JP2006047283A - Determination method for degradation in capacitor - Google Patents

Determination method for degradation in capacitor Download PDF

Info

Publication number
JP2006047283A
JP2006047283A JP2005158707A JP2005158707A JP2006047283A JP 2006047283 A JP2006047283 A JP 2006047283A JP 2005158707 A JP2005158707 A JP 2005158707A JP 2005158707 A JP2005158707 A JP 2005158707A JP 2006047283 A JP2006047283 A JP 2006047283A
Authority
JP
Japan
Prior art keywords
capacitor
deterioration
double layer
electric double
impedance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005158707A
Other languages
Japanese (ja)
Other versions
JP4525469B2 (en
Inventor
Toshiaki Shimizu
俊明 清水
Toshihiko Ohashi
敏彦 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005158707A priority Critical patent/JP4525469B2/en
Publication of JP2006047283A publication Critical patent/JP2006047283A/en
Application granted granted Critical
Publication of JP4525469B2 publication Critical patent/JP4525469B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance power saving performance and accuracy, in the measurement for determination method of degradation in a capacitor with electrolytic solution arranged in between electrode objects. <P>SOLUTION: In the method, a capacitor is provided with a pair of electrode objects and electrolytic solution arranged in between the electrode objects. An AC voltage is applied to this capacitor to measure impedance characteristics, based on the frequency of the AC voltage and then determine degradation in the capacitor, where an inflection point, appearing in the impedance characteristic by degradation in the electrolytic solution, is calculated in advance, so as to compare the impedance value of a domain of frequency lower than that of this inflection point, for determination of degradation in the capacitor. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電極体間に電解液を配置したキャパシタの劣化判定方法に関する。   The present invention relates to a method for determining deterioration of a capacitor in which an electrolytic solution is disposed between electrode bodies.

一般的なキャパシタは、電極材料の比表面積が大きく、かつ、電気化学的に不活性の活性炭を用い、電解質と組み合わせて大きな電気二重層容量を利用するもので、充放電の際に電気化学反応を伴わず、大電流での急速充放電が可能であり、化学電池と比較して出力密度が大きいことなどが特徴として挙げられ、大電流発生回路、瞬時補償電源やロードレベリング回路などへの応用が期待されている。   A general capacitor uses an activated carbon that has a large specific surface area of electrode material and is electrochemically inert, and uses a large electric double layer capacity in combination with an electrolyte. It can be rapidly charged / discharged with a large current without being accompanied by a large current density, and its output density is higher than that of a chemical battery. It can be applied to large current generation circuits, instantaneous compensation power supplies, load leveling circuits, etc. Is expected.

この電気二重層キャパシタの構成は、メモリーバックアップ用のコイン型と、パワー用の円筒型とがある。コイン型は、上端を開口した高さの低い円筒形の金属ケースに、円板状の下部電極、セパレータ、上部電極を順次積層し、内部に電解液を注入し、かつ、前記金属ケースの内周縁部に、絶縁と封止のためのガスケットを収納し、上面に金属蓋を被せ、前記金属ケースと金属蓋とが直接接触しないようにしてカシメ加工した構成を有するものである。   The electric double layer capacitor has a coin type for memory backup and a cylindrical type for power. In the coin type, a disk-shaped lower electrode, separator, and upper electrode are sequentially laminated on a low-profile cylindrical metal case with an open upper end, and an electrolyte is injected into the inside. A gasket for insulation and sealing is housed in the peripheral portion, a metal lid is covered on the upper surface, and the metal case and the metal lid are not crimped directly so as to have a caulking process.

また、円筒型の電気二重層キャパシタの構成を図6に示すように、コンデンサ素子20は、細長帯状の金属箔、パンチングメタル、エキスパンドメタルなどを集電体とし、この集電体の両面又は片面に、活性炭とカーボンとバインダーからなる分極電極を塗布し、これを2枚用意し、これら集電体の間に、同様に細長帯状で絶縁と電解液保持のためのセパレータとを介在して、それぞれの集電体には、1本ずつ電極端子21を接続し、これを渦巻状に巻回して、最後に粘着テープ22で固定して構成されている。このコンデンサ素子20の電極端子21は、封口体24のはとめ金具27に接続され、有底筒状で、上端部付近に凹溝25を形成した金属ケース23に、リード端子26を外部に突出させて収納するとともに、電解液(図示せず)を注入し、金属ケース23の上端部を内側に折り曲げて密封して電気二重層キャパシタが構成されている。   Moreover, as shown in FIG. 6 for the configuration of the cylindrical electric double layer capacitor, the capacitor element 20 has a strip-shaped metal foil, a punching metal, an expanded metal or the like as a current collector, and both or one side of the current collector. In addition, a polarizing electrode made of activated carbon, carbon and a binder is applied, and two of them are prepared. Between these current collectors, a strip for insulating and holding an electrolyte solution is interposed in the same manner. Each current collector is connected to one electrode terminal 21 one by one, wound in a spiral shape, and finally fixed with an adhesive tape 22. The electrode terminal 21 of the capacitor element 20 is connected to a fitting 27 of a sealing body 24, has a bottomed cylindrical shape, and a lead terminal 26 protrudes to the outside in a metal case 23 in which a concave groove 25 is formed near the upper end. The electric double layer capacitor is configured by storing an electrolyte solution (not shown) and bending the upper end portion of the metal case 23 inward and sealing.

このような電気二重層キャパシタは、長時間の使用により内部の電解液が蒸発して内部抵抗が増大し、静電容量が減少するというドライアップモードの劣化が進行し、いずれ寿命に達する。   In such an electric double layer capacitor, deterioration of the dry-up mode in which the internal electrolytic solution evaporates and the internal resistance increases and the electrostatic capacity decreases due to long-term use proceeds and eventually reaches the end of its life.

この寿命を測定する方法としては、測定信号として低周波の方形波信号を加えるとともに、その応答信号の所定部分を積分し、その積分値に基づいて電気二重層キャパシタの特性変化を検出する技術(例えば、特許文献1参照)、電気二重層キャパシタの通電制御を行い、その端子間電圧が所定値に達した時点から所定時間内に電気二重層キャパシタの端子間電圧が劣化技術電圧に達した場合に劣化状態にあると判定するようにした技術(例えば、特許文献2参照)、電気二重層キャパシタの表面温度の温度上昇を測定する技術(例えば、特許文献3参照)等がある。   As a method of measuring this lifetime, a technique of adding a low-frequency square wave signal as a measurement signal, integrating a predetermined portion of the response signal, and detecting a characteristic change of the electric double layer capacitor based on the integrated value ( For example, refer to Patent Document 1), when energization control of the electric double layer capacitor is performed, and the voltage between the terminals of the electric double layer capacitor reaches the deterioration technology voltage within a predetermined time from the time when the voltage between the terminals reaches a predetermined value. And a technique for determining that the surface temperature of the electric double layer capacitor is increased (for example, see Patent Document 3).

また、電気二重層キャパシタのインピーダンス特性に関する技術も非特許文献1に記載されている。
特開平06−342042号公報 特開2001−297954号公報 特開2001−085283号公報 Brian E.Conway著「電気化学キャパシタ 基礎・材料・応用」株式会社エヌ・ティー・エス発行、2001年6月5日、P.393−401
Non-patent document 1 also describes a technique related to impedance characteristics of the electric double layer capacitor.
Japanese Patent Application Laid-Open No. 06-342042 Japanese Patent Laid-Open No. 2001-297554 JP 2001-085283 A Brian E.M. Conway, “Electrochemical Capacitors Fundamentals, Materials, Applications” published by NTS, Inc., June 5, 2001, p. 393-401

しかしながら、従来の電気二重層キャパシタの劣化測定方法では、測定信号源、A/D変換器等の回路部及びCPUによる信号処理が必要となり、測定する装置が高価になり、劣化検出の手法も複雑になるという問題があり、電気二重層コンデンサの表面温度を測定した技術では測定精度に問題がある。   However, the conventional method for measuring deterioration of an electric double layer capacitor requires signal processing by a measurement signal source, a circuit unit such as an A / D converter, and a CPU, and the measurement device becomes expensive and the method of detecting deterioration is complicated. In the technique of measuring the surface temperature of the electric double layer capacitor, there is a problem in measurement accuracy.

また、電解コンデンサの劣化測定技術でも、測定されたデータの蓄積が莫大になり、そのデータに基づいて劣化を判定する回路装置も高価で複雑になる問題がある。   Further, even in the electrolytic capacitor degradation measurement technique, there is a problem that the accumulation of measured data becomes enormous, and the circuit device for judging degradation based on the data becomes expensive and complicated.

さらに、電気二重層キャパシタのような電極体間に電解液を配置したキャパシタの劣化判定を行う場合、その容量成分と直流コンデンサ抵抗(以下、DCRと称す)成分を測定し、その測定結果を基に判断を行う方法も考えられるが、その容量成分とDCR成分を測定するにあたっては、キャパシタを充放電する際の直流電圧の挙動を基にその測定をする直流電圧法と、キャパシタに対して交流電圧を印加し、そのインピーダンス値から導き出す交流インピーダンス法があり、前者である直流電圧法を用いた場合、充放電における直流電圧から直接測定するため正確な測定結果が得られる反面、充放電のためにキャパシタ内の電荷の多くを使用するため、劣化判定に多くの電力が消費されてしまうという欠点がある。   Furthermore, when performing deterioration determination of a capacitor in which an electrolyte is disposed between electrode bodies such as an electric double layer capacitor, its capacitance component and DC capacitor resistance (hereinafter referred to as DCR) component are measured, and the measurement results are used as a basis. However, when measuring the capacitance component and the DCR component, the DC voltage method for measuring the capacitance component and the DCR component based on the behavior of the DC voltage when charging and discharging the capacitor, and the AC There is an AC impedance method in which voltage is applied and derived from the impedance value. When the former DC voltage method is used, accurate measurement results can be obtained because direct measurement is performed from the DC voltage in charge / discharge, but for charge / discharge. In addition, since most of the charge in the capacitor is used, a large amount of power is consumed for the deterioration determination.

また、後者である交流インピーダンス法においては交流電圧の周波数特性を利用するため消費電力は少なくてすむのであるが、キャパシタの劣化が進んだ状態において前記直流電圧法で求めた値よりも小さくなり、あたかも劣化していないものと判定してしまい、その信頼性が低くなるといった問題点を有していた。   In the AC impedance method, which is the latter, the power consumption can be reduced because the frequency characteristics of the AC voltage are used. However, in the state in which the capacitor has deteriorated, the value becomes smaller than the value obtained by the DC voltage method. It has been determined that it has not deteriorated, and its reliability is low.

本発明はこのような従来の課題を解決し、キャパシタの劣化判定を行うにあたって消費電力の少ない交流インピーダンス法の測定精度を高めることを目的とする。   An object of the present invention is to solve such a conventional problem and to improve the measurement accuracy of the AC impedance method with low power consumption when determining deterioration of a capacitor.

上記課題を解決するために本発明は、一対の電極体と、前記電極体間に配置された電解液とを備えたキャパシタに交流電圧を印加してその交流電圧の周波数によるインピーダンス特性を測定して劣化判定を行う方法であって、前記電解液の劣化によってインピーダンス特性に現れる変曲点を予め求め、この変曲点より低い周波数領域のインピーダンス値を比較して劣化判定を行うようにしたキャパシタの劣化判定方法とするものである。   In order to solve the above-mentioned problems, the present invention applies an AC voltage to a capacitor including a pair of electrode bodies and an electrolytic solution disposed between the electrode bodies, and measures impedance characteristics depending on the frequency of the AC voltage. In this method, the inflection point that appears in the impedance characteristics due to the deterioration of the electrolyte solution is obtained in advance, and the impedance value in a frequency region lower than the inflection point is compared to determine the deterioration. This is a method for determining the deterioration of

この劣化判定方法により、キャパシタの劣化判定における測定精度が高められるとともに、その判定に要する消費電力を抑制することができる。   With this deterioration determination method, the measurement accuracy in determining the deterioration of the capacitor can be increased, and the power consumption required for the determination can be suppressed.

(実施の形態1)
以下、本発明の実施の形態1について図を用いて説明する。
(Embodiment 1)
Hereinafter, Embodiment 1 of the present invention will be described with reference to the drawings.

図1は電気二重層キャパシタを使用する基本回路図である。同図は入力電源部より電圧を印加して負荷部を動作するようにしたものであり、その一部は電気二重層キャパシタを充電し、入力電源部が異常になった場合や高電力が必要になった場合などに電気二重層キャパシタより電力を供給するようになっている。そして、前記電気二重層キャパシタは長時間の使用や使用環境等により劣化するので、その劣化を劣化測定部により判定し、劣化と判定した場合は異常表示部で警報や表示等で判るようにしたものである。   FIG. 1 is a basic circuit diagram using an electric double layer capacitor. The figure shows that the load unit is operated by applying voltage from the input power supply unit, part of which charges the electric double layer capacitor and the input power supply unit becomes abnormal or requires high power In such a case, electric power is supplied from the electric double layer capacitor. And since the electric double layer capacitor deteriorates due to long-term use or usage environment, the deterioration is determined by the deterioration measuring unit, and when it is determined to be deteriorated, it can be detected by an alarm or display on the abnormality display unit. Is.

前記電気二重層キャパシタは、図2に示すように一対の電極体1と、この電極体1間に配置された電解液3を備えた構成からなるものであり、電解液3で満たされたハウジング4の内部に一対の電極体1と、電極体1間に配置されたセパレータ2と、各電極体1に接続されたリード端子5と、ハウジング4を密封する封口体6とから構成されている。なお、電極体1はアルミニウムなどの金属からなる集電体1aの表面に活性炭1bを被覆することで形成されている。また、電解液3をゲル状などの粘性の高いものを用いればセパレータ2を取り除くことは可能なものである。   As shown in FIG. 2, the electric double layer capacitor includes a pair of electrode bodies 1 and an electrolyte solution 3 disposed between the electrode bodies 1, and a housing filled with the electrolyte solution 3. 4 includes a pair of electrode bodies 1, a separator 2 disposed between the electrode bodies 1, a lead terminal 5 connected to each electrode body 1, and a sealing body 6 that seals the housing 4. . The electrode body 1 is formed by covering the surface of a current collector 1a made of a metal such as aluminum with activated carbon 1b. Further, the separator 2 can be removed by using a highly viscous electrolyte solution 3 such as a gel.

前記電気二重層キャパシタの劣化判定は、劣化測定部により交流インピーダンス法により測定して判定を行うものであるが、この交流インピーダンス法は非常に省電力な測定を行うことができるが、その測定結果の信憑性を高めることが重要になる。   The deterioration determination of the electric double layer capacitor is performed by measuring by an AC impedance method using a deterioration measuring unit, and this AC impedance method can perform a very power-saving measurement. It is important to improve the credibility of

前記電気二重層キャパシタに交流電圧を印加し、その交流電圧の周波数によるインピーダンス特性を測定すると図3のようになる。同図は縦軸にインピーダンス値を、横軸に一定の交流電圧を印加したときの周波数である。初期の電気二重層コンデンサのインピーダンス特性は軌跡7のようになり、電気二重層キャパシタを構成する電解液3、活性炭1b、集電体1aの構成要素自体の抵抗成分、いわゆる等価直列抵抗(ESR)9が使用されることにより増加し軌跡8になる。   When an AC voltage is applied to the electric double layer capacitor and impedance characteristics according to the frequency of the AC voltage are measured, the result is as shown in FIG. In the figure, the vertical axis represents the impedance value, and the horizontal axis represents the frequency when a constant AC voltage is applied. The impedance characteristic of the initial electric double layer capacitor is as shown by locus 7, and the resistance component of the electrolytic solution 3, the activated carbon 1b, and the current collector 1a constituting the electric double layer capacitor, so-called equivalent series resistance (ESR). As 9 is used, it increases to become locus 8.

さらに電気二重層キャパシタが使用されていくと、その等価直列抵抗(ESR)がさらに増加するとともに、電解液3の劣化物が電解液3中に現れ出し、その劣化物が活性炭1bの表面やセパレータ2に付着するようになり、イオンの移動に対する抵抗成分、いわゆる拡散抵抗成分10が構成されるようになり、電解液の劣化によって発生する変曲点12を有した軌跡11のようになる。   As the electric double layer capacitor is further used, its equivalent series resistance (ESR) further increases, and a deteriorated product of the electrolytic solution 3 appears in the electrolytic solution 3, and the deteriorated product appears on the surface of the activated carbon 1 b and the separator. 2, a resistance component against movement of ions, a so-called diffusion resistance component 10, is formed, and a locus 11 having an inflection point 12 generated by deterioration of the electrolytic solution is formed.

本発明はこの変曲点12の存在を踏まえ、変曲点12より低い周波数領域13のインピーダンス値で判定することにより、直流電圧法から導き出される測定結果とほぼ一致した精度の高い結果を得ることができるとともに、交流インピーダンス法のメリットである省電力測定を実現することができるものである。   Based on the presence of the inflection point 12, the present invention obtains a highly accurate result that substantially matches the measurement result derived from the DC voltage method by making a determination based on the impedance value in the frequency region 13 lower than the inflection point 12. It is possible to realize power saving measurement which is an advantage of the AC impedance method.

より具体的には、前記図1において、劣化測定部による電気二重層キャパシタの劣化判定方法のフローチャートを図4に示す。   More specifically, FIG. 4 shows a flowchart of a method for determining the deterioration of the electric double layer capacitor by the deterioration measuring unit in FIG.

まず、使用される電気二重層キャパシタの劣化特性を調べる。この電気二重層キャパシタの劣化特性は、温度50℃で、負荷(2.0〜2.5V)を印加し、10000〜15000時間後のインピーダンス特性を測定する。この劣化特性は温度をさらに高くすることにより時間を短くすることもできる。   First, the deterioration characteristics of the electric double layer capacitor used are examined. As for the deterioration characteristics of the electric double layer capacitor, a load (2.0 to 2.5 V) is applied at a temperature of 50 ° C., and the impedance characteristics after 10,000 to 15000 hours are measured. This deterioration characteristic can be shortened by further increasing the temperature.

この劣化させたときのインピーダンス特性から、電解液の劣化によって発生する変曲点12を求め、この変曲点12よりも低い周波数を測定周波数として決定し、その周波数とインピーダンス値を劣化測定部に記憶させる。また、電気二重層キャパシタを組み込まれた回路の製品設計から電気二重層キャパシタの劣化限界インピーダンス値を決め、劣化測定部に記憶させる。   The inflection point 12 generated by the deterioration of the electrolytic solution is obtained from the impedance characteristics at the time of deterioration, a frequency lower than the inflection point 12 is determined as a measurement frequency, and the frequency and the impedance value are stored in the deterioration measurement unit. Remember. Further, the deterioration limit impedance value of the electric double layer capacitor is determined from the product design of the circuit incorporating the electric double layer capacitor, and stored in the deterioration measuring unit.

そして、前記電気二重層キャパシタを組み込んだ回路を動作させることにより、電気二重層キャパシタが徐々に劣化する。この回路の動作中に予め決めた所定時間ごとに交流電圧を印加して、予め設定した周波数でインピーダンス値を測定する。   And by operating the circuit incorporating the electric double layer capacitor, the electric double layer capacitor gradually deteriorates. An AC voltage is applied at predetermined intervals during the operation of this circuit, and the impedance value is measured at a preset frequency.

この測定されたインピーダンス値と前記予め設定した劣化限界のインピーダンス値とを比較して、それ以下であれば異常なしと判断して、電気二重層キャパシタを続けて使用することができる。もし、測定したインピーダンス値が劣化限界のインピーダンス値を超えた場合は、異常有りと判断して、警告ランプなどで表示させるようにする。   The measured impedance value is compared with the impedance value of the preset deterioration limit, and if it is less than that, it is determined that there is no abnormality, and the electric double layer capacitor can be used continuously. If the measured impedance value exceeds the deterioration limit impedance value, it is determined that there is an abnormality and displayed by a warning lamp or the like.

このように電気二重層キャパシタの劣化判定を、インピーダンス特性の変曲点12より低い周波数領域13におけるインピーダンス値で判定することにより、キャパシタの劣化を精度良く判定することができ、その測定に用いる電力も省電力にすることができる。   Thus, by determining the deterioration of the electric double layer capacitor based on the impedance value in the frequency region 13 lower than the inflection point 12 of the impedance characteristic, the deterioration of the capacitor can be accurately determined, and the power used for the measurement Can also save power.

なお、電気二重層キャパシタの劣化判定を交流インピーダンス特性の変曲点12よりも高い周波数で測定して判定すると、キャパシタが劣化していてもインピーダンス値は低い値を示すので、キャパシタの劣化判定に大きな誤差が生じ、劣化判定の精度が悪くなる。   In addition, if the deterioration determination of the electric double layer capacitor is measured and determined at a frequency higher than the inflection point 12 of the AC impedance characteristic, the impedance value shows a low value even if the capacitor is deteriorated. A large error occurs, and the accuracy of the deterioration determination deteriorates.

また、前記電気二重層キャパシタを使用する回路図はあくまでも基本回路であり、本発明はこの回路図に限定するものではない。   The circuit diagram using the electric double layer capacitor is a basic circuit to the last, and the present invention is not limited to this circuit diagram.

(実施の形態2)
前記実施の形態1において、まず、電気二重層キャパシタの劣化特性を直流電圧法により、そのDCRを測定する。次に、前記実施の形態1と同様にして交流インピーダンス特性を測定する。次に、前記DCRと交流インピーダンス特性の相関を求める。このときの相関関係を図5に示す。
(Embodiment 2)
In the first embodiment, first, the DCR of the degradation characteristics of the electric double layer capacitor is measured by the DC voltage method. Next, the AC impedance characteristic is measured in the same manner as in the first embodiment. Next, a correlation between the DCR and the AC impedance characteristic is obtained. The correlation at this time is shown in FIG.

この図5より、電気二重層キャパシタを劣化させたときの変曲点15より低い周波数の交流インピーダンス値(以下、Zと称す)とDCR/Z比を劣化測定部に記憶させる。そして、前記実施の形態1と同じように電気二重層キャパシタを組み込んだ回路を動作させることにより、電気二重層キャパシタが徐々に劣化する。この回路の動作中に予め決めた所定時間ごとに交流電圧を印加して、予め設定した周波数によるZを測定し、同時にDCRを測定し、そのDCR/Z比を前記予め設定した劣化限界のDCR/Z比とを比較して、それ以下であれば異常なしと判断して、電気二重層キャパシタを続けて使用することができる。もし、測定したDCR/Zの比が劣化限界のDCR/Z比を超えた場合は、異常有りと判断して、警告ランプなどで表示させるようにする。   From FIG. 5, the deterioration measuring unit stores the AC impedance value (hereinafter referred to as Z) having a frequency lower than the inflection point 15 when the electric double layer capacitor is deteriorated and the DCR / Z ratio. Then, the electric double layer capacitor is gradually deteriorated by operating the circuit incorporating the electric double layer capacitor as in the first embodiment. During the operation of this circuit, an AC voltage is applied at predetermined time intervals, Z at a preset frequency is measured, DCR is measured at the same time, and the DCR / Z ratio is set to the preset degradation limit DCR. The / Z ratio is compared, and if it is less than that, it is determined that there is no abnormality, and the electric double layer capacitor can be used continuously. If the measured DCR / Z ratio exceeds the degradation limit DCR / Z ratio, it is determined that there is an abnormality and a warning lamp or the like is displayed.

このような交流インピーダンス法により測定することにより、電気二重層キャパシタの劣化判定をより正確に行うことができる。   By measuring by such an AC impedance method, it is possible to more accurately determine the deterioration of the electric double layer capacitor.

(実施の形態3)
前記実施の形態1において、電気二重層キャパシタのインピーダンス特性を測定した結果(図3)の周波数0から急激にインピーダンス値が減少する低周波数領域14は電気二重層キャパシタの自己放電に伴う電力勾配の容量成分を現しており、この低周波数領域14から電気二重層キャパシタの劣化判定を行うこともできる。
(Embodiment 3)
In the first embodiment, the low frequency region 14 in which the impedance value suddenly decreases from the frequency 0 of the result of measuring the impedance characteristics of the electric double layer capacitor (FIG. 3) is the power gradient accompanying the self-discharge of the electric double layer capacitor. The capacitance component is shown, and it is possible to determine the deterioration of the electric double layer capacitor from the low frequency region 14.

このように自己放電を利用することで電気二重層キャパシタの劣化判定に要する電力消費を抑制できる。   Thus, by using self-discharge, it is possible to suppress power consumption required for determining the deterioration of the electric double layer capacitor.

なお、交流インピーダンス法を用いたインピーダンス値の測定や、キャパシタの自己放電を用いた容量成分の測定を用いる場合、その精度をより高めるためには電圧変動の少ないキャパシタの非使用時に測定することが望ましい。   When measuring impedance values using the AC impedance method or measuring capacitance components using capacitor self-discharge, it is necessary to measure when not using a capacitor with little voltage fluctuation in order to further improve the accuracy. desirable.

また、昨今提案されている燃料電池車などの車載用電源として、この電気二重層キャパシタを用いることが提案されているが、特にこの車載用の電源のように限られた車内電源の電力消費を極力抑制することが望まれるような分野において、先に述べた交流インピーダンス法を用いたインピーダンス値の測定や、キャパシタの自己放電を用いた容量成分の測定が有効となる。また、劣化判定の精度をより高めるためには電圧変動の少ない車載用電源の非使用時に測定することが望ましい。   In addition, it has been proposed to use this electric double layer capacitor as an on-vehicle power source for fuel cell vehicles, etc., which has been recently proposed. In fields where suppression is desired as much as possible, measurement of impedance values using the AC impedance method described above and measurement of capacitance components using capacitor self-discharge are effective. Further, in order to further improve the accuracy of the deterioration determination, it is desirable to perform measurement when the on-vehicle power source with little voltage fluctuation is not used.

さらに、本実施の形態においては電気二重層キャパシタを挙げて説明したが、本発明はこの実施形態に限定されるものではなく、一対の電極体1と、電極体1間に配置されたセパレータ2および電解液3とを備えたキャパシタとしては、他にレドックスキャパシタなどが挙げられ同様の効果を奏するものである。   Furthermore, although the electric double layer capacitor has been described in the present embodiment, the present invention is not limited to this embodiment, and a pair of electrode bodies 1 and a separator 2 disposed between the electrode bodies 1. In addition, examples of the capacitor provided with the electrolytic solution 3 include a redox capacitor and the like, and have the same effect.

本発明にかかる電極体間に電解液を配置したキャパシタの劣化判定方法は、省電力化できるという効果を有し、特に小型化が要望される車載用途において有用である。   The method for determining deterioration of a capacitor in which an electrolytic solution is disposed between electrode bodies according to the present invention has an effect that power can be saved, and is particularly useful in an in-vehicle application in which miniaturization is required.

本発明の実施の形態1における電気二重層キャパシタを使用した基本回路図Basic circuit diagram using electric double layer capacitor in Embodiment 1 of the present invention 同電気二重層キャパシタを示す断面図Sectional view showing the same electric double layer capacitor 同インピーダンス特性図Same impedance characteristics 同劣化判定方法のフローチャートFlow chart of the same deterioration judgment method 同実施の形態2における劣化後のDCR/Z比の特性図Characteristic diagram of DCR / Z ratio after deterioration in the second embodiment 従来の電気二重層キャパシタを示す断面図Sectional view showing a conventional electric double layer capacitor

符号の説明Explanation of symbols

1 電極体
1a 集電体
1b 活性炭
2 セパレータ
3 電解液
4 ハウジング
5 リード端子
6 封口体
DESCRIPTION OF SYMBOLS 1 Electrode body 1a Current collector 1b Activated carbon 2 Separator 3 Electrolytic solution 4 Housing 5 Lead terminal 6 Sealing body

Claims (4)

一対の電極体と、前記電極体間に配置された電解液とを備えたキャパシタに交流電圧を印加してその交流電圧の周波数によるインピーダンス特性を測定して劣化判定を行う方法であって、
前記電解液の劣化によってインピーダンス特性に現れる変曲点を予め求め、この変曲点より低い周波数領域のインピーダンス値を比較して劣化判定を行うようにしたキャパシタの劣化判定方法。
A method for determining deterioration by applying an AC voltage to a capacitor including a pair of electrode bodies and an electrolyte disposed between the electrode bodies and measuring impedance characteristics depending on the frequency of the AC voltage,
A capacitor deterioration determination method in which an inflection point that appears in impedance characteristics due to deterioration of the electrolytic solution is obtained in advance, and deterioration determination is performed by comparing impedance values in a frequency region lower than the inflection point.
劣化判定の比較が、予め劣化することにより求めたインピーダンス値と比較するようにした請求項1に記載のキャパシタの劣化判定方法。 The capacitor deterioration determination method according to claim 1, wherein the deterioration determination comparison is made with an impedance value obtained by deterioration in advance. 劣化判定の比較が、予め劣化することにより求めたインピーダンス値と直列コンデンサ抵抗との相関により求めた値を比較するようにした請求項1に記載のキャパシタの劣化判定方法。 2. The method of determining deterioration of a capacitor according to claim 1, wherein the comparison of the deterioration determination is made by comparing a value obtained by correlation between an impedance value obtained by deterioration in advance and a series capacitor resistance. 劣化判定の比較が、キャパシタの自己放電に伴う電圧変化する容量成分で判定を行うようにした請求項1に記載のキャパシタの劣化判定方法。 The method for determining deterioration of a capacitor according to claim 1, wherein the comparison of the deterioration determination is performed using a capacitance component whose voltage changes due to self-discharge of the capacitor.
JP2005158707A 2004-06-30 2005-05-31 Capacitor deterioration judgment method Expired - Fee Related JP4525469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005158707A JP4525469B2 (en) 2004-06-30 2005-05-31 Capacitor deterioration judgment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004193649 2004-06-30
JP2005158707A JP4525469B2 (en) 2004-06-30 2005-05-31 Capacitor deterioration judgment method

Publications (2)

Publication Number Publication Date
JP2006047283A true JP2006047283A (en) 2006-02-16
JP4525469B2 JP4525469B2 (en) 2010-08-18

Family

ID=36025977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005158707A Expired - Fee Related JP4525469B2 (en) 2004-06-30 2005-05-31 Capacitor deterioration judgment method

Country Status (1)

Country Link
JP (1) JP4525469B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013050351A (en) * 2011-08-30 2013-03-14 Nippon Chemicon Corp Impedance measurement method for electric double-layer capacitor, impedance measurement device, and deterioration diagnostic method by impedance measured value and deterioration diagnostic device therefor
EP2963796A2 (en) 2014-07-04 2016-01-06 Fujitsu Limited Power supply apparatus, control apparatus, and program therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0843507A (en) * 1994-08-04 1996-02-16 Nippon Telegr & Teleph Corp <Ntt> Method for detecting deterioration state of ni-based battery
JP2002267708A (en) * 2001-03-13 2002-09-18 Toshiba Corp Method and device for diagnosing deterioration of electrolytic capacitor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0843507A (en) * 1994-08-04 1996-02-16 Nippon Telegr & Teleph Corp <Ntt> Method for detecting deterioration state of ni-based battery
JP2002267708A (en) * 2001-03-13 2002-09-18 Toshiba Corp Method and device for diagnosing deterioration of electrolytic capacitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013050351A (en) * 2011-08-30 2013-03-14 Nippon Chemicon Corp Impedance measurement method for electric double-layer capacitor, impedance measurement device, and deterioration diagnostic method by impedance measured value and deterioration diagnostic device therefor
EP2963796A2 (en) 2014-07-04 2016-01-06 Fujitsu Limited Power supply apparatus, control apparatus, and program therefor
US9774249B2 (en) 2014-07-04 2017-09-26 Fujitsu Limited Power supply apparatus, control apparatus, and program therefor

Also Published As

Publication number Publication date
JP4525469B2 (en) 2010-08-18

Similar Documents

Publication Publication Date Title
WO2006003785A1 (en) Capacitor deterioration judgment method
Briat et al. Impact of calendar life and cycling ageing on supercapacitor performance
Gualous et al. Supercapacitor ageing at constant temperature and constant voltage and thermal shock
Zaccagnini et al. Flexible and high temperature supercapacitor based on laser-induced graphene electrodes and ionic liquid electrolyte, a de-rated voltage analysis
Stoller et al. Best practice methods for determining an electrode material's performance for ultracapacitors
Pell et al. Analysis of non-uniform charge/discharge and rate effects in porous carbon capacitors containing sub-optimal electrolyte concentrations
Pell et al. Voltammetry at a de Levie brush electrode as a model for electrochemical supercapacitor behaviour
KR102009636B1 (en) Method for testing performance of cell
Torki et al. Electrolytic capacitor: Properties and operation
JP2007024687A (en) Battery management system
WO2012066643A1 (en) Method and apparatus for detecting state of electrical storage device
US20140098466A1 (en) Electrolyte
US11557908B2 (en) Degradation-determination system and method for determining degradation of secondary battery
US6674266B2 (en) Method for determining the operating state of an energy-storage battery
JP6749080B2 (en) Power storage system, secondary battery control system, and secondary battery control method
JP4330567B2 (en) Capacitor performance measuring apparatus and measuring method
KR20150049526A (en) System for early checking a fail rate by low voltage in a secondary battery and method thereof
CN116184235B (en) Method and device for detecting self-discharge performance of battery
CN114171810A (en) Battery deformation detection-based battery monitoring method and device and electronic equipment
Miller et al. Electrical characteristics of large state-of-the-art electrochemical capacitors
JP4525469B2 (en) Capacitor deterioration judgment method
Kim et al. Simulation study on the lifetime of electrochemical capacitors using the accelerated degradation test under temperature and voltage stresses
JP2001197686A (en) Capacitor uninterruptible power supply apparatus
CN112578299A (en) Method and device for determining internal metal structure fracture of storage battery
JP2016070902A (en) Electricity storage module, deterioration determination device of the same, and deterioration determination method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080123

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080213

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100524

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees