JP2006051625A - Manufacturing method of composite porous body - Google Patents

Manufacturing method of composite porous body Download PDF

Info

Publication number
JP2006051625A
JP2006051625A JP2004233093A JP2004233093A JP2006051625A JP 2006051625 A JP2006051625 A JP 2006051625A JP 2004233093 A JP2004233093 A JP 2004233093A JP 2004233093 A JP2004233093 A JP 2004233093A JP 2006051625 A JP2006051625 A JP 2006051625A
Authority
JP
Japan
Prior art keywords
porous body
resin member
composite porous
peripheral edge
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004233093A
Other languages
Japanese (ja)
Other versions
JP4622378B2 (en
Inventor
Kunio Yamamoto
国雄 山本
Atsushi Takeishi
篤 武石
Yoshijiro Kato
吉次郎 加藤
Masahiro Wada
正弘 和田
Eiko Kanda
栄子 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2004233093A priority Critical patent/JP4622378B2/en
Publication of JP2006051625A publication Critical patent/JP2006051625A/en
Application granted granted Critical
Publication of JP4622378B2 publication Critical patent/JP4622378B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Powder Metallurgy (AREA)
  • Filtering Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a composite porous body enhanced in the handleability of a porous body with high precision and high efficiency without sacrificing the effective area of the porous body. <P>SOLUTION: In the manufacturing method of the composite porous body wherein the sheetlike porous body 22 having a three-dimensional reticulated structure and a resin part provided so as to surround the outer peripheral edge of the porous body 22 are integrally formed, the porous body 22 and a resin member 21 are continuously passed through a closely bonding process which is constituted so as not only to pressurize at least the inner peripheral edge 21b, which comes into contact with the hole 21a, of the resin member 21 in its thickness direction excepting at least a part or the whole of the outer peripheral edge 21c thereof but also to heat the resin member 21 to a temperature not lower than the load bending temperature of the resin member 21 but not higher than the melting point thereof to closely bond the porous body 22 and the resin member 21 while crushing the resin member 21 in a state that the hole 21a formed to the resin member 21 is filled with the sheetlike porous body 22 and a cooling process for cooling the porous body 22 and the resin member 21 while pressing them in the thickness direction thereof in this order by a force not larger than the elasticity limit of the resin member 21. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、フィルタ、ガス拡散部材、放熱部材、吸水部材等に用いられる複合多孔質体を製造するのに好適な複合多孔質体の製造方法に関するものである。   The present invention relates to a method for producing a composite porous body suitable for producing a composite porous body used for a filter, a gas diffusion member, a heat radiating member, a water absorbing member and the like.

多孔質体は三次元網目構造を有し、側部に開口する気孔が各方向に連通していることにより通気性、吸水性を有し、軽量で表面積が大きいという特性を有している。この特性を活かして、多孔質体はフィルタ、ガス拡散部材、放熱部材、吸水部材といった様々な用途に適用され、種々の装置に備えられている。
このような多孔質体は様々な方法により製造されるが、たとえば金属粉末を含むスラリーSを薄く成形して乾燥させたグリーンシートGを焼成することにより製造することができる。なお、スラリーSは、たとえばSUS316L等の金属粉末、有機バインダ(例えば、メチルセルロースやヒドロキシプロピルメチルセルロース)、溶媒(水)を混合したものであり、さらに必要に応じて、加熱処理により昇華あるいは気化する発泡剤(例えば炭素数5〜8の非水溶性炭化水素系有機溶剤(例えばネオペンタン、ヘキサン、ヘプタン))や消泡剤(エタノール)等が添加される。
The porous body has a three-dimensional network structure, and has air permeability, water absorption, light weight, and a large surface area because pores opened in the side portions communicate with each direction. Taking advantage of this characteristic, the porous body is applied to various uses such as a filter, a gas diffusion member, a heat radiating member, and a water absorbing member, and is provided in various devices.
Such a porous body can be manufactured by various methods. For example, it can be manufactured by firing a green sheet G obtained by thinly forming and drying a slurry S containing a metal powder. The slurry S is a mixture of, for example, a metal powder such as SUS316L, an organic binder (for example, methylcellulose or hydroxypropylmethylcellulose), and a solvent (water). Further, the slurry S is sublimated or vaporized by heat treatment as necessary. An agent (for example, a water-insoluble hydrocarbon-based organic solvent having 5 to 8 carbon atoms (for example, neopentane, hexane, heptane)), an antifoaming agent (ethanol), or the like is added.

以下、図5に従い、多孔質体の製造方法について説明する。まず、スラリーSが貯蔵されたホッパ31から、ローラ32によって搬送されるキャリアシート33上にスラリーSが供給される。キャリアシート33上のスラリーSは、移動するキャリアシート33とドクターブレード34との間で延ばされ、所要の厚さに成形される。成形されたスラリーSは、さらにキャリアシート33によって搬送され、加熱炉35を通過する。そして、加熱炉35中で乾燥されることにより、SUS316L粉末が有機バインダによって接合された状態のグリーンシートGが形成される。   Hereinafter, a method for producing a porous body will be described with reference to FIG. First, the slurry S is supplied from the hopper 31 in which the slurry S is stored onto the carrier sheet 33 conveyed by the roller 32. The slurry S on the carrier sheet 33 is extended between the moving carrier sheet 33 and the doctor blade 34 and formed into a required thickness. The formed slurry S is further conveyed by the carrier sheet 33 and passes through the heating furnace 35. And it dries in the heating furnace 35, and the green sheet G of the state which the SUS316L powder was joined by the organic binder is formed.

なお、スラリーSに発泡剤が含まれる場合、キャリアシート33上に延ばされた状態のスラリーSを、乾燥前に、高湿度雰囲気下にて加熱処理し、発泡剤を発泡させて発泡スラリーとしてから、乾燥処理を行ってグリーンシートGを形成する。
このグリーンシートGは、キャリアシート33から取り外された後、図示しない真空炉にて脱脂、焼成されることにより、有機バインダが取り除かれ、金属粉末同士が焼結した多孔質体とされる。
In addition, when a foaming agent is contained in the slurry S, the slurry S in a state of being extended on the carrier sheet 33 is heat-treated in a high humidity atmosphere before drying to foam the foaming agent to obtain a foamed slurry. The green sheet G is formed by performing a drying process.
The green sheet G is removed from the carrier sheet 33, and then degreased and fired in a vacuum furnace (not shown), thereby removing the organic binder and forming a porous body in which metal powders are sintered.

ところで、このように形成された多孔質体は、一般に強度が低く、変形し易いという性質を有しているため、この取り扱いが困難であるという問題があった。そこで、多孔質体からなるフィルタ要素をフィルタ装置に組み込む際などの取り扱い時に生じる多孔質体の損傷を防止するために、フィルタ要素の端区域に異なる物質を充填して補強する構成が開示されている(例えば下記特許文献1参照)。
また、多孔質体としての金属発泡体を装置に取り付ける固定用穴等を設けるために、多孔質体の細孔中に金属やプラスチック等の固体を充填することにより、強度を向上させる部分を設ける構成が開示されている(例えば下記特許文献2参照)。
特開昭48−13956号公報 特開平08−53723号公報
By the way, since the porous body formed in this way has the property that it is generally low in strength and easily deformed, there is a problem that this handling is difficult. Therefore, in order to prevent damage to the porous body that occurs during handling such as when a filter element made of a porous body is incorporated in a filter device, a configuration is disclosed in which the end region of the filter element is filled with a different substance and reinforced. (See, for example, Patent Document 1 below).
In addition, in order to provide a fixing hole for attaching a metal foam as a porous body to the apparatus, a portion for improving the strength is provided by filling a solid such as metal or plastic into the pores of the porous body. A configuration is disclosed (for example, see Patent Document 2 below).
Japanese Patent Laid-Open No. 48-13956 Japanese Patent Application Laid-Open No. 08-53723

しかしながら、前記従来では、多孔質体に樹脂等を充填させ、この充填部分により多孔質体の強度を向上させているので、この充填部分に固定用穴を設けようとする場合に、例えば樹脂と金属とのように二種類の材料を同時に切削する必要があり、加工し難く、形状付与が困難となってしまう。また、多孔質体は一般に製造が困難で、高価なものであるから、この多孔質体を無駄なく利用してその特性を存分に発揮させることが望まれる。これに対し、多孔質体の表面に樹脂や金属等を塗り重ねるような補強では、多孔質体の有効面積を小さくしてしまうため、結果的にコスト増大を招くことになる。   However, in the prior art, the porous body is filled with resin or the like, and the strength of the porous body is improved by the filled portion. Therefore, when a hole for fixing is provided in the filled portion, for example, with resin It is necessary to cut two kinds of materials like metal at the same time, so that it is difficult to process and shape formation becomes difficult. In addition, since the porous body is generally difficult to manufacture and expensive, it is desired to utilize the porous body without waste to fully exhibit its characteristics. On the other hand, the reinforcement in which the surface of the porous body is coated with resin, metal or the like reduces the effective area of the porous body, resulting in an increase in cost.

