JP2006045166A - Method for producing alicyclic polyvalent carboxylic acid and acid anhydride thereof - Google Patents

Method for producing alicyclic polyvalent carboxylic acid and acid anhydride thereof Download PDF

Info

Publication number
JP2006045166A
JP2006045166A JP2004232011A JP2004232011A JP2006045166A JP 2006045166 A JP2006045166 A JP 2006045166A JP 2004232011 A JP2004232011 A JP 2004232011A JP 2004232011 A JP2004232011 A JP 2004232011A JP 2006045166 A JP2006045166 A JP 2006045166A
Authority
JP
Japan
Prior art keywords
catalyst
polyvalent carboxylic
acid
carboxylic acid
alicyclic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004232011A
Other languages
Japanese (ja)
Other versions
JP4633400B2 (en
Inventor
Takehiro Shimizu
健博 清水
Munehito Nagai
宗仁 永井
Haruki Takeuchi
玄樹 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP2004232011A priority Critical patent/JP4633400B2/en
Publication of JP2006045166A publication Critical patent/JP2006045166A/en
Application granted granted Critical
Publication of JP4633400B2 publication Critical patent/JP4633400B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for industrially and advantageously producing the corresponding alicyclic polyvalent carboxylic acid and an acid anhydride thereof by hydrogenating aromatic polyvalent carboxylic acids (an aromatic polyvalent carboxylic acid or an acid anhydride thereof). <P>SOLUTION: The aromatic polyvalent carboxylic acid or the acid anhydride thereof is reacted with an aliphatic alcohol in the presence of a noble metal catalyst having a hydrogenating catalytic ability such as a ruthenium catalyst to afford an ester compound. The aromatic ring is subsequently hydrogenated in the presence of the catalyst. A solid acid catalyst such as an ion exchange resin catalyst is then made to exist to carry out hydrolysis. Thereby, the alicyclic polyvalent carboxylic acid is obtained. The resultant alicyclic polyvalent carboxylic acid is further cyclodehydrated to afford the alicyclic polyvalent carboxylic acid anhydride. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は芳香族多価カルボン酸又はその酸無水物(以下、芳香族多価カルボン酸類という)からの脂環式多価カルボン酸及びその酸無水物(以下、脂環式多価カルボン酸類という)の製造方法に関する。脂環式多価カルボン酸類は、透明性、耐熱変色性、溶剤可溶性などの特性を有するポリイミドなどの原料として有用である。   The present invention relates to an alicyclic polycarboxylic acid from an aromatic polycarboxylic acid or an acid anhydride thereof (hereinafter referred to as aromatic polycarboxylic acid) and an acid anhydride thereof (hereinafter referred to as an alicyclic polycarboxylic acid). ) Manufacturing method. The alicyclic polycarboxylic acids are useful as raw materials for polyimides having properties such as transparency, heat discoloration, and solvent solubility.

特公昭36−522号公報Japanese Patent Publication No. 36-522 米国特許第3,520,921号公報U.S. Pat. No. 3,520,921 米国特許第5,412,108号公報US Pat. No. 5,412,108 特開2002−020346号公報JP 2002-020346 A 特開2002−193873号公報JP 2002-193873 A 特開2003−286222号公報JP 2003-286222 A 特開平7−082211号公報JP-A-7-082221 米国特許第2,828,335号公報U.S. Pat. No. 2,828,335 特開平1−096147号公報Japanese Patent Laid-Open No. 1-096147 特開平7−215912号公報JP 7-215912 A 特開平8−325201号公報JP-A-8-325201 特開平8−325196号公報JP-A-8-325196 特開2004−026723号公報Japanese Patent Application Laid-Open No. 2004-026723 Journal of Organic Chemistry、1966年、31、 P. 3438Journal of Organic Chemistry, 1966, 31, P. 3438

脂環式多価カルボン酸類の製造方法としては、芳香族多価カルボン酸類の芳香環を水素化する方法(例えば、特許文献1〜7、非特許文献1)、芳香族多価カルボン酸塩の芳香環を水素化する方法(例えば、特許文献8)、芳香族多価カルボン酸エステルの芳香環を水素化する方法(例えば、特許文献9〜11)が知られている。   As a manufacturing method of alicyclic polyhydric carboxylic acids, the method of hydrogenating the aromatic ring of aromatic polyhydric carboxylic acids (for example, patent documents 1-7, nonpatent literature 1), aromatic polyvalent carboxylate salt A method for hydrogenating an aromatic ring (for example, Patent Document 8) and a method for hydrogenating an aromatic ring of an aromatic polyvalent carboxylic acid ester (for example, Patent Documents 9 to 11) are known.

