JP2006045605A - Method for manufacturing hollow-state power transmitting shaft - Google Patents

Method for manufacturing hollow-state power transmitting shaft Download PDF

Info

Publication number
JP2006045605A
JP2006045605A JP2004227013A JP2004227013A JP2006045605A JP 2006045605 A JP2006045605 A JP 2006045605A JP 2004227013 A JP2004227013 A JP 2004227013A JP 2004227013 A JP2004227013 A JP 2004227013A JP 2006045605 A JP2006045605 A JP 2006045605A
Authority
JP
Japan
Prior art keywords
diameter portion
power transmission
hollow
transmission shaft
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004227013A
Other languages
Japanese (ja)
Inventor
Katsuhiro Sakurai
勝弘 櫻井
Akira Nakagawa
亮 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2004227013A priority Critical patent/JP2006045605A/en
Priority to DE602005024997T priority patent/DE602005024997D1/en
Priority to AT05766324T priority patent/ATE489560T1/en
Priority to EP05766324A priority patent/EP1798427B1/en
Priority to AT08012227T priority patent/ATE449654T1/en
Priority to US11/659,135 priority patent/US8101031B2/en
Priority to PCT/JP2005/013390 priority patent/WO2006013730A1/en
Priority to EP08012228.6A priority patent/EP1975423B1/en
Priority to EP08012227A priority patent/EP1974837B1/en
Priority to DE602005017954T priority patent/DE602005017954D1/en
Publication of JP2006045605A publication Critical patent/JP2006045605A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a hollow-state power transmitting shaft with which even when there are differences in thickness and in hardening rate in the axial direction, stable quality can be secured. <P>SOLUTION: A high frequency induction hardening is conducted from the outer peripheral surface 1g side by externally arranging a moving type induction heating coil 5 at the outer peripheral surface 1g side of a hollow-state shaft blank 1' and moving this coil in the axial direction while making the high frequency current of a prescribed frequency flow to the induction heating coil 5. At this time, to the small diameter part 1b of a comparatively thick thickness, the frequency of the high frequency current made to flow to the induction heating coil 5 is made relatively low, and to the large diameter part 1a of a comparatively thin thickness, the frequency of the high frequency current made to flow to the induction heating coil 5 is made relatively high. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、等速自在継手等の継手に連結される中空状動力伝達シャフトの製造方法に関する。本発明の製造方法によって製造された中空状動力伝達シャフトは、例えば、自動車の動力伝達系を構成するドライブシャフト(駆動軸)やプロペラシャフト(推進軸)に適用することができる。   The present invention relates to a method for manufacturing a hollow power transmission shaft connected to a joint such as a constant velocity universal joint. The hollow power transmission shaft manufactured by the manufacturing method of the present invention can be applied to, for example, a drive shaft (drive shaft) and a propeller shaft (propulsion shaft) that constitute a power transmission system of an automobile.

例えば、自動車の動力伝達系において、減速装置(ディファレンシャル)から駆動輪に動力を伝達する動力伝達シャフトは、ドライブシャフト(駆動軸)と呼ばれることがある。特に、FF車に使用されるドライブシャフトでは、前輪操舵時に大きな作動角と等速性が要求され、また、懸架装置との関係で軸方向の変位を吸収する機能が要求されるので、その一端部をダブルオフセット型等速自在継手やトリポード型等速自在継手等の摺動型等速自在継手を介して減速装置側に連結し、その他端部をバーフィールド型等速自在継手(ゼッパジョイントと呼ばれることもある。)等の固定側等速自在継手を介して駆動輪側に連結する機構が多く採用されている。   For example, in a power transmission system of an automobile, a power transmission shaft that transmits power from a speed reducer (differential) to drive wheels may be called a drive shaft (drive shaft). In particular, a drive shaft used in an FF vehicle requires a large operating angle and constant velocity during front wheel steering, and also requires a function of absorbing axial displacement in relation to the suspension system. Is connected to the reducer side through a sliding type constant velocity universal joint such as a double offset type constant velocity universal joint or a tripod type constant velocity universal joint, and the other end is connected to a barfield type constant velocity universal joint (Zepper joint). In many cases, a mechanism that is connected to the drive wheel side via a fixed-side constant velocity universal joint is employed.

上記のようなドライブシャフトとしては、従来、また現在においても、中実シャフトが多く使用されているが、自動車の軽量化、ドライブシャフトの剛性増大による機能向上、曲げ一次固有振動数のチューニング最適化による車室内の静粛性向上等の観点から、近時では、ドライブシャフトを中空シャフト化する要求が増えてきている。   As a drive shaft as described above, a solid shaft is often used in the past and now, but the weight of the car is improved, the function is improved by increasing the rigidity of the drive shaft, and the tuning of the bending primary natural frequency is optimized. Recently, there has been an increasing demand for a drive shaft to be a hollow shaft from the viewpoint of improving the quietness of the interior of the vehicle.

ドライブシャフト等に適用される中空状動力伝達シャフトとしては、例えば、下記の特許文献1〜3に記載されたものが知られている。   As a hollow power transmission shaft applied to a drive shaft or the like, for example, those described in Patent Documents 1 to 3 below are known.

特許文献1では、中空シャフトの内周表面を軸方向のほぼ全域に亘って熱硬化処理している。この熱硬化処理は、例えば、中空シャフトの外周表面側から高周波焼入れ・焼戻しを行うことにより、外周表面から内周表面に至る全深さ領域に対して施している(同文献の段落番号0012参照)。   In Patent Document 1, the inner peripheral surface of the hollow shaft is heat-cured over almost the entire region in the axial direction. This thermosetting treatment is performed on the entire depth region from the outer peripheral surface to the inner peripheral surface, for example, by induction hardening and tempering from the outer peripheral surface side of the hollow shaft (see paragraph number 0012 of the same document). ).

特許文献2では、例えば、高周波焼入れ・焼戻しにより、中空シャフトの軸方向のほぼ全域に亘って、外周表面から内周表面に至る全深さ領域に熱硬化処理を施している(同文献の段落番号0012参照)。   In Patent Document 2, for example, thermosetting treatment is performed on the entire depth region from the outer peripheral surface to the inner peripheral surface over almost the entire axial direction of the hollow shaft by induction hardening and tempering (paragraph of the same document). No. 0012).

特許文献3では、中空シャフトの静的強度とねじり疲労強度を中実シャフト以上にするために、中空シャフトを0.7〜0.9の焼入れ率で高周波焼入れしている。
特開2002―349538号公報 特開2002―356742号公報 特開2003―90325号公報
In Patent Document 3, in order to make the static strength and torsional fatigue strength of the hollow shaft higher than that of the solid shaft, the hollow shaft is induction-hardened at a quenching rate of 0.7 to 0.9.
JP 2002-349538 A JP 2002-356742 A JP 2003-90325 A

一般に、この種の中空状動力伝達シャフトは、高剛性化と軽量化を図るために軸方向中間部は大径部かつ比較的薄肉に形成すると共に、軸方向両側部の小径部は強度確保のために比較的厚肉に形成している。このように、この種の中空状動力伝達シャフトは、軸方向に肉厚差があるために、焼入れ条件の設定が難しく、熱処理により安定した品質を確保できない場合がある。すなわち、比較的薄肉の大径部に合わせて焼入れ条件を設定した場合、比較的厚肉の小径部では硬化層深さが不足して所要の強度が得られない場合がある。一方、比較的厚肉の小径部に合わせて焼入れ条件を設定した場合、比較的薄肉の大径部では過加熱の状態となり、焼入れ後の組織が粗大化して強度低下の原因となる場合がある。   In general, this kind of hollow power transmission shaft is formed with a large diameter portion and a relatively thin wall in the axial direction in order to achieve high rigidity and light weight, and a small diameter portion on both sides in the axial direction ensures strength. Therefore, it is formed relatively thick. Thus, since this type of hollow power transmission shaft has a thickness difference in the axial direction, it is difficult to set quenching conditions, and stable quality may not be ensured by heat treatment. That is, when the quenching conditions are set in accordance with the relatively thin large-diameter portion, the hardened layer depth may be insufficient at the relatively thick small-diameter portion, and the required strength may not be obtained. On the other hand, when quenching conditions are set in accordance with a relatively thick and small-diameter portion, the relatively thin-walled and large-diameter portion is overheated, and the quenched structure may become coarse and cause a decrease in strength. .

また、この種の中空状動力伝達シャフトでは、強度バランス等を高めるために、例えば大径部と小径部とで焼入れ率(硬化層の深さと肉厚との比率)を変える場合があるが、従来の製造方法では上記と同様の不都合が生じる場合がある。   Further, in this type of hollow power transmission shaft, in order to increase the strength balance and the like, for example, the quenching rate (ratio between the depth of the hardened layer and the thickness) may be changed between the large diameter portion and the small diameter portion, The conventional manufacturing method may have the same disadvantages as described above.

本発明の課題は、軸方向に肉厚差や焼入れ率の差がある場合でも、安定した品質を確保することができる中空状動力伝達シャフトの製造方法を提供することである。   The subject of this invention is providing the manufacturing method of the hollow-shaped power transmission shaft which can ensure the stable quality, even when there is a difference in thickness or a quenching rate in the axial direction.

上記課題を解決するため、本発明は、軸方向中間部が大径部に形成されると共に、大径部よりも軸方向両側部がそれぞれ小径部に形成された中空状動力伝達シャフトの製造方法であって、パイプ素材に塑性加工を施して、大径部と小径部を有する中空状シャフト素材を成形し、この中空状シャフト素材に対して、所定の領域とその他の領域とで高周波電流の周波数を変えて高周波焼入れを行う構成を提供する。   In order to solve the above-described problems, the present invention provides a method for manufacturing a hollow power transmission shaft in which an axially intermediate portion is formed in a large diameter portion, and both axial side portions are formed in small diameter portions with respect to the large diameter portion. The pipe material is plastically processed to form a hollow shaft material having a large diameter portion and a small diameter portion, and a high frequency current is generated in a predetermined region and other regions with respect to the hollow shaft material. A configuration for performing induction hardening by changing the frequency is provided.

一般に、高周波焼入れは、高周波電流による電磁誘導を利用して鋼材の表面付近を加熱して焼入れを行う熱処理方法であるが、電磁誘導によって発生する誘導電流(渦電流)は誘導加熱コイルに通じる高周波電流の周波数が高いほど鋼材表面付近に集中して流れ、中心部に向かって急激に減少する傾向があることが知られている。すなわち、誘導電流が鋼材表面付近に集中する表皮効果は、高周波電流の周波数が高いほど大きくなり、逆に、高周波電流の周波数が低いほど小さくなる。したがって、中空状シャフト素材の軸方向の肉厚差や焼入れ率の差に応じて、所定の領域とその他の領域とで高周波電流の周波数を変えて高周波焼入れを行うことにより、各部位における熱処理品質を高め、全体として安定した品質を確保することができる。   In general, induction hardening is a heat treatment method in which the vicinity of the surface of a steel material is heated using electromagnetic induction by high frequency current, and induction current (eddy current) generated by electromagnetic induction is a high frequency that leads to an induction heating coil. It is known that the higher the current frequency is, the more concentrated the current flows near the steel surface, and the more the current tends to decrease toward the center. That is, the skin effect in which the induced current concentrates near the surface of the steel material increases as the frequency of the high-frequency current increases, and conversely decreases as the frequency of the high-frequency current decreases. Therefore, the quality of heat treatment at each part can be improved by performing induction hardening by changing the frequency of the high-frequency current in a predetermined area and other areas according to the difference in the axial thickness of the hollow shaft material and the difference in quenching rate. And stable quality can be ensured as a whole.

上述のように、この種の中空状動力伝達シャフトは、通常、軸方向中間部の大径部を比較的薄肉に形成すると共に、軸方向両側部の小径部を比較的厚肉に形成している。したがって、中空状シャフト素材の大径部を高周波焼入れする際の高周波電流の周波数を相対的に大きくし、中空状シャフト素材の小径部を高周波焼入れする際の高周波電流の周波数を相対的に小さくすることにより、大径部と小径部における熱処理品質を高め、全体として安定した品質を確保することができる。   As described above, this type of hollow power transmission shaft usually has a relatively large wall portion in the axial direction and a relatively thick wall portion in the axial direction. Yes. Therefore, the frequency of the high frequency current when induction hardening the large diameter portion of the hollow shaft material is relatively increased, and the frequency of the high frequency current when induction hardening the small diameter portion of the hollow shaft material is relatively reduced. Thereby, the heat treatment quality in the large diameter portion and the small diameter portion can be improved, and stable quality can be ensured as a whole.

また、高周波焼入れの方式としては、定置方式と移動方式とがあるが、本発明ではそのいずれの方式も採用することができる。定置方式を採用する場合は、高周波電流の周波数の種類に応じて複数の誘導加熱コイルを配置すると良い。移動方式を採用する場合は、誘導加熱コイルに通じる高周波電流の周波数を変化させる。   In addition, as the induction hardening method, there are a stationary method and a moving method, and any of these methods can be employed in the present invention. When the stationary method is adopted, a plurality of induction heating coils may be arranged according to the frequency type of the high frequency current. When the moving method is adopted, the frequency of the high-frequency current leading to the induction heating coil is changed.

上記の塑性加工としては、スウェージング加工やプレス加工等が採用される。前者のスウェージング加工には、ロータリースウェージングとリンクタイプスウェージングがあり、その何れも採用することができる。例えば、ロータリースウェージングは、機内の主軸に組込まれた一対又は複数対のダイスとバッカーとが回転運動を行うと共に、外周ローラとバッカー上の突起により一定ストロークの上下運動を行って、挿入されるパイプ素材に打撃を加えて絞り加工を行う加工法である。また、プレス加工は、パイプ素材をダイスに軸方向に押し込んで絞り加工を行う加工法である。   As the plastic processing, swaging processing, press processing, or the like is employed. The former swaging process includes rotary swaging and link type swaging, both of which can be employed. For example, in the rotary swaging, a pair or a plurality of pairs of dies and a backer incorporated in a main shaft in the machine perform a rotational motion, and a vertical stroke of a fixed stroke is performed by a peripheral roller and a protrusion on the backer, and then inserted. This is a processing method in which a pipe material is blown and drawn. The press working is a working method in which a pipe material is pushed into a die in the axial direction to perform drawing.

また、パイプ素材の材質としては、例えば、STKMやSTMA等の機械構造用炭素鋼、または、それらをベースに加工性や焼入れ性等の改善のために合金元素を添加した合金鋼、あるいは、SCr、SCM、SNCM等のはだ焼鋼を用いることができる。   The material of the pipe material is, for example, carbon steel for mechanical structures such as STKM and STMA, alloy steel to which alloy elements are added for improving workability and hardenability based on these, or SCr , SCM, SNCM, etc. can be used.

本発明によれば、軸方向に肉厚差や焼入れ率の差がある場合でも、安定した品質を確保することができる中空状動力伝達シャフトの製造方法を提供することができる。   According to the present invention, it is possible to provide a method for manufacturing a hollow power transmission shaft that can ensure stable quality even when there is a difference in thickness or quenching rate in the axial direction.

以下、本発明の実施形態を図面に従って説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、中空状の動力伝達シャフト1と、動力伝達シャフト1の一端部に連結された摺動型等速自在継手2と、動力伝達シャフト1の他端部に連結された固定型等速自在継手3とを備えた自動車の動力伝達機構を示している。この実施形態の動力伝達機構において、摺動型等速自在継手2は減速装置(ディファレンシャル)に連結され、固定型等速自在継手3は駆動輪側に連結される。動力伝達シャフト1の一端部は摺動型等速自在継手2のトリポード部材2aにスプライン連結され、摺動型等速自在継手2の外輪2bの端部外周と動力伝達シャフト1の外周にブーツ2cがそれぞれ固定されている。また、動力伝達シャフト1の他端部は固定型等速自在継手3の内輪3aにスプライン連結され、固定型等速自在継手3の外輪3bの端部外周と動力伝達シャフト1の外周にブーツ3cがそれぞれ固定されている。尚、同図には、摺動型等速自在継手2としてトリポード型等速自在継手が例示され、固定型等速自在継手3としてバーフィールド型等速自在継手が例示されているが、他の型式の等速自在継手が用いられる場合もある。   FIG. 1 shows a hollow power transmission shaft 1, a sliding type constant velocity universal joint 2 connected to one end of the power transmission shaft 1, and a fixed type constant speed connected to the other end of the power transmission shaft 1. The power transmission mechanism of the motor vehicle provided with the universal joint 3 is shown. In the power transmission mechanism of this embodiment, the sliding type constant velocity universal joint 2 is connected to a reduction gear (differential), and the fixed type constant velocity universal joint 3 is connected to the drive wheel side. One end of the power transmission shaft 1 is splined to a tripod member 2a of the sliding type constant velocity universal joint 2, and a boot 2c is provided on the outer periphery of the outer ring 2b of the sliding type constant velocity universal joint 2 and the outer periphery of the power transmission shaft 1. Are fixed respectively. The other end of the power transmission shaft 1 is splined to the inner ring 3 a of the fixed type constant velocity universal joint 3, and a boot 3 c is provided on the outer circumference of the outer ring 3 b of the fixed type constant velocity universal joint 3 and the outer circumference of the power transmission shaft 1. Are fixed respectively. In the drawing, a tripod type constant velocity universal joint is illustrated as the sliding type constant velocity universal joint 2, and a barfield type constant velocity universal joint is illustrated as the fixed type constant velocity universal joint 3. Some types of constant velocity universal joints may be used.

図2は、動力伝達シャフト(ドライブシャフト)1を示している。この動力伝達シャフト1は、軸方向の全域に亘って中空状をなし、軸方向中間部に大径部1a、大径部1aよりも軸方向両側部にそれぞれ小径部1bを有している。大径部1aと小径部1bとは、軸端側に向かって漸次縮径したテーパ部1cを介して連続している。小径部1bは、等速自在継手(2、3)との連結に供される端部側の連結部1dと、ブーツ(2c、3c)が固定される軸方向中間部側のブーツ固定部1eとを有している。連結部1dには、等速自在継手(2、3)にスプライン連結されるスプライン1d1と、等速自在継手(2、3)に対する軸方向抜け止め用の止め輪を装着するための止め輪溝1d2が形成されている。ブーツ固定部1eには、ブーツ(2c、3c)の小径端部の内周を嵌合するための嵌合溝1e1が形成されている。   FIG. 2 shows a power transmission shaft (drive shaft) 1. The power transmission shaft 1 is hollow over the entire region in the axial direction, and has a large-diameter portion 1a at an axial intermediate portion and small-diameter portions 1b at both axial sides of the large-diameter portion 1a. The large-diameter portion 1a and the small-diameter portion 1b are continuous via a tapered portion 1c that is gradually reduced in diameter toward the shaft end side. The small-diameter portion 1b includes an end-side connection portion 1d used for connection with the constant velocity universal joints (2, 3), and an axial intermediate portion-side boot fixing portion 1e to which the boots (2c, 3c) are fixed. And have. A retaining ring groove for attaching a spline 1d1 splined to the constant velocity universal joints (2, 3) and a retaining ring for axially retaining the constant velocity universal joints (2, 3) to the coupling portion 1d. 1d2 is formed. The boot fixing portion 1e is formed with a fitting groove 1e1 for fitting the inner circumference of the small diameter end portion of the boot (2c, 3c).

大径部1aは比較的薄肉に形成され、小径部1bは比較的厚肉に形成されている。小径部1bの肉厚に対する大径部1aの肉厚の比率(大径部1a/小径部1b)は、例えば、0.7以下である。   The large diameter portion 1a is formed to be relatively thin, and the small diameter portion 1b is formed to be relatively thick. The ratio of the thickness of the large diameter portion 1a to the thickness of the small diameter portion 1b (large diameter portion 1a / small diameter portion 1b) is, for example, 0.7 or less.

また、同図にハッチングを付して示しているように、この動力伝達シャフト1は、軸方向のほぼ全域に亘って、焼入れ処理による硬化層Sを有している。軸方向全域において、硬化層Sは、外周表面1gから所定深さhの領域に形成され、硬化層Sから内周表面1iに至る領域は焼入れ処理により硬化していない未硬化層S0になっている。ロックウェル硬さHRC40(Hv391)以上の硬度を有する硬化層Sの深さhと肉厚tとの比率(h/t)で定義される焼入れ率αは、例えば、大径部1aについて0.6以下、小径部1bについて0.6以上である。   Further, as shown in the drawing with hatching, the power transmission shaft 1 has a hardened layer S formed by quenching over substantially the entire region in the axial direction. In the entire axial direction, the hardened layer S is formed in a region having a predetermined depth h from the outer peripheral surface 1g, and the region from the hardened layer S to the inner peripheral surface 1i is an uncured layer S0 that has not been hardened by the quenching process. Yes. The quenching rate α defined by the ratio (h / t) between the depth h and the wall thickness t of the hardened layer S having a Rockwell hardness HRC40 (Hv391) or higher is, for example, 0. 6 or less and 0.6 or more for the small diameter portion 1b.

上記構成の動力伝達シャフト1は、例えば、パイプ素材に絞り加工を施して、軸方向中間部に大径部、軸方向両側部に小径部を有する中空状シャフト素材を成形し、この中空状シャフト素材に所要の機械加工(スプラインの転造加工等)を施した後、焼入れ処理を施すことによって製造される。   The power transmission shaft 1 having the above-described configuration is formed by, for example, drawing a pipe material to form a hollow shaft material having a large diameter portion at an axial intermediate portion and small diameter portions at both axial side portions. Manufactured by subjecting the material to required machining (spline rolling, etc.) and then quenching.

図3は、焼入れ処理前の中空状パイプ素材1’を示している。まず、機械構造用炭素鋼管(STKM)等のパイプ素材にスウェージング加工を施して、軸方向中間部に大径部1a、軸方向両側部に小径部1bを有する形態に成形する。そして、小径部1bの端部に転造加工等によってスプライン1d1を成形して連結部1dを形成すると共に、連結部1dに転造加工や切削加工等によって止め輪溝1d2を形成する。さらに、ブーツ固定部1eとなる部位に転造加工や切削加工等によってブーツ固定溝1e1を形成する。   FIG. 3 shows the hollow pipe material 1 ′ before quenching. First, a pipe material such as a machine structural carbon steel pipe (STKM) is subjected to a swaging process to form a large diameter portion 1a at an intermediate portion in the axial direction and a small diameter portion 1b at both axial portions. Then, the spline 1d1 is formed by rolling or the like at the end of the small diameter portion 1b to form the connecting portion 1d, and the retaining ring groove 1d2 is formed in the connecting portion 1d by rolling or cutting. Further, the boot fixing groove 1e1 is formed by rolling or cutting at a portion that becomes the boot fixing portion 1e.

その後、図3に示すように、中空状シャフト素材1’の外周表面1gの側に、例えば移動式の誘導加熱コイル5を外装し、誘導加熱コイル5に所定周波数の高周波電流を通じつつ、これを軸方向に移動させて、外周表面1gの側から高周波焼入れを行う。その際、比較的厚肉の小径部1bに対しては、誘導加熱コイル5に通じる高周波電流の周波数を相対的に低くし、比較的薄肉の大径部1aに対しては、誘導加熱コイル5に通じる高周波電流の周波数を相対的に高くする。これにより、大径部1aと小径部1bとの間で肉厚差があり、また、焼入れ率αの差を設ける場合であっても、各部位における熱処理品質を高め、全体として安定した品質を確保することができる。   Thereafter, as shown in FIG. 3, for example, a movable induction heating coil 5 is sheathed on the outer peripheral surface 1 g side of the hollow shaft material 1 ′, and a high-frequency current having a predetermined frequency is passed through the induction heating coil 5. It is moved in the axial direction, and induction hardening is performed from the outer peripheral surface 1g side. At that time, the frequency of the high-frequency current leading to the induction heating coil 5 is relatively lowered for the relatively thick small-diameter portion 1b, and the induction heating coil 5 for the relatively thin-walled large diameter portion 1a. The frequency of the high-frequency current leading to is relatively increased. Thereby, even if there is a thickness difference between the large diameter portion 1a and the small diameter portion 1b, and even when a difference in the quenching rate α is provided, the heat treatment quality in each part is enhanced, and the stable quality as a whole is achieved. Can be secured.

図4は、他の実施形態に係る中空状の動力伝達シャフト11を示している。この実施形態に係る動力伝達シャフト11が上述した動力伝達シャフト1と異なる点は、大径部1aについて焼入れ率αを1.0としている点、すなわち、大径部1aの全肉厚tに亘って硬化層Sを形成している点にある。その他の事項は上述した実施形態に準じるので、重複する説明を省略する。   FIG. 4 shows a hollow power transmission shaft 11 according to another embodiment. The power transmission shaft 11 according to this embodiment is different from the power transmission shaft 1 described above in that the quenching rate α is set to 1.0 for the large diameter portion 1a, that is, over the entire thickness t of the large diameter portion 1a. Thus, the cured layer S is formed. Since other matters are the same as those in the above-described embodiment, a duplicate description is omitted.

図5は、他の実施形態に係る中空状の動力伝達シャフト21を示している。この実施形態に係る動力伝達シャフト21が上述した動力伝達シャフト1と異なる点は、軸方向全域に亘って焼入れ率αを1.0としている点、すなわち、軸方向全域の全肉厚tに亘って硬化層Sを形成している点にある。その他の事項は上述した実施形態に準じるので、重複する説明を省略する。   FIG. 5 shows a hollow power transmission shaft 21 according to another embodiment. The power transmission shaft 21 according to this embodiment is different from the power transmission shaft 1 described above in that the quenching rate α is 1.0 over the entire axial direction, that is, over the entire thickness t in the entire axial direction. Thus, the cured layer S is formed. Since other matters are the same as those in the above-described embodiment, a duplicate description is omitted.

図6は、他の実施形態に係る中空状の動力伝達シャフト31を示している。この実施形態に係る動力伝達シャフト31が上述した動力伝達シャフト1と異なる点は、小径部1bについて焼入れ率αを1.0としている点、すなわち、小径部1bの全肉厚tに亘って硬化層Sを形成している点にある。その他の事項は上述した実施形態に準じるので、重複する説明を省略する。   FIG. 6 shows a hollow power transmission shaft 31 according to another embodiment. The power transmission shaft 31 according to this embodiment is different from the above-described power transmission shaft 1 in that the hardening rate α is 1.0 for the small diameter portion 1b, that is, it is cured over the entire thickness t of the small diameter portion 1b. The layer S is formed. Since other matters are the same as those in the above-described embodiment, a duplicate description is omitted.

自動車の動力伝達機構を示す図である。It is a figure which shows the power transmission mechanism of a motor vehicle. 実施形態に係る動力伝達シャフトを示す断面図である。It is sectional drawing which shows the power transmission shaft which concerns on embodiment. 中空状シャフト素材を示す断面図である。It is sectional drawing which shows a hollow shaft raw material. 他の実施形態に係る動力伝達シャフトを示す断面図である。It is sectional drawing which shows the power transmission shaft which concerns on other embodiment. 他の実施形態に係る動力伝達シャフトを示す断面図である。It is sectional drawing which shows the power transmission shaft which concerns on other embodiment. 他の実施形態に係る動力伝達シャフトを示す断面図である。It is sectional drawing which shows the power transmission shaft which concerns on other embodiment.

符号の説明Explanation of symbols

1 動力伝達シャフト
11 動力伝達シャフト
21 動力伝達シャフト
31 動力伝達シャフト
1’ 中空状パイプ素材
1a 大径部
1b 小径部
DESCRIPTION OF SYMBOLS 1 Power transmission shaft 11 Power transmission shaft 21 Power transmission shaft 31 Power transmission shaft 1 'Hollow pipe material 1a Large diameter part 1b Small diameter part

Claims (2)

軸方向中間部が大径部に形成されると共に、該大径部よりも軸方向両側部がそれぞれ小径部に形成された中空状動力伝達シャフトの製造方法であって、
パイプ素材に塑性加工を施して、前記大径部と小径部を有する中空状シャフト素材を成形し、
前記中空状シャフト素材に対して、所定の領域とその他の領域とで高周波電流の周波数を変えて高周波焼入れを行うことを特徴とする中空状動力伝達シャフトの製造方法。
A method of manufacturing a hollow power transmission shaft in which an axially intermediate portion is formed in a large diameter portion, and both axial sides are formed in small diameter portions from the large diameter portion, respectively.
Plastic processing is performed on the pipe material to form a hollow shaft material having the large diameter portion and the small diameter portion,
A method for manufacturing a hollow power transmission shaft, comprising subjecting the hollow shaft material to induction hardening by changing a frequency of a high-frequency current in a predetermined region and other regions.
前記中空状シャフト素材の大径部を高周波焼入れする際の高周波電流の周波数を相対的に高くし、前記中空状シャフト素材の小径部を高周波焼入れする際の高周波電流の周波数を相対的に低くすることを特徴とする請求項1に記載の中空状動力伝達シャフトの製造方法。   The frequency of the high frequency current when induction hardening the large diameter portion of the hollow shaft material is relatively high, and the frequency of the high frequency current when induction hardening the small diameter portion of the hollow shaft material is relatively low. The method for manufacturing a hollow power transmission shaft according to claim 1.
JP2004227013A 2004-08-02 2004-08-03 Method for manufacturing hollow-state power transmitting shaft Withdrawn JP2006045605A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2004227013A JP2006045605A (en) 2004-08-03 2004-08-03 Method for manufacturing hollow-state power transmitting shaft
DE602005024997T DE602005024997D1 (en) 2004-08-02 2005-07-21 PROCEDURE FOR MAKING A HOLLOW DRIVE SHAFT
AT05766324T ATE489560T1 (en) 2004-08-02 2005-07-21 METHOD FOR PRODUCING A HOLLOW DRIVE SHAFT
EP05766324A EP1798427B1 (en) 2004-08-02 2005-07-21 Method of producing a hollow transmission shaft
AT08012227T ATE449654T1 (en) 2004-08-02 2005-07-21 METHOD FOR PRODUCING A HOLLOW DRIVE SHAFT
US11/659,135 US8101031B2 (en) 2004-08-02 2005-07-21 Hollow power transmission shaft and method of manufacturing the same
PCT/JP2005/013390 WO2006013730A1 (en) 2004-08-02 2005-07-21 Hollow power transmission shaft and method of manufacturing the same
EP08012228.6A EP1975423B1 (en) 2004-08-02 2005-07-21 Hollow power transmission shaft
EP08012227A EP1974837B1 (en) 2004-08-02 2005-07-21 Method of manufacturing a hollow power transmission shaft
DE602005017954T DE602005017954D1 (en) 2004-08-02 2005-07-21 Method for producing a hollow drive shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004227013A JP2006045605A (en) 2004-08-03 2004-08-03 Method for manufacturing hollow-state power transmitting shaft

Publications (1)

Publication Number Publication Date
JP2006045605A true JP2006045605A (en) 2006-02-16

Family

ID=36024533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004227013A Withdrawn JP2006045605A (en) 2004-08-02 2004-08-03 Method for manufacturing hollow-state power transmitting shaft

Country Status (1)

Country Link
JP (1) JP2006045605A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008169454A (en) * 2007-01-15 2008-07-24 High Frequency Heattreat Co Ltd Spline shaft, heat treatment method and heat treatment apparatus
JP2015000993A (en) * 2013-06-13 2015-01-05 中央発條株式会社 Manufacturing method of flat spring
JP2016538509A (en) * 2013-09-11 2016-12-08 イレ オートモーティブ システムズ カンパニー リミテッド Hollow drive shaft and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008169454A (en) * 2007-01-15 2008-07-24 High Frequency Heattreat Co Ltd Spline shaft, heat treatment method and heat treatment apparatus
JP2015000993A (en) * 2013-06-13 2015-01-05 中央発條株式会社 Manufacturing method of flat spring
JP2016538509A (en) * 2013-09-11 2016-12-08 イレ オートモーティブ システムズ カンパニー リミテッド Hollow drive shaft and manufacturing method thereof
US10018219B2 (en) 2013-09-11 2018-07-10 Erae Ams Co., Ltd. Hollow drive shaft and method for manufacturing same

Similar Documents

Publication Publication Date Title
EP1798427B1 (en) Method of producing a hollow transmission shaft
CN102282381B (en) Outer member of constant speed universal joint
WO2012032926A1 (en) External joint member of constant velocity universal joint and friction pressure welding method therefor
US7775892B2 (en) Endpiece for a welded tube shaft and a corresponding shaft
JP6104598B2 (en) Method for manufacturing outer joint member of constant velocity universal joint
WO2011052342A1 (en) Hollow shaft and constant velocity universal joint
JP2006002185A (en) Method for heat-treating hollow-power transmission shaft
JP2006046408A (en) Hollow power transmission shaft
WO2006030709A1 (en) Hollow power transmission shaft
JP2006045605A (en) Method for manufacturing hollow-state power transmitting shaft
JP2006002809A (en) Hollow power transmission shaft
JP2006250332A (en) Hollow power transmission shaft
JP2007198428A (en) Hollow power transmission shaft
WO2013154015A1 (en) Inner member of constant velocity universal joint and method for producing same
JP2001208037A (en) Intermediate shaft for drive shaft and method for manufacturing the same
JP4554299B2 (en) Method for manufacturing hollow power transmission shaft
JP2007211926A (en) Inner member of constant velocity universal joint and its manufacturing method
EP3159564B1 (en) Manufacturing method for constant velocity universal joint outer joint member and outer joint member
JP2006029472A (en) Hollow power transmission shaft
JP2006250333A (en) Hollow power transmission shaft
JP2005146313A (en) Power transmission shaft
JP2009275878A (en) Spline shaft, power transmission shaft, and outer ring of constant velocity universal joint
JP2020063784A (en) Power transmission shaft
KR101015493B1 (en) Manufacturing Method of a Stub Shaft for a Vehicle
WO2023026903A1 (en) Rack shaft, method for manufacturing same, and rack-and-pinion steering gear unit

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071106