本発明は、以上の課題に鑑みてなされたもので、多孔質体の有効面積を犠牲にせず、多孔質体の取り扱い性が向上された複合多孔質体を高精度に製造することができる複合多孔質体の製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and is a composite that can produce a composite porous body with improved accuracy in handling the porous body without sacrificing the effective area of the porous body. It aims at providing the manufacturing method of a porous body.

このような課題を解決して、前記目的を達成するために、本発明の複合多孔質体の製造方法は、三次元網目構造を有するシート状の多孔質体と、該多孔質体の外周縁を囲うように設けられた樹脂部とが一体に形成された複合多孔質体の製造方法であって、シート状の樹脂部材の表面に形成された孔に、前記樹脂部材より厚さが薄くされた前記多孔質体を装填した状態で、前記樹脂部材のうち、その外周縁部の一部若しくは全部を除く、少なくとも前記孔に接する内周縁部を厚さ方向に加圧するとともに、該樹脂部材の荷重たわみ温度以上融点以下の温度で加熱することにより、この樹脂部材を押し潰しながら、前記多孔質体と前記樹脂部材とを密着させる密着工程と、前記多孔質体および前記樹脂部材を冷却する冷却工程とをこの順に経ることを特徴とする。   In order to solve the above problems and achieve the above object, the method for producing a composite porous body of the present invention includes a sheet-like porous body having a three-dimensional network structure, and an outer peripheral edge of the porous body. A composite porous body integrally formed with a resin portion provided so as to surround the resin portion, wherein the thickness of the hole formed in the surface of the sheet-like resin member is made thinner than that of the resin member. In the state where the porous body is loaded, at least the inner peripheral edge part in contact with the hole is pressed in the thickness direction except for part or all of the outer peripheral edge part of the resin member, and the resin member An adhesion step of closely contacting the porous body and the resin member while crushing the resin member by heating at a temperature equal to or higher than the deflection temperature under load and below the melting point, and cooling for cooling the porous body and the resin member The process goes through in this order The features.

本発明によれば、前記密着工程と前記冷却工程とをこの順に経て前記複合多孔質体を形成するので、高精度な複合多孔質体を確実に製造することができる。
例えば、多孔質体をインサート部品とし、この多孔質体の外周縁を囲う樹脂部を射出成形するインサート成形により、前記複合多孔質体を製造しようとすると、この複合多孔質体が薄板の場合には、射出された樹脂が多孔質体の外周縁の全周に均等に行き渡らない虞があるとともに、多孔質体に作用する溶融樹脂の射出圧や温度が、多孔質体の外周縁において不均一となり、形成された複合多孔質体に反りなどの変形が発生し易い。
しかしながら、前記密着工程では、前記樹脂部材の孔に多孔質体を装填した状態で樹脂部材を加圧するとともに、荷重たわみ温度以上融点以下の温度で加熱することにより、この樹脂部材を押し潰しながら、前記多孔質体と前記樹脂部材とを密着させるので、前述のように樹脂部が不均一になることや、樹脂部材の加熱温度が不均一になることを容易に抑制することが可能になり、高精度な複合多孔質体を確実に製造することができる。
According to this invention, since the said composite porous body is formed through the said close_contact | adherence process and the said cooling process in this order, a highly accurate composite porous body can be manufactured reliably.
For example, when the composite porous body is manufactured by insert molding in which a porous body is used as an insert part and a resin portion surrounding the outer periphery of the porous body is injection-molded, the composite porous body is a thin plate. The injected resin may not spread evenly around the outer periphery of the porous body, and the injection pressure and temperature of the molten resin acting on the porous body are not uniform at the outer periphery of the porous body. Thus, deformation such as warpage is likely to occur in the formed composite porous body.
However, in the adhesion step, while pressing the resin member in a state where a porous body is loaded in the pores of the resin member, and heating the resin member at a temperature not lower than the melting point and not higher than the melting point, Since the porous body and the resin member are brought into close contact with each other, it becomes possible to easily prevent the resin portion from becoming uneven as described above and the heating temperature of the resin member from becoming uneven. A highly accurate composite porous body can be reliably produced.

また、前記密着工程では、多孔質体の側部に開口する気孔中に樹脂部材が入り込んで、多孔質体と樹脂部材とが密着するので、これらを冷却して接合すると、アンカー効果により強固に接合することができる。さらに、前記密着工程の後に前記冷却工程を経るので、加熱状態で多孔質体に密着した樹脂部材を迅速に冷却させ、かつ確実に接合させることが可能になる。   Further, in the adhesion step, the resin member enters into the pores opened in the side portion of the porous body, and the porous body and the resin member are in close contact with each other. Can be joined. Furthermore, since the cooling step is performed after the contact step, the resin member that is in close contact with the porous body in the heated state can be rapidly cooled and reliably bonded.

以上のように形成された複合多孔質体は、強度の低い多孔質体の外周縁に樹脂部が配設されているので、この多孔質体の取り扱い性の向上を図ることができる。また、樹脂部は、多孔質体の外周縁を囲み、この外周縁から張り出すように配設されるので、樹脂部のみに限定して例えば機械加工を施すことが可能になり、これにより、装置固定用の穴等の形状を容易に付与することができる。   Since the composite porous body formed as described above has the resin portion disposed on the outer peripheral edge of the low-strength porous body, the handling of the porous body can be improved. Further, since the resin portion surrounds the outer peripheral edge of the porous body and is arranged so as to protrude from the outer peripheral edge, it becomes possible to perform machining, for example, only in the resin portion, A shape such as a hole for fixing the device can be easily provided.

特に、前記密着工程では、シート状の樹脂部材の表面に形成された孔に、前記樹脂部材より厚さが薄くされた前記多孔質体を装填した状態で、前記樹脂部材のうち、その外周縁部の一部若しくは全部を除く、少なくとも前記内周縁部を厚さ方向に加圧するとともに、前記加熱することにより、この樹脂部材を押し潰しながら、前記多孔質体と前記樹脂部材とを密着させるので、形成される複合多孔質体において、前記樹脂部の前記外周縁部の少なくとも一部を前記内周縁部より厚肉に形成することが可能になる。このような複合多孔質体においては、その強度をさらに向上させることが可能になり、取り扱い性の向上を確実に図ることができるとともに、樹脂部に機械加工を施す際に、この樹脂部が変形することを最小限に抑制することが可能になり、前記穴等を容易かつ高精度に付与することができる。   In particular, in the contact step, the outer peripheral edge of the resin member is loaded with the porous body having a thickness smaller than that of the resin member in the hole formed on the surface of the sheet-like resin member. The porous body and the resin member are brought into close contact with each other by pressing at least the inner peripheral edge portion in the thickness direction, excluding a part or all of the portion, and crushing the resin member by heating. In the composite porous body to be formed, at least a part of the outer peripheral edge portion of the resin portion can be formed thicker than the inner peripheral edge portion. In such a composite porous body, the strength can be further improved, the handling property can be improved reliably, and the resin portion is deformed when the resin portion is machined. It is possible to suppress the above to the minimum, and the holes and the like can be provided easily and with high accuracy.

ここで、前記冷却工程は、前記多孔質体および前記樹脂部材をその面方向に引張りながら冷却することが望ましい。
この場合、前記密着工程の加熱による樹脂部材の膨張によって、この樹脂部材が波打つ等といった変形を抑えることが可能になるとともに、前述した冷却時における樹脂部材の収縮挙動を確実に拘束することが可能になる。仮に、前記密着工程で樹脂部材が前記変形した場合においても、この変形を所望の形状および寸法に矯正することが可能になる。以上により、前記密着工程を有することと相俟って高精度な複合多孔質体をより確実に形成することができる。
Here, it is preferable that the cooling step cools the porous body and the resin member while pulling in the surface direction.
In this case, the expansion of the resin member due to the heating in the contact process can suppress deformation such as undulation of the resin member, and can surely restrain the contraction behavior of the resin member during the cooling described above. become. Even if the resin member is deformed in the adhesion step, the deformation can be corrected to a desired shape and size. As described above, combined with the adhesion step, a highly accurate composite porous body can be more reliably formed.

また、前記溶着工程と前記冷却工程とはこの順に、前記多孔質体および前記樹脂部材を搬送しながら連続的に経るとともに、前記冷却工程は、前記多孔質体および前記樹脂部材をこれらの搬送方向における後側から前側に向けて徐々に冷却温度を下げることが望ましい。
この場合、前記溶着工程と前記冷却工程とをこの順に、前記多孔質体および前記樹脂部材を搬送しながら連続的に経るので、複合多孔質体を高効率に形成することができる。また、前記冷却工程では、前記溶着工程で加熱された前記樹脂部材が徐冷されることになり、多孔質体および樹脂部材が前記密着工程からこの冷却工程に到達した際、そのときの温度差によって樹脂部材が急速に収縮することを抑えることが可能になり、樹脂部材にひずみが発生したり、あるいは破断したりすることを抑制することができる。
In addition, the welding step and the cooling step are sequentially performed in this order while conveying the porous body and the resin member, and the cooling step includes the porous body and the resin member in their conveying directions. It is desirable to gradually lower the cooling temperature from the rear side to the front side.
In this case, since the welding step and the cooling step are successively performed in this order while conveying the porous body and the resin member, the composite porous body can be formed with high efficiency. Further, in the cooling step, the resin member heated in the welding step is gradually cooled, and when the porous body and the resin member reach the cooling step from the adhesion step, a temperature difference at that time Thus, the resin member can be prevented from rapidly contracting, and the resin member can be prevented from being distorted or broken.

さらに、前記多孔質体および前記樹脂部材を、前記密着工程における加熱温度以下の温度で、これらの搬送方向における後側から前側に向けて徐々に温度を上げて加熱する予熱工程を経た後に、前記密着工程を経ることが望ましい。
この場合、前記密着工程の直前に前記予熱工程を経るので、密着工程における多孔質体と樹脂部材との密着を確実に実現することができる。
Furthermore, after passing through a preheating step of heating the porous body and the resin member at a temperature equal to or lower than the heating temperature in the adhesion step, gradually increasing the temperature from the rear side to the front side in the transport direction, It is desirable to go through an adhesion process.
In this case, since the preheating step is performed immediately before the adhesion step, the adhesion between the porous body and the resin member in the adhesion step can be reliably realized.

また、シート状の樹脂部材を打抜いて前記孔を形成する打ち抜き工程と、前記孔に前記多孔質体を装填する装填工程とをこの順に経た後に、前記密着工程を経ることが望ましい。この場合、複合多孔質体のさらなる高効率生産を実現することができる。特に、樹脂部材の厚さが多孔質体の厚さより厚くされているので、前記打ち抜き工程において、樹脂部材を打ち抜く際に、この樹脂部材が面方向に変形してその厚さ方向にせん断力を良好に伝達させることができず、孔を高精度に形成することが困難になるという不具合を回避することができ、高精度な孔を容易に形成することができる。   Further, it is preferable that the adhesion step is performed after a punching step of punching a sheet-shaped resin member to form the hole and a loading step of loading the porous body into the hole in this order. In this case, further highly efficient production of the composite porous body can be realized. In particular, since the thickness of the resin member is larger than the thickness of the porous body, when the resin member is punched in the punching step, the resin member is deformed in the surface direction and shear force is applied in the thickness direction. It is possible to avoid the inconvenience that it cannot be transmitted well and it is difficult to form the holes with high accuracy, and it is possible to easily form the holes with high accuracy.

さらに、前記樹脂部材は長尺とされるとともに、その長手方向に搬送されつつ、前記打ち抜き工程、前記装填工程、前記密着工程、および前記冷却工程をこの順に経た後に、該樹脂部材の前記外周縁部のうち少なくとも前記一部を切断して、前記複合多孔質体を形成する切断工程を経ることが望ましい。
この場合、前記密着工程により、前記樹脂部材の前記外周縁部のうち少なくとも一部が前記内周縁部の厚さより厚くされ、少なくともこの一部を切断して、前記複合多孔質体を形成するので、この切断時に、樹脂部材が面方向に変形してその厚さ方向にせん断力を良好に伝達させることができず、複合多孔質体を高精度に形成することが困難になるという不具合を回避することができ、高精度な複合多孔質体を容易に形成することができる。
Further, the resin member is elongated, and after being subjected to the punching step, the loading step, the adhesion step, and the cooling step in this order while being conveyed in the longitudinal direction, the outer peripheral edge of the resin member It is desirable to cut through at least a part of the part to form the composite porous body.
In this case, at least a part of the outer peripheral edge of the resin member is made thicker than the inner peripheral edge by the adhesion step, and at least a part of the outer peripheral edge is cut to form the composite porous body. During the cutting, the resin member is deformed in the surface direction and the shearing force cannot be transmitted well in the thickness direction, and it is difficult to form a composite porous body with high accuracy. And a highly accurate composite porous body can be easily formed.

図1から図3は本発明の一実施形態に係る複合多孔質体の製造装置10を示すものであって、シート状の樹脂部材21、および樹脂部材21に形成された孔21aに装填された多孔質体22を搬送する図示しない搬送手段と、前記樹脂部材21の搬送方向Fと略直交する方向に延び、かつ該樹脂部材21の表面と水平な回転軸回りに回転可能とされるとともに、その外表面が該樹脂部材21および多孔質体22に、これらの表面側および裏面側のうち少なくとも一方から接する構成とされたロール部11とを備える概略構成とされている。   1 to 3 show a composite porous body manufacturing apparatus 10 according to an embodiment of the present invention, which is loaded into a sheet-like resin member 21 and holes 21 a formed in the resin member 21. A conveying means (not shown) that conveys the porous body 22, extends in a direction substantially orthogonal to the conveying direction F of the resin member 21, and is rotatable about a rotation axis that is horizontal with the surface of the resin member 21. The outer surface of the resin member 21 and the porous body 22 has a schematic configuration including a roll portion 11 configured to be in contact with at least one of the front surface side and the back surface side.

そして、本実施形態では、樹脂部材21は長尺とされるとともに、前記搬送手段によりその長手方向に搬送されるようになっており、また多孔質体22は樹脂部材21より厚さが薄くされている。この装置10は、前記搬送方向Fにおける後端部に配設され、長尺とされたシート状の樹脂部材21に前記孔21aを穿設する第1パンチ部14と、この第1パンチ部14より前記搬送方向Fにおける前側に配設され、前記孔21aに多孔質体22を装填する装填手段15と、前記搬送方向Fにおける前端部に配設され、後述するように、前記孔21aの内周面と多孔質体22とが接合された樹脂部材21を所望の長さで切断して、複合多孔質体40(図4参照)を形成する第2パンチ部16とを備えている。
以上の構成において、この装置10は、第1パンチ部14と装填手段15とロール部11と第2パンチ部16とがこの順に、前記搬送方向Fの後側から前側に向けて順次配設された構成となっている。
In the present embodiment, the resin member 21 is elongated and is transported in the longitudinal direction by the transport means, and the porous body 22 is made thinner than the resin member 21. ing. The apparatus 10 is provided at a rear end portion in the transport direction F, and has a first punch portion 14 that punches the hole 21 a in a long sheet-like resin member 21, and the first punch portion 14. And a loading means 15 for loading the porous body 22 into the hole 21a and a front end portion in the conveyance direction F. The resin member 21 to which the peripheral surface and the porous body 22 are joined is cut to a desired length to form a second punch portion 16 that forms a composite porous body 40 (see FIG. 4).
In the above configuration, the apparatus 10 includes the first punch unit 14, the loading unit 15, the roll unit 11, and the second punch unit 16 arranged in this order from the rear side to the front side in the transport direction F. It becomes the composition.