特許文献11には、脂環式多価カルボン酸エステルを製造するにあたり、芳香族多価カルボン酸類と脂肪族アルコールとを無触媒下に加熱してエステル化度の異なる芳香族多価カルボン酸エステル混合物を得(エステル化工程)、次いで貴金属系水素化触媒及び脂肪族アルコールの存在下に加熱して核水素化する(水素化工程)方法が開示されている。この方法は芳香族エステルを単離する必要がなく、同一反応器でエステル化、水素化の両工程を行うことができるという利点を有するものの、エステル化工程後に貴金属系水素化触媒を添加する操作を必要とし、工業的には幾つかの問題を内包している。例えば、エステル化工程又は水素化工程で推奨される温度(前者では180〜230℃、後者では100〜150℃)において、脂肪族アルコールとして特に好ましいとされるメタノール、エタノール、1-プロパノールはいずれも大気圧を超える蒸気圧を有しており、その状態で触媒を添加する方法としては溶媒に懸濁させた触媒を加圧装入する方法を挙げることができるが、高圧対応のスラリーポンプなど特殊な装置を必要とする。一方、脂肪族アルコールの蒸気圧が許容上限以下になるまで降温した後に、マンホールなどから触媒を投入する方法も考えられるが、降温及び再加熱に要する時間は生産性の低下に直接つながる上、エネルギー効率的にも問題がある。   In Patent Document 11, an aromatic polyvalent carboxylic acid ester having a different degree of esterification is produced by heating an aromatic polyvalent carboxylic acid and an aliphatic alcohol in the absence of a catalyst when producing an alicyclic polyvalent carboxylic acid ester. A method is disclosed in which a mixture is obtained (esterification step) and then heated in the presence of a noble metal hydrogenation catalyst and an aliphatic alcohol to perform nuclear hydrogenation (hydrogenation step). Although this method does not require the isolation of an aromatic ester and has the advantage that both esterification and hydrogenation steps can be carried out in the same reactor, the operation of adding a noble metal hydrogenation catalyst after the esterification step And industrially has some problems. For example, at temperatures recommended in the esterification step or hydrogenation step (180 to 230 ° C. in the former and 100 to 150 ° C. in the latter), all of methanol, ethanol, and 1-propanol that are particularly preferred as aliphatic alcohols As a method of adding a catalyst in a state where the vapor pressure exceeds atmospheric pressure, a method of pressurizing a catalyst suspended in a solvent can be mentioned. Equipment is required. On the other hand, a method is also conceivable in which a catalyst is introduced from a manhole after the temperature of the aliphatic alcohol has fallen below the allowable upper limit, but the time required for temperature reduction and reheating directly leads to a decrease in productivity and energy. There is also a problem with efficiency.

なお、特許文献12及び13には、脂環式多価カルボン酸エステルの加水分解方法及び精製方法が開示されているが、エステル化及び核水素化工程並びに加水分解工程の改良が望まれている。   Patent Documents 12 and 13 disclose hydrolysis and purification methods for alicyclic polycarboxylic esters, but improvements in esterification and nuclear hydrogenation processes and hydrolysis processes are desired. .

脂環式多価カルボン酸又はその酸無水物を工業的に製造する有利な方法を提供する。   An advantageous method for industrially producing an alicyclic polycarboxylic acid or an acid anhydride thereof is provided.

本発明は、芳香族多価カルボン酸又はその酸無水物と脂肪族アルコールとを水素化触媒能を有する貴金属触媒の存在下で反応させてエステル化合物とし、引き続きこの貴金属触媒の存在下で芳香環を水素化し、次いで加水分解することを特徴とする脂環式多価カルボン酸の製造方法である。   In the present invention, an aromatic polycarboxylic acid or an acid anhydride thereof and an aliphatic alcohol are reacted in the presence of a noble metal catalyst having a hydrogenation catalytic ability to form an ester compound, and then an aromatic ring in the presence of the noble metal catalyst. Is a method for producing an alicyclic polyvalent carboxylic acid characterized by hydrogenating and then hydrolyzing.

上記脂環式多価カルボン酸の製造方法において、次のいずれか1以上の要件を更に満足することはより好ましい製造方法を与える。1)エステル化合物とする際の反応温度が、100〜220℃であること、2)貴金属触媒が、ルテニウム触媒であること、3)エステル化合物とする工程及び芳香環を水素化する工程を、同一反応器で行うこと、4)加水分解を、固体酸触媒の存在下で行うこと、又は5)固体酸触媒が、イオン交換樹脂であること。また、本発明は、上記のいずれかに記載の方法で製造した脂環式多価カルボン酸を脱水閉環することを特徴とする脂環式多価カルボン酸無水物の製造方法である。   In the method for producing the alicyclic polycarboxylic acid, further satisfying any one or more of the following requirements provides a more preferred production method. 1) The reaction temperature when making an ester compound is 100 to 220 ° C., 2) the noble metal catalyst is a ruthenium catalyst, and 3) the step of making the ester compound and the step of hydrogenating the aromatic ring are the same. Performing in a reactor, 4) Hydrolysis is performed in the presence of a solid acid catalyst, or 5) The solid acid catalyst is an ion exchange resin. In addition, the present invention is a method for producing an alicyclic polycarboxylic acid anhydride, characterized by dehydrating and ring-closing the alicyclic polycarboxylic acid produced by any of the methods described above.

本発明で原料として使用する芳香族多価カルボン酸類は、芳香族多価カルボン酸又はその酸無水物である。かかる、芳香族多価カルボン酸類としては、フタル酸、1,2,4-ベンゼントリカルボン酸、3-メチルフタル酸、4-メチルフタル酸、3,4,5,6-テトラメチルフタル酸、5-メチルベンゼン-1,2,4-トリカルボン酸、6-メチルベンゼン-1,2,4-トリカルボン酸、3-メチルベンゼン-1,2,4-トリカルボン酸及びこれらの無水物などが例示される。また、ビフェニル-3,3',4,4'-テトラカルボン酸、ジフェニルエーテル-3,3',4,4'-テトラカルボン酸、ベンゾフェノン-3,3',4,4'-テトラカルボン酸、ジフェニルメタン-3,3',4,4'-テトラカルボン酸、エチリデン-4,4'-ビス(1,2-ベンゼンジカルボン酸)、プロピリデン-4,4'-ビス(1,2-ベンゼンジカルボン酸)、1,2,3,4-ベンゼンテトラカルボン酸、1,2,4,5-ベンゼンテトラカルボン酸、3-メチルベンゼン-1,2,4,5-テトラカルボン酸、3,6-ジメチルベンゼン-1,2,4,5-テトラカルボン酸及びこれらの二無水物などが例示される。更に、ベンゼンペンタカルボン酸やベンゼンヘキサカルボン酸又はこれらの二又は三無水物などが例示される。   The aromatic polyvalent carboxylic acid used as a raw material in the present invention is an aromatic polyvalent carboxylic acid or an acid anhydride thereof. Such aromatic polyvalent carboxylic acids include phthalic acid, 1,2,4-benzenetricarboxylic acid, 3-methylphthalic acid, 4-methylphthalic acid, 3,4,5,6-tetramethylphthalic acid, 5-methyl Examples include benzene-1,2,4-tricarboxylic acid, 6-methylbenzene-1,2,4-tricarboxylic acid, 3-methylbenzene-1,2,4-tricarboxylic acid, and anhydrides thereof. Biphenyl-3,3 ', 4,4'-tetracarboxylic acid, diphenyl ether-3,3', 4,4'-tetracarboxylic acid, benzophenone-3,3 ', 4,4'-tetracarboxylic acid, Diphenylmethane-3,3 ', 4,4'-tetracarboxylic acid, ethylidene-4,4'-bis (1,2-benzenedicarboxylic acid), propylidene-4,4'-bis (1,2-benzenedicarboxylic acid) ), 1,2,3,4-benzenetetracarboxylic acid, 1,2,4,5-benzenetetracarboxylic acid, 3-methylbenzene-1,2,4,5-tetracarboxylic acid, 3,6-dimethyl Examples thereof include benzene-1,2,4,5-tetracarboxylic acid and dianhydrides thereof. Further examples include benzenepentacarboxylic acid, benzenehexacarboxylic acid, and their dianhydrides or dianhydrides.

もう一つの原料として使用する脂肪族アルコールとしては、炭素数1〜6の直鎖状、分岐鎖状又は環状の脂肪族アルコールがあるが、具体的には、メタノール、エタノール、1-プロパノール、2-プロパノール、イソブタノール、アミルアルコール及びシクロヘキサノールなどが例示され、中でもメタノール及びエタノールが好ましい。   The aliphatic alcohol used as another raw material includes a linear, branched or cyclic aliphatic alcohol having 1 to 6 carbon atoms. Specifically, methanol, ethanol, 1-propanol, 2 -Propanol, isobutanol, amyl alcohol, cyclohexanol and the like are exemplified, among which methanol and ethanol are preferable.

脂肪族アルコールの使用量としては、芳香族多価カルボン酸類をエステル化するに必要な化学量論以上の量であればよいが、脂肪族アルコールは溶媒としても作用するので、過剰に使用することが望ましい。好ましくは、化学量論の1〜100倍であり、より好ましくは2〜50倍である。   The amount of the aliphatic alcohol used may be an amount equal to or higher than the stoichiometric amount required for esterifying the aromatic polyvalent carboxylic acids, but the aliphatic alcohol also acts as a solvent, so use it in excess. Is desirable. Preferably, it is 1 to 100 times the stoichiometry, more preferably 2 to 50 times.

本発明で使用する触媒は、水素化触媒能を有する貴金属触媒である。この触媒は、エステル化反応の触媒としても作用する。かかる、貴金属触媒としては、水素化触媒を調製するために通常使用される担体に、ルテニウム、パラジウムなどの貴金属を担持してなる触媒が例示される。特に好ましいのはルテニウム系触媒である。担体としては、活性炭、アルミナ、シリカ、シリカアルミナ、酸化ジルコニウム、酸化チタンなどが例示される。貴金属の担持量としては、貴金属換算で0.1〜10重量%、好ましくは1〜5%の範囲がよい。触媒の形態は、粉末状、粒状など適宣選択して使用される。触媒の適用量は、反応条件や貴金属の担持量によって異なるが、芳香族多価カルボン酸類に対し、好ましくは0.5〜20重量%、より好ましくは1〜5重量%の範囲である。   The catalyst used in the present invention is a noble metal catalyst having hydrogenation catalytic ability. This catalyst also acts as a catalyst for the esterification reaction. Examples of the noble metal catalyst include a catalyst in which a noble metal such as ruthenium or palladium is supported on a carrier that is usually used for preparing a hydrogenation catalyst. Particularly preferred are ruthenium-based catalysts. Examples of the carrier include activated carbon, alumina, silica, silica alumina, zirconium oxide, titanium oxide and the like. The supported amount of the noble metal is 0.1 to 10% by weight, preferably 1 to 5% in terms of noble metal. The form of the catalyst is appropriately selected from powder form, granular form and the like. The amount of the catalyst applied varies depending on the reaction conditions and the amount of noble metal supported, but is preferably 0.5 to 20% by weight, more preferably 1 to 5% by weight with respect to the aromatic polyvalent carboxylic acids.

エステル化合物を合成する反応は、芳香族多価カルボン酸類と脂肪族アルコールとを、貴金属触媒の存在下で行う。エステル化反応温度は、100〜280℃、好ましくは150〜230℃の範囲がよい。反応時間としては、0.1〜10時間、好ましくは0.5〜5時間の範囲がよい。エステル化反応雰囲気ガスとしては、窒素、水素などが挙げられるが、引き続いて行われる水素化反応を行う際、雰囲気ガスの変更を要しない点で水素が好ましい。   The reaction for synthesizing the ester compound is performed using an aromatic polyvalent carboxylic acid and an aliphatic alcohol in the presence of a noble metal catalyst. The esterification reaction temperature is in the range of 100 to 280 ° C, preferably 150 to 230 ° C. The reaction time is 0.1 to 10 hours, preferably 0.5 to 5 hours. Examples of the esterification reaction atmosphere gas include nitrogen, hydrogen, and the like, but hydrogen is preferable because it does not require a change in the atmosphere gas when the subsequent hydrogenation reaction is performed.

エステル化反応雰囲気ガスとして、水素を使用する場合、エステル化反応と同時に水素化反応が生じるが、反応で消費された水素を追加補給しない限り、水素化反応は十分には生じない。本発明では、エステル化反応終了時の水素化反応率は理論値の20%以下にとどめる。   When hydrogen is used as the esterification reaction atmosphere gas, a hydrogenation reaction occurs simultaneously with the esterification reaction, but the hydrogenation reaction does not sufficiently occur unless additional hydrogen consumed in the reaction is replenished. In the present invention, the hydrogenation reaction rate at the end of the esterification reaction is limited to 20% or less of the theoretical value.

エステル化反応終了後、貴金属触媒を除去することなく、貴金属触媒を存在させた状態で芳香環の水素化(核水素化)を行う。水素化触媒能を有する貴金属触媒を存在させてエステル化することにより、エステル化が促進されるだけでなく、次の核水素化反応を行うために触媒除去やエステルの単離などをする必要がないため、同一反応器で両工程を行うことができるなどの利点がある。   After completion of the esterification reaction, the aromatic ring is hydrogenated (nuclear hydrogenation) in the presence of the noble metal catalyst without removing the noble metal catalyst. Esterification in the presence of a noble metal catalyst having hydrogenation catalytic ability not only promotes esterification, but also requires removal of the catalyst and isolation of the ester to perform the next nuclear hydrogenation reaction. Therefore, there is an advantage that both steps can be performed in the same reactor.

エステル化反応終了後、水素を仕込み、水素化反応を行う。この場合、貴金属触媒を必要により追加してもよいが、反応操作が煩雑となる。したがって、水素化反応の際の触媒の使用量も、前記エステル化反応での使用量と同じ範囲が望ましい。また、水素化反応の溶媒としては、エステル化反応で用いた脂肪族アルコールをそのまま使用することが有利である。   After completion of the esterification reaction, hydrogen is charged and a hydrogenation reaction is performed. In this case, a noble metal catalyst may be added if necessary, but the reaction operation becomes complicated. Therefore, the amount of the catalyst used in the hydrogenation reaction is preferably in the same range as the amount used in the esterification reaction. As the solvent for the hydrogenation reaction, it is advantageous to use the aliphatic alcohol used in the esterification reaction as it is.

水素圧力は、0.1〜20MPa、好ましくは0.5〜10MPaの範囲がよい。反応中に水素が消費されたら追加して上記圧力を保ち、水素消費が見られなくなったら水素化反応を終了する。水素化反応温度としては、60〜170℃、好ましくは100〜150℃の範囲がよい。反応時間は通常0.5〜20時間程度である。   The hydrogen pressure is in the range of 0.1 to 20 MPa, preferably 0.5 to 10 MPa. When hydrogen is consumed during the reaction, the above pressure is additionally maintained, and when hydrogen consumption is not observed, the hydrogenation reaction is terminated. The hydrogenation reaction temperature is in the range of 60 to 170 ° C, preferably 100 to 150 ° C. The reaction time is usually about 0.5 to 20 hours.

反応終了後、触媒を濾過により回収し、生成物を含むろ液からは水素化されたエステル(脂環式多価カルボン酸エステル)を回収する。水素化されたエステルは、溶媒とエステルを蒸留等により分離し、このエステルを加水分解して目的の脂環式多価カルボン酸を得る。なお、回収された触媒はそのまま又は必要により再生処理されて再使用することができる。   After completion of the reaction, the catalyst is recovered by filtration, and a hydrogenated ester (alicyclic polycarboxylic acid ester) is recovered from the filtrate containing the product. From the hydrogenated ester, the solvent and the ester are separated by distillation or the like, and the ester is hydrolyzed to obtain the desired alicyclic polycarboxylic acid. The recovered catalyst can be reused as it is or after being regenerated if necessary.

脂環式多価カルボン酸エステルの加水分解方法としては、特許文献12に記載のような公知の方法が採用できるが、加水分解によって得られる脂環式多価カルボン酸は水に対する溶解性が高く、触媒として例えば水溶性の酸を用いた場合には触媒との分離が困難となるため、固体酸触媒の存在下に行う方法が好ましい。固体酸触媒としては、イオン交換樹脂、シリカ、アルミナ、シリカ-アルミナ、ゼオライト等が挙げられるがこれらに限らない。加水分解は酸触媒と過剰の水の存在下、エステルが加水分解して生じる脂肪族アルコールの沸点以上の温度で行うことがよく、この場合、加水分解して生じる脂肪族アルコールは反応中に系外に取り出すことがよく、脂肪族アルコールの留出が見られなくなったら加水分解を終了する。なお、脂肪族アルコールが水と共沸する場合は、必要により水を追加する。   As a method for hydrolyzing the alicyclic polyvalent carboxylic acid ester, a known method as described in Patent Document 12 can be adopted, but the alicyclic polyvalent carboxylic acid obtained by hydrolysis is highly soluble in water. For example, when a water-soluble acid is used as the catalyst, it is difficult to separate the catalyst from the catalyst. Therefore, a method in the presence of a solid acid catalyst is preferable. Examples of the solid acid catalyst include, but are not limited to, ion exchange resins, silica, alumina, silica-alumina, and zeolite. Hydrolysis is preferably carried out in the presence of an acid catalyst and excess water at a temperature not lower than the boiling point of the aliphatic alcohol produced by hydrolysis of the ester. In this case, the aliphatic alcohol produced by hydrolysis is not reacted during the reaction. It is preferable to take it out, and when the distillation of the aliphatic alcohol is no longer observed, the hydrolysis is terminated. In addition, when an aliphatic alcohol azeotropes with water, water is added if necessary.

加水分解反応終了後は、必要により触媒等の固体をろ過分離し、更に水と蒸留等により分離して目的の脂環式多価カルボン酸を得る。脂環式多価カルボン酸は、必要により再結晶等の手段により精製する。   After completion of the hydrolysis reaction, a solid such as a catalyst is separated by filtration if necessary, and further separated from water by distillation or the like to obtain the desired alicyclic polycarboxylic acid. The alicyclic polyvalent carboxylic acid is purified by means such as recrystallization as necessary.

脂環式多価カルボン酸の無水物を目的とする場合は、上記のようにして得た脂環式多価カルボン酸を、常法により脱水して酸無水物とする。脱水して酸無水物とする方法としては、脂環式多価カルボン酸と無水酢酸を還流条件で反応させる方法などがある。   When aiming at an alicyclic polycarboxylic acid anhydride, the alicyclic polycarboxylic acid obtained as described above is dehydrated to obtain an acid anhydride by a conventional method. As a method of dehydrating to acid anhydride, there is a method of reacting alicyclic polycarboxylic acid and acetic anhydride under reflux conditions.

本発明の製造方法によれば、煩雑な操作を要することなく、生産性よく、脂環式多価カルボン酸類を得ることができる。 According to the production method of the present invention, alicyclic polycarboxylic acids can be obtained with high productivity without requiring complicated operations.

内容積200mlの電磁攪拌式オートクレーブに、無水ピロメリット酸30.0g、メタノール70.0g及び5%Ru-カーボン粉末触媒(エヌ・イー ケムキャット株式会社製、50重量%含水品)2.0gを仕込み、系内を水素ガスで置換した後、190℃で1時間エステル化を行った。
次いで、130℃まで降温し、水素ガスを導入して内圧を4MPa-Gに保ちながら水素化を行った。水素吸収が停止するまでに要した時間は5時間であり、水素吸収量は理論水素吸収量の101.2%であった。
An electromagnetic stirring autoclave with an internal volume of 200 ml was charged with 30.0 g of pyromellitic anhydride, 70.0 g of methanol, and 2.0 g of 5% Ru-carbon powder catalyst (manufactured by N.E. After replacing the system with hydrogen gas, esterification was carried out at 190 ° C. for 1 hour.
Next, the temperature was lowered to 130 ° C., and hydrogenation was performed while introducing hydrogen gas and maintaining the internal pressure at 4 MPa-G. The time required for the hydrogen absorption to stop was 5 hours, and the hydrogen absorption amount was 101.2% of the theoretical hydrogen absorption amount.

触媒を濾別し、次いでメタノールを留去して得られたシクロヘキサン-1,2,4,5-テトラカルボン酸テトラメチルエステル40.0gを、滴下漏斗、留出管、温度計及び攪拌装置を備えた4つ口フラスコに入れ、イオン交換樹脂(Rohm and Haas社製、アンバーライト31)25.0g、日石ハイゾールSAS−296(新日本石油化学株式会社製、高沸点芳香族系炭化水素)45.0g及び蒸留水45.0gを加え、100℃で加水分解を行った。留出する水を補償する量の蒸留水を滴下(約10ml/h)し、留出水中のメタノールの濃度をガスクロマトグラフィーで分析して加水分解経過を追跡した。留出水中のメタノールは加水分解開始後24時間で殆ど見られなくなった。蒸留水50gを追加し、60℃まで冷却後、イオン交換樹脂を濾別し、濾液から水分を留去して結晶を析出させた。濾別して得られた結晶を、80℃、5mmHgで減圧乾燥し、白色固体32.2gを得た。   The catalyst was filtered off, and then 40.0 g of cyclomethyl-1,2,4,5-tetracarboxylic acid tetramethyl ester obtained by distilling off methanol was added to a dropping funnel, a distillation tube, a thermometer and a stirrer. Place in a four-necked flask equipped with 25.0 g of ion exchange resin (Rohm and Haas, Amberlite 31), Nisseki Hysol SAS-296 (manufactured by Nippon Petrochemical Co., Ltd., high boiling aromatic hydrocarbon) 45.0 g and 45.0 g of distilled water were added and hydrolysis was performed at 100 ° C. Distilled water in an amount that compensates for the distilled water was added dropwise (about 10 ml / h), and the concentration of methanol in the distilled water was analyzed by gas chromatography to monitor the hydrolysis process. Methanol in the distilled water almost disappeared 24 hours after the start of hydrolysis. After adding 50 g of distilled water and cooling to 60 ° C., the ion exchange resin was filtered off, and water was distilled off from the filtrate to precipitate crystals. The crystals obtained by filtration were dried under reduced pressure at 80 ° C. and 5 mmHg to obtain 32.2 g of a white solid.

上記で得られたシクロヘキサン-1,2,4,5-テトラカルボン酸の白色固体10.0g及び無水酢酸120gを、冷却管、温度計及び攪拌装置を備えた3つ口フラスコに仕込み、150℃の油浴中で1時間還流させた。次いで、熱時濾過を行い、濾液にトルエン175gを加え、室温まで冷却して結晶を析出させた。濾別して得られた結晶をトルエンで洗浄した後、80℃、5mmHgで減圧乾燥し、白色結晶6.0gを得た。ガスクロマトグラフィーによる分析の結果、シクロヘキサン-1,2,4,5-テトラカルボン酸二無水物の純度は99.2%であった。また、シクロヘキサン-1,2,4,5-テトラカルボン酸二無水物の収率は、無水ピロメリット酸基準で64.4重量%(62.7モル%)であった。   10.0 g of white solid of cyclohexane-1,2,4,5-tetracarboxylic acid obtained above and 120 g of acetic anhydride were charged into a three-necked flask equipped with a condenser, a thermometer and a stirrer at 150 ° C. In an oil bath for 1 hour. Next, filtration was performed while hot, 175 g of toluene was added to the filtrate, and the mixture was cooled to room temperature to precipitate crystals. The crystals obtained by filtration were washed with toluene and dried under reduced pressure at 80 ° C. and 5 mmHg to obtain 6.0 g of white crystals. As a result of analysis by gas chromatography, the purity of cyclohexane-1,2,4,5-tetracarboxylic dianhydride was 99.2%. The yield of cyclohexane-1,2,4,5-tetracarboxylic dianhydride was 64.4% by weight (62.7 mol%) based on pyromellitic anhydride.

比較例1
内容積200mlの電磁攪拌式オートクレーブに、無水ピロメリット酸30g及びメタノール70gを仕込み、系内を窒素ガスで置換した後、190℃で1時間エステル化を行った。一旦室温まで冷却し、オートクレーブを開放して5%Ru−カーボン粉末触媒(エヌ・イー ケムキャット株式会社製、50wt%含水品)2.0gを加え、系内を水素ガスで置換した後、130℃まで昇温し、水素ガスを導入して内圧を4MPa-Gに保ちながら水素化を行った。水素吸収が停止するまでに要した時間は10時間であり、水素吸収量は理論水素吸収量の95.0%であった。
Comparative Example 1
An electromagnetic stirring autoclave with an internal volume of 200 ml was charged with 30 g of pyromellitic anhydride and 70 g of methanol, and the inside of the system was replaced with nitrogen gas, followed by esterification at 190 ° C. for 1 hour. Once cooled to room temperature, the autoclave was opened, 2.0 g of 5% Ru-carbon powder catalyst (manufactured by N.E. Chemcat Co., Ltd., 50 wt% water-containing product) was added, and the system was replaced with hydrogen gas. The hydrogenation was performed while introducing hydrogen gas and maintaining the internal pressure at 4 MPa-G. The time required for the hydrogen absorption to stop was 10 hours, and the hydrogen absorption amount was 95.0% of the theoretical hydrogen absorption amount.

Claims (7)

芳香族多価カルボン酸又はその酸無水物と脂肪族アルコールとを水素化触媒能を有する貴金属触媒の存在下で反応させてエステル化合物とし、引き続きこの貴金属触媒の存在下で芳香環を水素化し、次いで加水分解することを特徴とする脂環式多価カルボン酸の製造方法。   An aromatic polycarboxylic acid or an acid anhydride thereof and an aliphatic alcohol are reacted in the presence of a noble metal catalyst having a hydrogenation catalytic ability to form an ester compound, and subsequently an aromatic ring is hydrogenated in the presence of the noble metal catalyst, Next, a method for producing an alicyclic polyvalent carboxylic acid, which is hydrolyzed. エステル化合物とする際の反応温度が、100〜220℃である請求項1に記載の脂環式多価カルボン酸の製造方法。   The method for producing an alicyclic polyvalent carboxylic acid according to claim 1, wherein the reaction temperature when the ester compound is used is 100 to 220 ° C. 貴金属触媒が、ルテニウム触媒である請求項1又は2に記載の脂環式多価カルボン酸の製造方法。   3. The method for producing an alicyclic polycarboxylic acid according to claim 1, wherein the noble metal catalyst is a ruthenium catalyst. エステル化合物とする工程及び芳香環を水素化する工程を、同一反応器で行う請求項1〜3のいずれかに記載の脂環式多価カルボン酸の製造方法。   The method for producing an alicyclic polyvalent carboxylic acid according to any one of claims 1 to 3, wherein the step of forming an ester compound and the step of hydrogenating an aromatic ring are performed in the same reactor. 加水分解を、固体酸触媒の存在下で行う請求項1〜4のいずれかに記載の脂環式多価カルボン酸の製造方法。   The method for producing an alicyclic polycarboxylic acid according to any one of claims 1 to 4, wherein the hydrolysis is performed in the presence of a solid acid catalyst. 固体酸触媒が、イオン交換樹脂である請求項5に記載の脂環式多価カルボン酸の製造方法。   The method for producing an alicyclic polycarboxylic acid according to claim 5, wherein the solid acid catalyst is an ion exchange resin. 請求項1〜6のいずれかに記載の方法で製造した脂環式多価カルボン酸を脱水閉環することを特徴とする脂環式多価カルボン酸無水物の製造方法。   A method for producing an alicyclic polycarboxylic acid anhydride, characterized in that the alicyclic polycarboxylic acid produced by the method according to claim 1 is dehydrated and closed.
JP2004232011A 2004-08-09 2004-08-09 Method for producing alicyclic polycarboxylic acid and acid anhydride thereof Expired - Fee Related JP4633400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004232011A JP4633400B2 (en) 2004-08-09 2004-08-09 Method for producing alicyclic polycarboxylic acid and acid anhydride thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004232011A JP4633400B2 (en) 2004-08-09 2004-08-09 Method for producing alicyclic polycarboxylic acid and acid anhydride thereof

Publications (2)

Publication Number Publication Date
JP2006045166A true JP2006045166A (en) 2006-02-16
JP4633400B2 JP4633400B2 (en) 2011-02-16

Family

ID=36024162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004232011A Expired - Fee Related JP4633400B2 (en) 2004-08-09 2004-08-09 Method for producing alicyclic polycarboxylic acid and acid anhydride thereof

Country Status (1)

Country Link
JP (1) JP4633400B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012117976A1 (en) 2011-03-01 2012-09-07 三菱瓦斯化学株式会社 Method for producing alicyclic carboxylic acid and catalyst used in same
WO2018180855A1 (en) * 2017-03-29 2018-10-04 三菱瓦斯化学株式会社 Method for producing 1,2,4,5-cyclohexanetetracarboxylic dianhydride

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108069978B (en) * 2016-11-16 2020-07-14 中国科学院大连化学物理研究所 Synthesis method of 1,2,4, 5-cyclohexane tetracarboxylic dianhydride

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6097929A (en) * 1983-11-02 1985-05-31 Mitsubishi Chem Ind Ltd Production of biphenyltetracarboxylic acid
JPH0641001A (en) * 1992-05-20 1994-02-15 Rhone Poulenc Chim Method for hydrolyzing alkyl dicarboxylate
JPH08325196A (en) * 1995-05-31 1996-12-10 New Japan Chem Co Ltd Production of alicyclic polycarboxylic acid and its acid anhydride
JPH10218836A (en) * 1997-02-06 1998-08-18 Huels Ag Production of malonic acid and alkylmalonic acid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6097929A (en) * 1983-11-02 1985-05-31 Mitsubishi Chem Ind Ltd Production of biphenyltetracarboxylic acid
JPH0641001A (en) * 1992-05-20 1994-02-15 Rhone Poulenc Chim Method for hydrolyzing alkyl dicarboxylate
JPH08325196A (en) * 1995-05-31 1996-12-10 New Japan Chem Co Ltd Production of alicyclic polycarboxylic acid and its acid anhydride
JPH10218836A (en) * 1997-02-06 1998-08-18 Huels Ag Production of malonic acid and alkylmalonic acid

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012117976A1 (en) 2011-03-01 2012-09-07 三菱瓦斯化学株式会社 Method for producing alicyclic carboxylic acid and catalyst used in same
US9084985B2 (en) 2011-03-01 2015-07-21 Mitsubishi Gas Chemical Company, Inc. Method for producing alicyclic carboxylic acid and catalyst used in same
WO2018180855A1 (en) * 2017-03-29 2018-10-04 三菱瓦斯化学株式会社 Method for producing 1,2,4,5-cyclohexanetetracarboxylic dianhydride
JPWO2018180854A1 (en) * 2017-03-29 2020-02-06 三菱瓦斯化学株式会社 Method for producing 1,2,4,5-cyclohexanetetracarboxylic dianhydride
TWI786098B (en) * 2017-03-29 2022-12-11 日商三菱瓦斯化學股份有限公司 Method for manufacturing 1,2,4,5-cyclohexanetetracrboxylic dianhydride
JP7196835B2 (en) 2017-03-29 2022-12-27 三菱瓦斯化学株式会社 Method for producing 1,2,4,5-cyclohexanetetracarboxylic dianhydride

Also Published As

Publication number Publication date
JP4633400B2 (en) 2011-02-16

Similar Documents

Publication Publication Date Title
US8846973B2 (en) Process for producing hydrogenated aromatic polycarboxylic acid
KR101529403B1 (en) 3,4-dialkylbiphenyldicarboxylic acid compound, 3,4-dicarboalkoxybiphenyl-3&#39;,4&#39;-dicarboxylic acid and corresponding acid anhydrides, and processes for producing these compounds
KR101292329B1 (en) Preparation method of alkyllactate and process for preparing lactamide using the same
JP2020063196A (en) Method for producing 5,5&#39;-methylenedisalicylic acid
JP4633400B2 (en) Method for producing alicyclic polycarboxylic acid and acid anhydride thereof
JP3747493B2 (en) Process for producing alicyclic polycarboxylic acid and acid anhydride thereof
JPH085838B2 (en) Method for producing biphenyltetracarboxylic acid
JP2006124313A (en) Method for producing alicyclic polycarboxylic acid and anhydride of the same
CN111454223B (en) Synthetic method of 2, 3-dihydroxy-6-chloroquinoxaline
JP3608354B2 (en) Dicyclohexyl-2,3,3 &#39;, 4&#39;-tetracarboxylic acid compound
JPH08325201A (en) Production of alicyclic polycarboxylic acid ester
JP5239140B2 (en) Process for producing hydrogenated aromatic carboxylic acid
KR20190135475A (en) Method for preparing cis, cis-1,2,4-cyclohexanetricarboxylic acid crystal
JPH0359887B2 (en)
JP2006036710A (en) Method for producing optically active 3-hydroxytetrahydrofuran
JP2010150220A (en) Method for producing adamantanecarboxylate
KR20130099413A (en) Process for preparing 4-aminomethylcyclohexane carbocylic acid
JPH1067705A (en) Decarboxylation of halogenated aromatic carboxylic acid
JP3312811B2 (en) Method for purifying trans-1,4-cyclohexanedimethanol dialkyl sulfonate
JP4622233B2 (en) Method for producing diphenylsulfonetetracarboxylic dianhydride
JP4453247B2 (en) Method for purifying 3,3-dimethylcyclopropane-1,2-dicarboxylic anhydride
JP4088507B2 (en) Method for producing alicyclic hydroxycarboxylic acid t-butyl ester
JP2002020345A (en) Method for producing trans-dicyclohexyl-3,3&#39;,4,4&#39;- tetracarboxylic acid
JPH049368A (en) Production of exo-cis-2,3-norbornanedicarboxylic acid imide
JPH09143158A (en) Production of 2-alkylindoline

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101117

R150 Certificate of patent or registration of utility model

Ref document number: 4633400

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees