded using a conventional multilayer hollow molding machine.

本発明方法の第一の工程では、成形素材であるポリプロピレン等を押出成形機により溶融混練して、その先端に設けたダイより、筒状の溶融パリソンとして押出し、この溶融パリソンが、型開きされた一対の中空成形用金型の中央部に垂下した時点で、金型の型締めをして溶融パリソンを挟みつける。そして、第二の工程で、金型で挟まれた溶融パリソンの内部に加圧流体の注入管を差し込み、圧縮空気などの加圧流体を吹き込んで、溶融パリソンを金型内のキャビティー全面に密着するよう膨張させる。   In the first step of the method of the present invention, polypropylene or the like, which is a molding material, is melt-kneaded by an extrusion molding machine and extruded as a cylindrical molten parison from a die provided at the tip, and the molten parison is opened. The mold is clamped and the molten parison is sandwiched when it hangs down from the center of the pair of hollow molds. In the second step, a pressurized fluid injection tube is inserted into the molten parison sandwiched between the molds, and a pressurized fluid such as compressed air is blown into the entire cavity inside the mold. Inflate to adhere.

ここで、溶融パリソンを金型内のキャビティー全面に密着させる際には、あらかじめ金型成形面の温度を、この金型に接するポリプロピレンの結晶化温度より10℃低い温度と、このポリプロピレンの融点との間の温度範囲に維持しておくと、中空成形体表面に金型キャビティー意匠がより正確に反映される。この金型成形面の温度調節は、一般的な加熱方法を採用することができ、たとえば、熱媒体の循環や電気的な加熱方式により金型内部から加熱してもよいし、外部からの加熱方式であってもよい。   Here, when the molten parison is brought into close contact with the entire cavity in the mold, the temperature of the mold molding surface is set to 10 ° C. lower than the crystallization temperature of polypropylene in contact with the mold, and the melting point of the polypropylene. The mold cavity design is more accurately reflected on the surface of the hollow molded body. A general heating method can be used to adjust the temperature of the molding surface of the mold. For example, the mold can be heated from the inside of the mold by circulation of a heat medium or an electric heating method, or from the outside. It may be a method.

さらに、第三の工程では、金型内でキャビティー内面形状が転写された状態にある熱可塑性樹脂を冷却固化して、中空成形体とする。この第三の工程での熱可塑性樹脂の冷却固化は、金型を冷却して行う方法でもよいし、金型内で製品形状が付与されたパリソンの中空部に冷却用の加圧流体を流通させて直接冷却する方法でもよい。冷却用の加圧流体を用いる場合には、室温以下に冷却した加圧流体、好ましくはマイナス20℃以下、より好ましくはマイナス30℃以下に冷却した2〜10Kg/cm2 G程度の圧縮空気を用いるのが好適である。またこの冷却用の加圧流体を流通させる方法としては、パリソン膨張用の加圧流体の注入管を差込む際、同時に加圧流体の排出管を差込んでおき、冷却工程の開始と同時に排出管の元栓を開いて、高温度のポリプロピレンと接触して昇温した加圧流体を排気管より排出できるようにすればよい。さらに、この場合の冷却速度の調節は、排気管の排出口で加圧流体の流通量を調節して、中空部内の圧力を一定に保持しながら冷却する方がよい。   Furthermore, in the third step, the thermoplastic resin in a state where the cavity inner surface shape is transferred in the mold is cooled and solidified to obtain a hollow molded body. The cooling and solidification of the thermoplastic resin in this third step may be performed by cooling the mold, or a pressurized fluid for cooling is circulated in the hollow part of the parison to which the product shape is given in the mold. It is also possible to directly cool it. When a pressurized fluid for cooling is used, a pressurized fluid cooled to room temperature or lower, preferably compressed air of about 2 to 10 kg / cm 2 G cooled to −20 ° C. or lower, more preferably −30 ° C. or lower is used. Is preferred. As a method of circulating the pressurized fluid for cooling, when inserting the pressurized fluid injection pipe for parison expansion, the pressurized fluid discharge pipe is inserted at the same time, and the cooling process starts. It is only necessary to open the main plug of the pipe so that the pressurized fluid heated in contact with the high-temperature polypropylene can be discharged from the exhaust pipe. Further, in this case, the cooling rate is preferably adjusted by adjusting the flow rate of the pressurized fluid at the outlet of the exhaust pipe and keeping the pressure in the hollow portion constant.

さらに、本発明の方法で用いる中空成形用金型は、一般に中空成形に用いられているガス抜き孔を有する金型を使用すればよい。このガス抜き孔は、その孔径が0.2〜0.5mm程度であるが、より外観に優れた成形体を得るためには孔径が100ミクロン以下であり、また孔のビッチが50mm以下となるように加工したものを用いるとよい。また、この金型の表面は、0.5S程度の鏡面仕上げしたものが好適であるが、使用目的に応じてシボ加工、模様加工などを施したものを用いてもよい。   Furthermore, what is necessary is just to use the metal mold | die which has a gas vent hole generally used for the hollow shaping | molding as the metal mold | die for hollow shaping | molding used with the method of this invention. This vent hole has a hole diameter of about 0.2 to 0.5 mm, but in order to obtain a molded article having a better appearance, the hole diameter is 100 microns or less, and the hole bitch is 50 mm or less. It is good to use what was processed in this way. Further, the surface of the mold is preferably a mirror-finished surface of about 0.5S, but a surface that has been subjected to graining or patterning according to the purpose of use may be used.

つぎに、本発明の方法で用いるポリプロピレンに関しては、特定の物性を有する結晶性ポリプロピレンを使用する。すなわち、この結晶性ポリプロピレンは、メルトインデックス(230℃、2.16kgf)が0.5〜20g/10分であり、分子量分布(重量平均分子量/数平均分子量)が8未満であるとともに、220℃で3分間融解した後、10℃/分の降温速度で130℃にしてから3分後の球晶径が40ミクロン以下で、かつその球晶径の成長速度が12ミクロン/分以下の値を有するものである。   Next, regarding the polypropylene used in the method of the present invention, crystalline polypropylene having specific physical properties is used. That is, this crystalline polypropylene has a melt index (230 ° C., 2.16 kgf) of 0.5 to 20 g / 10 minutes, a molecular weight distribution (weight average molecular weight / number average molecular weight) of less than 8, and 220 ° C. 3 minutes after melting at 10 ° C./minute, the spherulite diameter after 3 minutes is 40 microns or less, and the growth rate of the spherulite diameter is 12 microns / minute or less. It is what you have.

ここで、前記メルトインデックスの値に関しては、これが0.5g/10分未満であるものを用いると、成形の途上でメルトフラクチャーによる成形体表面の荒れが大きくなり、またこれが20g/10分を超えるものを用いた場合にも表面荒れを招くことから、前記の数値範囲内にあるものを用いる。また分子量分布(重量平均分子量/数平均分子量)に関しては、この値が8を超えるものを用いると、表面光沢の低下を招くほか、成形体表面への写像の鮮明性も低下するため、この値が8以下であるものを用いる。   Here, when the melt index value is less than 0.5 g / 10 min, the surface roughness of the molded body due to melt fracture increases during the molding, and this exceeds 20 g / 10 min. Even when a material is used, it causes surface roughness, so that a material within the above numerical range is used. In addition, regarding the molecular weight distribution (weight average molecular weight / number average molecular weight), if this value exceeds 8, the surface gloss will be lowered, and the sharpness of the mapping onto the surface of the molded product will be reduced. That is 8 or less.

さらに、ポリプロピレンの特定条件下での球晶径とその成長速度に関しては、この球晶径が40ミクロンを超えるものでは、成形体表面への写像の鮮明性が低下し、球晶の成長速度が12ミクロン/分を超えるものを用いた場合にも写像の鮮明性が低下することから、前記の結晶化特性を有するものを用いる。このポリプロピレンの結晶化特性の測定については、ポリプロピレンのペレットをガラス板に挟んでホットプレートにセットし、220℃まで昇温してこの温度で3分間維持して状態調製した後、ホットプレートを偏光顕微鏡にセットして、10℃/分の降温速度で降温させ、130℃に到達した直後から3分間後に観察される結晶の球晶径を目視および写真撮影して計測することができる。また、球晶の成長速度については、上記の降温操作で130℃に到達した後、1分、2分、3分、4分、5分後の球晶径を写真撮影し、経過時間と球晶径との相関式における直線勾配として求めることができる。   Further, regarding the spherulite diameter and the growth rate of polypropylene under specific conditions, when the spherulite diameter exceeds 40 microns, the sharpness of the mapping onto the surface of the molded product is lowered, and the growth rate of the spherulite is reduced. Even when a material exceeding 12 microns / minute is used, the sharpness of the mapping is deteriorated, so that a material having the above-mentioned crystallization characteristics is used. Regarding the measurement of the crystallization characteristics of this polypropylene, a polypropylene pellet is sandwiched between glass plates, set on a hot plate, heated to 220 ° C. and maintained at this temperature for 3 minutes, and then the hot plate is polarized. It is set in a microscope, and the temperature is decreased at a temperature decrease rate of 10 ° C./min, and the spherulite diameter of the crystal observed 3 minutes after reaching 130 ° C. can be measured by visual observation and photography. Also, regarding the growth rate of spherulites, after reaching 130 ° C. by the above-mentioned temperature lowering operation, photographs were taken of the spherulite diameter after 1 minute, 2 minutes, 3 minutes, 4 minutes, and 5 minutes, and the elapsed time and sphere It can be determined as a linear gradient in the correlation equation with the crystal diameter.

本発明で用いる前記物性値を有するポリプロピレンは、触媒としてチタンなどの遷移金属化合物と有機アルミニウム化合物との組合せからなるものを用い、これに電子供与性化合物を加えてプロピレンを重合させることによって得られるものであって、結晶形態がミクロ構造において、球晶径が特定値以下かつ結晶成長速度が特定値以下であるものを選定して使用すればよい。   The polypropylene having the above-mentioned physical property values used in the present invention is obtained by using a combination of a transition metal compound such as titanium and an organoaluminum compound as a catalyst and adding an electron donating compound thereto to polymerize propylene. What is necessary is just to select and use the thing whose crystal form is a microstructure, a spherulite diameter is below a specific value, and a crystal growth rate is below a specific value.

さらに、本発明で用いるポリプロピレンには、造核剤を10〜3000ppm含有するものを用いることができる。ここで用いる造核剤としては、ポリプロピレンの結晶サイズを微細化する作用を奏するものが好適であり、例えば、リン酸2,2−メチレンビス(4,6−t−ブチルフェニル)ナトリウムなどの有機系リン酸金属塩やアルミニウムヒドロキシ−ジパラターシャリーブチルベンゾエート、ジベンジリデンソルビトール、ジメチルベンジリデンソルビトール、ケイ酸マグネシウムなどが挙げられる。この造核剤の添加量は、10ppm未満ではその添加効果の発現が充分でなく、3000ppmを超えるとブリードアウトするおそれがあるので、10〜3000ppmの範囲内とする。   Furthermore, what contains 10-3000 ppm of nucleating agents can be used for the polypropylene used by this invention. As the nucleating agent used here, those having the effect of refining the crystal size of polypropylene are suitable, for example, organic systems such as 2,2-methylenebis (4,6-t-butylphenyl) sodium phosphate. Examples thereof include metal phosphates, aluminum hydroxy-diparatertiary butyl benzoate, dibenzylidene sorbitol, dimethyl benzylidene sorbitol, and magnesium silicate. If the addition amount of the nucleating agent is less than 10 ppm, the effect of the addition is not sufficiently exhibited, and if it exceeds 3000 ppm, there is a possibility of bleeding out, so that it is within the range of 10 to 3000 ppm.

また本発明で用いるポリプロピレンには、造核剤のほか、通常用いられる酸化防止剤や顔料、タルク等の充填剤を配合したものを用いてもよい。 In addition to the nucleating agent, the polypropylene used in the present invention may be blended with commonly used antioxidants, pigments, talc and other fillers.

以下に、実施例により本発明をさらに具体的に説明する。
〔実施例1〕
原料のポリプロピレンとして、メルトインデックス(230℃、2.16kgf)が3.52g/10分であり、分子量分布(重量平均分子量/数平均分子量)が6.0であるとともに、偏光顕微鏡下での観察において、220℃で3分間融解したのち10℃/分の降温速度で130℃にした直後から3分間経過後の球晶径が30ミクロンであり、かつ球晶径の成長速度が10ミクロン/分のポリプロピレン〔出光石油化学社製:出光ポリプロ;J400MP〕を用いた。このポリプロピレンの結晶化温度は、114℃であった。
Hereinafter, the present invention will be described more specifically with reference to examples.
[Example 1]
As a raw material polypropylene, it has a melt index (230 ° C., 2.16 kgf) of 3.52 g / 10 minutes, a molecular weight distribution (weight average molecular weight / number average molecular weight) of 6.0, and observation under a polarizing microscope. In this method, after melting at 220 ° C. for 3 minutes, the spherulite diameter after 30 minutes is 30 microns immediately after the temperature is lowered to 130 ° C. at a rate of 10 ° C./minute, and the growth rate of the spherulite diameter is 10 microns / minute. Of polypropylene [Idemitsu Petrochemical Co., Ltd .: Idemitsu Polypro; J400MP] was used. The crystallization temperature of this polypropylene was 114 ° C.

このポリプロピレンを中空成形機の押出機に供給して溶融混練した後、樹脂温度220℃、押出速度185g/秒の条件下にパリソンを押出し、金型の成形面の温度が110℃に保持してあるクロムメッキ仕上げ鏡面金型の中央部に垂下した後、金型の型締めをして、パリソンを金型内に取り込んだ。つぎに、金型の下部からパリソン内の中空部に至る圧縮空気注入管を差込んでこの注入管より圧縮空気を室温において吹き込み、パリソンの表面が金型キャビティーの全面に密着するよう、パリソンを膨張させた。圧縮空気としては、7Kg/cm2 Gであるものを用いた。   This polypropylene was supplied to an extruder of a hollow molding machine and melt-kneaded, and then the parison was extruded under the conditions of a resin temperature of 220 ° C. and an extrusion speed of 185 g / sec, and the mold surface temperature was maintained at 110 ° C. After hanging down at the center of a mirror-plated mirror mold, the mold was clamped and the parison was taken into the mold. Next, a compressed air injection pipe extending from the lower part of the mold to the hollow part in the parison is inserted, and compressed air is blown from this injection pipe at room temperature so that the surface of the parison is in close contact with the entire surface of the mold cavity. Was inflated. As the compressed air, one having 7 kg / cm @ 2 G was used.

ついで、上記工程で金型キャビティー内面形状が転写され、製品形状が付与された熱軟化状態のポリプロピレンを、金型の冷却によって冷却し固化させた後、金型を開いて中空成形体を取り出した。このようにして得られた中空成形体は、縦320mm、横190m
m、高さ40mmのやや偏平な中空容器であり、その中央部の肉厚が3mmであった。
Next, after the mold cavity inner surface shape was transferred in the above process and the heat-softened polypropylene with the product shape was cooled and solidified by cooling the mold, the mold was opened and the hollow molded body was taken out It was. The hollow molded body thus obtained has a length of 320 mm and a width of 190 m.
m, a slightly flat hollow container having a height of 40 mm, and the wall thickness at the center was 3 mm.

つぎに、この中空容器の胴部より試料を取り出し、成形体の表面光沢および写像の鮮明性について評価した。表面光沢は、JIS K7105に基づいて光沢度(%)を測定した。写像の鮮明性は、23℃において24時間状態調節した後、成形体表面に蛍光灯を写したときの蛍光灯の写像の鮮明性を目視により評価した。これら評価結果を、第1表に示す。   Next, a sample was taken out from the body of the hollow container, and the surface gloss of the molded body and the clarity of the image were evaluated. For surface gloss, glossiness (%) was measured based on JIS K7105. The clarity of the mapping was evaluated by visual observation of the clarity of the mapping of the fluorescent lamp when the fluorescent lamp was copied onto the surface of the molded article after conditioning for 24 hours at 23 ° C. These evaluation results are shown in Table 1.

〔実施例2〕
成形素材として、実施例1と同一のポリプロピレンに造核剤としてリン酸2,2−メチレンビス(4,6−t−ブチルフェニル)ナトリウムをその濃度が800ppmとなるように配合した組成物を用いた他は、実施例1と同様にして中空成形体を得た。得られた中空成形体についての評価結果を、第1表に示す。
[Example 2]
As a molding material, a composition in which 2,2-methylenebis (4,6-t-butylphenyl) sodium phosphate as a nucleating agent was blended so as to have a concentration of 800 ppm in the same polypropylene as in Example 1 was used. Otherwise, a hollow molded body was obtained in the same manner as in Example 1. Table 1 shows the evaluation results of the obtained hollow molded body.

〔実施例3〕
原料のポリプロピレンおよびパリソンを膨張させるまでの工程は、実施例1と同様にした。つぎに、製品形状が付与された熱軟化状態のパリソンの冷却固化を冷却媒体で直接冷却した。すなわち、金型の下部からパリソン内の中空部に圧縮空気注入管を差込む際に、同時に圧縮空気排出管を差込み、パリソンの膨張時には同排出管の元栓を閉じておき、パリソンの冷却を開始する直前にこの元栓を開いて冷却媒体が中空部内を流通できる状態にした。ついで、冷却媒体としてマイナス40℃に冷却した3Kg/cm2 Gの圧縮空気を用い、これをパリソン中空部に注入し、該中空部内を流通する間に熱交換されて昇温した圧縮空気が排出管から排出されるようにして、パリソンを直接冷却し、中空成形体を得た。得られた中空成形体についての評価結果を、第1表に示す。
Example 3
The steps until the starting polypropylene and parison were expanded were the same as in Example 1. Next, the cooling and solidification of the heat-softened parison provided with the product shape was directly cooled with a cooling medium. That is, when the compressed air injection pipe is inserted from the lower part of the mold into the hollow part of the parison, the compressed air discharge pipe is inserted at the same time, and when the parison expands, the main plug of the discharge pipe is closed and the parison starts cooling. Immediately before the operation, the main plug was opened to allow the cooling medium to flow through the hollow portion. Next, compressed air of 3 kg / cm @ 2 G cooled to minus 40 DEG C. as a cooling medium is injected into the parison hollow portion, and the compressed air heated by heat exchange while circulating in the hollow portion is discharged into the discharge pipe. As a result, the parison was directly cooled to obtain a hollow molded body. Table 1 shows the evaluation results of the obtained hollow molded body.

〔実施例4〕
成形素材として実施例2と同一のポリプロピレン組成物を用い、かつ中空成形体の製造方法は、実施例3と同様にした。得られた中空成形体についての評価結果を、第1表に示す。
Example 4
The same polypropylene composition as in Example 2 was used as the molding material, and the method for producing the hollow molded body was the same as in Example 3. Table 1 shows the evaluation results of the obtained hollow molded body.

〔比較例1〕
原料のポリプロピレンとして、メルトインデックス(230℃、2.16kgf)が0.44g/10分であり、分子量分布(重量平均分子量/数平均分子量)が8.4であるとともに、偏光顕微鏡下での観察において、220℃で3分間融解したのち10℃/分の降温速度で130℃にした直後から3分間経過後の球晶径が20ミクロンであり、かつ球晶径の成長速度が8ミクロン/分のポリプロピレンを用いた。
中空成形体の製造方法は、実施例1と同様にした。得られた中空成形体についての評価結果を、第1表に示す。
[Comparative Example 1]
As a raw material polypropylene, it has a melt index (230 ° C., 2.16 kgf) of 0.44 g / 10 minutes, a molecular weight distribution (weight average molecular weight / number average molecular weight) of 8.4, and observation under a polarizing microscope. In this method, after melting at 220 ° C. for 3 minutes, the spherulite diameter after 3 minutes from immediately after the temperature is lowered to 130 ° C. at a rate of 10 ° C./minute is 20 microns, and the growth rate of the spherulite diameter is 8 microns / minute. Polypropylene was used.
The method for producing the hollow molded body was the same as in Example 1. Table 1 shows the evaluation results of the obtained hollow molded body.

〔比較例2〕
成形素材として、比較例1で用いたものと同一のポリプロピレンに実施例2と同じ造核剤を800ppmの濃度となるように配合した組成物を用いた他は、実施例1と同様にした。得られた中空成形体についての評価結果を、第1表に示す。
[Comparative Example 2]
Example 1 was the same as Example 1 except that the same polypropylene as that used in Comparative Example 1 was used as the molding material, and a composition in which the same nucleating agent as Example 2 was blended to a concentration of 800 ppm was used. Table 1 shows the evaluation results of the obtained hollow molded body.

Figure 2006051831
Figure 2006051831

本発明の方法によれば、中空成形体表面に金型キャビティー意匠が正確に反映され、かつ表面光沢も良好であって、優れた外観を有する中空成形体を製造することができる。   According to the method of the present invention, it is possible to produce a hollow molded article having an excellent appearance, in which the mold cavity design is accurately reflected on the surface of the hollow molded article and the surface gloss is good.

Claims (4)

成形金型の間に熱可塑性樹脂の溶融パリソンを供給して型締めし、パリソンの内部に加圧流体を吹き込んで金型成形面と密着させ、熱可塑性樹脂を固化させる中空成形体の製造方法において、少なくとも該パリソンの表面層の熱可塑性樹脂として、メルトインデックス(230℃、2.16kgf)が0.5〜20g/10分であり、分子量分布(重量平均分子量/数平均分子量)が8未満であるとともに、220℃で3分間融解した後10℃/分の降温速度で130℃にしてから3分後の球晶径が40ミクロン以下で、かつその球晶径の成長速度が12ミクロン/分以下であるポリプロピレンを用いることを特徴とする中空成形体の製造方法。   A method for producing a hollow molded body in which a molten parison of a thermoplastic resin is supplied between molding dies and the mold is clamped, and a pressurized fluid is blown into the inside of the parison to bring it into close contact with the mold molding surface to solidify the thermoplastic resin In at least the surface layer of the parison, the thermoplastic resin has a melt index (230 ° C., 2.16 kgf) of 0.5 to 20 g / 10 min and a molecular weight distribution (weight average molecular weight / number average molecular weight) of less than 8. In addition, after melting at 220 ° C. for 3 minutes, the spherulite diameter after 3 minutes from the temperature decrease rate of 10 ° C./min is 130 μm and the growth rate of the spherulite diameter is 12 μm / min. A method for producing a hollow molded body, comprising using polypropylene having a content of less than or equal to minutes. 請求項1記載のポリプロピレンが造核剤を10〜3000ppm含有するものである請求項1記載の中空成形体の製造方法。   The method for producing a hollow molded article according to claim 1, wherein the polypropylene according to claim 1 contains 10 to 3000 ppm of a nucleating agent. 金型成形面と密着させる際の金型成形面の温度を、請求項1記載のポリプロピレンの結晶化温度よりも10℃低い温度と融点との間の温度範囲とする請求項1または2記載の中空成形体の製造方法。   The temperature of the mold molding surface when closely contacting with the mold molding surface is a temperature range between a temperature lower by 10 ° C. than the crystallization temperature of the polypropylene according to claim 1 and a melting point. A method for producing a hollow molded body. 熱可塑性樹脂を固化させる際に、パリソン内部に吹き込む加圧流体として室温以下の温度のものを用い、かつ加圧流体をパリソン内部に流通させて冷却する請求項1〜3のいずれかに記載の中空成形体の製造方法。   When solidifying the thermoplastic resin, a pressurized fluid blown into the parison is used at a temperature equal to or lower than room temperature, and the pressurized fluid is circulated inside the parison for cooling. A method for producing a hollow molded body.
JP2005316283A 2005-10-31 2005-10-31 Method for producing hollow molded body Pending JP2006051831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005316283A JP2006051831A (en) 2005-10-31 2005-10-31 Method for producing hollow molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005316283A JP2006051831A (en) 2005-10-31 2005-10-31 Method for producing hollow molded body

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP16232897A Division JPH1110718A (en) 1997-06-19 1997-06-19 Manufacture of hollow molded body

Publications (1)

Publication Number Publication Date
JP2006051831A true JP2006051831A (en) 2006-02-23

Family

ID=36029582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005316283A Pending JP2006051831A (en) 2005-10-31 2005-10-31 Method for producing hollow molded body

Country Status (1)

Country Link
JP (1) JP2006051831A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015196763A (en) * 2014-04-01 2015-11-09 株式会社イノアックコーポレーション Blow molded part, blow molded part production method, and material of blow molded part

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015196763A (en) * 2014-04-01 2015-11-09 株式会社イノアックコーポレーション Blow molded part, blow molded part production method, and material of blow molded part

Similar Documents

Publication Publication Date Title
JP5161481B2 (en) Polypropylene resin foam molding with skin
WO1997045246A1 (en) Method and apparatus for producing a blow molded article
CN105849165B (en) Foam molding
JP2013525163A5 (en)
WO2001021380A1 (en) Molding method for blow molded product
CN100475484C (en) Molding method and resin moldings
JP4656569B2 (en) Manufacturing method of hollow molded product
JPH1110718A (en) Manufacture of hollow molded body
JP2006051831A (en) Method for producing hollow molded body
JP2000025046A (en) Mold for molding thermoplastic resin
CN1871115B (en) Interior part for automobile
KR20080053537A (en) Method for preparation of extruded objects with brilliant gloss
JP5904442B2 (en) Molding method of high density polyethylene resin container
JPH0622878B2 (en) Polyamide blow molding
CN115505161B (en) Nylon mould pressing foaming material and preparation method thereof
TW486420B (en) Blow molded product and its production method
US6773656B2 (en) Blow molded product and production method therefor
JPS5838126A (en) Extruded hollow molding of polyolefin and molding method thereof
JP5326583B2 (en) Method for producing polyolefin resin block-like foam molded article
JPH0633084B2 (en) Hollow molded product
JP2022045385A (en) Manufacturing method of plug and resin molded body
JPH03184825A (en) Preparation of biaxially stretched bottle made of polyolefin
JP2000052411A (en) Exterior trim plate for automobile and its production
JPS6341733B2 (en)
JP2012011641A (en) Laminate of foamed polystyrene resin sheet

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A711 Notification of change in applicant

Effective date: 20060308

Free format text: JAPANESE INTERMEDIATE CODE: A712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060407

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060530