ロール部11は、樹脂部材21のうち、その外周縁部21cの一部(前記搬送方向Fと交差する方向に延びる部分)と、前記孔21aに接する内周縁部21bとを厚さ方向に加圧するとともに、該樹脂部材21の荷重たわみ温度以上融点以下の温度で加熱し、この樹脂部材21を押し潰しながら、多孔質体22と樹脂部材21とを密着させる構成とされた密着ロール部17と、多孔質体22および樹脂部材21をこれらの厚さ方向に樹脂部材21の弾性限度以下の力で押圧しながら冷却する構成とされた冷却ロール部18とがこの順に、前記搬送方向Fの後側から前側に向けて順次設けられた構成とされている。
さらに本実施形態では、ロール部11は、密着ロール部17と装填手段15との間に配設された、密着ロール部17による加熱温度より低温とされた予熱ロール部19を備えている。
The roll portion 11 adds a part of the outer peripheral edge portion 21c of the resin member 21 (a portion extending in a direction intersecting the transport direction F) and an inner peripheral edge portion 21b in contact with the hole 21a in the thickness direction. A contact roll portion 17 that is configured to press and heat the resin member 21 at a temperature that is greater than or equal to the deflection temperature of the load and below the melting point, and crushes the resin member 21 while closely contacting the porous body 22 and the resin member 21; The cooling roll unit 18 configured to cool the porous body 22 and the resin member 21 while pressing the porous member 22 and the resin member 21 in the thickness direction with a force equal to or less than the elastic limit of the resin member 21 is arranged in this order in the rear of the conveyance direction F. It is set as the structure provided sequentially from the side toward the front side.
Furthermore, in this embodiment, the roll part 11 is provided with the preheating roll part 19 arrange | positioned between the close_contact | adherence roll part 17 and the loading means 15, and lower temperature than the heating temperature by the close_contact | adherence roll part 17. FIG.

以上の各ロール部17〜19は、樹脂部材21および多孔質体22をその表裏面側から挟み込むように配設され、搬送状態にある樹脂部材21および多孔質体22が前記各ロール部17〜19の配設位置に到達した際、前記各ロール部17〜19の外表面は、樹脂部材21および多孔質体22をこれらの厚さ方向に押圧するとともに、前述のように回転軸回りに回転駆動されることにより、前記搬送方向Fの前側に向けて送り出すようになっている。また、前記各ロール部17〜19は各別に図示しない駆動手段に連結されており、これらの各ロール部17〜19の回転速度が各別に制御できるようになっている。さらに、前記各ロール部17〜19の前記回転軸方向における中央部と、樹脂部材21および多孔質体22の前記搬送方向Fと交差する方向、すなわち幅方向における中央部とは略一致した構成となっている。   Each of the above roll portions 17 to 19 is disposed so as to sandwich the resin member 21 and the porous body 22 from the front and back surfaces thereof, and the resin member 21 and the porous body 22 in a transported state are each of the roll portions 17 to 17. When the arrangement position 19 is reached, the outer surfaces of the roll portions 17 to 19 press the resin member 21 and the porous body 22 in their thickness directions and rotate around the rotation axis as described above. By being driven, it is sent out toward the front side in the transport direction F. Moreover, each said roll part 17-19 is connected with the drive means which is not illustrated separately, respectively, and the rotational speed of these each roll parts 17-19 can be controlled separately. Further, the central portion in the rotation axis direction of each of the roll portions 17 to 19 and the direction intersecting the transport direction F of the resin member 21 and the porous body 22, that is, the central portion in the width direction are substantially coincident with each other. It has become.

ここで、冷却ロール部18は、前記搬送方向Fに向けて連設された複数の冷却ロール18aを備え、これらの冷却ロール18aのうち、前記搬送方向Fにおける後端に位置するロール18aの表面温度が最も高く、前端に位置するロール18aの表面温度が最も低くなるように、これら18aの表面温度は前記搬送方向Fの後側から前側に向かうに従い漸次低くされている。また、これらの冷却ロール18aの表面速度は全て略同一とされるとともに、密着ロール部17の表面速度より大きくされている。   Here, the cooling roll unit 18 includes a plurality of cooling rolls 18a continuously provided in the transport direction F, and among these cooling rolls 18a, the surface of the roll 18a located at the rear end in the transport direction F. The surface temperatures of these rolls 18a are gradually lowered from the rear side to the front side in the transport direction F so that the surface temperature of the roll 18a located at the front end is the lowest. Further, the surface speeds of these cooling rolls 18 a are all substantially the same, and are larger than the surface speed of the contact roll part 17.

予熱ロール部19は、前記搬送方向Fに向けて連設された複数の予熱ロール19aを備え、これらの予熱ロール19aのうち、前記搬送方向Fにおける後端に位置するロール19aの表面温度が最も低く、前端に位置するロール19aの表面温度が最も高くなるように、これら19aの表面温度は前記搬送方向Fの後側から前側に向かうに従い漸次高くされている。なお、前記搬送方向Fの前端に位置する予熱ロール19aの表面温度は、後述する密着工程における加熱温度以下の温度とされている。   The preheating roll unit 19 includes a plurality of preheating rolls 19a continuously provided in the transport direction F. Among these preheating rolls 19a, the surface temperature of the roll 19a located at the rear end in the transport direction F is the highest. The surface temperatures of these rolls 19a are gradually increased from the rear side toward the front side in the transport direction F so that the surface temperature of the roll 19a located at the front end is the lowest. In addition, the surface temperature of the preheating roll 19a located at the front end in the conveyance direction F is set to a temperature equal to or lower than the heating temperature in the adhesion process described later.

以上の各ロール部17〜19のうち、溶着ロール部17および冷却ロール部18の前記回転軸方向の大きさは、樹脂部材21の内周縁部21bにおける前記幅と略同一とされ、かつこれらのロール部17、18の前記回転軸方向における中央部と、搬送状態にある樹脂部材21および多孔質体22の前記幅方向における中央部とが略一致している。従って、後述するように樹脂部材21および多孔質体22が溶着ロール部17および冷却ロール部18を順次通過する過程において、これらのロール部17、18の外表面は樹脂部材21の前記外周縁部21cとは非接触とされるようになっている。   Among the roll parts 17 to 19 described above, the size of the welding roll part 17 and the cooling roll part 18 in the rotation axis direction is substantially the same as the width of the inner peripheral edge part 21b of the resin member 21, and these The central part in the rotation axis direction of the roll parts 17 and 18 and the central part in the width direction of the resin member 21 and the porous body 22 in the transport state are substantially coincided with each other. Therefore, in the process in which the resin member 21 and the porous body 22 sequentially pass through the welding roll portion 17 and the cooling roll portion 18 as described later, the outer surfaces of these roll portions 17 and 18 are the outer peripheral edge portions of the resin member 21. 21c is made non-contact.

次に、以上のように構成された製造装置10により、多孔質体22の外周縁部にこの全周に亙って樹脂部41が配設された複合多孔質体40を製造する方法について説明する。   Next, a description will be given of a method for manufacturing the composite porous body 40 in which the resin portion 41 is disposed on the outer peripheral edge portion of the porous body 22 over the entire periphery by the manufacturing apparatus 10 configured as described above. To do.

まず、樹脂部材21のうち、第1パンチ部14の配設位置に到達した部分が、このパンチ部14により打抜かれ、孔21aが穿設される(打抜き工程)。そしてさらに樹脂部材21が搬送され、孔21aが装填手段15の配設位置に到達したときに、装填手段15により、孔21aに多孔質体22が装填される(装填工程)。   First, a portion of the resin member 21 that has reached the position where the first punch portion 14 is disposed is punched by the punch portion 14 to form a hole 21a (punching step). Further, when the resin member 21 is further conveyed and the hole 21a reaches the arrangement position of the loading unit 15, the loading unit 15 loads the porous body 22 into the hole 21a (loading step).

その後、同様に樹脂部材21および多孔質体22が搬送されると、これら21、22は、予熱ロール部19の配設位置に到達する。この際、樹脂部材21および多孔質体22は、前記回転軸回りに回転されている複数の予熱ロール19aの外周面に、これらの表裏面側から接触された状態で順次通過する。この過程において、複数の予熱ロール19aが前記搬送方向Fにおける後側から前側に向けて順次その表面温度が高くされているので、樹脂部材21および多孔質体22は徐々に加熱させられる(予熱工程)。この際の加熱温度は、次工程の密着工程における加熱温度以下の温度とされる。   Thereafter, when the resin member 21 and the porous body 22 are similarly transported, these 21 and 22 reach the arrangement position of the preheating roll unit 19. At this time, the resin member 21 and the porous body 22 sequentially pass through the outer peripheral surfaces of the plurality of preheating rolls 19a rotated around the rotation axis in a state of being in contact with the front and back surfaces. In this process, since the surface temperature of the plurality of preheating rolls 19a is sequentially increased from the rear side to the front side in the transport direction F, the resin member 21 and the porous body 22 are gradually heated (preheating step). ). The heating temperature at this time is set to a temperature equal to or lower than the heating temperature in the next adhesion step.

そして、この予熱ロール部19を通過した樹脂部材21および多孔質体22は、密着ロール部17の配設位置に到達する。この際、樹脂部材21および多孔質体22は、前記回転軸回りに回転されている密着ロール部17の外周面に、これらの表裏面側から接触された状態で通過する。ここで前述したように、密着ロール部17の前記回転軸方向における大きさが、樹脂部材21の内周縁部21bにおける前記幅と略同一とされ、かつ密着ロール部17の前記回転軸方向における中央部と、搬送状態にある樹脂部材21および多孔質体22の前記幅方向における中央部とが略一致しているので、密着ロール部17の外周面は、多孔質体22の表裏面と、樹脂部材21の前記内周縁部21bにおける表裏面と、前記外周縁部21cのうち前記幅方向に延びる部分の表裏面とに接触し、前記外周縁部21cのうち前記搬送方向Fに延びる部分の表裏面とは非接触とされる。   Then, the resin member 21 and the porous body 22 that have passed through the preheating roll unit 19 reach the arrangement position of the contact roll unit 17. At this time, the resin member 21 and the porous body 22 pass through the outer peripheral surface of the contact roll portion 17 rotated about the rotation axis in a state of being in contact with the front and back surfaces. As described above, the size of the contact roll portion 17 in the rotation axis direction is substantially the same as the width of the inner peripheral edge portion 21b of the resin member 21, and the contact roll portion 17 is centered in the rotation axis direction. Portion and the central portion in the width direction of the resin member 21 and the porous body 22 in the transported state substantially coincide with each other, so that the outer peripheral surface of the contact roll portion 17 is the front and back surfaces of the porous body 22 and the resin. The front and back surfaces of the inner peripheral edge portion 21b of the member 21 and the front and rear surfaces of the outer peripheral edge portion 21c that extend in the width direction, and the front surface portion of the outer peripheral edge portion 21c that extends in the transport direction F. The back surface is not contacted.

この過程において、樹脂部材21の前記内周縁部21b、および前記外周縁部21cのうち前記幅方向に延びる部分を厚さ方向に加圧するとともに、該樹脂部材21の荷重たわみ温度以上融点以下の温度で加熱することにより、この樹脂部材21の前記内周縁部21b、および前記外周縁部21cの前記幅方向に延びる部分を多孔質体22の厚さと略同一になるまで押し潰しながら、多孔質体22と樹脂部材21とを密着させる(密着工程)。この際、多孔質体22と樹脂部材21とは、多孔質体22の側部に開口する気孔中、5μm〜1000μm程度の深さまで樹脂部材21が入り込んだ状態で密着する。また、樹脂部材21の前記外周縁部21cのうち前記搬送方向Fに延びる部分は、密着ロール部17と非接触とされたので、この部分の厚さは多孔質体22より厚いまま維持され、前記内周縁部21b、および前記外周縁部21cのうち前記幅方向に延びる部分は、密着ロール部17に押し潰されたことにより、多孔質体22と略同一の厚さとされる。   In this process, portions extending in the width direction of the inner peripheral edge portion 21b and the outer peripheral edge portion 21c of the resin member 21 are pressed in the thickness direction, and the temperature of the resin member 21 is equal to or higher than the load deflection temperature and lower than the melting point. The porous body is crushed by crushing the portions extending in the width direction of the inner peripheral edge portion 21b and the outer peripheral edge portion 21c of the resin member 21 until they are substantially equal to the thickness of the porous body 22 22 and the resin member 21 are brought into close contact (contact step). At this time, the porous body 22 and the resin member 21 are in close contact with each other in a state where the resin member 21 enters a depth of about 5 μm to 1000 μm in the pores opened in the side portion of the porous body 22. Moreover, since the part extended in the said conveyance direction F among the said outer periphery part 21c of the resin member 21 was made into non-contact with the contact | adherence roll part 17, the thickness of this part is maintained with being thicker than the porous body 22, Of the inner peripheral edge portion 21b and the outer peripheral edge portion 21c, the portion extending in the width direction is crushed by the contact roll portion 17, so that it has substantially the same thickness as the porous body 22.

次に、樹脂部材21および多孔質体22はさらに搬送されると、冷却ロール部18の配設位置に到達する。この際、樹脂部材21および多孔質体22は、前記回転軸回りに回転されている複数の冷却ロール18aの外周面により、これらの厚さ方向に樹脂部材21の弾性限度以下の力で押圧された状態で順次通過する。ここで前述したように、冷却ロール18aの前記回転軸方向における大きさが、樹脂部材21の内周縁部21bにおける前記幅と略同一とされ、かつ冷却ロール18aの前記回転軸方向における中央部と、搬送状態にある樹脂部材21および多孔質体22の前記幅方向における中央部とが略一致しているので、冷却ロール18aの外周面は、多孔質体22の表裏面と、樹脂部材21の前記内周縁部21bにおける表裏面と、前記外周縁部21cのうち前記幅方向に延びる部分の表裏面とに接触し、前記外周縁部21cのうち前記搬送方向Fに延びる部分の表裏面とは非接触とされる。つまり、冷却ロール18aは、樹脂部材21のうち、前記密着工程で密着ロール部17により押し潰された部分を厚さ方向に、樹脂部材21の弾性限度以下の力で押圧する。   Next, when the resin member 21 and the porous body 22 are further conveyed, the resin member 21 and the porous body 22 reach the position where the cooling roll unit 18 is disposed. At this time, the resin member 21 and the porous body 22 are pressed by the outer peripheral surfaces of the plurality of cooling rolls 18a rotated around the rotation axis with a force equal to or less than the elastic limit of the resin member 21 in the thickness direction. Pass through in sequence. As described above, the size of the cooling roll 18a in the rotation axis direction is substantially the same as the width of the inner peripheral edge portion 21b of the resin member 21, and the cooling roll 18a has a central portion in the rotation axis direction. Since the resin member 21 in the transported state and the central portion in the width direction of the porous body 22 are substantially coincident with each other, the outer peripheral surface of the cooling roll 18a is connected to the front and back surfaces of the porous body 22 and the resin member 21. The front and back surfaces of the inner peripheral edge portion 21b are in contact with the front and back surfaces of the outer peripheral edge portion 21c that extend in the width direction, and the front and back surfaces of the outer peripheral edge portion 21c that extend in the transport direction F Contactless. That is, the cooling roll 18 a presses a portion of the resin member 21 crushed by the contact roll portion 17 in the contact process in the thickness direction with a force equal to or less than the elastic limit of the resin member 21.

この過程において、冷却ロール18aの、前記回転によるその外表面における表面速度は、密着ロール部17のものより大きく、つまり樹脂部材21および多孔質体22の前記搬送方向Fにおける前側へ向けた送り速度が、冷却ロール18aによるものの方が密着ロール部17によるものより大きくされているので、樹脂部材21および多孔質体22は、前記搬送方向Fにおける前側へ向けて引張られるとともに、複数の冷却ロール18aは前記搬送方向Fにおける後側から前側に向けて順次その表面温度が低くされているので、樹脂部材21および多孔質体22は徐々に冷却させられる(冷却工程)。これにより、前記密着工程で加熱された樹脂部材21が冷却されて樹脂部材21と多孔質体22とが接合される。   In this process, the surface speed of the cooling roll 18a on the outer surface due to the rotation is larger than that of the contact roll section 17, that is, the feed speed of the resin member 21 and the porous body 22 toward the front side in the transport direction F. However, since the thing by the cooling roll 18a is made larger than the thing by the contact | adherence roll part 17, while the resin member 21 and the porous body 22 are pulled toward the front side in the said conveyance direction F, several cooling roll 18a Since the surface temperature is lowered sequentially from the rear side to the front side in the transport direction F, the resin member 21 and the porous body 22 are gradually cooled (cooling step). Thereby, the resin member 21 heated by the said close_contact | adherence process is cooled, and the resin member 21 and the porous body 22 are joined.

次に、同様に搬送されると、樹脂部材21および多孔質体22は第2パンチ部16の配設位置に到達し、樹脂部材21が所望の長さで切断されることにより、前記複合多孔質体40が形成される(切断工程)。この際、樹脂部材21の前記外周縁部21cのうち、最も厚さが厚くされた部分、つまり前記搬送方向Fに延びる部分を含む、前記幅方向の全域が切断される。
以上の前記各工程のうち、予熱工程、密着工程および冷却工程では、前述したように、各ロール部17〜19が前記回転軸回りに回転された状態で、その外周面が樹脂部材21、または樹脂部材21および多孔質体22(以下、単に「樹脂部材21等」という)にこれらの表裏面側から接することになる。従って、樹脂部材21等がこれらの各工程を経る過程において、この樹脂部材21等を停止させることなく搬送させ続けることが可能になる。
Next, when transported in the same manner, the resin member 21 and the porous body 22 reach the position where the second punch portion 16 is disposed, and the resin member 21 is cut to a desired length, whereby the composite porous The material 40 is formed (cutting step). At this time, in the outer peripheral edge portion 21c of the resin member 21, the entire region in the width direction including the portion having the largest thickness, that is, the portion extending in the transport direction F is cut.
Among the above steps, in the preheating step, the close contact step, and the cooling step, as described above, the outer peripheral surface of the roll members 17 to 19 is rotated around the rotation axis and the resin member 21 or The resin member 21 and the porous body 22 (hereinafter simply referred to as “resin member 21 or the like”) are in contact with the front and back surfaces. Accordingly, in the process in which the resin member 21 and the like pass through these steps, the resin member 21 and the like can be continuously conveyed without being stopped.

以上により形成された複合多孔質体40は、例えば図4に示すような、複数の多孔質体22が面方向に間隔をあけて複数配置されるとともに、これらの多孔質体22同士の間を埋め、かつ外周縁全体を囲み、この外周縁から張り出すように樹脂部41が設けられ、複数の多孔質体22と樹脂部41とが一体に形成された矩形薄板状とされる。また、この複合多孔質体40の中で、樹脂部41の外周縁部41bのうち長手方向に延びる部分、すなわち前記装置10により複合多孔質体40が形成される過程では、前記搬送方向Fに延びる部分(以下、単に「厚肉部」という)41aが最も厚さが厚くなっている。この複合多孔質体40にあっては、樹脂部41を固定あるいは挟持するなどして装置に取り付けて、フィルタ、吸水部材、放熱体等に用いることができる。特に、複合多孔質体40の樹脂部41が前記厚肉部41aを有しているので、この複合多孔質体40の取り扱い性の向上を確実に図ることができるとともに、樹脂部41に機械加工を施す際に、この樹脂部41が変形することを最小限に抑制することが可能になり、前記穴等を容易かつ高精度に付与することができる。   In the composite porous body 40 formed as described above, for example, as shown in FIG. 4, a plurality of porous bodies 22 are arranged at intervals in the plane direction, and between these porous bodies 22. The resin part 41 is provided so as to fill and surround the entire outer peripheral edge and project from the outer peripheral edge, and a plurality of porous bodies 22 and the resin part 41 are integrally formed into a rectangular thin plate shape. Further, in the composite porous body 40, a portion extending in the longitudinal direction of the outer peripheral edge portion 41 b of the resin portion 41, that is, in the process of forming the composite porous body 40 by the device 10, the transport direction F The extending portion (hereinafter simply referred to as “thick portion”) 41a has the largest thickness. The composite porous body 40 can be used as a filter, a water absorbing member, a heat radiating body and the like by being attached to the apparatus by fixing or sandwiching the resin portion 41. In particular, since the resin portion 41 of the composite porous body 40 has the thick portion 41a, it is possible to reliably improve the handleability of the composite porous body 40 and to machine the resin portion 41. It is possible to minimize the deformation of the resin portion 41 when applying the above, and the holes and the like can be provided easily and with high accuracy.

以上説明したように、本実施形態による複合多孔質体の製造方法によれば、前記密着工程と前記冷却工程とをこの順に経て複合多孔質体40を形成するので、高精度な複合多孔質体40を確実に製造することができる。
例えば、多孔質体22をインサート部品とし、この多孔質体22の外周縁を囲う樹脂部41を射出成形するインサート成形により、複合多孔質体40を製造しようとすると、この複合多孔質体40が薄板の場合には、射出された樹脂が多孔質体22の外周縁の全周に均等に行き渡らない虞があるとともに、多孔質体22に作用する溶融樹脂の射出圧や温度が、多孔質体22の外周縁において不均一となり、形成された複合多孔質体40に反りなどの変形が発生し易い。
しかしながら、前記密着工程では、樹脂部材21の孔21aに多孔質体22を装填した状態で樹脂部材21を加圧するとともに、荷重たわみ温度以上融点以下の温度で加熱することにより、この樹脂部材21を押し潰しながら、多孔質体22と樹脂部材21とを密着させるので、前述のように樹脂部41が不均一になることや、樹脂部材21の加熱温度が不均一になることを容易に抑制することが可能になり、高精度な複合多孔質体40を確実に製造することができる。
As described above, according to the method for manufacturing a composite porous body according to the present embodiment, the composite porous body 40 is formed through the adhesion step and the cooling step in this order, so that a highly accurate composite porous body is formed. 40 can be manufactured reliably.
For example, when the composite porous body 40 is manufactured by insert molding in which the porous body 22 is an insert part and the resin portion 41 surrounding the outer periphery of the porous body 22 is injection-molded, the composite porous body 40 is In the case of a thin plate, the injected resin may not spread evenly around the entire outer periphery of the porous body 22, and the injection pressure and temperature of the molten resin acting on the porous body 22 may be different from each other. 22 becomes uneven at the outer peripheral edge, and the formed composite porous body 40 is likely to be deformed such as warpage.
However, in the adhesion step, the resin member 21 is pressurized with the porous body 22 loaded in the hole 21a of the resin member 21 and heated at a temperature not lower than the deflection temperature and not higher than the melting point, thereby causing the resin member 21 to be heated. Since the porous body 22 and the resin member 21 are brought into close contact with each other while being crushed, the resin portion 41 and the heating temperature of the resin member 21 are easily prevented from being uneven as described above. Therefore, the highly accurate composite porous body 40 can be reliably manufactured.

また、前記密着工程では、多孔質体22の側部に開口する気孔中に樹脂部材21が入り込んで、多孔質体22と樹脂部材21とが密着するので、これら21、22を冷却して接合すると、アンカー効果により強固に接合することができる。ここで、多孔質体22は、気孔径や気孔率が小さすぎると樹脂部材21が気孔中に入り込めないのでアンカー効果が不十分となり、樹脂部41との接合強度が十分に得られず、この接合部で剥離する虞がある。その一方で、気孔径や気孔率が大きすぎると、強度が不足し、樹脂部材21の収縮挙動により作用する圧縮力に耐えられず、変形してしまう虞がある。従って、気孔径10μm〜2mm程度、気孔率40〜98%程度であるとより好ましい。   Moreover, in the said close_contact | adherence process, since the resin member 21 enters into the pore opened to the side part of the porous body 22, and the porous body 22 and the resin member 21 contact | adhere, these 21 and 22 are cooled and joined Then, it can join firmly by the anchor effect. Here, if the porous body 22 has a pore diameter or porosity that is too small, the resin member 21 cannot enter the pores, so the anchor effect is insufficient, and the bonding strength with the resin portion 41 cannot be sufficiently obtained. There is a risk of peeling at this joint. On the other hand, if the pore diameter and the porosity are too large, the strength is insufficient, the compression force acting due to the contraction behavior of the resin member 21 cannot be withstood, and there is a risk of deformation. Therefore, it is more preferable that the pore diameter is about 10 μm to 2 mm and the porosity is about 40 to 98%.

さらに、前記密着工程の後に前記冷却工程を経るので、加熱状態で多孔質体22に密着した樹脂部材21を迅速に冷却させ、かつ確実に接合させることが可能になる。特にこの冷却工程では、樹脂部材21と多孔質体22とをこれらの厚さ方向に押圧しているので、冷却時における樹脂部材21の収縮挙動を拘束することが可能になり、複合多孔質体40を高精度に製造することができる。   Furthermore, since the cooling step is performed after the contact step, the resin member 21 that is in close contact with the porous body 22 in a heated state can be rapidly cooled and reliably bonded. In particular, in this cooling step, since the resin member 21 and the porous body 22 are pressed in the thickness direction, it becomes possible to restrain the shrinkage behavior of the resin member 21 during cooling, and the composite porous body 40 can be manufactured with high accuracy.

また、前記冷却工程では、多孔質体22および樹脂部材21を前記搬送方向Fにおける前側に向けて引張りながら冷却するので、前記密着工程の加熱による樹脂部材21の膨張によって、この樹脂部材21が波打つ等といった変形を抑えることが可能になるとともに、前述した冷却時における樹脂部材21の収縮挙動を確実に拘束することが可能になる。仮に、前記密着工程で樹脂部材21が前記変形した場合においても、この変形を所望の形状および寸法に矯正することが可能になる。以上により、前記密着工程を有することと相俟って高精度な複合多孔質体40をより確実に形成することができる。   Further, in the cooling process, the porous body 22 and the resin member 21 are cooled while being pulled toward the front side in the transport direction F. Therefore, the resin member 21 undulates due to the expansion of the resin member 21 due to the heating in the contact process. It is possible to suppress deformation such as the above, and it is possible to reliably restrain the shrinkage behavior of the resin member 21 during the cooling described above. Even if the resin member 21 is deformed in the contact step, the deformation can be corrected to a desired shape and size. As described above, combined with the adhesion step, the highly accurate composite porous body 40 can be more reliably formed.

さらに、前記冷却工程は、多孔質体22および樹脂部材21を前記搬送方向Fにおける後側から前側に向けて徐々に冷却温度を下げ、前記密着工程で加熱された樹脂部材21を徐冷するので、多孔質体22および樹脂部材21が前記密着工程からこの冷却工程を経る際、そのときの温度差によって樹脂部材21が急速に収縮することを抑えることが可能になり、樹脂部材21にひずみが発生したり、あるいは破断したりすることを抑制することができる。
また、多孔質体22および樹脂部材21は、前記密着工程の直前に前記予熱工程を経るので、密着工程における多孔質体22と樹脂部材21との密着を確実に実現することができる。
Further, in the cooling step, the cooling temperature of the porous body 22 and the resin member 21 is gradually lowered from the rear side to the front side in the transport direction F, and the resin member 21 heated in the contact step is gradually cooled. When the porous body 22 and the resin member 21 go through the cooling step from the adhesion step, it becomes possible to prevent the resin member 21 from rapidly shrinking due to the temperature difference at that time, and the resin member 21 is distorted. Generation | occurrence | production or fracture | rupture can be suppressed.
In addition, since the porous body 22 and the resin member 21 undergo the preheating process immediately before the adhesion process, the adhesion between the porous body 22 and the resin member 21 in the adhesion process can be reliably realized.

さらに、長尺とされたシート状の樹脂部材21を打抜いて、前記複数の孔21aを形成する打ち抜き工程と、前記複数の孔21aに多孔質体22を装填する装填工程とをこの順に経た後に、前記密着工程を経るので、複合多孔質体40のさらなる高効率生産を実現することができる。特に、樹脂部材21の厚さが多孔質体22の厚さより厚くされているので、前記打ち抜き工程において、樹脂部材21を打ち抜く際に、この樹脂部材21が面方向に変形してその厚さ方向にせん断力を良好に伝達させることができず、孔21aを高精度に形成することが困難になるという不具合を回避することができ、高精度な孔21aを容易に形成することができる。   Furthermore, the sheet-like resin member 21 having a long length was punched to perform a punching process for forming the plurality of holes 21a and a loading process for loading the porous body 22 into the plurality of holes 21a in this order. Later, since the adhesion process is performed, further highly efficient production of the composite porous body 40 can be realized. In particular, since the thickness of the resin member 21 is larger than the thickness of the porous body 22, when the resin member 21 is punched in the punching step, the resin member 21 is deformed in the surface direction and the thickness direction Therefore, it is possible to avoid the problem that the shearing force cannot be transmitted to the surface and it is difficult to form the hole 21a with high accuracy, and the high-precision hole 21a can be easily formed.

また、前記密着工程により、樹脂部材21の前記外周縁部21cのうち前記搬送方向Fに延びる部分が前記内周縁部21bの厚さより厚くされ、この外周縁部21cのうち前記搬送方向Fに延びる部分が含まれる、前記幅方向の全域を切断して、複合多孔質体40を形成するので、この切断時に、樹脂部材21が面方向に変形してその厚さ方向にせん断力を良好に伝達させることができず、複合多孔質体40を高精度に形成することが困難になるという不具合を回避することができ、高精度な複合多孔質体40を容易に形成することができる。   Moreover, the part which extends in the said conveyance direction F among the said outer periphery part 21c of the resin member 21 is thickened by the said contact | adherence process from the thickness of the said inner periphery part 21b, and it extends in the said conveyance direction F among this outer periphery part 21c. Since the composite porous body 40 is formed by cutting the entire region in the width direction including the portion, the resin member 21 is deformed in the surface direction and the shear force is transmitted well in the thickness direction during the cutting. This makes it possible to avoid the problem that it is difficult to form the composite porous body 40 with high precision, and the composite porous body 40 with high precision can be easily formed.

なお、以上の実施形態において示した各構成部材、その諸形状や組み合わせ等は一例であって、本発明の趣旨から逸脱しない範囲において設計要求に基づき種々変更可能である。例えば、樹脂部材21の材質は、熱可塑性樹脂など、加熱により溶融可能な材質であればよいので、耐熱温度や硬度等を考慮し、用途に応じて適宜選択することが可能である。   In addition, each structural member shown in the above embodiment, its various shapes, combinations, etc. are examples, and can be variously changed based on a design request | requirement in the range which does not deviate from the meaning of this invention. For example, since the material of the resin member 21 may be any material that can be melted by heating, such as a thermoplastic resin, it can be appropriately selected according to the application in consideration of heat-resistant temperature, hardness, and the like.

また、多孔質体22は、図5で示した方法で製造されるものに限らず、例えば金属不職布であってもよい。さらに、前記実施形態では、長尺とされた樹脂部材21を用いて、最後に前記切断工程を経て、複合多孔質体40を形成したが、これに限らず、例えば予め、樹脂部材21を、形成する複合多孔質体40の長さに切断しておき、その後、前記切断工程を除く前述した各工程を経ることで複合多孔質体40を形成するようにしてもよい。   Moreover, the porous body 22 is not limited to the one manufactured by the method shown in FIG. Furthermore, in the said embodiment, although the composite porous body 40 was finally formed through the said cutting process using the resin member 21 made into elongate, it is not restricted to this, For example, the resin member 21 is beforehand, The composite porous body 40 may be formed by cutting to the length of the composite porous body 40 to be formed and then performing the above-described steps except the cutting step.

また、ロール部11として、前記実施形態では、樹脂部材21および多孔質体22にその表面側および裏面側の双方から接する構成を示したが、これらのうち一方の側から接するようにしてもよい。さらに、前記実施形態では、溶着ロール部17により、樹脂部材21を多孔質体22に溶着させたが、このロールに限らず、例えばプレスであってもよい。この場合、樹脂部41の外周縁部全周を内周縁部と比べて厚肉に形成することが可能になるので、形成される複合多孔質体において、前述した取り扱い性の向上や、高精度化をさらに確実に実現することができる。   Moreover, although the structure which touches the resin member 21 and the porous body 22 from both the surface side and the back surface side was shown as the roll part 11 in the said embodiment, you may make it contact from one side among these. . Furthermore, in the said embodiment, although the resin member 21 was welded to the porous body 22 by the welding roll part 17, it is not restricted to this roll, For example, a press may be sufficient. In this case, the entire outer peripheral edge of the resin portion 41 can be formed thicker than the inner peripheral edge. Therefore, in the formed composite porous body, the above-described improvement in handling properties and high accuracy are achieved. Can be realized more reliably.

多孔質体の有効面積を犠牲にせず、多孔質体の取り扱い性が向上された複合多孔質体を高精度かつ高効率に製造することができる。   A composite porous body with improved handling of the porous body can be produced with high accuracy and high efficiency without sacrificing the effective area of the porous body.

本発明の一実施形態として示した複合多孔質体の製造装置を示す一部拡大断面正面図である。It is a partially expanded sectional front view which shows the manufacturing apparatus of the composite porous body shown as one Embodiment of this invention. 本発明の一実施形態として示した複合多孔質体の製造装置を示す概略側面図である。It is a schematic side view which shows the manufacturing apparatus of the composite porous body shown as one Embodiment of this invention. 図2に示す複合多孔質体の製造装置の一部拡大平面図である。FIG. 3 is a partially enlarged plan view of the composite porous body manufacturing apparatus shown in FIG. 2. 本発明の一実施形態として示した複合多孔質体の製造装置により形成された複合多孔質体の一例を示す平面図である。It is a top view which shows an example of the composite porous body formed with the manufacturing apparatus of the composite porous body shown as one Embodiment of this invention. 図3および図4に示す多孔質体の製造装置を示す概略側面図である。It is a schematic side view which shows the manufacturing apparatus of the porous body shown to FIG. 3 and FIG.

符号の説明Explanation of symbols

21 樹脂部材
21a 孔
21b 樹脂部材の内周縁部
21c 樹脂部材の外周縁部
22 多孔質体
40 複合多孔質体
41 樹脂部
F 搬送方向

21 resin member 21a hole 21b inner peripheral edge 21c of resin member outer peripheral edge 22 of resin member 22 porous body 40 composite porous body 41 resin part F transport direction

Claims (6)

三次元網目構造を有するシート状の多孔質体と、該多孔質体の外周縁を囲うように設けられた樹脂部とが一体に形成された複合多孔質体の製造方法であって、
シート状の樹脂部材の表面に形成された孔に、前記樹脂部材より厚さが薄くされた前記多孔質体を装填した状態で、前記樹脂部材のうち、その外周縁部の一部若しくは全部を除く、少なくとも前記孔に接する内周縁部を厚さ方向に加圧するとともに、該樹脂部材の荷重たわみ温度以上融点以下の温度で加熱することにより、この樹脂部材を押し潰しながら、前記多孔質体と前記樹脂部材とを密着させる密着工程と、
前記多孔質体および前記樹脂部材を冷却する冷却工程とをこの順に経ることを特徴とする複合多孔質体の製造方法。
A method for producing a composite porous body in which a sheet-like porous body having a three-dimensional network structure and a resin portion provided so as to surround the outer peripheral edge of the porous body are integrally formed,
In a state where the porous body having a thickness smaller than that of the resin member is loaded in the hole formed on the surface of the sheet-like resin member, a part or all of the outer peripheral edge portion of the resin member is loaded. Except for pressing the inner peripheral edge part in contact with the hole in the thickness direction and heating the resin member at a temperature not lower than the melting point and not higher than the melting point, while crushing the resin member, An adhesion step for bringing the resin member into close contact;
The manufacturing method of the composite porous body which passes through the cooling process which cools the porous body and the resin member in this order.
請求項1記載の複合多孔質体の製造方法において、
前記冷却工程は、前記多孔質体および前記樹脂部材をその面方向に引張りながら冷却することを特徴とする複合多孔質体の製造方法。
In the manufacturing method of the composite porous body according to claim 1,
The said cooling process cools, pulling the said porous body and the said resin member to the surface direction, The manufacturing method of the composite porous body characterized by the above-mentioned.
請求項1または2に記載の複合多孔質体の製造方法において、
前記溶着工程と前記冷却工程とはこの順に、前記多孔質体および前記樹脂部材を搬送しながら連続的に経るとともに、前記冷却工程は、前記多孔質体および前記樹脂部材をこれらの搬送方向における後側から前側に向けて徐々に冷却温度を下げることを特徴とする複合多孔質体の製造方法。
In the manufacturing method of the composite porous body according to claim 1 or 2,
The welding step and the cooling step are sequentially performed in this order while transporting the porous body and the resin member, and the cooling step is performed after the porous body and the resin member in the transport direction. A method for producing a composite porous body, wherein the cooling temperature is gradually lowered from the side toward the front side.
請求項3記載の複合多孔質体の製造方法において、
前記多孔質体および前記樹脂部材を、前記密着工程における加熱温度以下の温度で、これらの搬送方向における後側から前側に向けて徐々に温度を上げて加熱する予熱工程を経た後に、前記密着工程を経ることを特徴とする複合多孔質体の製造方法。
In the manufacturing method of the composite porous body according to claim 3,
After the preheating step in which the porous body and the resin member are heated at a temperature equal to or lower than the heating temperature in the adhesion step and gradually heated from the rear side to the front side in the transport direction, the adhesion step The manufacturing method of the composite porous body characterized by passing through.
請求項1から4のいずれかに記載の複合多孔質体の製造方法において、
シート状の樹脂部材を打抜いて前記孔を形成する打ち抜き工程と、
前記孔に前記多孔質体を装填する装填工程とをこの順に経た後に、前記密着工程を経ることを特徴とする複合多孔質体の製造方法。
In the manufacturing method of the composite porous body according to any one of claims 1 to 4,
A punching step of punching a sheet-like resin member to form the hole;
A method of manufacturing a composite porous body, wherein the adhesion step is performed after the loading step of loading the porous body into the pores in this order.
請求項5記載の複合多孔質体の製造方法において、
前記樹脂部材は長尺とされるとともに、その長手方向に搬送されつつ、前記打ち抜き工程、前記装填工程、前記密着工程、および前記冷却工程をこの順に経た後に、該樹脂部材の前記外周縁部のうち少なくとも前記一部を切断して、前記複合多孔質体を形成する切断工程を経ることを特徴とする複合多孔質体の製造方法。

In the manufacturing method of the composite porous body according to claim 5,
The resin member is elongated, and while being transported in the longitudinal direction, the punching step, the loading step, the adhesion step, and the cooling step are performed in this order, and then the outer peripheral edge portion of the resin member is A method for producing a composite porous body comprising a cutting step of cutting at least a part of the composite porous body to form the composite porous body.

JP2004233093A 2004-08-10 2004-08-10 Method for producing composite porous body Expired - Fee Related JP4622378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004233093A JP4622378B2 (en) 2004-08-10 2004-08-10 Method for producing composite porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004233093A JP4622378B2 (en) 2004-08-10 2004-08-10 Method for producing composite porous body

Publications (2)

Publication Number Publication Date
JP2006051625A true JP2006051625A (en) 2006-02-23
JP4622378B2 JP4622378B2 (en) 2011-02-02

Family

ID=36029402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004233093A Expired - Fee Related JP4622378B2 (en) 2004-08-10 2004-08-10 Method for producing composite porous body

Country Status (1)

Country Link
JP (1) JP4622378B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012158186A (en) * 2012-05-16 2012-08-23 Inoac Corp Method for manufacturing automobile duct

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51116858A (en) * 1975-04-07 1976-10-14 Takiron Co Method of producing plastics sheets having patterns
JPS5996916A (en) * 1982-11-25 1984-06-04 Toshiba Ceramics Co Ltd Bonding method of ceramic-made member and thermoplastic resin-made member
JP4103707B2 (en) * 2003-08-20 2008-06-18 三菱マテリアル株式会社 Method for producing composite porous body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51116858A (en) * 1975-04-07 1976-10-14 Takiron Co Method of producing plastics sheets having patterns
JPS5996916A (en) * 1982-11-25 1984-06-04 Toshiba Ceramics Co Ltd Bonding method of ceramic-made member and thermoplastic resin-made member
JP4103707B2 (en) * 2003-08-20 2008-06-18 三菱マテリアル株式会社 Method for producing composite porous body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012158186A (en) * 2012-05-16 2012-08-23 Inoac Corp Method for manufacturing automobile duct

Also Published As

Publication number Publication date
JP4622378B2 (en) 2011-02-02

Similar Documents

Publication Publication Date Title
JP5632381B2 (en) Additive manufacturing apparatus and method
US4301584A (en) Method of forming fiber and metal matrix composite
US9238337B2 (en) Molding die and molding method
EP1603736B1 (en) Connection between members
EP2666614B1 (en) Method for producing a three dimensional green article
JP6781751B2 (en) Multipart touring
CN108291290B (en) Method for manufacturing composite material of metal and carbon fiber
JP4622378B2 (en) Method for producing composite porous body
JP2006051624A (en) Manufacturing method of composite porous body and manufacturing device of composite porous body
US7588179B2 (en) Bonding of carbon fibers to metal inserts for use in composites
US7854885B2 (en) Method of making an article
EP2062673A1 (en) A method of supporting a work piece
JPH10128778A (en) Production of perforated surface panel made of composite material
JP6694291B2 (en) Method for producing composite material of metal and carbon fiber
JP6964434B2 (en) Metal-carbon particle composite material and its manufacturing method
JP4619301B2 (en) Skin material mold and manufacturing method thereof
EP4108431A1 (en) A method for producing a thermoplastic composite component
JP4747248B2 (en) Skin material mold and manufacturing method thereof
JP2002248579A (en) Method for integrally molding superplastic metal
JP2803927B2 (en) Method for manufacturing plate-shaped diffusion bonding member
JPH08311659A (en) Metal forming method using microball and metal coating method
CN116638262A (en) Short-flow particle medium forming method and device for heterogeneous alloy multilayer honeycomb composite board
JP4514681B2 (en) Sintering method for sintered composites
US20170282269A1 (en) Shaping of amorphous metal alloys
JP2009149730A (en) Manufacturing method of porous sheet of ultra-high molecular weight polyethylene

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20101005

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101018

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees