JP2006048987A - Fuel cell device - Google Patents

Fuel cell device Download PDF

Info

Publication number
JP2006048987A
JP2006048987A JP2004225337A JP2004225337A JP2006048987A JP 2006048987 A JP2006048987 A JP 2006048987A JP 2004225337 A JP2004225337 A JP 2004225337A JP 2004225337 A JP2004225337 A JP 2004225337A JP 2006048987 A JP2006048987 A JP 2006048987A
Authority
JP
Japan
Prior art keywords
fuel cell
fuel gas
gas
water
water storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004225337A
Other languages
Japanese (ja)
Inventor
Atsushi Maeda
篤志 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004225337A priority Critical patent/JP2006048987A/en
Publication of JP2006048987A publication Critical patent/JP2006048987A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell device capable of collecting generated water in any optional timing without discharging unreacted fuel gas to the outside of a system even if the amount of generated water is not much when collecting water generated in a fuel cell. <P>SOLUTION: This fuel cell device is equipped with a water storage part 55 which is in communication with a fuel cell discharging passage 32 to pass the unreacted fuel gas discharged from the fuel cell 20 to store moisture contained in the unreacted fuel gas, an isolating means A3 to isolate the water storage part 55 from the fuel cell discharging passage 32 when draining water stored in the water storage part 55, and a discharge means 35 to discharge the unreacted fuel gas contained in the water storage part 55 isolated from the fuel gas discharging passage 32 to a fuel gas discharging passage 33. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は燃料電池装置に関し、特に、水回収時における未反応燃料ガスの漏出を抑制するための改良技術に関する。   The present invention relates to a fuel cell device, and more particularly to an improved technique for suppressing leakage of unreacted fuel gas during water recovery.

図3は従来の燃料電池評価装置80の主要構成を示している。燃料電池20のアノード極には燃料ガス流路31を介して燃料ガス(水素)が供給され、カソード極には酸化ガス流路41を介して酸化ガス(酸素)が供給される。燃料ガスと酸化ガスのそれぞれはマスフローコントローラ51,61によって流量制御され、加湿器52,62によって適度に加湿された後、ヒータ53,63によって昇温される。電池反応に供した後の水素オフガス(アノードオフガス)、酸素オフガス(カソードオフガス)はそれぞれ燃料ガス排出流路32、酸化ガス排出流路42を通じて燃料電池20から排出され、気液分離器70によって気液分離される。気液分離器70を通過した水素オフガス、酸素オフガスは更にドレンポッド(貯水部)54,64に流入し、残留水分が摘出された後に、燃料ガス排出流路34、酸化ガス排出流路43を通じて排気される。水素オフガス、酸素オフガスのそれぞれの背圧は背圧弁A1,A2によって調圧される。ところで、水素オフガス、酸素オフガスには電池反応で生じた水分等が含まれているため、燃料電池20からのオフガスを気液分離器70やドレンポッド54,64を介さずに直接に背圧弁A1,A2に導くと、背圧弁A1,A2のオリフィスに水分が次第に溜まり始めて液膜を形成する。その液膜がある程度成長すると、背圧の影響で吹き飛ばされて、予期しない背圧変動が生じる虞がある。このため、燃料電池20と背圧弁A1,A2との間にはオフガスから水分を除去するための気液分離器70とドレンポッド54,64が設置されている。ドレンポッド54,64に貯溜するサンプル水は排水弁A5,A6を開弁することにより回収され、成分分析に利用される。   FIG. 3 shows the main configuration of a conventional fuel cell evaluation apparatus 80. A fuel gas (hydrogen) is supplied to the anode electrode of the fuel cell 20 via the fuel gas channel 31, and an oxidizing gas (oxygen) is supplied to the cathode electrode via the oxidizing gas channel 41. The flow rates of the fuel gas and the oxidant gas are controlled by the mass flow controllers 51 and 61, are appropriately humidified by the humidifiers 52 and 62, and then heated by the heaters 53 and 63. The hydrogen off-gas (anode off-gas) and oxygen off-gas (cathode off-gas) after being subjected to the cell reaction are discharged from the fuel cell 20 through the fuel gas discharge channel 32 and the oxidizing gas discharge channel 42, respectively. Liquid separation. The hydrogen off-gas and oxygen off-gas that have passed through the gas-liquid separator 70 further flow into drain pods (reservoir units) 54 and 64, and after residual moisture is extracted, the fuel off-gas passage 34 and the oxidizing gas discharge passage 43 are passed through. Exhausted. The back pressures of the hydrogen off gas and the oxygen off gas are regulated by back pressure valves A1 and A2. By the way, since the hydrogen off-gas and oxygen off-gas contain moisture generated by the cell reaction, the back-pressure valve A1 directly sends off-gas from the fuel cell 20 without going through the gas-liquid separator 70 and the drain pods 54 and 64. , A 2, moisture gradually begins to accumulate in the orifices of the back pressure valves A 1, A 2 to form a liquid film. If the liquid film grows to some extent, it may be blown away due to the influence of back pressure, causing unexpected back pressure fluctuations. For this reason, a gas-liquid separator 70 and drain pods 54 and 64 for removing moisture from off-gas are installed between the fuel cell 20 and the back pressure valves A1 and A2. The sample water stored in the drain pods 54 and 64 is collected by opening the drain valves A5 and A6 and used for component analysis.

尚、燃料電池の水回収装置に関する他の従来技術として、例えば、特開平8−195209号、特開平8−195215号が知られている。特開平8−195215号には燃料電池に接続する反応ガス流路から下方に分岐して連通する第1のタンクと、この第1のタンクの下部に連通する第2のタンクを設置し、更にこれら各タンクを連通する流路に第1のバルブを設置し、第2のタンクの流出口側に第2のバルブを設置しておき、第1のバルブと第2のバルブを交互に開閉することで、反応ガスに含まれる水分を排水する構成が開示されている。第1のタンクの流入口には気体の透過を阻止し、且つ水分の透過を許容する透水性遮蔽板(親水性多孔質板)が設置されており、第2のタンクからの排水の際に水素ガスがシステム外に排気されないように構成されている。
特開平8−195209号 特開平8−195215号
For example, Japanese Patent Application Laid-Open No. 8-195209 and Japanese Patent Application Laid-Open No. 8-195215 are known as other conventional techniques related to a water recovery device for a fuel cell. In JP-A-8-195215, a first tank that branches downward from a reaction gas flow path connected to a fuel cell and communicates therewith, and a second tank that communicates with the lower part of the first tank, and further, A first valve is installed in the flow path connecting these tanks, a second valve is installed on the outlet side of the second tank, and the first valve and the second valve are alternately opened and closed. Thus, a configuration for draining water contained in the reaction gas is disclosed. A water-permeable shielding plate (hydrophilic porous plate) that prevents gas permeation and allows moisture permeation is installed at the inflow port of the first tank. When draining from the second tank, Hydrogen gas is configured not to be exhausted outside the system.
JP-A-8-195209 JP-A-8-195215

しかし、図3に示した構成では、背圧弁A1,A2の上流側にドレンポッド54,64を設置しているため、ドレンポッド54,64に貯溜したサンプル水を試験中(電池運転中)に採取してしまうと、ドレンポッド54,64内の容積が変化することにより圧力変動が生じ、背圧制御に影響を及ぼしてしまう。更に、ドレンポッド54内には水素ガスが充満しているため、試験中にドレンポッド54に貯溜したサンプル水を完全に抜いてしまうと、水素ガスが排水弁A5を通じてシステム外に漏出してしまう虞がある。このような不都合を回避するには、試験を中止してドレンポッド54内に充満した水素を窒素に置換してから排水弁A5を開弁してサンプル水を回収する必要があるが、これでは試験効率が低下してしまう。   However, in the configuration shown in FIG. 3, since the drain pods 54 and 64 are installed upstream of the back pressure valves A1 and A2, the sample water stored in the drain pods 54 and 64 is being tested (during battery operation). If it is collected, the pressure in the drain pods 54 and 64 changes, causing a pressure fluctuation, which affects the back pressure control. Furthermore, since the drain pod 54 is filled with hydrogen gas, if the sample water stored in the drain pod 54 is completely removed during the test, the hydrogen gas leaks out of the system through the drain valve A5. There is a fear. In order to avoid such inconvenience, it is necessary to stop the test and replace the hydrogen filled in the drain pod 54 with nitrogen, and then open the drain valve A5 to collect the sample water. Test efficiency is reduced.

また、特開平8−195215号に開示された構成では、第2のタンクが満水になる前に排水すると、水素ガスが水とともにシステム外に排出されてしまう虞がある。更に、第2のタンクが満水にならないと排水しないように構成されているため、任意のタイミングで排水することができない。しかも、透水性遮蔽板によってガスの透過を防ぐには透水性遮蔽板の透孔全てが水分で閉塞している必要があるが、各タンクに供給される水の量が少ない場合には、透水性遮蔽板の透孔が閉塞されずに水素ガスが各タンクに充満する虞がある。   Further, in the configuration disclosed in Japanese Patent Application Laid-Open No. 8-195215, if the second tank is drained before it is full, hydrogen gas may be discharged out of the system together with water. Further, since the second tank is configured not to drain unless it is full, it cannot be drained at an arbitrary timing. Moreover, in order to prevent gas permeation by the water-permeable shielding plate, it is necessary that all the through holes of the water-permeable shielding plate are closed with moisture, but when the amount of water supplied to each tank is small, There is a possibility that the hydrogen gas is filled in each tank without blocking the through hole of the conductive shielding plate.

そこで、本発明は燃料電池内で生成された水を回収する上で生成水量が少ない場合であっても、未反応燃料ガスをシステム外に排出することなく、任意のタイミングで生成水を回収することのできる燃料電池装置及び燃料電池評価装置を提案することを課題とする。   Therefore, the present invention recovers the generated water at an arbitrary timing without discharging unreacted fuel gas outside the system even when the amount of generated water is small in recovering the water generated in the fuel cell. It is an object of the present invention to propose a fuel cell device and a fuel cell evaluation device that can be used.

上記の課題を解決するため、本発明の燃料電池装置は、燃料電池から排出される未反応燃料ガスを流すための燃料ガス排出流路に連通して未反応燃料ガスに含まれる水分を貯溜する貯水部と、貯水部に貯溜された水を排水する際に貯水部を燃料ガス排出流路から遮断する遮断手段と、燃料ガス排出流路から遮断された貯水部に含まれる未反応燃料ガスを燃料ガス排出流路に排出する排出手段とを備える。貯水部から水を回収する際に貯水部と燃料ガス排出流路を遮断し、貯水部に充満する未反応燃料ガスを燃料ガス排出流路に排出することで、未反応燃料ガスをシステム外に漏出することなく、生成水を任意のタイミングで排水することができる。また、本発明の燃料電池装置を車両に搭載した場合には燃料電池装置内に保持する水の量を減らすことができるため、燃費向上が可能である。   In order to solve the above-described problem, the fuel cell device of the present invention stores water contained in unreacted fuel gas in communication with a fuel gas discharge channel for flowing unreacted fuel gas discharged from the fuel cell. A water storage section, a blocking means for blocking the water storage section from the fuel gas discharge flow path when draining water stored in the water storage section, and an unreacted fuel gas contained in the water storage section blocked from the fuel gas discharge flow path. A discharge means for discharging to the fuel gas discharge flow path. When collecting water from the water storage unit, the water storage unit and the fuel gas discharge channel are shut off, and the unreacted fuel gas that fills the water storage unit is discharged to the fuel gas discharge channel. The generated water can be drained at an arbitrary timing without leaking. Further, when the fuel cell device of the present invention is mounted on a vehicle, the amount of water retained in the fuel cell device can be reduced, so that fuel efficiency can be improved.

ここで、排出手段としては、貯水部に内在する未反応燃料ガスを不活性ガスに置換する手段が望ましい。燃料ガス排出流路と遮断された貯水部に不活性ガスをパージすることによって、未反応燃料ガスを容易に排出できる。   Here, as the discharging means, a means for replacing the unreacted fuel gas present in the water reservoir with an inert gas is desirable. Unreacted fuel gas can be easily discharged by purging the inert gas into the water reservoir that is disconnected from the fuel gas discharge channel.

本発明の燃料電池装置は燃料電池と貯水部との間の燃料ガス排出流路に燃料ガスの背圧を調圧する背圧弁が配設されている。貯水部の上流側に背圧弁を設置することで、貯水部からの水回収に伴う貯水部内の圧力変動が背圧弁の背圧制御に影響を与える虞がない。   In the fuel cell device of the present invention, a back pressure valve for regulating the back pressure of the fuel gas is disposed in the fuel gas discharge passage between the fuel cell and the water storage section. By installing the back pressure valve on the upstream side of the water storage section, there is no possibility that the pressure fluctuation in the water storage section accompanying the water recovery from the water storage section will affect the back pressure control of the back pressure valve.

本発明の燃料電池評価装置は本発明の燃料電池装置と、貯水部から回収した水分の成分を分析する分析手段を備える。燃料電池内で生じた水の成分分析を行うことで、燃料電池の特性評価を行える。また、生成水を任意のタイミングで排水できるため、時系列での詳細な分析評価が可能である。   The fuel cell evaluation apparatus of the present invention includes the fuel cell apparatus of the present invention and analysis means for analyzing a component of water recovered from the water storage unit. By analyzing the components of the water produced in the fuel cell, the characteristics of the fuel cell can be evaluated. In addition, since the generated water can be drained at an arbitrary timing, detailed analysis and evaluation in time series is possible.

本発明によれば、貯水部から水を回収する際に貯水部と燃料ガス排出流路を遮断し、貯水部に内在する未反応燃料ガスを燃料ガス排出流路に排出することで、未反応燃料ガスをシステム外に漏出することなく、生成水を任意のタイミングで排水することができる。   According to the present invention, when collecting water from the water storage unit, the water storage unit and the fuel gas discharge channel are shut off, and the unreacted fuel gas existing in the water storage unit is discharged to the fuel gas discharge channel, thereby allowing unreacted The generated water can be drained at an arbitrary timing without leaking the fuel gas outside the system.

図1、図2は本実施形態の燃料電池評価装置10の構成図である。図3に付した符号と同一符号の装置等は同一の装置等を示すものとし、その詳細な説明は省略する。図中、各種の配管系統において、実線はガス(水素ガス、酸素ガス、不活性ガス等)又は液体(サンプル水等)が流れている部位を示し、点線はガス又は液体が流れていない部位を示している。   1 and 2 are configuration diagrams of a fuel cell evaluation apparatus 10 according to the present embodiment. The devices having the same reference numerals as those in FIG. 3 indicate the same devices, and detailed description thereof is omitted. In the drawings, in various piping systems, a solid line indicates a portion where gas (hydrogen gas, oxygen gas, inert gas, etc.) or liquid (sample water, etc.) flows, and a dotted line indicates a portion where gas or liquid does not flow. Show.

燃料電池評価装置10のアノード側の水回収系統は、サンプルポッド(貯水部)55とドレンポッド54を多段接続(縦続接続)した二段構成を備えている。水素オフガス(未反応燃料ガス)の排出経路には三方弁A3が設置されており、水素オフガスの排出経路を切り替え可能に構成している。三方弁A3のポートP1は燃料ガス排出流路32に、ポートP2はサンプルポッド55に、ポートP3は燃料ガス排出流路34に、それぞれ連通している。燃料ガス排出流路34はポートP3とドレンポッド54を接続し、ドレンポッド54に内在する水素オフガスをシステム外に排気するように構成されている。燃料ガス排出流路33はサンプルポッド55に導入された水素オフガスをシステム外に排気するためのガス流路であり、その下流において燃料ガス排出流路34に合流している。燃料ガス排出流路33,34の下流には水素オフガスの逆流を抑制するための逆止弁A7,A8が設置され、更にその下流側には水素オフガスを十分な低濃度に希釈するための希釈器(図示せず)が設置されている。また、サンプルポッド55にはポッド内の水素オフガスを不活性ガス(窒素ガス、アルゴンガス等)に置換し、水素オフガスを燃料ガス排出流路33に排出するための不活性ガス流路35が連通している。   The water recovery system on the anode side of the fuel cell evaluation apparatus 10 has a two-stage configuration in which a sample pod (water storage unit) 55 and a drain pod 54 are connected in multiple stages (cascade connection). A three-way valve A3 is installed in the discharge path of hydrogen off gas (unreacted fuel gas), and the discharge path of hydrogen off gas can be switched. The port P1 of the three-way valve A3 communicates with the fuel gas discharge passage 32, the port P2 communicates with the sample pod 55, and the port P3 communicates with the fuel gas discharge passage 34. The fuel gas discharge flow path 34 connects the port P3 and the drain pod 54, and is configured to exhaust the hydrogen off gas existing in the drain pod 54 to the outside of the system. The fuel gas discharge channel 33 is a gas channel for exhausting the hydrogen off-gas introduced into the sample pod 55 to the outside of the system, and merges with the fuel gas discharge channel 34 downstream thereof. Downstream of the fuel gas discharge passages 33 and 34 are check valves A7 and A8 for suppressing the backflow of hydrogen offgas, and further on the downstream side for dilution to dilute the hydrogen offgas to a sufficiently low concentration. A vessel (not shown) is installed. Further, the sample pod 55 communicates with an inert gas flow path 35 for replacing the hydrogen off gas in the pod with an inert gas (nitrogen gas, argon gas, etc.) and discharging the hydrogen off gas to the fuel gas discharge flow path 33. is doing.

次に、サンプル水の回収操作について説明する。通常運転時には、図1に示すように、ポートP1とポートP2を連通し、ポートP3を閉弁することによって、水素オフガスをサンプルポッド55内に導き、水素オフガスに含まれている水分をサンプルポッド55内に貯溜する。燃料ガス排出流路32を通じてサンプルポッド55内に導入された水素オフガスは燃料ガス排出流路33を通じてシステム外に排出される。このようにしてサンプルポッド55内に貯溜されたサンプル水を回収するには、図2に示すように、ポートP1とポートP3を連通し、ポートP2を閉弁することによって、水素オフガスをドレンポッド54内に導き、水素オフガスをドレンポッド55内に貯留する。燃料ガス排出流路32を通じてドレンポッド54内に導入された水素オフガスは燃料ガス排出流路34を通じてシステム外に排出される。このようにして、水素オフガスの排出経路が切り替えられたならば、遮断弁A4を開弁してサンプルポッド55内に不活性ガスを導入し、サンプルポッド55内に内在する水素オフガスを不活性ガスに置換する。これにより、サンプルポッド55内に内在していた水素オフガスは燃料ガス排出流路33に押し流され、システム外に排気される。サンプルポッド55内の水素オフガスが不活性ガスに置換されたところで、排水弁A5を開き、サンプル水を回収する。回収されたサンプル水は分析手段71によって成分分析され、燃料電池20の特性評価に用いられる。このように、三方弁A3はサンプルポッド55と燃料ガス排出流路32との連通を遮断する遮断手段として機能し、不活性ガス流路35と遮断弁A4はサンプルポッド55から水素オフガスを排出する排出手段として機能する。   Next, a sample water recovery operation will be described. During normal operation, as shown in FIG. 1, by connecting ports P1 and P2 and closing port P3, hydrogen offgas is introduced into the sample pod 55, and moisture contained in the hydrogen offgas is removed from the sample pod. Store in 55. The hydrogen off-gas introduced into the sample pod 55 through the fuel gas discharge channel 32 is discharged out of the system through the fuel gas discharge channel 33. In order to recover the sample water stored in the sample pod 55 in this way, as shown in FIG. 2, the port P1 and the port P3 are communicated and the port P2 is closed, so that the hydrogen off-gas is drained from the drain pod. Then, the hydrogen off-gas is stored in the drain pod 55. The hydrogen off-gas introduced into the drain pod 54 through the fuel gas discharge passage 32 is discharged out of the system through the fuel gas discharge passage 34. In this way, when the hydrogen off-gas discharge path is switched, the shutoff valve A4 is opened to introduce the inert gas into the sample pod 55, and the hydrogen off-gas present in the sample pod 55 is converted into the inert gas. Replace with. As a result, the hydrogen off-gas existing in the sample pod 55 is pushed away to the fuel gas discharge passage 33 and exhausted outside the system. When the hydrogen off-gas in the sample pod 55 is replaced with an inert gas, the drain valve A5 is opened to collect the sample water. The collected sample water is subjected to component analysis by the analyzing means 71 and used for characteristic evaluation of the fuel cell 20. As described above, the three-way valve A3 functions as a blocking unit that blocks communication between the sample pod 55 and the fuel gas discharge channel 32, and the inert gas channel 35 and the cutoff valve A4 discharge hydrogen off-gas from the sample pod 55. Functions as a discharging means.

燃料電池評価装置10は上述の構成に加えて、燃料ガスの背圧を調整する背圧弁A1を燃料電池20のアノード側出口とサンプルポッド55との間(サンプルポッド55の前段若しくは上流側)に配設し、酸化ガスの背圧を調整する背圧弁A2を燃料電池20のカソード側出口とドレンポッド64との間(ドレンポッド64の前段若しくは上流側)に配設している。かかる構成により、サンプルポッド55とドレンポッド64のそれぞれからサンプル水を回収する際に、サンプルポッド55とドレンポッド64の水位低下に伴う圧力変化が背圧弁A1,A2に影響を及ぼすことがない。   In addition to the above-described configuration, the fuel cell evaluation apparatus 10 includes a back pressure valve A1 that adjusts the back pressure of the fuel gas between the anode outlet of the fuel cell 20 and the sample pod 55 (before or upstream of the sample pod 55). A back pressure valve A2 for adjusting and adjusting the back pressure of the oxidizing gas is disposed between the cathode side outlet of the fuel cell 20 and the drain pod 64 (before or upstream of the drain pod 64). With this configuration, when sample water is collected from each of the sample pod 55 and the drain pod 64, a pressure change caused by a decrease in the water level of the sample pod 55 and the drain pod 64 does not affect the back pressure valves A1 and A2.

また、燃料電池20のアノード側出口又はカソード側出口と背圧弁A1,A2との間にヒータ53,63を設置し、水素オフガス又は酸素オフガスを適度に保温することで、背圧弁A1,A2への水分供給を抑制できる。背圧弁A1,A2に水分が供給されると、背圧弁A1,A2のオリフィスに水分が溜まり始めて液膜が形成されるが、その液膜がある程度成長すると、背圧の影響で吹き飛ばされて、予期しない背圧変動が生じる虞があるため、背圧弁A1,A2への水分供給は出来るだけ抑制するのが好ましい。ヒータ53,63の加熱能力としては、オフガスを適度に保温し、オフガス含有水分が結露しない程度の温度に昇温させることができるものが望ましい。オフガス温度としては、例えば、90℃前後が好適である。また、ヒータ53,63の取り付け位置としては、燃料電池20と背圧弁A1,A2との間(更には、加湿器52,62と燃料電池20との間)に出来るだけ均等に設置し、ガス温度に温度分布が生じないように構成するのが望ましい。ヒータ53,63としては、例えば、リボンヒータを用いることにより、燃料ガス排出流路32、酸化ガス排出流路42に巻回するなどして容易に取り付けることができる。燃料ガス排出流路32、酸化ガス排出流路42としては、ヒータ加熱に適した熱伝導性に優れたものが好適である。   Further, heaters 53 and 63 are installed between the anode-side outlet or cathode-side outlet of the fuel cell 20 and the back pressure valves A1 and A2, and the hydrogen off-gas or oxygen off-gas is kept at an appropriate temperature so that the back-pressure valves A1 and A2 are transferred. The water supply can be suppressed. When moisture is supplied to the back pressure valves A1 and A2, moisture begins to accumulate in the orifices of the back pressure valves A1 and A2, and a liquid film is formed. When the liquid film grows to a certain extent, it is blown away due to the back pressure, Since unexpected back pressure fluctuations may occur, it is preferable to suppress water supply to the back pressure valves A1 and A2 as much as possible. The heating capacity of the heaters 53 and 63 is preferably one that can keep offgas moderately and raise the temperature to a temperature at which offgas-containing water does not condense. As the off-gas temperature, for example, around 90 ° C. is suitable. The heaters 53 and 63 are installed as evenly as possible between the fuel cell 20 and the back pressure valves A1 and A2 (and between the humidifiers 52 and 62 and the fuel cell 20). It is desirable that the temperature distribution is not generated. As the heaters 53 and 63, for example, by using a ribbon heater, the heaters 53 and 63 can be easily attached by being wound around the fuel gas discharge passage 32 and the oxidizing gas discharge passage 42, for example. As the fuel gas discharge channel 32 and the oxidant gas discharge channel 42, those excellent in thermal conductivity suitable for heater heating are suitable.

本実施形態によれば、サンプルポッド55内に内在する水素オフガスを不活性ガスで置換してからサンプル水を回収する構成であるため、サンプル水回収時に水素オフガスがシステム外に漏出する虞がない。また、本発明の燃料電池装置を車両に搭載した場合には燃料電池装置内に保持する水の量を減らすことができるため、燃費向上が可能である。更にサンプル水を回収するための条件として、サンプルポッド55が満水になることを要しないため、任意のタイミングでサンプル水を回収できる。また、分析手段71によってサンプル水を成分分析する場合に、時系列での詳細な評価が可能になる。また、背圧弁A1,A2をサンプルポッド55又はドレンポッド64の上流側に配設することにより、サンプル水回収時に背圧弁A1,A2の背圧制御に影響を及ぼすことがない。   According to the present embodiment, the configuration is such that the sample water is recovered after replacing the hydrogen offgas present in the sample pod 55 with an inert gas, and therefore there is no possibility that the hydrogen offgas leaks out of the system when the sample water is recovered. . Further, when the fuel cell device of the present invention is mounted on a vehicle, the amount of water retained in the fuel cell device can be reduced, so that fuel efficiency can be improved. Furthermore, as a condition for collecting the sample water, the sample pod 55 does not need to be full, so the sample water can be collected at an arbitrary timing. Further, when the sample water is subjected to component analysis by the analyzing means 71, detailed evaluation in time series becomes possible. Further, by arranging the back pressure valves A1 and A2 on the upstream side of the sample pod 55 or the drain pod 64, the back pressure control of the back pressure valves A1 and A2 is not affected during sample water recovery.

本実施形態の燃料電池評価装置の構成図である。It is a block diagram of the fuel cell evaluation apparatus of this embodiment. 本実施形態の燃料電池評価装置の構成図である。It is a block diagram of the fuel cell evaluation apparatus of this embodiment. 従来の燃料電池評価装置の構成図である。It is a block diagram of the conventional fuel cell evaluation apparatus.

符号の説明Explanation of symbols

10…燃料電池評価装置 20…燃料電池 32,33,34…燃料ガス排出流路 42…酸化ガス排出流路 54…ドレンポッド 55…サンプルポッド 64…ドレンポッド 71…分析手段 A1,A2…背圧弁 A3…三方弁 A4…遮断弁 A5,A6…排水弁 DESCRIPTION OF SYMBOLS 10 ... Fuel cell evaluation apparatus 20 ... Fuel cell 32, 33, 34 ... Fuel gas discharge flow path 42 ... Oxidation gas discharge flow path 54 ... Drain pod 55 ... Sample pod 64 ... Drain pod 71 ... Analytical means A1, A2 ... Back pressure valve A3 ... Three-way valve A4 ... Shut-off valve A5, A6 ... Drain valve

Claims (4)

燃料電池から排出される未反応燃料ガスを流すための燃料ガス排出流路に連通して前記未反応燃料ガスに含まれる水分を貯溜する貯水部と、前記貯水部に貯溜された水を排水する際に前記貯水部を前記燃料ガス排出流路から遮断する遮断手段と、前記燃料ガス排出流路から遮断された前記貯水部に含まれる未反応燃料ガスを前記燃料ガス排出流路に排出する排出手段とを備える、燃料電池装置。   A water storage part that stores water contained in the unreacted fuel gas in communication with a fuel gas discharge passage for flowing unreacted fuel gas discharged from the fuel cell, and drains water stored in the water storage part A shutoff means for shutting off the water storage section from the fuel gas discharge flow path, and a discharge for discharging unreacted fuel gas contained in the water storage section cut off from the fuel gas discharge flow path to the fuel gas discharge flow path. And a fuel cell device. 請求項1に記載の燃料電池装置であって、前記排出手段は前記貯水部に内在する未反応燃料ガスを不活性ガスに置換する手段である、燃料電池装置。   2. The fuel cell device according to claim 1, wherein the discharge unit is a unit that replaces an unreacted fuel gas existing in the water storage unit with an inert gas. 3. 請求項1又は請求項2に記載の燃料電池装置であって、前記燃料電池と前記貯水部との間の燃料ガス排出流路に前記燃料ガスの背圧を調圧する背圧弁が配設されている、燃料電池装置。   3. The fuel cell device according to claim 1, wherein a back pressure valve for adjusting a back pressure of the fuel gas is disposed in a fuel gas discharge passage between the fuel cell and the water storage unit. The fuel cell device. 請求項1乃至請求項3のうち何れか1項に記載の燃料電池装置と、前記貯水部から回収した水分の成分を分析する分析手段を備える、燃料電池評価装置。

A fuel cell evaluation device comprising: the fuel cell device according to any one of claims 1 to 3; and an analysis unit that analyzes a component of moisture recovered from the water storage unit.

JP2004225337A 2004-08-02 2004-08-02 Fuel cell device Withdrawn JP2006048987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004225337A JP2006048987A (en) 2004-08-02 2004-08-02 Fuel cell device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004225337A JP2006048987A (en) 2004-08-02 2004-08-02 Fuel cell device

Publications (1)

Publication Number Publication Date
JP2006048987A true JP2006048987A (en) 2006-02-16

Family

ID=36027311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004225337A Withdrawn JP2006048987A (en) 2004-08-02 2004-08-02 Fuel cell device

Country Status (1)

Country Link
JP (1) JP2006048987A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101072486B1 (en) 2009-12-17 2011-10-11 인제대학교 산학협력단 intake temperature and humidity control device and method for fuel cell
JP2013229183A (en) * 2012-04-25 2013-11-07 Kyocera Corp Fuel battery device
JP2014146555A (en) * 2013-01-30 2014-08-14 Kyocera Corp Fuel cell device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101072486B1 (en) 2009-12-17 2011-10-11 인제대학교 산학협력단 intake temperature and humidity control device and method for fuel cell
JP2013229183A (en) * 2012-04-25 2013-11-07 Kyocera Corp Fuel battery device
JP2014146555A (en) * 2013-01-30 2014-08-14 Kyocera Corp Fuel cell device

Similar Documents

Publication Publication Date Title
JP4984543B2 (en) Fuel cell system
WO2007013453A1 (en) Fuel battery system
WO2007117018A1 (en) Fuel cell running system, and valve-freeze preventing method in the fuel cell running system
KR100962382B1 (en) Fuel Cell System Having Hydrogen Recycling Apparatus
JP2015153560A (en) Fuel battery system
JP2002124290A (en) Fuel cell system
JP4389922B2 (en) Fuel cell system
JP2010244778A (en) Fuel cell system
JP2006073376A (en) Polymer electrolyte fuel cell system
JP2010108756A (en) Fuel cell system and purge control method of fuel cell system
JP2008300057A (en) Fuel cell system
JP2005216519A (en) Fuel cell system
JP2006048987A (en) Fuel cell device
JP4495575B2 (en) Fuel cell system and control method thereof
JP2020123496A (en) Fuel cell system
JP4630040B2 (en) Fuel cell system
JP2009004168A (en) Fuel cell system
JP2004139817A (en) Fuel cell
JP2005108698A (en) Fuel cell system
JP4742522B2 (en) Fuel cell system
JP2008269800A (en) Fuel cell system
JP6925209B2 (en) Fuel cell system
JP2005190865A (en) Low temperature type fuel cell system
JP2012234806A (en) Fuel cell system and control method thereof
KR101408887B1 (en) Fuel Cell System and Stack Purge Method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070517

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20081224