JP2006045257A - Thermoplastic resin composition and molded article thereof - Google Patents

Thermoplastic resin composition and molded article thereof Download PDF

Info

Publication number
JP2006045257A
JP2006045257A JP2004223986A JP2004223986A JP2006045257A JP 2006045257 A JP2006045257 A JP 2006045257A JP 2004223986 A JP2004223986 A JP 2004223986A JP 2004223986 A JP2004223986 A JP 2004223986A JP 2006045257 A JP2006045257 A JP 2006045257A
Authority
JP
Japan
Prior art keywords
mass
polymer
rubber
monomer
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004223986A
Other languages
Japanese (ja)
Inventor
Takahiro Nakamura
崇浩 中村
Ryutaro Ishikawa
隆太郎 石川
Hiroshi Sakai
比呂志 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Techno UMG Co Ltd
Original Assignee
UMG ABS Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UMG ABS Ltd filed Critical UMG ABS Ltd
Priority to JP2004223986A priority Critical patent/JP2006045257A/en
Publication of JP2006045257A publication Critical patent/JP2006045257A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoplastic resin composition capable of obtaining a molded article excellent in flowability and moldability, as well as excellent in balance between impact resistance and rigidity, and to provide the molded article thereof. <P>SOLUTION: The thermoplastic resin composition comprises 30-50 parts mass of a rubber-containing graft copolymer (A) and 50-70 parts mass of a hard polymer (B), wherein (A)+(B)=100 parts mass. The rubber-containing graft copolymer (A) is prepared by allowing a rubbery polymer (a), which has a gel content of 50-70 mass%, an amount of swelling of 10-50 times and a mass average particle size of 100-600 nm, to occlude an aromatic vinyl monomer and a vinyl cyanide monomer and by graft polymerization of the monomers in the range of a graft density of 6-15%. The hard polymer (B) has aromatic vinyl monomer units and vinyl cyanide monomer units, has a ratio (Mw/Mn) of mass average molecular weight Mw to number average molecular weight Mn of acetone solubles of 4.0 or more, and has a proportion of the polymer having a molecular weight of 50,000 or more of 35-65 mass%. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、流動性・成形性に優れ、得られる成形品が耐衝撃性に優れ、シルバー現象を発生しない、大型成形品の射出成形に適した熱可塑性樹脂組成物、およびその成形品に関する。   The present invention relates to a thermoplastic resin composition suitable for injection molding of a large molded product, which is excellent in fluidity and moldability, the molded product obtained is excellent in impact resistance and does not generate a silver phenomenon, and the molded product.

ABS樹脂は、優れた成形性、耐衝撃性等の機械的特性、耐薬品性を有していることから、車両分野、家電分野などの広範囲な分野において各種構成部材の成形材料として使用されている。近年、車両用機器、その他の各種機器のコストダウンや軽量化の要請が高まっており、このような要請に応じてOA機器のハウジング材料等は益々薄肉化される傾向にある。   ABS resin has excellent mechanical properties such as moldability and impact resistance, and chemical resistance, so it is used as a molding material for various components in a wide range of fields such as the vehicle field and the home appliance field. Yes. In recent years, there is an increasing demand for cost reduction and weight reduction of vehicle equipment and other various devices, and in response to such requests, housing materials for OA devices tend to be made thinner.

しかしながら、成形品を薄肉化した場合、耐衝撃性、特に低温耐衝撃性が低くなるという問題があった。つまり、ABS樹脂等のゴム含有スチレン系樹脂の諸物性は、一般に、使用するゴム相の組成、ゲル含率、粒子径、粒子径の分布、ゴム含有量などの因子によって影響されるが、流動性・成形性を向上させ、薄肉化を実現させるために、樹脂粘度を低下させ、樹脂中のゴム含有量を減量させると、重要な特性である耐衝撃性、特に低温耐衝撃性などの機械的特性が低下する。したがって、そのような樹脂を用いた場合、品質を低下させることになる。   However, when the molded product is thinned, there is a problem that impact resistance, particularly low-temperature impact resistance is lowered. In other words, various physical properties of rubber-containing styrenic resins such as ABS resin are generally influenced by factors such as the composition of the rubber phase used, gel content, particle size, particle size distribution, rubber content, etc. When the resin viscosity is reduced and the rubber content in the resin is reduced in order to improve the moldability and formability, machines such as impact resistance, especially low temperature impact resistance, are important characteristics. Characteristics are degraded. Accordingly, when such a resin is used, the quality is deteriorated.

このように、成形性(シルバー発生)・流動性に優れ、かつ大型成形品を成形した場合に、シルバーを発生せず表面外観に優れ、かつ耐衝撃性にも優れるABS樹脂を得ることは非常に困難であった。   In this way, when molding large molded products with excellent moldability (silver generation) and fluidity, it is very difficult to obtain an ABS resin that does not generate silver, has excellent surface appearance, and excellent impact resistance. It was difficult.

そこで、流動性・成形性の両特性を向上させるために、様々なことが従来から試されてきた。例えば、特許文献1には、特定の溶融粘度にされて、成形加工性、耐衝撃性が向上した熱可塑性樹脂組成物が開示されている。
しかしながら、本発明者らが、実際の製品程の比較的大きくて複雑な成形品によって、特許文献1の熱可塑性樹脂組成物を評価してみたところ、成形品にシルバーが発生した。このように、従来、流動性・成形性の両方が十分満足する程度にまで高くされた熱可塑性樹脂組成物は得られていなかった。
特開平6−145467号公報
Therefore, various things have been tried in the past in order to improve both the fluidity and moldability characteristics. For example, Patent Document 1 discloses a thermoplastic resin composition having a specific melt viscosity and improved molding processability and impact resistance.
However, when the present inventors evaluated the thermoplastic resin composition of Patent Document 1 with a comparatively large and complex molded product as an actual product, silver was generated in the molded product. Thus, conventionally, a thermoplastic resin composition that has been improved to such a degree that both fluidity and moldability are sufficiently satisfied has not been obtained.
JP-A-6-145467

本発明は、前記事情を鑑みてなされたものであり、流動性・成形性に優れているとともに、耐衝撃性および剛性のバランスに優れた成形品を得ることができ、大型成形品の射出成形に適した熱可塑性樹脂組成物、およびシルバーの発生が抑えられ、耐衝撃性および剛性のバランスに優れた成形品を提供することを目的としている。   The present invention has been made in view of the above circumstances, and is capable of obtaining a molded product having excellent balance between impact resistance and rigidity, as well as excellent fluidity and moldability, and injection molding of a large molded product. It is an object of the present invention to provide a thermoplastic resin composition suitable for the above and a molded product in which the generation of silver is suppressed and the balance between impact resistance and rigidity is excellent.

本発明者らは、上記不良についての知見に基づいて詳細に検討した結果、特定のゲル含有量のポリブタジエンに特定のグラフト密度でスチレンおよびアクリロニトリルをグラフト重合したゴム含有スチレン系樹脂と、特定の分子量および分子量分布を有する硬質のスチレン−アクリロニトリル共重合体とを組み合わせることで、ABS樹脂において、これまでにないほどの耐衝撃性・流動性・成形性の改良効果が得られ、大型型成形品の射出成形に適した熱可塑性樹脂組成物を発明した。   As a result of detailed studies based on the knowledge about the above-mentioned defects, the present inventors have found that a rubber-containing styrene-based resin obtained by graft polymerization of styrene and acrylonitrile at a specific graft density to a polybutadiene having a specific gel content, and a specific molecular weight. In combination with a hard styrene-acrylonitrile copolymer having a molecular weight distribution, an ABS resin has an unprecedented effect of improving impact resistance, fluidity and moldability. A thermoplastic resin composition suitable for injection molding has been invented.

すなわち、本発明の熱可塑性樹脂組成物は、ゲル含有量が50〜70質量%であり、膨潤量が10〜50倍であり、質量平均粒子径が100〜600nmの範囲にあるゴム質重合体(a)に、芳香族ビニル単量体およびシアン化ビニル単量体を含有する単量体混合物の一部または全量を含浸させ、グラフト密度6〜15%の範囲でグラフト重合したゴム含有グラフト共重合体(A)30〜50質量部と、芳香族ビニル単量体単位およびシアン化ビニル単量体単位を有し、アセトン可溶分の質量平均分子量Mwと数平均分子量Mnとの比(Mw/Mn)が4.0以上であり、分子量が5万以上のものの割合が35〜65質量%である硬質重合体(B)50〜70質量部とを含有する[ゴム含有グラフト共重合体(A)および硬質重合体(B)の合計は100質量部である]ことを特徴とするものである。   That is, the thermoplastic resin composition of the present invention has a gel content of 50 to 70% by mass, a swelling amount of 10 to 50 times, and a mass average particle diameter in the range of 100 to 600 nm. A rubber-containing graft copolymer obtained by impregnating (a) a part or all of a monomer mixture containing an aromatic vinyl monomer and a vinyl cyanide monomer and graft-polymerizing it in a graft density range of 6 to 15%. Polymer (A) 30-50 parts by mass, aromatic vinyl monomer unit and vinyl cyanide monomer unit, ratio of mass average molecular weight Mw and number average molecular weight Mn of acetone-soluble matter (Mw / Mn) is 4.0 or more, and the ratio of those having a molecular weight of 50,000 or more is 35 to 65% by mass of a hard polymer (B) containing 50 to 70 parts by mass [rubber-containing graft copolymer ( Of A) and the rigid polymer (B) Meter is characterized in that it is 100 parts by weight.

ここで、グラフト重合体(A)には、さらに、芳香族ビニル単量体およびシアン化ビニル単量体と共重合可能な他の単量体がグラフト重合していることが望ましい。
また、本発明の成形品は、本発明の熱可塑性樹脂組成物を成形したものである。
Here, it is desirable that the graft polymer (A) is further graft-polymerized with another monomer copolymerizable with the aromatic vinyl monomer and the vinyl cyanide monomer.
Moreover, the molded article of the present invention is obtained by molding the thermoplastic resin composition of the present invention.

本発明の熱可塑性樹脂組成物は、流動性、成形性(シルバー)の両方に優れており、また、この熱可塑性樹脂組成物によれば、耐衝撃性、特に低温耐衝撃性と剛性とのバランスに優れた成形品を得ることができる。このような熱可塑性樹脂組成物は、大型成形品の射出成形に適している。
また、本発明の成形品は、シルバーの発生が抑えられ、耐衝撃性および剛性のバランスに優れる。
The thermoplastic resin composition of the present invention is excellent in both fluidity and moldability (silver), and according to this thermoplastic resin composition, it has impact resistance, particularly low temperature impact resistance and rigidity. A molded product having an excellent balance can be obtained. Such a thermoplastic resin composition is suitable for injection molding of a large molded product.
In addition, the molded product of the present invention is excellent in the balance between impact resistance and rigidity because generation of silver is suppressed.

以下、本発明について詳細に説明する
<ゴム含有グラフト共重合体(A)>
本発明におけるゴム含有グラフト共重合体(A)は、ゴム質重合体(a)に、芳香族ビニル単量体およびシアン化ビニル単量体を含有する単量体混合物の一部または全量を含浸させ、グラフト重合したものである。
Hereinafter, the present invention will be described in detail <Rubber-containing graft copolymer (A)>
The rubber-containing graft copolymer (A) in the present invention impregnates the rubbery polymer (a) with a part or all of a monomer mixture containing an aromatic vinyl monomer and a vinyl cyanide monomer. And graft polymerization.

ゴム質重合体(a)は、ジエン系単量体が重合した重合体からなるものであり、例えば、ポリブタジエン、ポリ(ブタジエン−スチレン)、ポリ(ブタジエン−アクリロニトリル)、ポリイソプレン、ポリシクロペンタジエン、ポリ2,3−ジメチルブタジエン等が挙げられる。中でも、ポリブタジエンが好ましい。   The rubbery polymer (a) is composed of a polymer obtained by polymerizing a diene monomer. For example, polybutadiene, poly (butadiene-styrene), poly (butadiene-acrylonitrile), polyisoprene, polycyclopentadiene, Examples include poly 2,3-dimethyl butadiene. Of these, polybutadiene is preferred.

ゴム質重合体(a)は、ゲル含有量が50〜70質量%であり、かつ膨潤量が10〜50倍である。ゴム質重合体(a)のゲル含有量が50〜70質量%、かつ膨潤量が10〜50倍であることにより、熱可塑性樹脂組成物の大幅な成形性の改良が図られ、それにより成形品の表面外観の悪化並びに残留ひずみを抑制することができる。   The rubbery polymer (a) has a gel content of 50 to 70% by mass and a swelling amount of 10 to 50 times. When the gel content of the rubbery polymer (a) is 50 to 70% by mass and the swelling amount is 10 to 50 times, the moldability of the thermoplastic resin composition is greatly improved, and thereby molding is performed. Deterioration of the surface appearance of the product and residual strain can be suppressed.

ここで、ゲル含有量は、以下のようにして算出される。
ゴム質重合体(a)を含むラテックスを凝固、乾燥させた後、ゴム質重合体(a)のサンプルWc(g)をトルエンに室温(23℃)で20時間かけて溶解させ、次いで、100メッシュ金網で不溶分を分取し、不溶分を60℃にて24時間乾燥して、乾燥不溶分量Wg(g)を測定し、下記式で算出する。
ゲル含有量(質量%)=Wg/Wc×100
Here, the gel content is calculated as follows.
After the latex containing the rubber polymer (a) is coagulated and dried, a sample Wc (g) of the rubber polymer (a) is dissolved in toluene at room temperature (23 ° C.) for 20 hours, and then 100 The insoluble matter is fractionated with a mesh wire mesh, the insoluble matter is dried at 60 ° C. for 24 hours, the dry insoluble matter amount Wg (g) is measured, and the following formula is calculated.
Gel content (mass%) = Wg / Wc × 100

また、膨潤量は、以下のようにして算出される。
ゴム質重合体(a)を含むラテックスを凝固、乾燥させた後、ゴム質重合体(a)をトルエンに室温(23℃)で20時間溶解させ、次いで、100メッシュ金網で不溶分を分取した直後に膨潤状態の不溶分量Ws(g)を測定し、ついで、不溶分を60℃にて24時間乾燥して、乾燥不溶分量Wg(g)を測定し、下記式で算出する。
膨潤量(倍)=Ws/Wg
The amount of swelling is calculated as follows.
After the latex containing the rubber polymer (a) is coagulated and dried, the rubber polymer (a) is dissolved in toluene at room temperature (23 ° C.) for 20 hours, and then the insoluble matter is separated with a 100 mesh wire mesh. Immediately after the measurement, the insoluble matter amount Ws (g) in the swollen state is measured, then the insoluble matter is dried at 60 ° C. for 24 hours, the dry insoluble matter amount Wg (g) is measured, and the following formula is calculated.
Swelling amount (times) = Ws / Wg

ゴム質重合体(a)の質量平均粒子径は、熱可塑性樹脂組成物の流動性、および得られる成形品の耐衝撃性を向上させるため、100〜600nmの範囲とする必要がある。好ましくは150〜500nmであり、特に好ましくは200〜400nmである。質量平均粒子径が100nm未満では、得られる成形品の耐衝撃性が劣る。質量平均粒子径が600nmを超えると、得られる成形品の表面光沢が悪化する。   The mass average particle diameter of the rubber polymer (a) needs to be in the range of 100 to 600 nm in order to improve the fluidity of the thermoplastic resin composition and the impact resistance of the obtained molded product. Preferably it is 150-500 nm, Most preferably, it is 200-400 nm. When the mass average particle diameter is less than 100 nm, the impact resistance of the obtained molded product is inferior. When the mass average particle diameter exceeds 600 nm, the surface gloss of the obtained molded product is deteriorated.

ゴム含有グラフト共重合体(A)は、ゴム質重合体(a)の存在下に、芳香族ビニル単量体およびシアン化ビニル単量体を含有する単量体混合物が、グラフト密度6〜15%、好ましくは7〜10%の範囲でグラフト重合したものである。グラフト密度が6〜15%であることにより、熱可塑性樹脂組成物の流動性と、得られる成形品の耐衝撃性、特に低温耐衝撃性とのバランスが向上する。   In the rubber-containing graft copolymer (A), a monomer mixture containing an aromatic vinyl monomer and a vinyl cyanide monomer in the presence of the rubbery polymer (a) has a graft density of 6 to 15. %, Preferably 7 to 10%. When the graft density is 6 to 15%, the balance between the fluidity of the thermoplastic resin composition and the impact resistance of the resulting molded product, particularly the low temperature impact resistance, is improved.

ここでいうグラフト密度とは、以下のようにして求めた値である。
すなわち、ゴム含有グラフト共重合体(A)のサンプルをアセトン中に溶解させ、遠心分離器を用いて可溶分と不溶分とに分離し、得られた不溶分X(g)をオゾン分解させる。そして、メタノール不溶分m(g)を分離する。得られたメタノール不溶分について、GPC(ゲルパーミエーションクロマトグラフィー)にて質量平均分子量Mwを求め、これらの結果を基に次の計算式により算出した値である。
グラフト密度(%)=グラフト率/(Mw/104
グラフト率(質量%)={m/(X−m)}×100
The graft density here is a value determined as follows.
That is, a sample of the rubber-containing graft copolymer (A) is dissolved in acetone, separated into a soluble component and an insoluble component using a centrifugal separator, and the obtained insoluble component X (g) is ozonolyzed. . And methanol insoluble matter m (g) is isolate | separated. About the obtained methanol insoluble matter, the mass average molecular weight Mw was calculated | required with GPC (gel permeation chromatography), and it is the value computed by the following formula based on these results.
Graft density (%) = Graft rate / (Mw / 10 4 )
Graft rate (mass%) = {m / (X−m)} × 100

芳香族ビニル単量体としては、スチレン、α−メチルスチレン、パラメチルスチレン、ブロムスチレン等が挙げられる。これらの中でも、特にスチレンが好ましい。
シアン化ビニル単量体としては、アクリロニトリル、メタクリロニトリル等が挙げられる。これらの中でも、特にアクリロニトリルが好ましい。
これらの単量体については、1種を単独で、または2種以上を組み合わせて用いることができる。
Examples of the aromatic vinyl monomer include styrene, α-methylstyrene, paramethylstyrene, bromostyrene, and the like. Among these, styrene is particularly preferable.
Examples of the vinyl cyanide monomer include acrylonitrile and methacrylonitrile. Among these, acrylonitrile is particularly preferable.
About these monomers, 1 type can be used individually or in combination of 2 or more types.

また、必要に応じて、芳香族ビニル単量体、シアン化ビニル単量体と共重合可能な他の単量体を用いてもよい。このような他の単量体としては、例えば、メタクリル酸メチル、アクリル酸メチル等のメタクリル酸またはアクリル酸エステル、N−フェニルマレイミド、N−シクロヘキシルマレイミド等のマレイミド化合物、アクリル酸、メタクリル酸、イタコン酸、フマル酸等の不飽和カルボン酸化合物が挙げられる。これらは、1種を単独で、または2種以上を組み合わせて用いることができる。   Moreover, you may use the other monomer copolymerizable with an aromatic vinyl monomer and a vinyl cyanide monomer as needed. Examples of such other monomers include methacrylic acid or acrylic acid esters such as methyl methacrylate and methyl acrylate, maleimide compounds such as N-phenylmaleimide and N-cyclohexylmaleimide, acrylic acid, methacrylic acid, and itacon. Examples thereof include unsaturated carboxylic acid compounds such as acid and fumaric acid. These can be used alone or in combination of two or more.

ゴム含有グラフト共重合体(A)を合成するためのグラフト重合方法としては、いかなる公知の重合方法も採用できる。特に、あらかじめゴム質重合体(a)と単量体混合物の一部または全量とを混合、放置することによって、単量体混合物をゴム質重合体(a)に含浸させた単量体含浸ゴム質重合体を調製し、ついで、残りの単量体混合物を加えた後、全単量体を重合することが好ましい。この重合方法を採用すれば、熱可塑性樹脂組成物の成形性、および得られる成形品の耐衝撃性等の物性がより良好になる。   Any known polymerization method can be adopted as the graft polymerization method for synthesizing the rubber-containing graft copolymer (A). In particular, a monomer-impregnated rubber obtained by impregnating the rubber polymer (a) with the monomer mixture by mixing and leaving the rubber polymer (a) and a part or the whole of the monomer mixture in advance. It is preferable to polymerize all the monomers after preparing the polymer and then adding the remaining monomer mixture. If this polymerization method is adopted, the moldability of the thermoplastic resin composition and the physical properties such as the impact resistance of the resulting molded article are improved.

上述したグラフト重合の具体的な方法は、例えば、まず、乳化重合にて製造されたゴム質重合体(a)を撹拌翼、ジャケット付き反応器内に仕込み、次に、単量体混合物の一部または全量を一括投入または連続滴下し、撹拌しながら、40〜70℃にて5〜60分放置し、次いで、残りの単量体混合物と開始剤とを添加する。開始剤が添加される前に添加された単量体は、ゴム質重合体(a)に含浸し、ゴム質重合体(a)内にて重合して重合体になる。このように、ゴム質重合体(a)内に重合体が形成された構造をオクルード構造という。   The specific method of graft polymerization described above is, for example, firstly charging a rubbery polymer (a) produced by emulsion polymerization into a reactor equipped with a stirring blade and a jacket, Part or the whole amount is added all at once or continuously dropped, and the mixture is allowed to stand at 40 to 70 ° C. for 5 to 60 minutes while stirring, and then the remaining monomer mixture and initiator are added. The monomer added before the initiator is added impregnates the rubbery polymer (a) and polymerizes in the rubbery polymer (a) to become a polymer. Thus, the structure in which the polymer is formed in the rubbery polymer (a) is referred to as an occluded structure.

ここで、ゴム質重合体(a)内において重合体を構成する単量体(以下「オクルード単量体」と称す)、すなわち、ゴム質重合体(a)に含浸され、重合される単量体としては、含浸後に新たに添加される単量体と同種のものを使用することができる。また、オクルード単量体としては、芳香族ビニル単量体、シアン化ビニル単量体を使用することが好ましく、芳香族ビニル単量体を使用することが特に好ましい。特に、芳香族ビニル単量体を使用すれば、流動性がよりが良好となる。   Here, a monomer constituting the polymer in the rubber polymer (a) (hereinafter referred to as “occluded monomer”), that is, a single amount impregnated and polymerized in the rubber polymer (a). As the body, the same kind as the monomer newly added after impregnation can be used. As the occluded monomer, an aromatic vinyl monomer or a vinyl cyanide monomer is preferably used, and an aromatic vinyl monomer is particularly preferably used. In particular, if an aromatic vinyl monomer is used, the fluidity becomes better.

このようにゴム含有グラフト共重合体(A)中のゴム質重合体(a)がオクルード構造を有している場合、すなわち、ゴム質重合体(a)にあらかじめオクルード単量体を含浸させてから重合した場合、オクルード単量体量は、ゴム質重合体(a)に重合する全単量体成分中の10〜60質量%が好ましく、より好ましくは30〜50質量%である。オクルード単量体量が10質量%未満であると、オクルード構造を採用することによる流動性の向上効果が十分に発揮されず、60質量%を超えると物性バランス、特に、十分な耐衝撃性を得ることが難しくなる。   Thus, when the rubbery polymer (a) in the rubber-containing graft copolymer (A) has an occluded structure, that is, the rubbery polymer (a) is impregnated with an occluded monomer in advance. 10 to 60% by mass, more preferably 30 to 50% by mass, based on all monomer components polymerized into the rubbery polymer (a). If the amount of occluded monomer is less than 10% by mass, the effect of improving the fluidity by adopting the occluded structure is not sufficiently exhibited. If the amount of occluded monomer exceeds 60% by mass, the balance of physical properties, particularly sufficient impact resistance is achieved. It becomes difficult to obtain.

<硬質重合体(B)>
本発明における硬質重合体(B)は、芳香族ビニル単量体単位およびシアン化ビニル単量体単位を構成成分として有するものであり、必要に応じて、芳香族ビニル単量体およびシアン化ビニル単量体と共重合可能な他の単量体が共重合されていてもよい。
ここで、芳香族ビニル単量体、シアン化ビニル単量体、これらと共重合可能な他の単量体は、上述したゴム含有グラフト共重合体(A)で使用されたものと同様のものを使用できる。
<Hard polymer (B)>
The hard polymer (B) in the present invention has an aromatic vinyl monomer unit and a vinyl cyanide monomer unit as constituent components, and if necessary, an aromatic vinyl monomer and vinyl cyanide. Another monomer copolymerizable with the monomer may be copolymerized.
Here, the aromatic vinyl monomer, the vinyl cyanide monomer, and other monomers copolymerizable therewith are the same as those used in the rubber-containing graft copolymer (A) described above. Can be used.

硬質重合体(B)は、アセトン可溶分の質量平均分子量Mwと数平均分子量Mnとの比(Mw/Mn)が4.0以上である必要がある。Mw/Mnは、好ましくは5.0以上である。Mw/Mnが4.0未満では、熱可塑性樹脂組成物の流動性が低下し、成形性が悪化する。   The hard polymer (B) needs to have a ratio (Mw / Mn) of mass-average molecular weight Mw and number-average molecular weight Mn of acetone-soluble content to 4.0 or more. Mw / Mn is preferably 5.0 or more. When Mw / Mn is less than 4.0, the fluidity of the thermoplastic resin composition is lowered and the moldability is deteriorated.

硬質重合体(B)は、分子量が5万以上のものの割合が、硬質重合体(B)(100質量%)中、35〜65質量%である必要があり、好ましくは40〜60質量%である。分子量が5万以上の重合体の割合が65質量%を超えると、熱可塑性樹脂組成物の流動性の低下に伴い、成形性が悪化し、逆に35%未満であれば、得られる成形品の耐衝撃性が低下する。   The ratio of the polymer having a molecular weight of 50,000 or more needs to be 35 to 65% by mass, preferably 40 to 60% by mass, in the hard polymer (B) (100% by mass). is there. If the proportion of the polymer having a molecular weight of 50,000 or more exceeds 65% by mass, the moldability deteriorates with a decrease in the fluidity of the thermoplastic resin composition. The impact resistance of the is reduced.

硬質重合体(B)の製造方法については、乳化、懸濁、塊状またはこれらを複合化した公知の重合方法を採用できる。この際、連鎖移動剤を用いてもよい。連鎖移動剤としては、オクチルメルカプタン、n−ドデシルメルカプタン、t−ドデシルメルカプタン、n−ヘキシルメルカプタン、α−スチレンダイマーなどが挙げられる。これらの連鎖移動剤は、1種を単独で、または2種以上を組み合わせて使用することができる。   About the manufacturing method of a hard polymer (B), the well-known polymerization method which emulsified, suspended, the block shape, or these were compounded is employable. At this time, a chain transfer agent may be used. Examples of the chain transfer agent include octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, n-hexyl mercaptan, and α-styrene dimer. These chain transfer agents can be used individually by 1 type or in combination of 2 or more types.

<熱可塑性樹脂組成物>
本発明の熱可塑性樹脂組成物は、ゴム含有グラフト共重合体(A)30〜50質量部と、硬質重合体(B)50〜70質量部とを含有する[ゴム含有グラフト共重合体(A)および硬質重合体(B)の合計は100質量部である]ものである。
<Thermoplastic resin composition>
The thermoplastic resin composition of the present invention contains 30 to 50 parts by mass of a rubber-containing graft copolymer (A) and 50 to 70 parts by mass of a hard polymer (B) [rubber-containing graft copolymer (A ) And the hard polymer (B) is 100 parts by mass].

ゴム含有グラフト共重合体(A)が30質量部未満では(硬質重合体(B)が70質量部を超えると)、得られる成形品の耐衝撃性と剛性とのバランスが悪くなる。一方、ゴム含有グラフト共重合体(A)が50質量部を超えると(硬質重合体(B)が50質量部未満では)、流動性・成形性が低下する。   When the rubber-containing graft copolymer (A) is less than 30 parts by mass (when the hard polymer (B) exceeds 70 parts by mass), the balance between the impact resistance and the rigidity of the obtained molded product is deteriorated. On the other hand, when the rubber-containing graft copolymer (A) exceeds 50 parts by mass (when the hard polymer (B) is less than 50 parts by mass), the fluidity and moldability deteriorate.

また、熱可塑性樹脂組成物には、必要に応じてさらに、顔料、染料、滑剤、酸化防止剤、紫外線吸収剤、帯電防止剤、補強剤、充填剤など各種添加剤を、その物性を損なわない範囲内において配合することができる。   In addition, the thermoplastic resin composition may further contain various additives such as pigments, dyes, lubricants, antioxidants, ultraviolet absorbers, antistatic agents, reinforcing agents, fillers, etc. as necessary. It can mix | blend within the range.

熱可塑性樹脂組成物を得る方法としては特に制限はないが、ゴム含有グラフト共重合体(A)と硬質重合体(B)とを混合した後に溶融混練することが好ましい。溶融混練は、例えば、押出し機、バンバリーミキサー等を用いて実施することができる。   Although there is no restriction | limiting in particular as a method of obtaining a thermoplastic resin composition, It is preferable to melt-knead, after mixing a rubber-containing graft copolymer (A) and a hard polymer (B). Melt kneading can be performed using, for example, an extruder, a Banbury mixer, or the like.

<成形品>
本発明の成形品は、上述した熱可塑性樹脂組成物を成形したものである。
成形方法としては、射出成形、押出し成形、真空成形、圧空成形、ブロー成形、異形押出し成形など、公知の成形方法を用いることができる。
本発明の成形品は、流動性・成形性に優れ、また、得られる成形品の耐衝撃性と剛性とのバランスに優れる熱可塑性樹脂組成物からなるものであり、大型成形品に好適である。
<Molded product>
The molded article of the present invention is obtained by molding the above-described thermoplastic resin composition.
As the molding method, known molding methods such as injection molding, extrusion molding, vacuum molding, pressure molding, blow molding, and profile extrusion molding can be used.
The molded article of the present invention is composed of a thermoplastic resin composition that is excellent in fluidity and moldability, and that has an excellent balance between impact resistance and rigidity of the obtained molded article, and is suitable for large molded articles. .

以下に、合成例、実施例および比較例を挙げて本発明をより具体的に説明するが、本発明はその要旨を超えない限り以下の実施例により何ら限定されるものではない。なお、以下において、「部」は「質量部」を意味するものとする。
また、ゴム質重合体(a)のゲル含有量、膨潤量および質量平均粒子径;ゴム含有グラフト共重合体(A)のグラフト密度およびオクルード単量体量;硬質重合体(B)中のスチレン単位およびアクリロニトリル単位の含有量、硬質重合体(B)のMw/Mnおよび分子量が5万以上のものの割合を以下のように測定した。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to synthesis examples, examples, and comparative examples. However, the present invention is not limited to the following examples unless it exceeds the gist. In the following, “part” means “part by mass”.
Further, the gel content, swelling amount and mass average particle diameter of the rubber-like polymer (a); the graft density and the amount of occluded monomer of the rubber-containing graft copolymer (A); styrene in the hard polymer (B) The content of units and acrylonitrile units, the Mw / Mn of the hard polymer (B), and the proportion of those having a molecular weight of 50,000 or more were measured as follows.

[ゲル含有量]
ゴム質重合体(a)のサンプルWc(g)をトルエンに室温(23℃)で20時間かけて溶解させ、次いで、100メッシュ金網で不溶分を分取し、不溶分を60℃にて24時間乾燥して、乾燥不溶分量Wg(g)を測定し、下記式で算出した。
ゲル含有量(質量%)=Wg/Wc×100
[Gel content]
The rubber polymer (a) sample Wc (g) was dissolved in toluene at room temperature (23 ° C.) for 20 hours, and then the insoluble matter was fractionated with a 100 mesh wire mesh. After drying for a while, the dry insoluble content Wg (g) was measured and calculated by the following formula.
Gel content (mass%) = Wg / Wc × 100

[膨潤量]
ゴム質重合体(a)をトルエンに室温(23℃)で20時間かけて溶解させ、次いで、100メッシュ金網で不溶分を分取した直後に膨潤状態の不溶分量Wsを測定し、ついで、不溶分を60℃にて24時間乾燥して、乾燥不溶分量Wg(g)を測定し、下記式で算出した。
膨潤量(倍)=Ws/Wg
[Swelling amount]
The rubber-like polymer (a) was dissolved in toluene at room temperature (23 ° C.) for 20 hours, and then the insoluble matter amount Ws in the swollen state was measured immediately after separating the insoluble matter with a 100 mesh wire net, and then insoluble. The minute was dried at 60 ° C. for 24 hours, the dry insoluble content Wg (g) was measured, and calculated by the following formula.
Swelling amount (times) = Ws / Wg

[質量平均粒子径]
ゴム質重合体(a)の質量平均粒子径は、日機装(株)製、Micro track Model:9230UPAを用い、動的光散乱法により求めた。
[Mass average particle diameter]
The mass average particle diameter of the rubber polymer (a) was determined by a dynamic light scattering method using Micro track Model: 9230UPA manufactured by Nikkiso Co., Ltd.

[グラフト密度]
ゴム含有グラフト共重合体(A)のサンプルをアセトン中に溶解させ、遠心分離器を用いて可溶分と不溶分とに分離し、得られた不溶分X(g)をオゾン分解させた。不溶分をメタノールに溶解させ、メタノール不溶分m(g)を分離した。得られたメタノール不溶分について、GPCにて質量平均分子量Mwを求め、これらの結果を基に次の計算式により算出した。
グラフト密度(%)=グラフト率/(Mw/104
グラフト率(質量%)={m/(X−m)}×100
[Graft density]
A sample of the rubber-containing graft copolymer (A) was dissolved in acetone and separated into a soluble part and an insoluble part using a centrifugal separator, and the obtained insoluble part X (g) was subjected to ozonolysis. Insoluble matter was dissolved in methanol, and methanol insoluble matter m (g) was separated. About the obtained methanol insoluble matter, mass average molecular weight Mw was calculated | required by GPC, and it computed with the following formula based on these results.
Graft density (%) = Graft rate / (Mw / 10 4 )
Graft rate (mass%) = {m / (X−m)} × 100

ここで、質量平均分子量Mwは、東ソー(株)製「GPC(ゲル・パーミエーション・クロマトグラフィー)」を用いて測定し、標準ポリスチレン換算法にて算出した。また、不溶分のオゾン分解は、アセトン不溶分をクロロホルム中に分散させ、12時間以上静置したのち、液中にオゾンを2時間通気して、ブタジエンを分解反応させることにより行った。分解反応の終了は、液の透過率を測定することにより確認した。分解終了後に、液を濃縮し、メタノールを添加してポリマー成分を沈殿、濾過、乾燥してメタノール不溶分を得た。   Here, the mass average molecular weight Mw was measured using “GPC (Gel Permeation Chromatography)” manufactured by Tosoh Corporation and calculated by a standard polystyrene conversion method. Further, ozonolysis of insoluble matter was carried out by dispersing acetone-insoluble matter in chloroform and allowing it to stand for 12 hours or more, and then bubbling ozone through the solution for 2 hours to cause butadiene to decompose. The completion of the decomposition reaction was confirmed by measuring the liquid permeability. After the decomposition, the liquid was concentrated and methanol was added to precipitate the polymer component, which was filtered and dried to obtain a methanol-insoluble matter.

[オクルード単量体量]
オクルード単量体量とは、ゴム質重合体の内部に位置する単量体成分の重合体量のことであり、含浸前のゴム質重合体の粒子径と、グラフト重合後のゴム質重合体の粒子径を測定し、その体積増加率からオクルード単量体量を算出することができる。具体的には、グラフト重合の前後のゴム質重合体それぞれを、オスミウム酸で染色し、透過型電子顕微鏡(TEM)観察により粒子径を計測し、平均体積増加分からオクルード単量体量を算出した。
[Occluded monomer amount]
The amount of occluded monomer is the amount of monomer component polymer located inside the rubbery polymer. The particle size of the rubbery polymer before impregnation and the rubbery polymer after graft polymerization. The amount of occluded monomer can be calculated from the volume increase rate. Specifically, each of the rubbery polymers before and after the graft polymerization was stained with osmic acid, the particle diameter was measured by observation with a transmission electron microscope (TEM), and the amount of occluded monomer was calculated from the average volume increase. .

[単量体単位含有量]
硬質重合体(B)中のスチレン単位およびアクリロニトリル単位は、赤外スペクトルによって求めた。
[分子量]
硬質重合体(B)のMw/Mnおよび分子量が5万以上のものの割合は、硬質重合体(B)のサンプルをアセトンに溶解し、アセトン可溶分について、GPC((株)東ソー製、HLC8020)を使用して測定した。
[Monomer unit content]
The styrene unit and acrylonitrile unit in the hard polymer (B) were determined by infrared spectrum.
[Molecular weight]
The ratio of Mw / Mn and molecular weight of 50,000 or more of the hard polymer (B) is that the sample of the hard polymer (B) is dissolved in acetone. ).

<合成例1:ゴム含有グラフト共重合体(A−1)の製造>
オートクレーブに、硫酸第一鉄、ピロリン酸ナトリウム、結晶ブドウ糖およびクメンハイドロパーオキサイドを除く表1の原料(ポリブタジエン(a−1)のゲル含有量は60質量%、膨潤量は30倍、質量平均粒子径は300nm)を仕込み、60℃に加熱してポリブタジエン(a−1)に単量体混合物を含浸させた。そして、60℃に保持したまま45分間放置した後、その中に硫酸第一鉄、ピロリン酸ナトリウム、結晶ブドウ糖およびクメンハイドロパーオキサイドを150分かけて連続添加し、続いて70℃に昇温し、これを1時間保って反応を完結させて重合体ラテックスを得た。
次いで、この重合体ラテックスに酸化防止剤を添加し、その後、硫酸を添加して重合体を凝固させ、十分水洗後、乾燥してゴム含有グラフト共重合体(A−1)を得た。
そして、得られたゴム含有グラフト共重合体(A−1)中のグラフトされた重合体の質量平均分子量、グラフト率を測定し、グラフト密度を求めた。また、オクルード単量体量を求めた。
<Synthesis Example 1: Production of rubber-containing graft copolymer (A-1)>
In autoclave, raw materials in Table 1 excluding ferrous sulfate, sodium pyrophosphate, crystalline glucose and cumene hydroperoxide (the gel content of polybutadiene (a-1) is 60% by mass, the amount of swelling is 30 times, the mass average particle The diameter was 300 nm) and heated to 60 ° C. to impregnate the polybutadiene (a-1) with the monomer mixture. Then, after being left at 60 ° C. for 45 minutes, ferrous sulfate, sodium pyrophosphate, crystalline glucose and cumene hydroperoxide are continuously added over 150 minutes, and then the temperature is raised to 70 ° C. This was maintained for 1 hour to complete the reaction to obtain a polymer latex.
Next, an antioxidant was added to the polymer latex, and then the sulfuric acid was added to solidify the polymer. After sufficiently washing with water, the polymer latex was dried to obtain a rubber-containing graft copolymer (A-1).
And the mass average molecular weight of the grafted polymer in the obtained rubber-containing graft copolymer (A-1) and the graft ratio were measured, and the graft density was determined. Further, the amount of occluded monomer was determined.

<合成例2:ゴム含有グラフト共重合体(A−2)の製造>
ポリブタジエン・ラテックスとして、ゲル含有量98質量%、膨潤量20倍、質量平均粒子径300nmのポリブタジエン(a−2)ラテックスを使用したこと以外は、合成例1と同様にして、ゴム含有グラフト共重合体(A−2)を得た。得られたゴム含有グラフト共重合体(A−2)中のグラフトされた重合体の質量平均分子量、グラフト率を測定し、グラフト密度を求めた。また、オクルード単量体量を求めた。
<Synthesis Example 2: Production of rubber-containing graft copolymer (A-2)>
A rubber-containing graft copolymer was used in the same manner as in Synthesis Example 1 except that a polybutadiene (a-2) latex having a gel content of 98% by mass, a swelling amount of 20 times, and a mass average particle size of 300 nm was used as the polybutadiene latex. The union (A-2) was obtained. The mass average molecular weight and graft ratio of the grafted polymer in the obtained rubber-containing graft copolymer (A-2) were measured, and the graft density was determined. Further, the amount of occluded monomer was determined.

<合成例3:ゴム含有グラフト共重合体(A−3)の製造>
オートクレーブへの仕込量を表1に示す量に変更し、含浸時間を変更した以外は、合成例2と同様にしてゴム含有グラフト共重合体(A−3)を得た。得られたゴム含有グラフト共重合体(A−3)中のグラフトされた重合体の質量平均分子量、グラフト率を測定し、グラフト密度を求めた。また、オクルード単量体量を求めた。
<Synthesis Example 3: Production of rubber-containing graft copolymer (A-3)>
A rubber-containing graft copolymer (A-3) was obtained in the same manner as in Synthesis Example 2 except that the amount charged into the autoclave was changed to the amount shown in Table 1 and the impregnation time was changed. The mass average molecular weight and graft ratio of the grafted polymer in the obtained rubber-containing graft copolymer (A-3) were measured to determine the graft density. Further, the amount of occluded monomer was determined.

Figure 2006045257
Figure 2006045257

<合成例4:硬質重合体(B−1)の製造>
窒素置換した反応器に表2に示す成分からなる単量体混合物を仕込み、開始温度を60℃として5時間加熱後、120℃に昇温し、続いて4時間反応させて重合を完結させた。その際の最終転化率は96%であり、得られた硬質重合体(B−1)のMw/Mnは4.0、分子量5万以上の重合体の割合は55質量%、アクリロニトリル単位の含有量は28.4質量%であった。
<Synthesis Example 4: Production of Rigid Polymer (B-1)>
A monomer mixture consisting of the components shown in Table 2 was charged into a reactor purged with nitrogen, heated to 60 ° C. for 5 hours, heated to 120 ° C., and then reacted for 4 hours to complete the polymerization. . The final conversion rate at that time was 96%, the Mw / Mn of the obtained hard polymer (B-1) was 4.0, the proportion of the polymer having a molecular weight of 50,000 or more was 55% by mass, and the content of acrylonitrile units The amount was 28.4% by mass.

<合成例5:硬質重合体(B−2)の製造>
t−ドデシルメルカプタンを0.1部、ノルマルオクチルメルカプタンを0.6部にしたこと以外は、合成例4と同様にして硬質重合体(B−2)を得た。その際の最終転化率は98%で、得られた硬質重合体(B−2)のMw/Mnは4.6、分子量5万以上の重合体の割合は52質量%、アクリロニトリル単位の含有量は28.3質量%であった。
<Synthesis Example 5: Production of hard polymer (B-2)>
A hard polymer (B-2) was obtained in the same manner as in Synthesis Example 4 except that 0.1 part of t-dodecyl mercaptan and 0.6 part of normal octyl mercaptan were used. The final conversion rate at that time was 98%, Mw / Mn of the obtained hard polymer (B-2) was 4.6, the proportion of the polymer having a molecular weight of 50,000 or more was 52% by mass, and the content of acrylonitrile units. Was 28.3 mass%.

<合成例6:硬質重合体(B−3)の製造>
t−ドデシルメルカプタンを0部、ノルマルオクチルメルカプタンを1.0部にしたこと以外は、合成例4と同様にして硬質重合体(B−3)を得た。その際の最終転化率は98%で、得られた硬質重合体(B−3)のMw/Mnは9.7、分子量5万以上の重合体の割合は47質量%、アクリロニトリル単位の含有量は27.0質量%であった。
<Synthesis Example 6: Production of hard polymer (B-3)>
A hard polymer (B-3) was obtained in the same manner as in Synthesis Example 4 except that 0 part of t-dodecyl mercaptan and 1.0 part of normal octyl mercaptan were used. The final conversion rate at that time was 98%, Mw / Mn of the obtained hard polymer (B-3) was 9.7, the proportion of the polymer having a molecular weight of 50,000 or more was 47% by mass, and the content of acrylonitrile units. Was 27.0% by mass.

<合成例7:硬質重合体(B−4)の製造>
t−ドデシルメルカプタンを0.4部、ノルマルオクチルメルカプタンを0部にしたこと以外は、合成例4と同様にして硬質重合体(B−4)を得た。その際の最終転化率は98%で、得られた硬質重合体(B−4)のMw/Mnは1.7、分子量5万以上の重合体の割合は65質量%、アクリロニトリル単位の含有量は26.7質量%であった。
<Synthesis Example 7: Production of hard polymer (B-4)>
A hard polymer (B-4) was obtained in the same manner as in Synthesis Example 4, except that 0.4 part of t-dodecyl mercaptan and 0 part of normal octyl mercaptan were used. The final conversion rate at that time was 98%, Mw / Mn of the obtained hard polymer (B-4) was 1.7, the proportion of the polymer having a molecular weight of 50,000 or more was 65% by mass, and the content of acrylonitrile units. Was 26.7% by mass.

Figure 2006045257
Figure 2006045257

<実施例1〜3、比較例1〜4>
上記合成例にて得られた各重合体を表3に示す割合で配合し、0.5質量部の滑剤(「PRN−208」日本油脂(株)製)とともにヘンシェリングさせた。次いで、220℃で2軸押出機((株)日本製鋼所製:TEX−44)にて溶融混合し、ペレット化して熱可塑性樹脂組成物を得た。このペレットを4オンス射出成形機((株)日本製鋼所製)で240℃にて成形し、必要なテストピースを作成し、それぞれ以下のように評価した。その結果を表3に示す。
<Examples 1-3, Comparative Examples 1-4>
Each polymer obtained in the above synthesis example was blended in the ratio shown in Table 3, and hescheled together with 0.5 parts by mass of a lubricant (“PRN-208” manufactured by Nippon Oil & Fats Co., Ltd.). Next, the mixture was melt-mixed at 220 ° C. with a twin-screw extruder (manufactured by Nippon Steel Works: TEX-44) and pelletized to obtain a thermoplastic resin composition. The pellets were molded at 240 ° C. with a 4 ounce injection molding machine (manufactured by Nippon Steel Works), and necessary test pieces were prepared and evaluated as follows. The results are shown in Table 3.

Figure 2006045257
Figure 2006045257

(アイゾット衝撃強度)
厚さ1/8インチの試験片を用い、アイゾット衝撃強度をASTM−D256に準拠して23℃および−30℃にて測定した。
(メルトフローインデックス)
メルトフローインデックス(MI)をASTM−D1238に準拠して220℃、荷重98Nにて測定した。
(Izod impact strength)
Using a test piece having a thickness of 1/8 inch, Izod impact strength was measured at 23 ° C. and −30 ° C. in accordance with ASTM-D256.
(Melt flow index)
The melt flow index (MI) was measured at 220 ° C. and a load of 98 N in accordance with ASTM-D1238.

(引張強度)
引張強度をASTM−D790に準拠して23℃にて測定した。
(伸び率)
伸び率をASTM−D790に準拠して23℃にて測定した。
(Tensile strength)
Tensile strength was measured at 23 ° C. according to ASTM-D790.
(Growth rate)
The elongation was measured at 23 ° C. according to ASTM-D790.

(曲げ強度)
曲げ強度をASTM−D790に準拠して23℃にて測定した。
(曲げ弾性率)
曲げ弾性率をASTM−D790に準拠して23℃にて測定した。
(Bending strength)
The bending strength was measured at 23 ° C. according to ASTM-D790.
(Flexural modulus)
The flexural modulus was measured at 23 ° C. according to ASTM-D790.

(表面外観)
50×200×2(mm)の試験片を作製し,次の評価基準に基づき判定した。
◎:極めて均一な光沢性を示した。
○:光沢ムラは、僅かであり、実用できる。
△:部分的な光沢ムラがあり、実用に耐えない。
×:光沢ムラが顕著である。
××:光沢ムラが極めて顕著である。
(Surface appearance)
A test piece of 50 × 200 × 2 (mm) was prepared and judged based on the following evaluation criteria.
A: Extremely uniform gloss was shown.
○: Gloss unevenness is slight and practical.
(Triangle | delta): There exists a partial gloss unevenness and it cannot endure practical use.
X: Gloss unevenness is remarkable.
XX: Gloss unevenness is extremely remarkable.

(スパイラルフロー)
厚さ2mmのスパイラル金型を用い、熱可塑性樹脂組成物を、4オンス射出成形機から射出温度220℃、金型温度50℃、射出圧7Mpaで射出し、流動長(mm)を測定した。
(Spiral flow)
Using a spiral mold having a thickness of 2 mm, the thermoplastic resin composition was injected from a 4 ounce injection molding machine at an injection temperature of 220 ° C., a mold temperature of 50 ° C. and an injection pressure of 7 Mpa, and the flow length (mm) was measured.

(シルバー試験)
リッド金型(自動車メータパネル型)を用い、熱可塑性樹脂組成物を、8オンス射出成形機から射出温度250℃、金型温度50℃で射出し、成形品を得た。射出速度を段階的に上げて射出成形を繰り返し、目視にて成形品表面を観察し、シルバーが発生した時の射出速度を、シルバー発生射出速度とした。
(Silver test)
Using a lid mold (automobile meter panel mold), the thermoplastic resin composition was injected from an 8 ounce injection molding machine at an injection temperature of 250 ° C. and a mold temperature of 50 ° C. to obtain a molded product. The injection speed was increased stepwise and injection molding was repeated. The surface of the molded product was visually observed, and the injection speed when silver was generated was defined as the silver generation injection speed.

実施例1〜3の熱可塑性樹脂組成物は、シルバー性、流動性の改良により、成形加工性が改良され、また耐衝撃性および剛性のバランスが良好であった。   The thermoplastic resin compositions of Examples 1 to 3 were improved in moldability due to improved silver properties and fluidity, and had a good balance between impact resistance and rigidity.

比較例1の熱可塑性樹脂組成物は、硬質重合体(B)のMw/Mnが1.7であり、本発明の範囲外であったため、流動性および成形性が劣っていた。   The thermoplastic resin composition of Comparative Example 1 had a Mw / Mn of the hard polymer (B) of 1.7, which was outside the scope of the present invention, and thus was poor in fluidity and moldability.

比較例2の熱可塑性樹脂組成物は、ゴム含有グラフト共重合体(A)のゲル含有量が98質量%で、本発明の範囲外であり、また、硬質重合体(B)のMw/Mnが1.7で、本発明の範囲外であったため、流動性および成形性が劣り、さらに表面外観も劣っていた。   In the thermoplastic resin composition of Comparative Example 2, the rubber-containing graft copolymer (A) has a gel content of 98% by mass, which is outside the scope of the present invention, and the Mw / Mn of the hard polymer (B). 1.7, which was outside the scope of the present invention, was inferior in fluidity and moldability, and inferior in surface appearance.

比較例3の熱可塑性樹脂組成物は、ゴム含有グラフト共重合体(A)のゲル含有量が98質量%、グラフト密度が5%で、本発明の範囲外であり、また、硬質重合体(B)のMw/Mnが1.7で、本発明の範囲外であったため、流動性、成形性表面外観が劣り、さらに耐衝撃性が劣っていた。   The thermoplastic resin composition of Comparative Example 3 has a rubber-containing graft copolymer (A) having a gel content of 98% by mass and a graft density of 5%, which is outside the scope of the present invention. Since Mw / Mn of B) was 1.7, which was outside the scope of the present invention, the fluidity and formability of the surface appearance were inferior, and the impact resistance was also inferior.

比較例4の熱可塑性樹脂組成物は、ゴム含有グラフト共重合体(A)のゲル含有量が98質量%、グラフト密度が5%であり、本発明の範囲外であったため、耐衝撃性が劣っていた。   The thermoplastic resin composition of Comparative Example 4 had a rubber content of the graft copolymer (A) having a gel content of 98% by mass and a graft density of 5%, which was outside the scope of the present invention. It was inferior.

以上の結果から、本発明に従って、ゴム含有グラフト共重合体(A)と硬質重合体(B)とを特定樹脂組成比率で配合した熱可塑性樹脂組成物は、流動性および成形性(シルバー性)の両方に優れており、かつ、耐衝撃性および剛性のバランスも良好であるため、耐衝撃性を低下させずに、成形品を薄肉化できることが判明した。   From the above results, according to the present invention, the thermoplastic resin composition in which the rubber-containing graft copolymer (A) and the hard polymer (B) are blended at a specific resin composition ratio is fluid and moldable (silver). It has been found that the molded product can be made thin without reducing the impact resistance, since both are excellent in both, and the balance between impact resistance and rigidity is also good.

本発明の熱可塑性樹脂組成物は、ABS樹脂に代表されるゴム含有スチレン系樹脂の従来からの欠点が改良された画期的な高性能成形材料である。従って、本発明の熱可塑性樹脂組成物は、家電製品等の大型成形品用の成形材料として、その工業的な実用価値は極めて大きい。
The thermoplastic resin composition of the present invention is an epoch-making high-performance molding material in which the conventional defects of rubber-containing styrenic resins represented by ABS resin are improved. Therefore, the thermoplastic resin composition of the present invention has a very large industrial practical value as a molding material for large molded articles such as home appliances.

Claims (3)

ゲル含有量が50〜70質量%であり、膨潤量が10〜50倍であり、質量平均粒子径が100〜600nmの範囲にあるゴム質重合体(a)に、芳香族ビニル単量体およびシアン化ビニル単量体を含有する単量体混合物の一部または全量を含浸させ、グラフト密度6〜15%の範囲でグラフト重合したゴム含有グラフト共重合体(A)30〜50質量部と、
芳香族ビニル単量体単位およびシアン化ビニル単量体単位を有し、アセトン可溶分の質量平均分子量Mwと数平均分子量Mnとの比(Mw/Mn)が4.0以上であり、分子量が5万以上のものの割合が35〜65質量%である硬質重合体(B)50〜70質量部と
を含有する[ゴム含有グラフト共重合体(A)および硬質重合体(B)の合計は100質量部である]ことを特徴とする熱可塑性樹脂組成物。
An aromatic vinyl monomer and a rubber polymer (a) having a gel content of 50 to 70% by mass, a swelling amount of 10 to 50 times, and a mass average particle diameter in the range of 100 to 600 nm 30 to 50 parts by mass of a rubber-containing graft copolymer (A) impregnated with a part or all of a monomer mixture containing a vinyl cyanide monomer and graft-polymerized in a range of a graft density of 6 to 15%;
It has an aromatic vinyl monomer unit and a vinyl cyanide monomer unit, has a ratio (Mw / Mn) of mass average molecular weight Mw to number average molecular weight Mn of acetone-soluble matter of 4.0 or more, and has a molecular weight And 50 to 70 parts by mass of the hard polymer (B) having a ratio of 35 to 65% by mass of [the total of the rubber-containing graft copolymer (A) and the hard polymer (B) It is 100 parts by mass].
グラフト重合体(A)には、さらに、芳香族ビニル単量体およびシアン化ビニル単量体と共重合可能な他の単量体がグラフト重合していることを特徴とする請求項1に記載の熱可塑性樹脂組成物。   The graft polymer (A) is further graft-polymerized with another monomer copolymerizable with an aromatic vinyl monomer and a vinyl cyanide monomer. Thermoplastic resin composition. 請求項1または請求項2に記載の熱可塑性樹脂組成物を成形した成形品。
A molded article obtained by molding the thermoplastic resin composition according to claim 1.
JP2004223986A 2004-07-30 2004-07-30 Thermoplastic resin composition and molded article thereof Withdrawn JP2006045257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004223986A JP2006045257A (en) 2004-07-30 2004-07-30 Thermoplastic resin composition and molded article thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004223986A JP2006045257A (en) 2004-07-30 2004-07-30 Thermoplastic resin composition and molded article thereof

Publications (1)

Publication Number Publication Date
JP2006045257A true JP2006045257A (en) 2006-02-16

Family

ID=36024228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004223986A Withdrawn JP2006045257A (en) 2004-07-30 2004-07-30 Thermoplastic resin composition and molded article thereof

Country Status (1)

Country Link
JP (1) JP2006045257A (en)

Similar Documents

Publication Publication Date Title
CN102329462B (en) Thermoplastic resin composition and molding product thereof
EP2235104B1 (en) Low gloss thermoplastic resin composition with soft touch surface and molded article therefrom
US6380304B1 (en) Mass polymerized rubber-modified monovinylidene aromatic copolymer compositions
KR102044364B1 (en) Thermoplastic resin and thermoplastic resin composition
KR20170025900A (en) Thermoplastic resin composition and method for preparing the same
JPS63146960A (en) Thermoplastic resin composition
KR101827613B1 (en) Rubber-modified vinyl-based graft copolymer and thermoplastic resin composition comprising the same
JP4398826B2 (en) Antistatic thermoplastic resin composition and molded article using the same
JP2007023098A (en) Thermoplastic resin composition and its molded article
JP2006045257A (en) Thermoplastic resin composition and molded article thereof
JPH1025371A (en) Rubber-containing resin composition and styrene-based resin composition using the same
KR860001431B1 (en) A blended thermoplastic resin composition
JP4741202B2 (en) Thermoplastic resin composition and molded article thereof
JP2000086848A (en) Thermoplastic resin composition for extrusion molding and molding made therefrom
JP5632447B2 (en) Thermoplastic resin composition and molded article thereof
JP4818580B2 (en) Method for producing impact-resistant polyphenylene ether
JP2004256743A (en) Thermoplastic resin composition and method for producing the same
JP2000204222A (en) Thermoplastic resin composition and molded product thereof
JP2001288327A (en) Thermoplastic resin composition
JP2006160782A (en) Thermoplastic resin composition and molded article
JP2002146148A (en) Flame-retardant thermoplastic resin composition
JPH09157493A (en) Thermoplastic resin composition
JP2000191866A (en) Marring resistant resin composition and molded article therefrom
JPS6079060A (en) Polyphenylene ether resin composition
JPS63312343A (en) Thermoplastic resin composition

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071002