JP2006044966A - Method for producing hydroxyapatite-calcium carbonate composite particle - Google Patents

Method for producing hydroxyapatite-calcium carbonate composite particle Download PDF

Info

Publication number
JP2006044966A
JP2006044966A JP2004225547A JP2004225547A JP2006044966A JP 2006044966 A JP2006044966 A JP 2006044966A JP 2004225547 A JP2004225547 A JP 2004225547A JP 2004225547 A JP2004225547 A JP 2004225547A JP 2006044966 A JP2006044966 A JP 2006044966A
Authority
JP
Japan
Prior art keywords
calcium carbonate
carbon dioxide
phosphoric acid
suspension
carbonation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004225547A
Other languages
Japanese (ja)
Inventor
Yoshio Ota
義夫 太田
Tetsuji Choji
哲治 丁子
Masamoto Tafu
昌幹 袋布
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yahashi Kogyo KK
Original Assignee
Yahashi Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yahashi Kogyo KK filed Critical Yahashi Kogyo KK
Priority to JP2004225547A priority Critical patent/JP2006044966A/en
Publication of JP2006044966A publication Critical patent/JP2006044966A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently easily producing hydroxyapatite-calcium carbonate composite particles (HAp-CaCO<SB>3</SB>) for utilizing various functions of hydroxyapatite (HAp). <P>SOLUTION: Carbon dioxide gas is introduced into a suspension, obtained by adding slaked lime into water in a ratio of 100-300 g per 1 L of water, at such a flow rate that the time until the pH of the suspension becomes 7-8 and the carbonation is finished is ≥4 h. After elapsing of a time of 50-70% of the preestablished time until finishing carbonation, mixing of phosphoric acid is started. When the pH of the suspension becomes 7-8, the introduction of carbon dioxide gas and the mixing of phosphoric acid are stopped. Otherwise, after elapsing of a time of 70-90% of the preestablished time until finishing carbonation, the introduction of carbon dioxide gas is stopped, and the mixing of phosphoric acid is continued until the pH of the suspension becomes 7-8. Thereby, it becomes possible to easily, efficiently produce the hydroxyapatite-calcium carbonate composite particles (HAp-CaCO<SB>3</SB>) by utilizing a usual production process of calcium carbonate, industrially produced by a carbon dioxide combining method. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、種々の産業分野において充填材、補強材等として多く利用されている炭酸カルシウム、特に炭酸カルシウムに機能を有する物質を析出・添着・含浸などを施して複合化することにより新たな用途展開が期待される複合粒子の製造方法に関する。   The present invention provides a new application by combining calcium carbonate, which is often used as a filler, a reinforcing material, etc. in various industrial fields, in particular by subjecting a substance having a function to calcium carbonate to precipitation, adhesion, impregnation and the like. The present invention relates to a method for producing composite particles expected to expand.

炭酸カルシウムは、原料が豊富で十分な量を安定供給でき、安価、無毒・無臭で炎症を起こさず生体に対して安全性が高く、広範囲な粒子径に応じられ、白くて低い屈折率を有するなど多くの利点を備えているために、ゴム・プラスチックス・紙・塗料などに主に増量材としての役割を期待されて、フィラーとして多量に使用されている。物質自体が本質的に所有している性質に加えて、所望の形態や物質を付与することは多くの新しい機能の発現をもたらす。炭酸カルシウムの持つ多くの利点を活かしたうえ、求められる形状と機能が付与されることは、炭酸カルシウムの高付加価値化、用途の拡大につながると考えられる。   Calcium carbonate is abundant in raw materials, can supply a sufficient amount stably, is inexpensive, non-toxic, odorless, non-inflammatory, highly safe for living organisms, has a wide range of particle sizes, and has a white and low refractive index It has many advantages such as rubber, plastics, paper, paint, etc., and is expected to play a role as an extender, and is used in large quantities as a filler. In addition to the properties inherently possessed by the material itself, imparting the desired form or material results in the appearance of many new functions. Taking advantage of the many advantages of calcium carbonate and providing the required shape and function is thought to lead to higher added value and expanded applications of calcium carbonate.

リン酸カルシウムと炭酸カルシウムの複合粒子は樹脂用フィラー、歯科用研磨・補修剤、歯磨き剤、徐放剤、抗菌剤、食品添加剤、化粧品、製紙用材料、フッ素除去剤などに有用とされ、研究開発が進められてきた。   Composite particles of calcium phosphate and calcium carbonate are useful for resin fillers, dental polishing / repairing agents, dentifrices, sustained release agents, antibacterial agents, food additives, cosmetics, papermaking materials, fluorine removal agents, etc. Has been promoted.

例えば、炭酸カルシウム粒子のグリコールスラリーを撹拌しながら稀リン酸を作用させて得られるリン酸カルシウムで表面を被覆された炭酸カルシウム(特開平3−281565)、炭酸カルシウム懸濁液に水溶性リン酸類を加え、塩基性領域で、常圧または加圧下、5-250℃の温度で被覆処理して得られる炭酸カルシウム‐アパタイト複合体(特開平7−118011)、炭酸カルシウムと水溶性リン酸塩を特定の条件下にて反応させることによって生成する炭酸カルシウムとその表面を覆うリン酸カルシウム系化合物の板状ないし針状結晶層とからなる炭酸カルシウム‐リン酸カルシウム系化合物複合体(特開平10−81514)、炭酸カルシウムの水懸濁液分散体とリン酸の希釈水溶液及び/又はリン酸水素カルシウムの水懸濁液分散体及び/又はリン酸二水素カルシウムの水懸濁液分散体を特定の混合条件において混合、特定の熟成条件で熟成後乾燥することにより調製される炭酸カルシウムを核とする花弁状多孔質構造を有するリン酸カルシウム系化合物(特開平10−175833)、炭酸カルシウムを飽和リン酸水素カリウム溶液とジルコニウム溶液で処理して表面にリン酸カルシウムとジルコニウムとが配位されているフッ素吸着材(特開2003−62457)などのリン酸カルシウム‐炭酸カルシウム複合粒子、およびその製造方法が提案されている。   For example, calcium carbonate whose surface is coated with calcium phosphate obtained by allowing dilute phosphoric acid to act while stirring a glycol slurry of calcium carbonate particles (Japanese Patent Laid-Open No. 3-281565), and water-soluble phosphoric acids are added to the calcium carbonate suspension. , A calcium carbonate-apatite complex obtained by coating treatment at a temperature of 5-250 ° C. under normal pressure or under pressure in a basic region (Japanese Patent Laid-Open No. 7-118011), and calcium carbonate and water-soluble phosphate are specified Calcium carbonate-calcium phosphate compound complex (JP-A-10-81514) comprising calcium carbonate produced by reacting under conditions and a plate-like or needle-like crystal layer of a calcium phosphate compound covering the surface thereof; Aqueous suspension dispersion and dilute aqueous solution of phosphoric acid and / or aqueous suspension dispersion of calcium hydrogen phosphate It has a petal-like porous structure with calcium carbonate as the core, which is prepared by mixing an aqueous suspension dispersion of calcium dihydrogen phosphate and / or an aqueous suspension dispersion under specific mixing conditions, aging under specific aging conditions and then drying. Calcium phosphate compound (JP-A-10-175833), fluorine adsorbent in which calcium carbonate is treated with a saturated potassium hydrogen phosphate solution and a zirconium solution and calcium phosphate and zirconium are coordinated on the surface (JP-A-2003-62457), etc. Calcium phosphate-calcium carbonate composite particles and a method for producing the same have been proposed.

特開平3−281565JP-A-3-281565 特開平7−118011号JP 7-1118011 A 特開平10−81514号JP-A-10-81514 特開平10−175833号JP-A-10-175833 特開2003−62457号JP 2003-62457 A

本発明の目的は、水溶液反応で生成される非常に微細な水酸アパタイト(HAp)を脱水・乾燥・粉末化などの取り扱いに優れたメジアン径10μm程度の炭酸カルシウム粒子と複合化させて、HApの有する様々な機能を活用するための水酸アパタイト‐炭酸カルシウム複合粒子(HAp-CaCO3)を効率よく容易に製造する方法を提供することにある。 The object of the present invention is to combine the very fine hydroxyapatite (HAp) produced by the aqueous solution reaction with calcium carbonate particles having a median diameter of about 10 μm, which is excellent in handling such as dehydration, drying and pulverization. It is an object of the present invention to provide a method for efficiently and easily producing hydroxyapatite-calcium carbonate composite particles (HAp-CaCO 3 ) for utilizing various functions of the present invention.

炭酸カルシウムは、通常、水に生石灰を加えて調製する石灰乳に炭酸ガスを吹き込む炭酸ガス化合法により工業的に生産されている。この製法によれば炭酸カルシウムと水のみが生成され、環境及び資源の有効利用の点から有用な方法と考えられる。所望の性状を備えた炭酸カルシウムを得るには、炭酸化条件に加えて石灰乳の調製条件(消化条件)もまた重要な技術要素となる。石灰乳の調製には生石灰の水との反応性(活性度)、量比、生石灰の粒度分布、使用する水質や水温など、様々な条件を最適に設定することが求められ、特定の形状を有する炭酸カルシウムを安定的に生成させる石灰乳を得ることは容易ではない。   Calcium carbonate is usually produced industrially by a carbon dioxide compounding method in which carbon dioxide gas is blown into lime milk prepared by adding quick lime to water. According to this production method, only calcium carbonate and water are produced, which is considered to be a useful method in terms of effective use of the environment and resources. In order to obtain calcium carbonate having the desired properties, the preparation conditions (digestion conditions) of lime milk in addition to the carbonation conditions are also important technical elements. The preparation of lime milk requires optimal setting of various conditions such as the reactivity (activity) of quick lime with water, quantity ratio, particle size distribution of quick lime, water quality and water temperature to be used, It is not easy to obtain lime milk that stably produces calcium carbonate.

水と生石灰を反応させて調製される微細な消石灰粒子が懸濁している石灰乳に代わって、すでに消石灰として整っているものに水を加えて調製した懸濁液を用いることで、炭酸ガスが吹き込まれる際に従来の石灰乳とは異なった炭酸カルシウム結晶の核形成と成長の場を導入することができることが知られている(特開2003−73117)。   Instead of lime milk in which fine slaked lime particles prepared by reacting water and quicklime are suspended, by using a suspension prepared by adding water to what is already prepared as slaked lime, carbon dioxide gas is reduced. It is known that a nucleation and growth field of calcium carbonate crystals different from that of conventional lime milk can be introduced when blown (Japanese Patent Laid-Open No. 2003-73117).

本発明は、例えば粒径0.5-5mmの粒状消石灰を利用して懸濁液を調製し、懸濁液に炭酸ガスを導入してメジアン径10μm程度の炭酸カルシウム粒子を生成させる炭酸化工程の途中で懸濁液にリン酸を混合することで、HAp-CaCO3を生成させるものである。 The present invention prepares a suspension using, for example, granular slaked lime having a particle diameter of 0.5-5 mm, and introduces carbon dioxide into the suspension to generate calcium carbonate particles having a median diameter of about 10 μm. By mixing phosphoric acid into the suspension, HAp-CaCO 3 is generated.

水1Lに対して、例えば粒径0.5-5mmの粒状消石灰を100-300gの割合で懸濁させることにより調製した懸濁液中に、炭酸ガス(または廃ガス等の炭酸ガス含有ガス)を懸濁液のpH=7-8となる炭酸化終了までの時間が4時間以上となるような流量で吹き込む。炭酸ガスの導入開始後、予定する炭酸化終了時間の50-75%経過した時点からリン酸の混合を開始し、pH=7-8となった時点で炭酸ガスの導入とリン酸の混合を止めて、HAp-CaCO3を生成させる。また、炭酸ガスの導入を予定する炭酸化終了時間の70-90%で止めた後、pH=7-8となるまでリン酸を混合してHAp-CaCO3を生成させる。上記各過程において、pH=7-8となった後もリン酸の混合を続けることにより、よりHAp含量の多いHAp-CaCO3を生成させることができる。 For example, carbon dioxide (or carbon dioxide-containing gas such as waste gas) is suspended in a suspension prepared by suspending granular slaked lime with a particle size of 0.5-5 mm in a ratio of 100-300 g per 1 L of water. Blow at a flow rate such that the time until carbonation at which the pH of the suspension becomes 7-8 is 4 hours or longer. When the introduction of carbon dioxide gas starts, mixing of phosphoric acid starts when 50-75% of the planned carbonation end time has elapsed, and when pH = 7-8, introduction of carbon dioxide gas and mixing of phosphoric acid are started. Stop and produce HAp-CaCO 3 . In addition, after stopping carbonation gas introduction at 70-90% of the planned carbonation end time, phosphoric acid is mixed until pH = 7-8 to produce HAp-CaCO 3 . In each of the above processes, HAp-CaCO 3 having a higher HAp content can be generated by continuing the mixing of phosphoric acid even after pH = 7-8.

本発明によれば、炭酸ガス化合法により工業的に生産されている通常の炭酸カルシウムの製造工程を利用して、HAp-CaCO3を容易に製造することができる。 According to the present invention, HAp-CaCO 3 can be easily produced by utilizing a normal production process of calcium carbonate that is industrially produced by a carbon dioxide compounding method.

炭酸カルシウムとHApは、ともに生体親和性が高い生体活性材料であり、骨修復用材として重要である。炭酸カルシウムは新しく骨が生成されるにつれて生体内に吸収されるか分解して体外に排出されていく吸収性材料、HApは骨と直接結合し、一般にその界面において高い結合力を示す表面活性材料と位置付けられている。本発明に係る複合粒子は新しい骨セメント用素材など、高い骨修復機能を有する生体材料としての応用が期待できる。   Both calcium carbonate and HAp are bioactive materials with high biocompatibility and are important as bone repair materials. Calcium carbonate is a resorbable material that is absorbed into the body as new bone is generated, or decomposes and is discharged outside the body, HAp is a surface active material that directly binds to bone and generally shows high binding strength at the interface It is positioned as. The composite particle according to the present invention can be expected to be applied as a biomaterial having a high bone repair function, such as a new bone cement material.

本発明の好ましい実施の形態によれば、以下のような工程を経ることにより、HAp-CaCO3を製造することができる。 According to a preferred embodiment of the present invention, HAp-CaCO 3 can be produced through the following steps.

出発原料となる粒状消石灰(粒径 0.5-5mm)は、例えば次のような粉末消石灰の製造工程から得ることができる。生石灰粒(粒径10mm以下)を約5.5t/h、井戸水(水温15-20℃)を約3.3t/hの流量で混合・連続消化させた後、エアセパレーターで微粉を除去し、ふるいによって所望のサイズの粒状消石灰(粒径 0.5-5mm)を回収する。このような選別過程を経ることにより、粒径0.5mm未満の粒状消石灰は(その後の破砕で生ずるもの等を除き)実質的に除去され、粒径5mmを越える粒状消石灰も除去される。   The granular slaked lime (particle size 0.5-5 mm) used as a starting material can be obtained from the following production process of powdered slaked lime, for example. After mixing and continuously digesting quicklime grains (particle size of 10mm or less) at a flow rate of about 5.5t / h and well water (water temperature 15-20 ° C) at about 3.3t / h, fine powder is removed with an air separator and sieved. Collect the desired size of granular slaked lime (particle size 0.5-5mm). By passing through such a selection process, granular slaked lime having a particle size of less than 0.5 mm is substantially removed (except for those generated by subsequent crushing), and granular slaked lime having a particle size of more than 5 mm is also removed.

タービン羽根で撹拌(周速度約1.4m/s)されている15-30℃の水1Lに対して選別された粒状消石灰(粒径 0.5-5mm)を100-300gの割合で投入して懸濁液を調製する。次に炭酸ガスの導入による炭酸化反応を行う。懸濁液がpH=7-8となる炭酸化終了までの時間が4時間以上となるような流量で、炭酸ガス(または廃ガスのような炭酸ガス含有ガス)を吹き込む。   Suspended granular slaked lime (particle size 0.5-5mm) selected for 1L of water at 15-30 ° C agitated by turbine blades (circumferential speed approx. 1.4m / s) at a rate of 100-300g Prepare the solution. Next, a carbonation reaction by introducing carbon dioxide is performed. Carbon dioxide (or carbon dioxide-containing gas such as waste gas) is blown at such a flow rate that the time until carbonation at which the suspension becomes pH = 7-8 is 4 hours or longer.

炭酸ガスの導入開始後、懸濁液がpH=7-8となる炭酸化終了までに必要な予定炭酸化終了時間の50-90%経過した時点からリン酸の混合を開始する。   After the introduction of carbon dioxide gas, mixing of phosphoric acid is started when 50-90% of the planned carbonation completion time required until the carbonation of the suspension reaches pH = 7-8 has elapsed.

例えば、水と粒状消石灰で調製された懸濁液(pH>12)に炭酸ガスを4時間で炭酸化終了(pH=7-8)する流量で吹き込むならば、吹き込み開始2-3時間(予定炭酸化終了時間=4時間の50-75%:2-3時間)後にリン酸を混合し始め、pH=7-8となった時点で炭酸ガスの導入とリン酸の混合を止めることによってHAp-CaCO3が得られる。また、炭酸ガスを2時間50分-3時間30分(予定炭酸化終了時間=4時間の70-90%:2時間50分-3時間30分)吹き込んで炭酸ガスの導入を止め、H=7-8となるまでリン酸を混合することによってもHAp-CaCO3が得られる。 For example, if carbon dioxide is blown into a suspension (pH> 12) prepared with water and granular slaked lime at a flow rate that completes carbonation in 4 hours (pH = 7-8), start blowing for 2-3 hours (planned) After the carbonation end time = 50-75% of 4 hours: 2-3 hours), start mixing phosphoric acid, and when pH = 7-8, stop introduction of carbon dioxide gas and mixing of phosphoric acid HAp -CaCO 3 is obtained. Also, carbon dioxide was blown in for 2 hours 50 minutes-3 hours 30 minutes (scheduled carbonation end time = 70-90% of 4 hours: 2 hours 50 minutes-3 hours 30 minutes) and the introduction of carbon dioxide gas was stopped. HAp-CaCO 3 can also be obtained by mixing phosphoric acid until 7-8.

懸濁液がpH=7-8となった時点でリン酸の混合を止めず、引き続き、懸濁液中のカルシウム1モルに対して0.5モル以内(H3PO4/Ca≦0.5)のリン酸を混合することによって、HAp含量がより多いHAp-CaCO3が得られる。0.5モル以上のリン酸の混合はHAp-CaCO3中の炭酸カルシウム分が少なくなり過ぎて好ましくない。 When the suspension reaches pH = 7-8, the mixing of phosphoric acid is not stopped. Subsequently, phosphorus within 0.5 mol (H 3 PO 4 /Ca≦0.5) is added to 1 mol of calcium in the suspension. By mixing the acid, HAp-CaCO 3 with a higher HAp content is obtained. Mixing of 0.5 mol or more of phosphoric acid is not preferable because the calcium carbonate content in HAp-CaCO 3 becomes too small.

リン酸は、炭酸ガス導入開始後、懸濁液がpH=7-8となる炭酸化終了までに必要な予定炭酸化終了時間の50-90%経過した時点で混合を開始されるのが好ましい。炭酸ガスの導入開始以前や同時、または短い時間しか経過していない時点でリン酸の混合を開始すると、懸濁液中の炭酸カルシウム粒子の生成が不十分で、消石灰が多く存在している状態であるため、HApと炭酸カルシウムからなるメジアン径10μm程度の複合粒子を効率よく生成することができない。消石灰分が多い状態でリン酸を混合すると、炭酸カルシウムと複合化しない微細なHApが多く析出してしまう。一方、炭酸化終了後にリン酸を加えても、炭酸カルシウムとリン酸から板状のリン酸水素カルシウム二水和物(DCPD)が生成され、炭酸カルシウムとDCPDの混合した粉体物となり、複合粒子を生成することができない。   Phosphoric acid is preferably mixed at the time when 50-90% of the planned carbonation end time required until the carbonation of the suspension reaches pH = 7-8 after the start of carbon dioxide introduction. . If mixing of phosphoric acid is started before the introduction of carbon dioxide gas, at the same time, or at the time when only a short time has passed, the formation of calcium carbonate particles in the suspension is insufficient and there is a lot of slaked lime Therefore, composite particles composed of HAp and calcium carbonate and having a median diameter of about 10 μm cannot be efficiently produced. When phosphoric acid is mixed in a state where there is a large amount of slaked lime, a lot of fine HAp that does not complex with calcium carbonate will precipitate. On the other hand, even if phosphoric acid is added after the carbonation, plate-like calcium hydrogen phosphate dihydrate (DCPD) is produced from calcium carbonate and phosphoric acid, resulting in a mixed powder of calcium carbonate and DCPD. Particles cannot be generated.

水1Lに対して粒径0.5-5mmの粒状消石灰を100-300gの割合で調製した懸濁液中に、炭酸ガスを炭酸化終了までの時間を4時間以上となるような流量で吹き込むことで、複合粒子のベースとなるメジアン径10μm程度の炭酸カルシウム粒子を生成させることができる。粉末消石灰を水に加えた懸濁液を用いると粒子径10μm程度にそろった炭酸カルシウム粒子が生成されにくく、複合化した粒子も同様となる。   By blowing carbon dioxide in a suspension prepared at a rate of 100-300 g of granular slaked lime with a particle size of 0.5-5 mm per 1 L of water at a flow rate that makes the time until carbonation completes 4 hours or more. In addition, calcium carbonate particles having a median diameter of about 10 μm, which is the base of the composite particles, can be generated. When a suspension in which powdered slaked lime is added to water is used, calcium carbonate particles having a particle diameter of about 10 μm are hardly generated, and composite particles are also the same.

炭酸ガスの吹き込み量が多すぎると、粒状消石灰の表面が炭酸化されているだけで内部は消石灰のままになっている粒が残存している場合があり、好ましくない。粒状消石灰の粒径は好ましくは0.5-5mmであり、望ましくは0.5-2mmである。粒径が大きくなればなるほど、上述の理由により、よりゆっくりと炭酸ガスを吹き込まなければならないため、生産効率が悪化する。   If the amount of carbon dioxide blown is too large, there may be a case in which grains that remain as slaked lime remain inside the surface of the granular slaked lime, which is not preferable. The particle size of the granular slaked lime is preferably 0.5-5 mm, desirably 0.5-2 mm. The larger the particle size, the worse the production efficiency because carbon dioxide must be blown more slowly for the reasons described above.

粒状消石灰を投入する量を水1Lに対して100g未満の割合とすると生産効率に劣り、投入量300gまでは所定の複合粒子が操業性に劣ることなく得られる。   When the amount of granular slaked lime is less than 100 g with respect to 1 L of water, the production efficiency is inferior, and up to an amount of 300 g, predetermined composite particles can be obtained without inferior operability.

リン酸は、懸濁液中のカルシウム1モルに対して0.0017-0.006mol/min(濃度1mol/Lのリン酸で流量1.7-6.0ml/min)の割合で混合することが好ましい。濃いリン酸を短時間で加えると、懸濁液中にpH<7である領域を生み出し、DCPDやリン酸水素カルシウム(DCP)を析出させる惧れがある。   Phosphoric acid is preferably mixed at a rate of 0.0017-0.006 mol / min (a flow rate of 1.7-6.0 ml / min with phosphoric acid having a concentration of 1 mol / L) with respect to 1 mol of calcium in the suspension. When concentrated phosphoric acid is added in a short period of time, a pH <7 region is created in the suspension, which may cause precipitation of DCPD and calcium hydrogen phosphate (DCP).

本発明に係る複合粒子の製造方法は、特に温度調整を必要とせず、室温で実施することができる。   The method for producing composite particles according to the present invention does not particularly require temperature adjustment and can be carried out at room temperature.

以下、本発明に係るHAp-CaCO3の製造方法の実施例について説明する。以下の実施例についての説明は本発明をより深く理解するためのものであって、本発明は以下の実施例に何ら限定されるものではない。 Examples of the method for producing HAp—CaCO 3 according to the present invention will be described below. The following description of the examples is for a better understanding of the present invention, and the present invention is not limited to the following examples.

メジアン径はレーザー回折式粒度分布測定装置LA-500(堀場製作所)により測定した。形態は走査型電子顕微鏡(SEM)S-570(日立製作所)により観察した。結晶相の同定にはX線回折装置XRD-6100(島津製作所)で得られたX線回折パターンを用いた。複合粒子中のP2O5含量は蛍光X線分析装置(FX)RIX3000(理学電機工業)により測定した。 The median diameter was measured with a laser diffraction particle size distribution analyzer LA-500 (Horiba Seisakusho). The morphology was observed with a scanning electron microscope (SEM) S-570 (Hitachi). For identification of the crystal phase, an X-ray diffraction pattern obtained with an X-ray diffractometer XRD-6100 (Shimadzu Corporation) was used. The P 2 O 5 content in the composite particles was measured with a fluorescent X-ray analyzer (FX) RIX3000 (Rigaku Denki Kogyo).

(実施例1)
タービン羽根で撹拌(周速度約1.4m/s)されている25℃の水2Lに粒状消石灰(粒径 0.5-2mm)を222g(〜3mol)投入後、炭酸ガスを0.5L/minの流量で吹き込むと、4時間程で炭酸化終了(pH=7-8)するので、2時間30分吹き込んだところで、濃度1mol/Lのリン酸を流量5ml/minで滴下し始めた。懸濁液がpH=7-8となったところで、炭酸ガスの導入とリン酸の滴下を止めた。リン酸の添加量は0.3Lとなった。生成物をろ過して回収し、約105℃で乾燥させて試料1を得た。図1に試料1のSEM写真を示す。図9(a)のX線回折パターンに示されるように、炭酸カルシウム(カルサイト)のピークに加えてブロードなHApのピークも観察された。FXで測定されたP2O5含量は9.5wt%であった。微細な粒子が凝集したようなメジアン径11.6μmのHAp-CaCO3複合粒子である試料1が得られた。
Example 1
After adding 222g (~ 3mol) of granular slaked lime (particle size 0.5-2mm) to 2L of water at 25 ° C, which is agitated by turbine blades (circumferential speed approx. 1.4m / s), carbon dioxide gas at a flow rate of 0.5L / min When blown, carbonation was completed in about 4 hours (pH = 7-8). When 2 hours and 30 minutes were blown, phosphoric acid having a concentration of 1 mol / L began to be dropped at a flow rate of 5 ml / min. When the suspension reached pH = 7-8, introduction of carbon dioxide gas and dropping of phosphoric acid were stopped. The amount of phosphoric acid added was 0.3 L. The product was collected by filtration and dried at about 105 ° C. to obtain Sample 1. FIG. 1 shows an SEM photograph of Sample 1. As shown in the X-ray diffraction pattern of FIG. 9 (a), in addition to the calcium carbonate (calcite) peak, a broad HAp peak was also observed. The P 2 O 5 content measured by FX was 9.5 wt%. Sample 1 which is HAp-CaCO 3 composite particles having a median diameter of 11.6 μm in which fine particles are aggregated was obtained.

(実施例2)
実施例1において懸濁液がpH=7-8となったところで、炭酸ガスの導入とリン酸の混合を止めずに、そのまま炭酸ガスを0.5L/min、リン酸を5ml/minの速度で加え続けた。リン酸の添加量が1L(H3PO4/Ca=0.33)に達したところで両方を止め、生成物をろ過して回収し、約105℃で乾燥させて試料2を得た。図2に試料2のSEM写真を示す。図9(b)のX線回折パターンに示されるように、HApの生成量は増加した。FXで測定されたP2O5含量は30wt%であった。HApでコーティングされたようなメジアン径12.6μmのHAp-CaCO3複合粒子である試料2が得られた。
(Example 2)
In Example 1, when the suspension reached pH = 7-8, without stopping the introduction of carbon dioxide and mixing of phosphoric acid, carbon dioxide was supplied at a rate of 0.5 L / min and phosphoric acid was added at a rate of 5 ml / min. Continued to add. Both were stopped when the addition amount of phosphoric acid reached 1 L (H 3 PO 4 /Ca=0.33), and the product was collected by filtration and dried at about 105 ° C. to obtain Sample 2. FIG. 2 shows an SEM photograph of Sample 2. As shown in the X-ray diffraction pattern of FIG. 9 (b), the amount of HAp produced increased. The P 2 O 5 content measured by FX was 30 wt%. Sample 2 which was HAp-CaCO 3 composite particles having a median diameter of 12.6 μm as coated with HAp was obtained.

(実施例3)
タービン羽根で撹拌(周速度約1.4m/s)されている25℃の水2Lに実施例1で用いた粒状消石灰を222g(〜3mol)投入して、炭酸ガスを0.5L/minの流量で3時間吹き込んで止めた後、濃度1mol/Lのリン酸を流量5ml/minでpH=7-8となるまで滴下した。添加量は0.325Lとなった。生成物をろ過して回収し、約105℃で乾燥させて試料3を得た。図3に試料3のSEM写真を示す。図10(a)のX線回折パターンに示されるように、炭酸カルシウム(カルサイト)のピークに加えてブロードなHApのピークも観察された。FXで測定されたP2O5含量は11wt%であった。微細な粒子が凝集したようなメジアン径9.7μmのHAp-CaCO3複合粒子である試料3が得られた。
(Example 3)
222 g (~ 3 mol) of granular slaked lime used in Example 1 is added to 2 L of water at 25 ° C. that is stirred by a turbine blade (circumferential speed of about 1.4 m / s), and carbon dioxide gas is supplied at a flow rate of 0.5 L / min. After stopping by blowing for 3 hours, phosphoric acid having a concentration of 1 mol / L was added dropwise at a flow rate of 5 ml / min until pH = 7-8. The amount added was 0.325L. The product was collected by filtration and dried at about 105 ° C. to obtain Sample 3. FIG. 3 shows an SEM photograph of Sample 3. As shown in the X-ray diffraction pattern of FIG. 10 (a), in addition to the calcium carbonate (calcite) peak, a broad HAp peak was also observed. The P 2 O 5 content measured by FX was 11 wt%. Sample 3 which is HAp-CaCO 3 composite particles having a median diameter of 9.7 μm in which fine particles are aggregated was obtained.

(実施例4)
実施例3において懸濁液がpH=7-8となったところでリン酸の滴下を止めずに、そのままリン酸を5ml/minの流量で加え続けた。リン酸の添加量が1L(H3PO4/Ca≒0.33)に達したところで止め、生成物をろ過して回収し、約105℃で乾燥させて試料4を得た。図4,5に試料4のSEM写真を示す。図10(b)のX線回折パターンに示されるように、HApの生成量は増加した。FXで測定されたP2O5含量は29wt%であった。HApでコーティングされたようなメジアン径11.8μmのHAp-CaCO3複合粒子である試料4が得られた。
Example 4
When the suspension reached pH = 7-8 in Example 3, phosphoric acid was continuously added at a flow rate of 5 ml / min without stopping the dropping of phosphoric acid. When the amount of phosphoric acid added reached 1 L (H 3 PO 4 /Ca≈0.33), the product was collected by filtration and dried at about 105 ° C. to obtain Sample 4. 4 and 5 show SEM photographs of Sample 4. As shown in the X-ray diffraction pattern of FIG. 10 (b), the amount of HAp produced increased. The P 2 O 5 content measured by FX was 29 wt%. Sample 4 which is HAp-CaCO 3 composite particles having a median diameter of 11.8 μm as coated with HAp was obtained.

(比較例1)
タービン羽根で撹拌(周速度約1.4m/s)されている25℃の水2Lに実施例1で用いた粒状消石灰を222g(〜3mol)投入して、炭酸ガスを0.5L/minの流量で4時間吹き込んで炭酸化を終了(pH=7-8)させた後、濃度1mol/Lのリン酸を流量5ml/minで滴下し始めた。リン酸の添加量が0.5L(H3PO4/Ca≒0.17)に達したところで両方を止め、生成物をろ過して回収し、約105℃で乾燥させて試料5を得た。図6に試料5のSEM写真を示す。図11のX線回折パターンに示されるように、炭酸カルシウム(カルサイト)のピークに加えてDCPDのピークも観察された。板状結晶のDCPDが析出してHAp-CaCO3は得られなかった。
(Comparative Example 1)
222 g (~ 3 mol) of granular slaked lime used in Example 1 is added to 2 L of water at 25 ° C. that is stirred by a turbine blade (circumferential speed of about 1.4 m / s), and carbon dioxide gas is supplied at a flow rate of 0.5 L / min. After blowing for 4 hours to complete carbonation (pH = 7-8), 1 mol / L of phosphoric acid was started to be added dropwise at a flow rate of 5 ml / min. Both were stopped when the addition amount of phosphoric acid reached 0.5 L (H 3 PO 4 /Ca≈0.17), and the product was collected by filtration and dried at about 105 ° C. to obtain Sample 5. FIG. 6 shows an SEM photograph of Sample 5. As shown in the X-ray diffraction pattern of FIG. 11, in addition to the calcium carbonate (calcite) peak, a DCPD peak was also observed. Plate-like DCPD precipitated and HAp-CaCO 3 was not obtained.

(比較例2)
タービン羽根で撹拌(周速度約1.4m/s)されている25℃の水2Lに実施例1で用いた粒状消石灰(粒径 0.5-2mm)のかわりに微粉末消石灰(特級試薬:キシダ化学)を222g(〜3mol)投入後、炭酸ガスを0.5L/minの流量で吹き込むと、4時間20分で炭酸化終了(pH=7-8)するので、炭酸ガスを0.5L/minの流量で3時間20分吹き込んで止めた後、濃度1mol/Lのリン酸を流量5ml/minでpH=7-8となるまで滴下した。添加量は0.25Lとなった。生成物をろ過して回収し、約105℃で乾燥させて試料6を得た。図7に試料6のSEM写真を示す。図12(a)のX線回折パターンに示されるように、炭酸カルシウム(カルサイト、アラゴナイト)のピークに加えてブロードなHApのピークも観察された。凝集具合が不均一で、粒子径10μm程度にそろったHAp-CaCO3は得られなかった。
(Comparative Example 2)
Fine powdered slaked lime (special grade reagent: Kishida Chemical) instead of the granular slaked lime (particle size 0.5-2mm) used in Example 1 in 2L of water at 25 ° C stirred with a turbine blade (peripheral speed about 1.4m / s) After adding 222g (~ 3mol) of carbon dioxide, when carbon dioxide gas is blown in at a flow rate of 0.5L / min, carbonation is completed in 4 hours and 20 minutes (pH = 7-8), so carbon dioxide gas at a flow rate of 0.5L / min. After stopping by blowing for 3 hours and 20 minutes, phosphoric acid having a concentration of 1 mol / L was added dropwise at a flow rate of 5 ml / min until pH = 7-8. The amount added was 0.25L. The product was collected by filtration and dried at about 105 ° C. to obtain Sample 6. FIG. 7 shows an SEM photograph of Sample 6. As shown in the X-ray diffraction pattern of FIG. 12 (a), a broad HAp peak was also observed in addition to the calcium carbonate (calcite, aragonite) peak. HAp-CaCO 3 having a non-uniform aggregation state and a particle size of about 10 μm could not be obtained.

(比較例3)
比較例2において懸濁液がpH=7-8となったところでリン酸の滴下を止めずに、そのままリン酸を5ml/minで加え続けた。リン酸の添加量が1L(H3PO4/Ca≒0.33)に達したところで止め、生成物をろ過して回収し、約105℃で乾燥させて試料7を得た。図8に試料7のSEM写真を示す。図12(b)のX線回折パターンに示されるように、HApの生成量は増加した。試料6をベースとするため良好な形態のHAp-CaCO3は得られなかった。
(Comparative Example 3)
In Comparative Example 2, phosphoric acid was continuously added at 5 ml / min without stopping dropping of phosphoric acid when the suspension reached pH = 7-8. When the amount of phosphoric acid added reached 1 L (H 3 PO 4 /Ca≈0.33), the product was collected by filtration and dried at about 105 ° C. to obtain Sample 7. FIG. 8 shows an SEM photograph of Sample 7. As shown in the X-ray diffraction pattern of FIG. 12 (b), the amount of HAp produced increased. Since sample 6 was used as a base, HAp-CaCO 3 having a good form could not be obtained.

以上、本発明の実施の形態及び実施例について説明したが、本発明は上記実施の形態及び実施例に限定されるものではなく、本発明の要旨の範囲内において、適宜変形実施が可能であることは言うまでもない。   Although the embodiments and examples of the present invention have been described above, the present invention is not limited to the above-described embodiments and examples, and can be appropriately modified within the scope of the gist of the present invention. Needless to say.

図1は、実施例1により得られた複合粒子を示すSEM写真である。FIG. 1 is a SEM photograph showing the composite particles obtained in Example 1. 図2は、実施例2により得られた複合粒子を示すSEM写真である。FIG. 2 is an SEM photograph showing the composite particles obtained in Example 2. 図3は、実施例3により得られた複合粒子を示すSEM写真である。FIG. 3 is an SEM photograph showing the composite particles obtained in Example 3. 図4は、実施例4により得られた複合粒子を示すSEM写真である。FIG. 4 is an SEM photograph showing the composite particles obtained in Example 4. 図5は、実施例4により得られた複合粒子を示すSEM写真である。FIG. 5 is an SEM photograph showing the composite particles obtained in Example 4. 図6は、比較例1により得られた複合粒子を示すSEM写真である。FIG. 6 is a SEM photograph showing the composite particles obtained in Comparative Example 1. 図7は、比較例2により得られた複合粒子を示すSEM写真である。FIG. 7 is an SEM photograph showing the composite particles obtained in Comparative Example 2. 図8は、比較例3により得られた複合粒子を示すSEM写真である。FIG. 8 is an SEM photograph showing the composite particles obtained in Comparative Example 3. 図9は、図1,2に示した複合粒子のX線回折パターンである。FIG. 9 is an X-ray diffraction pattern of the composite particle shown in FIGS. 図10は、図3,4,5に示した複合粒子のX線回折パターンである。FIG. 10 is an X-ray diffraction pattern of the composite particles shown in FIGS. 図11は、図6に示した混合粒子のX線回折パターンである。FIG. 11 is an X-ray diffraction pattern of the mixed particles shown in FIG. 図12は、図7,8に示した複合粒子のX線回折パターンである。FIG. 12 is an X-ray diffraction pattern of the composite particles shown in FIGS.

Claims (6)

水1Lに対して100-300gの割合で消石灰を加えた懸濁液に炭酸ガスを導入し、炭酸ガスの導入開始から、懸濁液がpH=7-8となる炭酸化終了までの間にリン酸の混合を開始することにより、水酸アパタイトと炭酸カルシウムを生成、複合化させることを特徴とする水酸アパタイト‐炭酸カルシウム複合粒子の製造方法。 Carbon dioxide gas is introduced into a suspension obtained by adding slaked lime at a ratio of 100-300 g to 1 L of water, and from the start of introduction of carbon dioxide gas to the end of carbonation where the suspension reaches pH = 7-8. A method for producing hydroxyapatite-calcium carbonate composite particles, characterized in that by starting mixing phosphoric acid, hydroxyapatite and calcium carbonate are produced and combined. 懸濁液がpH=7-8となる炭酸化終了までに必要な予定炭酸化終了時間の50-90%経過した時点でリン酸の混合を開始する請求項1に記載の水酸アパタイト‐炭酸カルシウム複合粒子の製造方。 The hydroxyapatite-carbonic acid according to claim 1, wherein the mixing of phosphoric acid is started when 50-90% of the planned carbonation completion time required for the suspension to reach pH = 7-8 has elapsed. How to produce calcium composite particles. 予定炭酸化終了時間が4時間以上となる流量で炭酸ガスの導入を開始し、予定炭酸化終了時間の50-75%経過した時点でリン酸の混合を開始し、懸濁液がpH=7-8となった時点で炭酸ガスの導入とリン酸の混合を止める請求項2に記載の水酸アパタイト‐炭酸カルシウム複合粒子の製造方法。 The introduction of carbon dioxide gas was started at a flow rate at which the planned carbonation end time was 4 hours or more, and when 50-75% of the planned carbonation end time had elapsed, mixing of phosphoric acid was started, and the suspension had a pH of 7 The method for producing hydroxyapatite-calcium carbonate composite particles according to claim 2, wherein the introduction of carbon dioxide gas and the mixing of phosphoric acid are stopped when -8 is reached. 予定炭酸化終了時間が4時間以上となる流量で炭酸ガスの導入を開始し、予定炭酸化終了時間の70-90%経過した時点で炭酸ガスの導入を止めた後、懸濁液がpH=7-8となるまでリン酸を混合する請求項2に記載の水酸アパタイト‐炭酸カルシウム複合粒子の製造方法。 The introduction of carbon dioxide gas was started at a flow rate where the planned carbonation end time was 4 hours or more, and when the introduction of carbon dioxide gas was stopped when 70-90% of the planned carbonation end time had elapsed, the suspension was adjusted to pH = The method for producing hydroxyapatite-calcium carbonate composite particles according to claim 2, wherein phosphoric acid is mixed until 7-8. 請求項3、4において、懸濁液がpH=7-8となった以後に、懸濁液中のカルシウム1モルに対して0.5モル以内(H3PO4/Ca≦0.5)のリン酸を混合する水酸アパタイト‐炭酸カルシウム複合粒子の製造方法。 In Claims 3 and 4, after the suspension reaches pH = 7-8, phosphoric acid within 0.5 mol (H 3 PO 4 /Ca≦0.5) is added to 1 mol of calcium in the suspension. A method for producing hydroxyapatite-calcium carbonate composite particles to be mixed. 粒径0.5-5mmの粒状消石灰を用いて懸濁液を調製する請求項1ないし5の何れかに記載の水酸アパタイト‐炭酸カルシウム複合粒子の製造方法。 6. The method for producing hydroxyapatite-calcium carbonate composite particles according to any one of claims 1 to 5, wherein a suspension is prepared using granular slaked lime having a particle size of 0.5 to 5 mm.
JP2004225547A 2004-08-02 2004-08-02 Method for producing hydroxyapatite-calcium carbonate composite particle Pending JP2006044966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004225547A JP2006044966A (en) 2004-08-02 2004-08-02 Method for producing hydroxyapatite-calcium carbonate composite particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004225547A JP2006044966A (en) 2004-08-02 2004-08-02 Method for producing hydroxyapatite-calcium carbonate composite particle

Publications (1)

Publication Number Publication Date
JP2006044966A true JP2006044966A (en) 2006-02-16

Family

ID=36023979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004225547A Pending JP2006044966A (en) 2004-08-02 2004-08-02 Method for producing hydroxyapatite-calcium carbonate composite particle

Country Status (1)

Country Link
JP (1) JP2006044966A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104772111A (en) * 2015-02-13 2015-07-15 湖南永清环保研究院有限责任公司 Hydroxyl calcium phosphate-active carbon composite material and application thereof
JP2016030708A (en) * 2014-07-29 2016-03-07 古手川産業株式会社 Calcium carbonate composite
JP2016183066A (en) * 2015-03-26 2016-10-20 古手川産業株式会社 Calcium carbonate composite
EP2632504B1 (en) 2010-10-26 2019-09-04 Cap Biomaterials, LLC Composites of hydroxyapatite and calcium carbonate and related methods of preparation and use

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2632504B1 (en) 2010-10-26 2019-09-04 Cap Biomaterials, LLC Composites of hydroxyapatite and calcium carbonate and related methods of preparation and use
JP2016030708A (en) * 2014-07-29 2016-03-07 古手川産業株式会社 Calcium carbonate composite
CN104772111A (en) * 2015-02-13 2015-07-15 湖南永清环保研究院有限责任公司 Hydroxyl calcium phosphate-active carbon composite material and application thereof
JP2016183066A (en) * 2015-03-26 2016-10-20 古手川産業株式会社 Calcium carbonate composite

Similar Documents

Publication Publication Date Title
JP2005075722A (en) Method for producing apatite powder
WO1997003016A1 (en) Fine particles of petaloid porous hydroxyapatite and process for producing the same
JP3910495B2 (en) Basic magnesium carbonate and method for producing the same, and composition or structure containing the basic magnesium carbonate
US10807869B2 (en) Method for producing porous calcium deficient hydroxyapatite granules
KR0148886B1 (en) Method for preparation of ceramic powder
JP3910503B2 (en) Method for producing basic magnesium carbonate
JP2005281034A (en) Hollow/spherical calcium carbonate particles and method for manufacturing the same
KR100977195B1 (en) Method for manufacturing hydroxy apatite
JP5131724B2 (en) Silicon-eluting calcium carbonate and method for producing the same
JP2006044966A (en) Method for producing hydroxyapatite-calcium carbonate composite particle
CN108793217A (en) The preparation method of one bulb tufted shape precipitated calcium carbonate
CN107021465B (en) A kind of preparation method of the calcium salt admixture as biomaterial
JP4065703B2 (en) Method for producing spherical porous calcium carbonate having a plate-like structure
JP2005139012A (en) Method for producing acicular calcium carbonate
JP3884635B2 (en) Calcium carbonate porous particles and production method thereof
JP4046526B2 (en) Method for producing calcium carbonate having a plate-like structure
CN114438597A (en) Tissue engineering polyester composite scaffold material with calcium sulfate enhanced in-situ solidification pore-forming function and preparation method and application thereof
CN105152151B (en) A kind of method that β tricalcium phosphates are prepared based on multi-D swing nano ball grinding
JP2005231920A (en) Hydroxyapatite-calcium carbonate composite particle and manufacturing method therefor
JP6348364B2 (en) Calcium carbonate complex
Kosma et al. Simple solution routes for targeted carbonate phases and intricate carbonate and silicate morphologies
JP2005289763A (en) Method of producing calcium hydrogenphosphate
JP2003020222A (en) Method for manufacturing ettringite
JPS6330317A (en) Production of cubic calcium carbonate
JP3626620B2 (en) Method for producing calcium carbonate