JP2006049020A - Device and method for generating mirror field for confining plasma used in ecr ion source - Google Patents

Device and method for generating mirror field for confining plasma used in ecr ion source Download PDF

Info

Publication number
JP2006049020A
JP2006049020A JP2004226135A JP2004226135A JP2006049020A JP 2006049020 A JP2006049020 A JP 2006049020A JP 2004226135 A JP2004226135 A JP 2004226135A JP 2004226135 A JP2004226135 A JP 2004226135A JP 2006049020 A JP2006049020 A JP 2006049020A
Authority
JP
Japan
Prior art keywords
magnetic field
mirror magnetic
fan
permanent magnet
ion source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004226135A
Other languages
Japanese (ja)
Other versions
JP4515852B2 (en
Inventor
Kenichi Yoshida
健一 吉田
Satoshi Tajima
訓 田島
Tomonori Yokoyama
智紀 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Japan Atomic Energy Agency
Original Assignee
Shin Etsu Chemical Co Ltd
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd, Japan Atomic Energy Research Institute filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2004226135A priority Critical patent/JP4515852B2/en
Publication of JP2006049020A publication Critical patent/JP2006049020A/en
Application granted granted Critical
Publication of JP4515852B2 publication Critical patent/JP4515852B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mirror field generation technique for confining plasma used for an ECR ion source, capable of changing mirror field intensity in adjusting an ion source and suitable for generating multicharged ions. <P>SOLUTION: The mirror field generator of this invention generating the mirror field for confining the plasma used for the ECR ion source comprises a pair of circular permanent magnets 4, 5 separately arranged in a direction of an ion source central-axis (X), and is provided with a mirror field generation part (2) generating the mirror field, a mirror field amplifying part (3) disposed between the pair of circular permanent magnets 4, 5 of the mirror field generation part (2), constituted of a plurality of fan-like permanent magnets arranged in a circle, and amplifying the mirror field generated by the mirror field generation part (2), and fan-like permanent magnet moving means 14, 18 moving each fan-like permanent magnet constituting the mirror field amplifying unit (3) in a radial direction of the ion source central-axis (X). The mirror field intensity can be changed by moving each fan-like permanent-like magnet in the radial direction. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この出願の発明は、ECR(Electron Cyclotron Resonance)イオン源に用いられるプラズマ閉じ込め用のミラー磁場発生装置及び方法に関するものであり、詳しくはイオン源停止時のみならずイオン源調整時においてもミラー磁場強度を変化させることのできるプラズマ閉じ込め用のミラー磁場発生装置及び方法に関するものである。   The invention of this application relates to a mirror magnetic field generating apparatus and method for confining plasma used in an ECR (Electron Cyclotron Resonance) ion source, and more specifically, the mirror magnetic field strength not only when the ion source is stopped but also when the ion source is adjusted. The present invention relates to an apparatus and a method for generating a mirror magnetic field for confining plasma that can change the angle.

AVF(Azimuthally Varying Field)サイクロトロンなどの加速器において質の良い荷電粒子ビームを発生させるためには加速器の電圧安定性に加えてECRイオン源の安定性が重要な要素となる。ECRイオン源は、プラズマ閉じ込め用のミラー磁場とマイクロ波との相互作用によりイオンを生成させるものである。このプラズマ閉じ込め用のミラー磁場を発生させるためには、当初、電磁石が使用されてきた。ところが、電磁石は、大電流の投入が必要であり、また高電圧の印加のために大型の設備が必要となり、さらにミラー磁場発生用のソレノイドコイルの発熱により、イオン源から引き出される荷電粒子ビームに時間的な強度変動が生じるなどの問題があった。   In order to generate a high quality charged particle beam in an accelerator such as an AVF (Azimuthally Varying Field) cyclotron, the stability of the ECR ion source is an important factor in addition to the voltage stability of the accelerator. The ECR ion source generates ions by the interaction between a mirror magnetic field for confining plasma and a microwave. In order to generate the mirror magnetic field for confining the plasma, an electromagnet has been used at first. However, an electromagnet requires a large current input, requires a large facility for applying a high voltage, and further generates a charged particle beam extracted from an ion source due to the heat generated by a solenoid coil for generating a mirror magnetic field. There were problems such as fluctuations in intensity over time.

そのためECRイオン源のプラズマ閉じ込め磁場の発生には、電磁石を用いるよりも、通電による発熱がない小型の永久磁石を用いることが望ましい。   Therefore, it is desirable to use a small permanent magnet that does not generate heat due to energization, rather than using an electromagnet, for generating a plasma confinement magnetic field of the ECR ion source.

一方、特定の価数、特に多価のイオン生成量を増加させることが必要になることが目的、用途に応じて多々ある。このような場合、従来の永久磁石型ECRイオン源では、イオン源を停止させて、マイクロ波電力量、位相、その他ガス供給量などを変化させ、その都度ミラー磁場強度を変化させていた。その理由は、ECRイオン源は使用上高電圧(数kV)が印加されているため、使用中に、すなわちイオン源調整をしながらイオン源に触れることができないためである。   On the other hand, there are many cases where it is necessary to increase a specific valence, in particular, the amount of polyvalent ions produced, depending on the purpose and application. In such a case, in the conventional permanent magnet type ECR ion source, the ion source is stopped and the microwave power amount, phase, and other gas supply amount are changed, and the mirror magnetic field strength is changed each time. The reason is that since the ECR ion source is applied with a high voltage (several kV), the ion source cannot be touched during use, that is, while adjusting the ion source.

永久磁石を用いた従来のECRイオン源の構造例(特許文献1)について図9を参照して説明する。図9は、従来のECRイオン源の軸方向に沿った断面図であり、このイオン源は導波管(31)を備え、真空容器(32)が配置されている。真空容器(32)の断面は円形で、入力端部(33)と出力端部(34)を有し、イオン源中心軸(35)を中心に軸対称となっている。図中(36)はガス注入口、(37)は図示しない真空ポンプに接続される接続部、(38)はイオン抽出電極と真空容器(32)を保持する保持部材である。   A structural example of a conventional ECR ion source using a permanent magnet (Patent Document 1) will be described with reference to FIG. FIG. 9 is a cross-sectional view along the axial direction of a conventional ECR ion source. This ion source includes a waveguide (31), and a vacuum vessel (32) is disposed therein. The cross section of the vacuum vessel (32) is circular, has an input end (33) and an output end (34), and is axisymmetric about the ion source central axis (35). In the figure, (36) is a gas inlet, (37) is a connecting portion connected to a vacuum pump (not shown), and (38) is a holding member for holding the ion extraction electrode and the vacuum vessel (32).

真空容器(32)の入力端部(33)側には環状の永久磁石(39)、(40)が配置され、出力端部(35)側には環状の永久磁石(41)、(42)が配置されている。また、永久磁石(39)、(40)と永久磁石(41)、(42)の間には内径がこれらの永久磁石より大きい環状の永久磁石(43)、(44)、(45)が設けられている。そしてこれらの永久磁石(43)、(44)、(45)の内側には六極磁石(46)が設けられている。また、(47)は永久磁石保持部で、永久磁石(43)と(44)を軸方向に移動可能に保持している。なお、(48)はイオン出力口である。   Annular permanent magnets (39), (40) are arranged on the input end (33) side of the vacuum vessel (32), and an annular permanent magnets (41), (42) are arranged on the output end (35) side. Is arranged. Further, annular permanent magnets (43), (44), (45) having an inner diameter larger than these permanent magnets are provided between the permanent magnets (39), (40) and the permanent magnets (41), (42). It has been. A hexapole magnet (46) is provided inside these permanent magnets (43), (44), (45). Further, (47) is a permanent magnet holding portion, which holds the permanent magnets (43) and (44) so as to be movable in the axial direction. (48) is an ion output port.

このような構成において、永久磁石(39)、(40)と永久磁石(41)、(42)がミラー磁場生成の役割をし、永久磁石(43)〜(45)はミラー磁場を増幅(可変)する役割を行い、これらの永久磁石によりミラー磁場を真空容器(32)内に発生させる。   In such a configuration, the permanent magnets (39) and (40) and the permanent magnets (41) and (42) play a role of generating a mirror magnetic field, and the permanent magnets (43) to (45) amplify (variable) the mirror magnetic field. The mirror magnetic field is generated in the vacuum vessel (32) by these permanent magnets.

このような構造において、磁場強度を変える場合には、ECRイオン源を停止し、永久磁石保持部(47)により永久磁石(43)と(45)の位置を移動させることによりその調整を行っている。
特開2001−338589号公報
In such a structure, when changing the magnetic field strength, the ECR ion source is stopped, and the permanent magnet holder (47) is used to adjust the position by moving the positions of the permanent magnets (43) and (45). Yes.
JP 2001-338589 A

しかしながら、上記のような従来のECRイオン源のミラー磁場強度変化方式では、イオン源停止時にのみ永久磁石の軸方向への移動が可能であり、イオン源調整時には移動を行うことができなかった。このため、イオン源調整時におけるマイクロ波電力量、位相、その他ガス供給量などの変化に即座に対応してミラー磁場強度を変化させることはできなかった。   However, in the conventional ECR ion source mirror magnetic field strength change method as described above, the permanent magnet can be moved in the axial direction only when the ion source is stopped, and cannot be moved when the ion source is adjusted. For this reason, the mirror magnetic field intensity could not be changed immediately in response to changes in the microwave power amount, phase, and other gas supply amounts during ion source adjustment.

また、ECRイオン源は高磁場であればあるほど多価イオンの生成が可能になるが、現存する永久磁石の性能を考慮するとミラー磁場生成用永久磁石とミラー磁場増幅用永久磁石との隙間を密にしないと磁場強度を高くすることができない。ところが、図9のようなミラー磁場強度変化方式では、ミラー磁場生成用永久磁石とミラー磁場増幅用永久磁石との間にある程度の隙間を持たせなければ軸方向に移動ができないため、その結果、得られる最大磁場強度が減少してしまい、多価イオンの生成が困難になってしまう。   In addition, the higher the magnetic field of the ECR ion source, the more multivalent ions can be generated. However, considering the performance of the existing permanent magnet, the gap between the mirror magnetic field generating permanent magnet and the mirror magnetic field amplifying permanent magnet is increased. If it is not dense, the magnetic field strength cannot be increased. However, in the mirror magnetic field intensity changing method as shown in FIG. 9, since it cannot move in the axial direction unless a certain gap is provided between the mirror magnetic field generating permanent magnet and the mirror magnetic field amplifying permanent magnet, as a result, The maximum magnetic field strength that can be obtained is reduced, making it difficult to generate multivalent ions.

この出願の発明は、このような従来技術の問題点を解消し、イオン源調整時においてもミラー磁場強度を変化させることができ、多価イオンの生成にも適するECRイオン源に用いられるプラズマ閉じ込め用のミラー磁場発生装置及び方法を提供することを課題とする。   The invention of this application solves the problems of the prior art, can change the mirror magnetic field intensity even when adjusting the ion source, and is a plasma confinement used in an ECR ion source suitable for the generation of multiply charged ions. An object of the present invention is to provide a mirror magnetic field generation apparatus and method.

この出願の発明は、上記課題を解決するため、第1には、ECRイオン源に用いられるプラズマ閉じ込め用のミラー磁場を発生させる装置であって、イオン源中心軸方向に離間配置された一対の環状永久磁石からなり、ミラー磁場を生成するミラー磁場生成部と、ミラー磁場生成部の一対の環状永久磁石間に設けられ、複数の扇形状永久磁石を環状に配置して構成され、ミラー磁場生成部が生成したミラー磁場を増幅するミラー磁場増幅部と、ミラー磁場増幅部を構成する各扇形状永久磁石をイオン源中心軸に対して径方向に移動させる扇形状永久磁石移動手段を備え、各扇形状永久状磁石の径方向の移動により、ミラー磁場強度を変化させることができることを特徴とするミラー磁場発生装置を提供する。   In order to solve the above problems, the invention of this application is firstly a device for generating a mirror magnetic field for plasma confinement used in an ECR ion source, which is a pair of devices spaced apart in the direction of the central axis of the ion source. Mirror magnetic field generator, which consists of an annular permanent magnet, is provided between a mirror magnetic field generator for generating a mirror magnetic field and a pair of annular permanent magnets in the mirror magnetic field generator, and is configured by arranging a plurality of fan-shaped permanent magnets in an annular shape. A mirror magnetic field amplifying unit for amplifying the mirror magnetic field generated by the unit, and fan-shaped permanent magnet moving means for moving each fan-shaped permanent magnet constituting the mirror magnetic field amplifying unit in the radial direction with respect to the central axis of the ion source, Provided is a mirror magnetic field generator characterized in that the mirror magnetic field intensity can be changed by the radial movement of a fan-shaped permanent magnet.

また、第2には、上記第1の発明において、ミラー磁場増幅部が、前部ミラー磁場増幅部と後部ミラー増幅部からなることを特徴とするミラー磁場発生装置を提供する。   According to a second aspect of the present invention, there is provided the mirror magnetic field generating device according to the first aspect, wherein the mirror magnetic field amplifying unit includes a front mirror magnetic field amplifying unit and a rear mirror amplifying unit.

また、第3には、上記第2の発明において、ミラー磁場増幅部の扇形状永久磁石が環状構造を3つに分割したものからなり、前部ミラー磁場増幅部の各扇形状永久磁石が、後部ミラー増幅部の各扇形状永久磁石に対してそれぞれ周方向に60度ずらして配置されていることを特徴とするミラー磁場発生装置を提供する。   Thirdly, in the second invention, the fan-shaped permanent magnet of the mirror magnetic field amplifying unit is formed by dividing the annular structure into three, and each fan-shaped permanent magnet of the front mirror magnetic field amplifying unit is Provided is a mirror magnetic field generator characterized in that each mirror-shaped permanent magnet of a rear mirror amplifying unit is arranged by being shifted by 60 degrees in the circumferential direction.

また、第4には、上記第1から第3の発明において、ミラー磁場増幅部の各扇形状永久磁石が、扇形状磁石本体と、その周方向両側に設けられ、大きさが扇形状磁石本体の半分である扇形状非磁性部分とからなることを特徴とする請求項1から3のいずれかのミラー磁場発生装置を提供する。   According to a fourth aspect of the present invention, the fan-shaped permanent magnets of the mirror magnetic field amplifying unit are provided on the fan-shaped magnet main body and on both sides in the circumferential direction, and the size is the fan-shaped magnet main body. The mirror magnetic field generator according to any one of claims 1 to 3, characterized by comprising a fan-shaped nonmagnetic portion that is half of the above.

また、第5には、上記第1から第4のいずれかの発明のミラー磁場発生装置と、ミラー磁場増幅部の径方向内側に配置された環状の多極永久磁石を備えることを特徴とするECRイオン源を提供する。   According to a fifth aspect of the present invention, the mirror magnetic field generator according to any one of the first to fourth aspects of the present invention and an annular multipolar permanent magnet disposed radially inward of the mirror magnetic field amplification unit are provided. An ECR ion source is provided.

また、第6には、上記第5の発明において、多極永久磁石が六極永久磁石であることを特徴とするECRイオン源を提供する。   According to a sixth aspect of the present invention, there is provided the ECR ion source according to the fifth aspect, wherein the multipole permanent magnet is a hexapole permanent magnet.

また、第7には、ECRイオン源に用いられるプラズマ閉じ込め用のミラー磁場を発生させる方法であって、ミラー磁場を生成させるためにイオン源中心軸方向に離間配置された一対のミラー磁場生成用環状永久磁石の間に、生成したミラー磁場を増幅させるためのミラー磁場増幅用永久磁石を設け、ミラー磁場増幅用永久磁石として、イオン源中心軸に対して径方向に移動可能な複数の扇形状永久磁石を環状に配置した構造のものを用い、各扇形状永久磁石をイオン源中心軸に対して径方向に移動させることにより、ミラー磁場強度を変化させることができることを特徴とするミラー磁場発生方法を提供する。   The seventh is a method for generating a mirror magnetic field for plasma confinement used for an ECR ion source, for generating a pair of mirror magnetic fields spaced apart in the direction of the central axis of the ion source in order to generate a mirror magnetic field. A mirror magnetic field amplifying permanent magnet for amplifying the generated mirror magnetic field is provided between the annular permanent magnets, and a plurality of fan shapes that are movable in the radial direction with respect to the central axis of the ion source as the mirror magnetic field amplifying permanent magnet Mirror magnetic field generation characterized in that the mirror magnetic field strength can be changed by moving each fan-shaped permanent magnet in the radial direction with respect to the central axis of the ion source, using a structure in which permanent magnets are arranged in an annular shape Provide a method.

また、第8には、上記第7の発明において、ミラー磁場増幅用永久磁石として、前部と後部の2つに分割されたものを用いることを特徴とするミラー磁場発生方法を提供する。   Eighthly, in the seventh invention, there is provided a mirror magnetic field generating method characterized in that the mirror magnetic field amplifying permanent magnet is divided into a front part and a rear part.

また、第9には、上記第8の発明において、ミラー磁場増幅用永久磁石を構成する扇形状永久磁石として、環状構造を3つに分割したものであり、かつ前部の各扇形状永久磁石を、後部の扇形状永久磁石に対して周方向にそれぞれ60度ずらして配置させたものを用いることを特徴とするミラー磁場発生方法を提供する。   Ninth, in the eighth invention, as the fan-shaped permanent magnet constituting the mirror magnetic field amplifying permanent magnet, the annular structure is divided into three, and each fan-shaped permanent magnet in the front part. A mirror magnetic field generating method is provided, in which a magnet is disposed by being shifted by 60 degrees in the circumferential direction with respect to the rear fan-shaped permanent magnet.

さらに、第10には、上記第7から第10のいずれかの発明において、ミラー磁場増幅部の各扇形状永久磁石として、扇形状磁石本体とその周方向両側に設けられ、大きさが扇形状磁石本体の半分である扇形状非磁性部分とからなるものを用いることを特徴とするミラー磁場発生方法を提供する。   Furthermore, tenthly, in any one of the seventh to tenth inventions, the fan-shaped permanent magnets of the mirror magnetic field amplifying unit are provided on the fan-shaped magnet body and on both sides in the circumferential direction, and the size is fan-shaped. Provided is a method for generating a mirror magnetic field characterized by using a fan-shaped nonmagnetic portion that is half of a magnet body.

この出願の第1から第4の発明及び第7から第10の発明によれば、永久磁石を用いたECRイオン源の停止時及び調整時においてもミラー磁場強度を変化させることができ、特定の価数、特に多価のイオンの生成量を増加させることが可能となる。   According to the first to fourth inventions and the seventh to tenth inventions of this application, the mirror magnetic field strength can be changed even when the ECR ion source using the permanent magnet is stopped and adjusted. It becomes possible to increase the valence, particularly the amount of multivalent ions produced.

したがって、ECRイオン源の安定性のみならずイオン生成量の制御が可能になるため、イオンをより安定にAVFサイクロトロンに入射できることから、加速器により加速された荷電粒子ビーム安定性に貢献できる。   Therefore, not only the stability of the ECR ion source but also the amount of ion generation can be controlled, so that ions can be incident on the AVF cyclotron more stably, which can contribute to the stability of the charged particle beam accelerated by the accelerator.

この出願の第5及び第6の発明によれば、第1から第4の発明のいずれかを用いているので、安定性が優れたECRイオン源が提供され、イオン生成量の効率的な制御を可能とし、イオンをより安定にAVFサイクロトロンに入射できることから、加速器により加速された荷電粒子ビーム安定性に貢献できる。   According to the fifth and sixth inventions of this application, since any one of the first to fourth inventions is used, an ECR ion source having excellent stability is provided, and the ion generation amount is efficiently controlled. Since ions can be incident on the AVF cyclotron more stably, it is possible to contribute to the stability of the charged particle beam accelerated by the accelerator.

この出願の発明は上記のとおりの特徴をもつものであるが、以下にその実施の形態について説明する。   The invention of this application has the features as described above, and an embodiment thereof will be described below.

図1は、この出願の発明の実施形態である、ミラー磁場発生装置を含むECRイオン源の要部のイオン源中心軸方向に沿った断面図である。図2(a)、(b)は、それぞれミラー磁場発生装置(駆動部は図示せず)の正面図、側面図である。図3(a)、(b)、(c)、(d)は、それぞれ図2(a)のA−A’断面図、B−B’線断面図、C−C’線断面図、D−D’線断面図である。図4は、図2(b)のE−E’線断面図である。   FIG. 1 is a cross-sectional view of an essential part of an ECR ion source including a mirror magnetic field generator, which is an embodiment of the invention of this application, along the ion source central axis direction. 2A and 2B are a front view and a side view, respectively, of a mirror magnetic field generator (a drive unit is not shown). 3A, 3B, 3C, and 3D are respectively a cross-sectional view along line AA ′, a cross-sectional view along line BB ′, and a cross-sectional view along line CC ′ in FIG. FIG. FIG. 4 is a cross-sectional view taken along line E-E ′ of FIG.

ミラー磁場発生装置(1)は、ミラー磁場を生成するミラー磁場生成部(2)と、ミラー磁場生成部(2)で生成したミラー磁場を増幅するミラー磁場増幅部(3)を有する。ミラー磁場生成部(2)はイオン源中心軸(X)方向に離間配置された一対の環状永久磁石、すなわち前部環状永久磁石(4)と後部環状永久磁石(5)からなる。なお、この出願の明細書において「前部」とは、入力端側(イオン発生用ガス導入側)を意味し、「後部」とは、その反対側を意味する。前部環状永久磁石(4)と後部環状永久磁石(5)の間には、前部ミラー磁場増幅部(6)と後部ミラー磁場増幅部(7)からなるミラー磁場増幅部(3)が配置されている。前部ミラー磁場増幅部(6)は図3(b)に示すように3つの扇形状永久磁石(8)〔(8A)、(8B)、(8C)〕から構成され、径方向へ移動しない閉じた状態では全体として環状となっている。後部ミラー磁場増幅部(7)も図3(c)に示すように3つの扇形状永久磁石(9)〔(9A)、(9B)、(9C)〕から構成され、径方向に移動しない閉じた状態では全体として環状となっている。ミラー磁場増幅部(3)の内径はミラー磁場生成部(2)の内径より大きく設定され、その内側に六極永久磁石(10)が配置されている。   The mirror magnetic field generator (1) includes a mirror magnetic field generator (2) that generates a mirror magnetic field, and a mirror magnetic field amplifier (3) that amplifies the mirror magnetic field generated by the mirror magnetic field generator (2). The mirror magnetic field generator (2) is composed of a pair of annular permanent magnets, ie, a front annular permanent magnet (4) and a rear annular permanent magnet (5), which are spaced apart in the ion source central axis (X) direction. In the specification of this application, “front part” means the input end side (ion generation gas introduction side), and “rear part” means the opposite side. Between the front annular permanent magnet (4) and the rear annular permanent magnet (5), a mirror magnetic field amplifying part (3) comprising a front mirror magnetic field amplifying part (6) and a rear mirror magnetic field amplifying part (7) is arranged. Has been. As shown in FIG. 3B, the front mirror magnetic field amplification unit (6) is composed of three fan-shaped permanent magnets (8) [(8A), (8B), (8C)] and does not move in the radial direction. In the closed state, it is annular as a whole. The rear mirror magnetic field amplifying unit (7) is also composed of three fan-shaped permanent magnets (9) [(9A), (9B), (9C)] as shown in FIG. 3 (c), and is closed without moving in the radial direction. As a whole, it is annular. The inner diameter of the mirror magnetic field amplifying section (3) is set larger than the inner diameter of the mirror magnetic field generating section (2), and the hexapole permanent magnet (10) is arranged inside thereof.

ミラー磁場生成部(2)とミラー磁場増幅部(3)の周囲には鉄製ヨーク(11)が設けられている。また、図中(12)はアルミニウム製のケーシングである。   An iron yoke (11) is provided around the mirror magnetic field generator (2) and the mirror magnetic field amplifier (3). In the figure, (12) is an aluminum casing.

ケーシング(12)の所要位置には、永久磁石の強力な吸引力に耐えうる架台(13)が各扇形状永久磁石(8A)、(8B)、(8C)、(9A)、(9B)、(9C)に対応して取り付けられ、架台(13)にはこれらの各扇形状永久磁石(8A)、(8B)、(8C)、(9A)、(9B)、(9C)を径方向に移動させる駆動部(14)が設置されている。この駆動部(14)は、たとえばステッピングモーター(15)及びその駆動軸(16)に取り付けられた傘歯車(17)から構成することができる。各扇形状永久磁石(8A)、(8B)、(8C)、(9A)、(9B)、(9C)の外側に設けられたヨーク(11)とケーシング(12)の部分は、ヨーク(11)とケーシング(12)の他の部分と分離しており、その外側には、各扇形状永久磁石(8A)、(8B)、(8C)、(9A)、(9B)、(9C)を径方向に移動させる際の支持部となり、傘歯車(17)と噛み合う部分を有するボールネジ(18)が取り付けられている。駆動部(14)により各扇形状永久磁石(8A)、(8B)、(8C)、(9A)、(9B)、(9C)を径方向に移動させる場合の最大移動距離はこれらの磁石のサイズによって決まるが、通常、50mm程度が適量である。各扇形状永久磁石(8A)、(8B)、(8C)、(9A)、(9B)、(9C)の径方向の移動は同期させて行ってもよいし、独立させて行ってもよい。   At a required position of the casing (12), a pedestal (13) that can withstand the strong attractive force of the permanent magnet is provided with each fan-shaped permanent magnet (8A), (8B), (8C), (9A), (9B), The fan-shaped permanent magnets (8A), (8B), (8C), (9A), (9B), and (9C) are attached to the gantry (13) in the radial direction. The drive part (14) to move is installed. This drive part (14) can be comprised from the stepping motor (15) and the bevel gearwheel (17) attached to the drive shaft (16), for example. The yoke (11) and the casing (12) provided on the outside of each fan-shaped permanent magnet (8A), (8B), (8C), (9A), (9B), (9C) ) And the other part of the casing (12), and on the outer side, each fan-shaped permanent magnet (8A), (8B), (8C), (9A), (9B), (9C) A ball screw (18) having a portion that meshes with the bevel gear (17) is attached as a support when moving in the radial direction. The maximum moving distance when each fan-shaped permanent magnet (8A), (8B), (8C), (9A), (9B), (9C) is moved in the radial direction by the drive unit (14) is Although it depends on the size, an appropriate amount is usually about 50 mm. The radial movement of each of the fan-shaped permanent magnets (8A), (8B), (8C), (9A), (9B), and (9C) may be performed synchronously or independently. .

ミラー磁場生成部(2)を構成する前部環状永久磁石(4)と後部環状永久磁石(5)は、たとえば図3(a)、(d)に示すような着磁方向を持つ12個の扇形永久磁石を組み合わせて一体化したものとすることができる。前部環状永久磁石(4)と後部環状永久磁石(5)の着磁方向は互いに反対方向になっている。   The front annular permanent magnet (4) and the rear annular permanent magnet (5) constituting the mirror magnetic field generation unit (2) are, for example, 12 pieces having magnetization directions as shown in FIGS. 3 (a) and 3 (d). A combination of sector permanent magnets can be used. The magnetization directions of the front annular permanent magnet (4) and the rear annular permanent magnet (5) are opposite to each other.

ミラー磁場増幅部(3)のうち前部ミラー磁場増幅部(6)は、図3(b)に示すように、円周角が120度の3つの扇形状永久磁石(8A)、(8B)、(8C)から構成されている。扇形状永久磁石(8A)は、円周方向中央側の扇形状の永久磁石本体(8a1)、(8a2)と、その円周方向両側に設けられた扇形状の非磁性部(8a3)、(8a4)とからなる。同様に、扇形状永久磁石(8B)は、円周方向中央側の扇形状の永久磁石本体(8b1)、(8b2)と、その円周方向両側に設けられた扇形状の非磁性部(8b3)、(8b4)とからなり、扇形状永久磁石(8C)は、円周方向中央側の扇形状の永久磁石本体(8c1)、(8c2)と、その円周方向両側に設けられた扇形状の非磁性部(8c3)、(8c4)とからなる。扇形状の永久磁石本体(8a1)、(8a2);(8b1)、(8b2);(8c1)、(8c2)の着磁方向は図示のように外側向きとなっている。扇形状の非磁性部(8a3)、(8a4);(8b3)、(8b4);(8c3)、(8c4)はリングスペーサとして設けられ、たとえば非磁性のステンレス鋼(SUS316)等の材料からなるものが用いられる。 The front mirror magnetic field amplifying unit (6) of the mirror magnetic field amplifying unit (3) includes three fan-shaped permanent magnets (8A) and (8B) having a circumferential angle of 120 degrees as shown in FIG. , (8C). The fan-shaped permanent magnet (8A) includes fan-shaped permanent magnet bodies (8a 1 ) and (8a 2 ) on the circumferential center side, and fan-shaped nonmagnetic portions (8a 3 ) provided on both sides in the circumferential direction. ), (8a 4 ). Similarly, the fan-shaped permanent magnet (8B) includes fan-shaped permanent magnet bodies (8b 1 ) and (8b 2 ) on the circumferential center side and fan-shaped nonmagnetic portions provided on both sides in the circumferential direction. (8b 3 ) and (8b 4 ), and the fan-shaped permanent magnet (8C) includes fan-shaped permanent magnet bodies (8c 1 ) and (8c 2 ) on the center side in the circumferential direction and both sides in the circumferential direction. The fan-shaped nonmagnetic portions (8c 3 ) and (8c 4 ) provided in The magnetization direction of the fan-shaped permanent magnet bodies (8a 1 ), (8a 2 ); (8b 1 ), (8b 2 ); (8c 1 ), (8c 2 ) is outward as shown in the figure. . The fan-shaped nonmagnetic portions (8a 3 ), (8a 4 ); (8b 3 ), (8b 4 ); (8c 3 ), (8c 4 ) are provided as ring spacers, for example, nonmagnetic stainless steel (SUS316). ) Etc. are used.

同様に、ミラー磁場増幅部3のうち後部ミラー磁場増幅部(7)は、図3(c)に示すように、円周角が120度の3つの扇形状永久磁石(9A)、(9B)、(9C)から構成されている。扇形状永久磁石(9A)は、円周方向中央側の扇形状の永久磁石本体(9a1)、(9a2)と、その円周方向両側に設けられた扇形状の非磁性部(9a3)、(9a4)とからなり、扇形状永久磁石(8B)は、円周方向中央側の扇形状の永久磁石本体(9b1)、(9b2)と、その円周方向両側に設けられた扇形状の非磁性部(9b3)、(9b4)とからなり、扇形状永久磁石(9C)は、円周方向中央側の扇形状の永久磁石本体(9c1)、(9c2)と、その円周方向両側に設けられた扇形状の非磁性部(9c3)、(9c4)とからなる。扇形状の永久磁石本体(9a1)、(9a2);(9b1)、(9b2);(9c1)、(9c2)の着磁方向は図示のように内側向きとなっている。扇形状の非磁性部(9a3)、(9a4);(9b3)、(9b4);(9c3)、(9c4)はリングスペーサとして設けられ、たとえば非磁性のステンレス鋼(SUS316)等の材料からなるものが用いられる。 Similarly, the rear mirror magnetic field amplifying unit (7) of the mirror magnetic field amplifying unit 3 includes three fan-shaped permanent magnets (9A) and (9B) having a circumferential angle of 120 degrees as shown in FIG. 3 (c). , (9C). The fan-shaped permanent magnet (9A) includes fan-shaped permanent magnet bodies (9a 1 ) and (9a 2 ) on the center side in the circumferential direction and fan-shaped nonmagnetic portions (9a 3 ) provided on both sides in the circumferential direction. ) And (9a 4 ), and the fan-shaped permanent magnet (8B) is provided on the both sides in the circumferential direction of the fan-shaped permanent magnet bodies (9b 1 ) and (9b 2 ) on the center side in the circumferential direction. Fan-shaped non-magnetic portions (9b 3 ) and (9b 4 ). The fan-shaped permanent magnet (9C) is a fan-shaped permanent magnet body (9c 1 ), (9c 2 ) on the center side in the circumferential direction. And fan-shaped non-magnetic portions (9c 3 ) and (9c 4 ) provided on both sides in the circumferential direction. The magnetization directions of the fan-shaped permanent magnet bodies (9a 1 ), (9a 2 ); (9b 1 ), (9b 2 ); (9c 1 ), (9c 2 ) are inward as shown in the figure. . The fan-shaped non-magnetic portions (9a 3 ), (9a 4 ); (9b 3 ), (9b 4 ); (9c 3 ), (9c 4 ) are provided as ring spacers, such as non-magnetic stainless steel (SUS316). ) Etc. are used.

図3(b)、(c)に示すように、前部ミラー磁場増幅部(6)の扇形状永久磁石(8A)、(8B)、(8C)は、後部ミラー磁場増幅部(7)の扇形状永久磁石(9A)、(9B)、(9C)に対して、それぞれ円周方向に60度ずつずれた位置関係となっている。   As shown in FIGS. 3B and 3C, the fan-shaped permanent magnets (8A), (8B), and (8C) of the front mirror magnetic field amplification unit (6) are connected to the rear mirror magnetic field amplification unit (7). The positional relationship is shifted by 60 degrees in the circumferential direction with respect to the fan-shaped permanent magnets (9A), (9B), and (9C).

上記のようにミラー磁場増幅部(3)を前部と後部に分けた理由は、着磁方向を異ならせる必要があるからである。このような着磁方向の関係にすると、磁力線を密集させて大きな磁場強度を得ることができる。なお、前部ミラー磁場増幅部(4)と後部ミラー磁場増幅部(5)との間には、厚さ3mm程度の環状のフッ素樹脂(テフロン(登録商標))板を取り付けてあり、このようにすることで、前部及び後部ミラー磁場増幅部(4)、(5)の磁石同士が擦れ合うことが防止され、スムーズな駆動ができるようになる。もちろん、フッ素樹脂板がなくても駆動は可能である。   The reason why the mirror magnetic field amplifying part (3) is divided into the front part and the rear part as described above is that the magnetization directions need to be different. With such a relationship in the magnetization direction, it is possible to obtain a large magnetic field strength by concentrating the magnetic lines of force. An annular fluororesin (Teflon (registered trademark)) plate having a thickness of about 3 mm is attached between the front mirror magnetic field amplification unit (4) and the rear mirror magnetic field amplification unit (5). By doing so, it is possible to prevent the magnets of the front and rear mirror magnetic field amplifying units (4) and (5) from rubbing with each other, thereby enabling smooth driving. Of course, driving is possible even without a fluororesin plate.

また、この出願の発明の実施形態である、ミラー磁場発生装置(1)を含むECRイオン源において設けられる六極永久磁石(10)は、たとえば図5に示すような着磁方向を持つ12個の扇形永久磁石を組み合わせて一体化したものとすることができる。着磁方向の詳細な関係は図6に示す。この六極永久磁石(10)の全体としての着磁方向は図5に示すように内向きの3つ(内1、内2、内3)と外向きの3つ(外1、外2、外3)がある。このため、前部及び後部ミラー磁場増幅部(6)、(7)では、図3(b)、(c)に示すように、六極永久磁石(10)の着磁方向と同じ方向になる部分のみに扇形状の永久磁石本体(8a1)、(8a2);(8b1)、(8b2);(8c1)、(8c2)及び(9a1)、(9a2);(9b1)、(9b2);(9c1)、(9c2)を設置し、それ以外の部分には扇形状の非磁性部(8a3)、(8a4);(8b3)、(8b4);(8c3)、(8c4)及び(9a3)、(9a4);(9b3)、(9b4);(9c3)、(9c4)をリングスペーサとして設置している。仮に六極永久磁石(10)の着磁方向と相反する着磁方向の永久磁石を設置した場合、永久磁石の特性上、六極永久磁石(10)の減磁温度が低下する。ECRイオン源では一番プラズマに近い六極永久磁石(10)の温度が一番上昇しやすいと予測できるため、減磁温度の高い六極永久磁石(10)が使用上望まれる。ところが六極永久磁石(10)が減磁すると、再度製作、交換を余儀なくされ、その場合、現時点で数百万円のコストが必要になってしまう。また、減磁温度は保磁力との関係で決まるが、永久磁石の保磁力と磁場強度はおよそ反比例の関係にあり、保磁力の強い(減磁温度が高い)磁石は残留磁束密度が弱いことから、安易に保磁力だけでは六極磁石は選定できない。そのためミラー磁場の強度をミラー磁場増幅用の扇形状永久磁石(8)、(9)により強くするとともに、六極永久磁石(10)の減磁温度を低下させないようにするため、ミラー磁場増幅用の扇形状永久磁石(8)、(9)と六極永久磁石(10)の着磁方向の関係を図3(b)、(c)のようにしてある。なお、図3(b)、(c)、図5の(21)は六極永久磁石(10)がバラバラにならないように固定する層であり、たとえばステンレス鋼(SUS316等)などで形成することができる。また、図1の(22)は六極永久磁石(10)の層(図5の21)とミラー磁場生成部(2)をまとめているケーシング(12)とを接続させるヨークであり、たとえばアルミニウムなどで形成することができる。 In addition, the hexapole permanent magnet (10) provided in the ECR ion source including the mirror magnetic field generator (1), which is an embodiment of the invention of this application, has, for example, 12 pieces having a magnetization direction as shown in FIG. These fan-shaped permanent magnets can be combined and integrated. The detailed relationship between the magnetization directions is shown in FIG. As shown in FIG. 5, the magnetization direction of the hexapole permanent magnet (10) as a whole is three inward (inner 1, inner 2, inner 3) and three outward (outer 1, outer 2, There is outside 3). For this reason, in the front and rear mirror magnetic field amplifying units (6) and (7), as shown in FIGS. 3 (b) and 3 (c), the direction is the same as the magnetization direction of the hexapole permanent magnet (10). fan-shaped permanent magnet body only partially (8a 1), (8a 2 ); (8b 1), (8b 2); (8c 1), (8c 2) and (9a 1), (9a 2 ); ( 9b 1 ), (9b 2 ); (9c 1 ), (9c 2 ), and the other portions are fan-shaped nonmagnetic parts (8a 3 ), (8a 4 ); (8b 3 ), ( 8b 4); (8c 3) , (8c 4) and (9a 3), (9a 4 ); (9b 3), (9b 4); (9c 3), installed as a ring spacers (9c 4) Yes. If a permanent magnet having a magnetization direction opposite to the magnetization direction of the hexapole permanent magnet (10) is installed, the demagnetization temperature of the hexapole permanent magnet (10) is lowered due to the characteristics of the permanent magnet. In the ECR ion source, it can be predicted that the temperature of the hexapole permanent magnet (10) closest to the plasma is most likely to rise. Therefore, the hexapole permanent magnet (10) having a high demagnetization temperature is desired in use. However, if the hexapole permanent magnet (10) is demagnetized, it must be remanufactured and replaced. In this case, a cost of several million yen is required at the present time. The demagnetization temperature is determined by the relationship with the coercive force, but the coercivity and magnetic field strength of the permanent magnet are approximately inversely proportional, and the magnet with strong coercive force (high demagnetization temperature) has low residual magnetic flux density. Therefore, a hexapole magnet cannot be selected simply by coercive force alone. Therefore, in order to increase the intensity of the mirror magnetic field by the fan-shaped permanent magnets (8) and (9) for amplifying the mirror magnetic field and to prevent the demagnetization temperature of the hexapole permanent magnet (10) from being lowered, The relationship between the magnetization directions of the fan-shaped permanent magnets (8) and (9) and the hexapole permanent magnet (10) is as shown in FIGS. 3 (b), 3 (c), and 5 (21) are layers for fixing the hexapole permanent magnet (10) so that it does not fall apart. For example, it is formed of stainless steel (SUS316 or the like). Can do. Further, (22) in FIG. 1 is a yoke for connecting the layer of the hexapole permanent magnet (10) (21 in FIG. 5) and the casing (12) collecting the mirror magnetic field generating part (2), for example, aluminum. Etc. can be formed.

上記の実施形態によれば、ミラー磁場のイオン源調整時にミラー磁場の強度を変化させる場合、図示しない操作部における操作により駆動部(14)のステッピングモータ(15)を駆動させ、ボールネジ(18)との噛み合いを利用して図7に示すように扇形状永久磁石(8A)、(8B)、(8C)及び(9A)、(9B)、(9C)を径方向の所要距離だけ移動させることができる。これにより、イオン源調整時におけるミラー磁場強度の可変が可能となる。もちろん、イオン源停止時に同様な操作ができることはいうまでもない。   According to the above embodiment, when changing the intensity of the mirror magnetic field at the time of adjusting the ion source of the mirror magnetic field, the stepping motor (15) of the drive unit (14) is driven by the operation in the operation unit (not shown), and the ball screw (18). The fan-shaped permanent magnets (8A), (8B), (8C) and (9A), (9B), (9C) are moved by the required distance in the radial direction as shown in FIG. Can do. This makes it possible to vary the mirror magnetic field strength during ion source adjustment. Of course, it goes without saying that the same operation can be performed when the ion source is stopped.

次に、この出願の発明の実施例を述べるが、これはこの出願の発明を限定するものではない。   Next, examples of the invention of this application will be described, but this does not limit the invention of this application.

全長260mm、外径262mmの図1に示すような構造のミラー磁場発生装置を作製した。各寸法は下記のとおりである。また、ミラー磁場生成用永久磁石及びミラー磁場増幅用永久磁石としては、ネオジウム系永久磁石(NdFeB)である信越化学工業株式会社製N48Hを用い、六極永久磁石としては、同じくネオジウム系永久磁石(NdFeB)である信越化学工業株式会社製N44MHを用いた。また、扇形状永久磁石の非磁性部にはステンレス鋼(SUS316)を用い、鉄製ヨークにはSS400を用い、アルミニウム製ケーシングにはA5054を用い、ミラー磁場生成用永久磁石と六極永久磁石を接続させるヨークにはアルミニウム(A2017)を用いた。   A mirror magnetic field generator having a total length of 260 mm and an outer diameter of 262 mm as shown in FIG. 1 was produced. Each dimension is as follows. In addition, as a permanent magnet for generating a mirror magnetic field and a permanent magnet for amplifying a mirror magnetic field, N48H manufactured by Shin-Etsu Chemical Co., Ltd., which is a neodymium-based permanent magnet (NdFeB), is used. NdMH (NdFeB) manufactured by Shin-Etsu Chemical Co., Ltd. was used. In addition, stainless steel (SUS316) is used for the nonmagnetic part of the fan-shaped permanent magnet, SS400 is used for the iron yoke, and A5054 is used for the aluminum casing, and the mirror magnetic field generating permanent magnet and the hexapole permanent magnet are connected. Aluminum (A2017) was used for the yoke to be made.

プラズマチェンバー 内径 32mm、外径 39mm、長さ260mm
六極永久磁石 内径 41mm、外径102mm、長さ120mm
ミラー磁場生成用
永久磁石(前後) 内径 41mm、外径182mm、長さ 60mm
ミラー磁場増幅用
永久磁石(前後) 内径116mm、外径182mm、長さ 55mm
鉄製ヨーク 内径182mm、外径222mm
アルミニウム製ヨーク 内径222mm、外径262mm
上記のような構成で、6つのミラー磁場増幅用永久磁石(扇形状)を、図7に示すように、イオン源中心軸から径方向に等距離に50mm移動させることができた。径方向に50mm移動させた場合の移動に伴うミラー磁場強度比のデータを図8に示す。
Plasma chamber inner diameter 32mm, outer diameter 39mm, length 260mm
Hexapole permanent magnet inner diameter 41mm, outer diameter 102mm, length 120mm
For mirror magnetic field generation
Permanent magnet (front and rear) inner diameter 41mm, outer diameter 182mm, length 60mm
For mirror magnetic field amplification
Permanent magnet (front and rear) Inner diameter 116mm, outer diameter 182mm, length 55mm
Iron yoke inner diameter 182mm, outer diameter 222mm
Aluminum yoke inner diameter 222mm, outer diameter 262mm
With the configuration as described above, the six mirror magnetic field amplifying permanent magnets (fan-shaped) could be moved 50 mm at equal distances in the radial direction from the central axis of the ion source, as shown in FIG. FIG. 8 shows data of the mirror magnetic field strength ratio that accompanies the movement when moved by 50 mm in the radial direction.

以上、この出願の発明の実施形態及び実施例を述べたが、この出願の発明はこれらに限定されるものではなく、細部については様々な態様が可能であることは言うまでもない。   As mentioned above, although embodiment and the Example of invention of this application were described, it cannot be overemphasized that the invention of this application is not limited to these, and various aspects are possible about a detail.

たとえば、ミラー磁場増幅用永久磁石の分割数やその径方向駆動させる手段については上記以外の適宜の数、駆動機構を採用することができる。   For example, as for the number of divisions of the mirror magnetic field amplifying permanent magnet and the means for driving in the radial direction, an appropriate number other than those described above and a driving mechanism can be adopted.

この出願の発明の実施形態である、ミラー磁場発生装置を含むECRイオン源の要部のイオン源中心軸に沿った断面図である。It is sectional drawing along the ion source central axis of the principal part of the ECR ion source containing the mirror magnetic field generator which is embodiment of invention of this application. (a)及び(b)はそれぞれミラー磁場発生装置の正面図及び側面図である。(A) And (b) is the front view and side view of a mirror magnetic field generator, respectively. (a)、(b)、(c)、(d)はそれぞれ図2(a)のA−A’断面図、B−B’線断面図、C−C’線断面図、D−D’線断面図である。(A), (b), (c), (d) are AA 'sectional drawing, BB' sectional view, CC 'sectional view, DD' of FIG. 2 (a), respectively. It is line sectional drawing. 図2(b)のE−E’線断面図である。FIG. 3 is a cross-sectional view taken along line E-E ′ of FIG. 六極永久磁石の着磁方向を示す断面図である。It is sectional drawing which shows the magnetization direction of a hexapole permanent magnet. 六極永久磁石の着磁方向を詳細に示す断面図である。It is sectional drawing which shows the magnetization direction of a hexapole permanent magnet in detail. 前部及び後部ミラー磁場増幅部の各扇形状永久磁石の駆動前後の様子を示す軸方向に垂直な断面図である。It is sectional drawing perpendicular | vertical to an axial direction which shows the mode before and behind the drive of each fan-shaped permanent magnet of a front part and a rear mirror magnetic field amplification part. 実施例において前部及び後部ミラー磁場増幅部の各扇形状永久磁石を径方向に50mm移動させた場合の移動に伴うミラー磁場強度比のデータを示す図である。In an Example, it is a figure which shows the data of the mirror magnetic field strength ratio accompanying the movement at the time of moving each fan-shaped permanent magnet of a front part and a rear mirror magnetic field amplification part 50 mm in radial direction. 従来のECRイオン源の構造を示す軸方向に沿った断面図である。It is sectional drawing along the axial direction which shows the structure of the conventional ECR ion source.

符号の説明Explanation of symbols

1 ミラー磁場発生装置
2 ミラー磁場生成部
3 ミラー磁場増幅部
4 前部環状永久磁石
5 後部環状永久磁石
6 前部ミラー磁場増幅部
7 後部ミラー磁場増幅部
8(8A、8B、8C) 扇形状永久磁石
9(9A、9B、9C) 扇形状永久磁石
10 六極永久磁石
11 ヨーク
12 ケーシング
13 架台
14 駆動部
15 ステッピングモーター
17 傘歯車
18 ボールネジ
DESCRIPTION OF SYMBOLS 1 Mirror magnetic field generator 2 Mirror magnetic field production | generation part 3 Mirror magnetic field amplification part 4 Front annular permanent magnet 5 Rear annular permanent magnet 6 Front mirror magnetic field amplification part 7 Rear mirror magnetic field amplification part 8 (8A, 8B, 8C) Fan-shaped permanent Magnet 9 (9A, 9B, 9C) Fan-shaped permanent magnet 10 Hexapole permanent magnet 11 Yoke 12 Casing 13 Mounting base 14 Drive unit 15 Stepping motor 17 Bevel gear 18 Ball screw

Claims (10)

ECRイオン源に用いられるプラズマ閉じ込め用のミラー磁場を発生させる装置であって、
イオン源中心軸方向に離間配置された一対の環状永久磁石からなり、ミラー磁場を生成するミラー磁場生成部と、
ミラー磁場生成部の一対の環状永久磁石間に設けられ、複数の扇形状永久磁石を環状に配置して構成され、ミラー磁場生成部が生成したミラー磁場を増幅するミラー磁場増幅部と、
ミラー磁場増幅部を構成する各扇形状永久磁石をイオン源中心軸に対して径方向に移動させる扇形状永久磁石移動手段を備え、
各扇形状永久状磁石の径方向の移動により、ミラー磁場強度を変化させることができることを特徴とするミラー磁場発生装置。
An apparatus for generating a mirror magnetic field for plasma confinement used in an ECR ion source,
A mirror magnetic field generation unit configured to generate a mirror magnetic field, comprising a pair of annular permanent magnets spaced apart in the ion source central axis direction;
A mirror magnetic field amplification unit that is provided between a pair of annular permanent magnets of the mirror magnetic field generation unit and is configured by annularly arranging a plurality of fan-shaped permanent magnets, and amplifies the mirror magnetic field generated by the mirror magnetic field generation unit;
A fan-shaped permanent magnet moving means for moving each fan-shaped permanent magnet constituting the mirror magnetic field amplification unit in the radial direction with respect to the central axis of the ion source,
A mirror magnetic field generator characterized in that the mirror magnetic field intensity can be changed by the radial movement of each fan-shaped permanent magnet.
ミラー磁場増幅部が、前部ミラー磁場増幅部と後部ミラー磁場増幅部からなることを特徴とする請求項1記載のミラー磁場発生装置。   2. The mirror magnetic field generator according to claim 1, wherein the mirror magnetic field amplifying unit includes a front mirror magnetic field amplifying unit and a rear mirror magnetic field amplifying unit. ミラー磁場増幅部の扇形状永久磁石が環状構造を3つに分割したものからなり、前部ミラー磁場増幅部の各扇形状永久磁石が、後部ミラー増幅部の各扇形状永久磁石に対してそれぞれ周方向に60度ずらして配置されていることを特徴とする請求項2記載のミラー磁場発生装置。   The fan-shaped permanent magnet of the mirror magnetic field amplifying unit is formed by dividing the annular structure into three, and each fan-shaped permanent magnet of the front mirror magnetic field amplifying unit is respectively corresponding to each fan-shaped permanent magnet of the rear mirror amplifying unit. 3. The mirror magnetic field generator according to claim 2, wherein the mirror magnetic field generator is arranged so as to be shifted 60 degrees in the circumferential direction. ミラー磁場増幅部の各扇形状永久磁石が、扇形状磁石本体と、その周方向両側に設けられ、大きさが扇形状磁石本体の半分である扇形状非磁性部分とからなることを特徴とする請求項1から3のいずれかのミラー磁場発生装置。   Each fan-shaped permanent magnet of the mirror magnetic field amplifying unit is composed of a fan-shaped magnet main body and fan-shaped nonmagnetic portions that are provided on both sides in the circumferential direction and are half the size of the fan-shaped magnet main body. The mirror magnetic field generator in any one of Claim 1 to 3. 請求項1から4のいずれかに記載のミラー磁場発生装置と、
ミラー磁場増幅部の径方向内側に配置された環状の多極永久磁石を備えることを特徴とするECRイオン源。
The mirror magnetic field generator according to any one of claims 1 to 4,
An ECR ion source comprising an annular multipole permanent magnet disposed radially inward of a mirror magnetic field amplification unit.
多極永久磁石が六極永久磁石であることを特徴とする請求項5記載のECRイオン源。   6. The ECR ion source according to claim 5, wherein the multipole permanent magnet is a hexapole permanent magnet. ECRイオン源に用いられるプラズマ閉じ込め用のミラー磁場を発生させる方法であって、
ミラー磁場を生成させるためにイオン源中心軸方向に離間配置された一対のミラー磁場生成用環状永久磁石の間に、生成したミラー磁場を増幅させるためのミラー磁場増幅用永久磁石を設け、
ミラー磁場増幅用永久磁石として、イオン源中心軸に対して径方向に移動可能な複数の扇形状永久磁石を環状に配置した構造のものを用い、
各扇形状永久磁石をイオン源中心軸に対して径方向に移動させることにより、ミラー磁場強度を変化させることができることを特徴とするミラー磁場発生方法。
A method of generating a mirror magnetic field for plasma confinement used in an ECR ion source,
In order to generate a mirror magnetic field, a mirror magnetic field amplifying permanent magnet for amplifying the generated mirror magnetic field is provided between a pair of mirror magnetic field generating annular permanent magnets spaced apart in the ion source central axis direction,
As a permanent magnet for amplifying a mirror magnetic field, use a structure in which a plurality of fan-shaped permanent magnets that can move in the radial direction with respect to the central axis of the ion source are arranged in an annular shape,
A method of generating a mirror magnetic field, characterized in that the mirror magnetic field strength can be changed by moving each fan-shaped permanent magnet in the radial direction with respect to the central axis of the ion source.
ミラー磁場増幅用永久磁石として、前部と後部の2つに分割されたものを用いることを特徴とする請求項7記載のミラー磁場発生方法。   8. The method of generating a mirror magnetic field according to claim 7, wherein the mirror magnetic field amplifying permanent magnet is divided into a front part and a rear part. ミラー磁場増幅用永久磁石を構成する扇形状永久磁石として、環状構造を3つに分割したものであり、かつ前部の各扇形状永久磁石を、後部の扇形状永久磁石に対して周方向にそれぞれ60度ずらして配置させたものを用いることを特徴とする請求項8記載のミラー磁場発生方法。   As the fan-shaped permanent magnet constituting the mirror magnetic field amplifying permanent magnet, the annular structure is divided into three parts, and the front fan-shaped permanent magnets are arranged in the circumferential direction with respect to the rear fan-shaped permanent magnet. 9. The method for generating a mirror magnetic field according to claim 8, wherein the mirror magnetic fields are arranged so as to be shifted by 60 degrees. ミラー磁場増幅部の各扇形状永久磁石として、扇形状磁石本体とその周方向両側に設けられ、大きさが扇形状磁石本体の半分である扇形状非磁性部分とからなるものを用いることを特徴とする請求項7から10のいずれかのミラー磁場発生方法。   Each fan-shaped permanent magnet of the mirror magnetic field amplifying unit is composed of a fan-shaped magnet body and fan-shaped nonmagnetic portions that are provided on both sides in the circumferential direction and are half the size of the fan-shaped magnet body. The method of generating a mirror magnetic field according to claim 7.
JP2004226135A 2004-08-02 2004-08-02 Apparatus and method for generating mirror magnetic field for confining plasma used in ECR ion source Expired - Fee Related JP4515852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004226135A JP4515852B2 (en) 2004-08-02 2004-08-02 Apparatus and method for generating mirror magnetic field for confining plasma used in ECR ion source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004226135A JP4515852B2 (en) 2004-08-02 2004-08-02 Apparatus and method for generating mirror magnetic field for confining plasma used in ECR ion source

Publications (2)

Publication Number Publication Date
JP2006049020A true JP2006049020A (en) 2006-02-16
JP4515852B2 JP4515852B2 (en) 2010-08-04

Family

ID=36027341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004226135A Expired - Fee Related JP4515852B2 (en) 2004-08-02 2004-08-02 Apparatus and method for generating mirror magnetic field for confining plasma used in ECR ion source

Country Status (1)

Country Link
JP (1) JP4515852B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011233355A (en) * 2010-04-27 2011-11-17 Sumitomo Heavy Ind Ltd Mirror magnetic field generation device of ecr ion source
JP2014225355A (en) * 2013-05-15 2014-12-04 住友重機械工業株式会社 Microwave ion source and method for operating the same
WO2016186143A1 (en) * 2015-05-20 2016-11-24 国立大学法人東北大学 Plasma processing device, plasma processing method, and semiconductor production method
WO2022210288A1 (en) * 2021-03-30 2022-10-06 住友重機械工業株式会社 Plasma generating device, negative ion source device, and maintenance method for plasma generating device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0864142A (en) * 1994-06-15 1996-03-08 Shin Etsu Chem Co Ltd Magnetic field generating device for gyrotron
JP2001338589A (en) * 2000-05-29 2001-12-07 Tokin Corp Electron cyclotron resonance ion source

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0864142A (en) * 1994-06-15 1996-03-08 Shin Etsu Chem Co Ltd Magnetic field generating device for gyrotron
JP2001338589A (en) * 2000-05-29 2001-12-07 Tokin Corp Electron cyclotron resonance ion source

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011233355A (en) * 2010-04-27 2011-11-17 Sumitomo Heavy Ind Ltd Mirror magnetic field generation device of ecr ion source
JP2014225355A (en) * 2013-05-15 2014-12-04 住友重機械工業株式会社 Microwave ion source and method for operating the same
WO2016186143A1 (en) * 2015-05-20 2016-11-24 国立大学法人東北大学 Plasma processing device, plasma processing method, and semiconductor production method
JPWO2016186143A1 (en) * 2015-05-20 2018-03-29 国立大学法人東北大学 Plasma processing apparatus, plasma processing method, and semiconductor manufacturing method
WO2022210288A1 (en) * 2021-03-30 2022-10-06 住友重機械工業株式会社 Plasma generating device, negative ion source device, and maintenance method for plasma generating device

Also Published As

Publication number Publication date
JP4515852B2 (en) 2010-08-04

Similar Documents

Publication Publication Date Title
US10181389B2 (en) X-ray tube having magnetic quadrupoles for focusing and collocated steering coils for steering
JP5835235B2 (en) Magnetic field generator for magnetron sputtering
Ghosh et al. Formation of annular plasma downstream by magnetic aperture in the helicon experimental device
EP3126910B1 (en) Undulator, free electron laser and lithographic system
KR20130138171A (en) Cyclotron comprising a means for modifying the magnetic field profile and associated method
Rovey et al. Simple Penning ion source for laboratory research and development applications
US4767931A (en) Ion beam apparatus
EP2954549B1 (en) Method and apparatus for generation of a uniform-profile particle beam
JP4515852B2 (en) Apparatus and method for generating mirror magnetic field for confining plasma used in ECR ion source
WO2013115030A1 (en) Magnetic field generator for magnetron sputtering
JP2007529633A (en) Sputtering apparatus for producing thin films
WO2012115203A1 (en) Arc evaporation source
JP2007224343A (en) Magnetron sputtering device
JP5231962B2 (en) Sheet plasma deposition system
JP2019050194A (en) Helical permanent magnet structure and undulator using the same
JP3490469B2 (en) Electron beam focusing magnetic field generator
JP2015017304A (en) Magnetic field generation apparatus and sputtering apparatus
KR101629131B1 (en) Arc-type evaporation source
JPH11329788A (en) Magnetic field generating device for magnetron plasma
JP3957844B2 (en) Magnetic field generator for magnetron plasma
JP7114401B2 (en) Sputtering equipment
JP2952147B2 (en) Magnetic field generator for magnetron plasma
JP2011113901A (en) Induction acceleration sector cyclotron
JPS63277758A (en) Magnetron sputtering device
JPWO2016148058A1 (en) Magnetic field generator for magnetron sputtering

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060228

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060303

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100513

R150 Certificate of patent or registration of utility model

Ref document number: 4515852

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees