JP2006043384A - Direct current power supply output polarity automatic switching device for running railway model rolling stock - Google Patents

Direct current power supply output polarity automatic switching device for running railway model rolling stock Download PDF

Info

Publication number
JP2006043384A
JP2006043384A JP2004254975A JP2004254975A JP2006043384A JP 2006043384 A JP2006043384 A JP 2006043384A JP 2004254975 A JP2004254975 A JP 2004254975A JP 2004254975 A JP2004254975 A JP 2004254975A JP 2006043384 A JP2006043384 A JP 2006043384A
Authority
JP
Japan
Prior art keywords
power supply
output
rail
model
polarity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004254975A
Other languages
Japanese (ja)
Inventor
Kazuo Nakamura
一夫 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Giken Co Ltd
Original Assignee
Giken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Giken Co Ltd filed Critical Giken Co Ltd
Priority to JP2004254975A priority Critical patent/JP2006043384A/en
Publication of JP2006043384A publication Critical patent/JP2006043384A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a system for automatically switching the feed voltage polarity to a rail by detecting the running of a railway model rolling stock. <P>SOLUTION: Such functions are provided as; detecting whether there is a railway model rolling stock or not on the rail constituting blocked sections by a circuit for detecting the electric current generated by the running of the railway model rolling stock, etc.; retaining the connection of the output of a DC power supply device to the rail in a blocked section where the railway model rolling stock is running on the railway; cutting the connection of the output of the DC power supply device to the rail in a blocked section where the railway model rolling stock is not present on the railway; switching the positive/negative polarity to connect the output of the DC power supply device to the rail in a blocked section where the railway model rolling stock enters so that the railway model rolling stock can keep running in the same direction as in the blocked section where the railway model rolling stock ran before the entrance; and cutting the connection of the output of the DC power supply device to the rail in the blocked section where the railway model rolling stock passed and there is no railway model rolling stock on the railway. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、鉄道模型車両走行用直流電源出力の極性切換に関するものである。更に詳細には、リバースと呼ぶ形状に設置してある鉄道模型車両走行用の軌道上を鉄道模型車両が同じ向きに走行を続けられるように、この軌道に給電する直流電源の出力極性を自動で切り換える装置に関するものである。The present invention relates to polarity switching of a DC power supply output for running a model train. More specifically, the output polarity of the DC power supply that feeds the track is automatically adjusted so that the model train can continue to travel in the same direction on the track for running the model train, which is installed in a shape called reverse. The present invention relates to a switching device.

従来、鉄道模型車両走行用直流電源装置の出力極性を自動で切り換える装置としては、例えば実用新案出願平11−4221号公報がある。従来のオートリバース運転システム装置の構成および動作などを、図7(a)、図7(b)を参照して説明する。図7(a)は鉄道模型車両の電気的構造を示し、図7(b)は、従来のオートリバース運転システム装置の実施例を示すものである。図7(b)では以後の説明を簡単にするため、鉄道模型車両20の本体を省略し車輪、駆動用モータ、および車輪と電気的に接続する台車だけを記入している。図7(b)に示す実施例は、左側レール93、右側レール94からそれぞれプラス電位、マイナス電位を鉄道模型車両20が車輪を介してその駆動モータ21に受電して、同レールを走行するようにしたもので、左側レール93に接続する左側接続具53と、右側レール94に接続する右側接続具54と、これら左・右接続具に給電する電源装置56と、左側・右側レールに対する給電電位のプラス・マイナスを反転する切換リレー55と、レールの一方端に前進中の鉄道模型車両20が当接する位置として配装する当接バー57付前進端位置感知用センサ58と、同じく他方端に後退中の鉄道模型車両20が当接する位置として配装する当接バー59付後退端位置感知用センサ60と、前進端位置感知用センサ58から発する鉄道模型車両20の当接信号および後退端位置感知用センサ60から発する鉄道模型車両20の当接信号によってプラス・マイナス反転動作指令を切換リレー55に対して賦与する電気回路と、を備えた装置である。この装置の特徴は、鉄道模型車両20が矢印61の前進向きに走行して前進端位置感知用センサ58の当接バー57に当接したときには、切換リレー55が左側・右側レールに対する給電電位のプラス・マイナスを自動的に反転して鉄道模型車両20の駆動モータ21を逆転状態とし、また鉄道模型車両20が矢印62の後退向きに走行して後退端位置感知用センサ60の当接バー59に当接したときには切換リレーが左側・右側レールに対する給電電位のプラス・マイナスを自動的に反転して鉄道模型車両20の駆動モータ21を正転状態に戻すことによって前進運転・後退運転を自動的に繰り返すことにある。
次に、鉄道模型車両20が左右2本一対のレールから車輪を介してその駆動モータ21に受電し、同レールを走行するシステムについて、図7(a)、図7(b)を参照して説明する。
左右2本一対の左側レール93および右側レール94は、鉄道模型車両20への給電用接点としての役割を持つため金属製であり、互いに電気的に絶縁されている。図7(b)に示すように、電源装置56の出力は、切換リレー55、左側接続具53、右側接続具54を介して2本一対の左側レール93および右側レール94に一方がプラス、他方がマイナスになるように接続されており、金属製車輪24と26,29と31のそれぞれが左側レール93,右側レール94に接触することから鉄道模型車両20の駆動モータ21は受電できる。左右で一対をなす車輪24と25,26と27,28と29、および30と31についてはそれぞれが互いに電気的に絶縁されている。一方、図7(a)、(b)に示す台車22に組み込まれている車輪24と25,26と27のうち24と26とはそれぞれ台車22に電気的に接続し、また、図7(a)、(b)に示す台車23に組み込まれている車輪28と29、30と31のうち29と31とはそれぞれ台車23に電気的に接続する構造であり、車輪24と26および台車22、車輪29と31および台車23はそれぞれ電気的に接続し、鉄道模型車両20の本体と台車22および台車23とはそれぞれ絶縁されている。左側レール93は車輪24、26および台車22を介して駆動モータ21の一方の電源端子に接続され、また、右側レール94は車輪29、31および台車23を介して駆動モータ21の他方の電源端子に接続されているので鉄道模型車両20の駆動モータ21は左側レール93,右側レール94から受電して走行できる構造になっている。
Conventionally, as a device for automatically switching the output polarity of a DC power supply for running a model train, there is, for example, Japanese Utility Model Application No. 11-4221. The configuration and operation of a conventional auto-reverse operation system apparatus will be described with reference to FIGS. 7 (a) and 7 (b). Fig.7 (a) shows the electrical structure of a model railway vehicle, FIG.7 (b) shows the Example of the conventional auto reverse driving system apparatus. In FIG. 7B, in order to simplify the following description, the main body of the model train vehicle 20 is omitted, and only the wheels, the drive motor, and the carriage that is electrically connected to the wheels are shown. In the embodiment shown in FIG. 7B, the model train 20 receives the positive potential and the negative potential from the left rail 93 and the right rail 94, respectively, through the wheels to the drive motor 21 so as to travel on the rail. The left connection tool 53 connected to the left rail 93, the right connection tool 54 connected to the right rail 94, the power supply 56 for supplying power to the left and right connection tools, and the feeding potential for the left and right rails. A switching relay 55 that reverses the plus / minus, a forward end position sensor 58 with an abutment bar 57 arranged as a position where the forward model railway vehicle 20 abuts on one end of the rail, and also on the other end A model railway vehicle originating from a backward end position detecting sensor 60 with an abutment bar 59 and a forward end position detecting sensor 58 disposed as a position where the reverse model railway vehicle 20 contacts. An electric circuit for imparting relative changeover relay 55 plus or minus inverted operation command by the contact signal and the contact signal model railroad vehicle 20 emanating from a retracted end position sensing sensor 60 of 0 is a device provided with. The feature of this device is that when the model railway vehicle 20 travels in the forward direction indicated by the arrow 61 and contacts the contact bar 57 of the forward end position detecting sensor 58, the switching relay 55 has a power supply potential for the left and right rails. The plus / minus is automatically reversed to turn the drive motor 21 of the model train vehicle 20 in the reverse state, and the model train vehicle 20 travels in the reverse direction of the arrow 62 to contact the contact bar 59 of the reverse end position detecting sensor 60. The forward / backward driving is automatically performed by the switching relay automatically reversing the plus / minus of the electric potential supplied to the left and right rails to return the drive motor 21 of the model railway vehicle 20 to the normal rotation state. To repeat.
Next, referring to FIG. 7 (a) and FIG. 7 (b), a system in which the model railway vehicle 20 receives power from the pair of left and right rails to the drive motor 21 through wheels and travels on the rails. explain.
The pair of left and right left rails 93 and right rails 94 are made of metal and serve as power supply contacts to the model railway vehicle 20 and are electrically insulated from each other. As shown in FIG. 7 (b), the output of the power supply device 56 is such that one is added to the pair of the left rail 93 and the right rail 94 via the switching relay 55, the left connection tool 53, and the right connection tool 54. Are connected so as to be negative, and the metal wheels 24, 26, 29, and 31 contact the left rail 93 and the right rail 94, respectively, so that the drive motor 21 of the model railway vehicle 20 can receive power. The left and right wheels 24 and 25, 26 and 27, 28 and 29, and 30 and 31 are electrically insulated from each other. On the other hand, 24 and 26 of the wheels 24 and 25, 26 and 27 incorporated in the carriage 22 shown in FIGS. 7A and 7B are electrically connected to the carriage 22 respectively, and FIG. Of the wheels 28 and 29 and 30 and 31 incorporated in the carriage 23 shown in a) and (b), 29 and 31 are structures that are electrically connected to the carriage 23, respectively. The wheels 29 and 31 and the carriage 23 are electrically connected to each other, and the main body of the model railway vehicle 20 and the carriage 22 and the carriage 23 are insulated from each other. The left rail 93 is connected to one power supply terminal of the drive motor 21 via the wheels 24 and 26 and the carriage 22, and the right rail 94 is connected to the other power supply terminal of the drive motor 21 via the wheels 29 and 31 and the carriage 23. Therefore, the drive motor 21 of the model railway vehicle 20 is configured to receive power from the left rail 93 and the right rail 94 to travel.

しかしながら、図7(b)、図8(a)を参照して説明すると、図7(b)に示すように、従来のオートリバース運転システム装置は、鉄道模型車両20が前進端位置感知用センサ58と後退端位置感知用センサ60との間で前進運転・後退運転を自動的に繰り返す単純な往復走行を実現してはいるが、例えば、図8(a)に示すように、より複雑なリバースと呼ぶレールのレイアウト上で自動的に鉄道模型車両20を走行させるシステムにはなっていない。
図8(a)は、本発明が自動的な鉄道模型車両走行の実現を課題としているリバースと呼ぶレールのレイアウト例である。図8(a)を参照して説明する。左右2本一対のレールでリバースをレイアウトするためには、図8(a)に示すように、左右2本一対のレールの双方を2カ所で切断しギャップ95、96および97、98を設けてレールを二つの閉塞区間に分割し第一閉塞区間4および第二閉塞区間5を設け、レールに給電する直流電源装置3と第一閉塞区間4および第二閉塞区間5のそれぞれとを給電電位のプラス・マイナスを反転する切換スイッチ68,69を介在させて接続する必要がある。リバースにレイアウトされたレール電位の関係は、例えばレール93の電位とレール91の電位とが同じプラス電位であるときレール94の電位はマイナス電位でありレール91の電位とレール94の電位とはプラス・マイナスが反転しているため、鉄道模型車両がギャップ95、96を通過することは可能であるがギャップ97、98を通過することはできないようになっている。従来の技術では、図8(a)に示すように第一閉塞区間4、第二閉塞区間5で構成されるリバース上を鉄道模型車両20が第二閉塞区間5を矢印71の向きに走行し、第一閉塞区間4を矢印72の向きに走行し、続いて第二閉塞区間5を矢印73の向きに走行するような運転をするためには、鉄道模型車両20が第二閉塞区間5を矢印71の向きに走行している間に第一閉塞区間4への給電をレール93とレール91、およびレール94とレール92の電位が同じになるように給電電位のプラス・マイナスを反転する切換スイッチ68を操作し、鉄道模型車両20が第一閉塞区間4を矢印72の向きに走行している間に第二閉塞区間5への給電をレール91とレール94、およびレール92とレール93の電位が同じになるように給電電位のプラス・マイナスを反転する切換スイッチ69を操作しなければならないが、これらの操作を手動で行わなければならなかった。鉄道模型車両の走行を注視しながら切換スイッチ68,69を手動で操作することは困難な作業である。
本発明の目的は、このような問題点を解決するため、鉄道模型車両20が第二閉塞区間5を矢印71の向きに走行し第一閉塞区間4に進入するとき第一閉塞区間4に接続する切換スイッチ68がレール93とレール91、およびレール94とレール92の電位をそれぞれ同じにするようにレール91とレール92への給電電位を自動的に切換えて接続し、第一閉塞区間4を矢印72の向きに走行し第二閉塞区間5に進入するとき第二閉塞区間5に接続する切換スイッチ69がレール91とレール94、およびレール92とレール93の電位をそれぞれ同じにするようにレール94とレール93への給電電位を自動的に切換えて接続するようなシステムを提供することである。図8(b)は、図8(a)に示したリバースと呼ぶレイアウトと電気的に等価であり、本発明装置の動作説明を容易にするためのシステム図であり、図8(a)に示したスイッチ68,69をそれぞれ本発明装置1、本発明装置2に置き換えたシステム図である。図8(b)を参照して、本発明の課題について説明する。図8(a)を参照して説明した本発明装置が解決しようとする課題は、図8(b)に示すシステムにおいては、第二閉塞区間5を走行する鉄道模型車両20がギャップ95、96を通過して第一閉塞区間4に進入するときに、例えば、第二閉塞区間5のレール94の電位がプラス電位であり第一閉塞区間4のレール92の電位がマイナス電位であると鉄道模型車両20は第一閉塞区間4に進入できないため、鉄道模型車両20の車輪29、31がギャップ96をまたいでレール94とレール92を電気的に短絡すると第一閉塞区間4のレールに給電する本発明装置1がレール94の電位がプラス電位であることを検出しレール92の電位をプラス電位に反転する機能を提供する課題に置き換えられている。
本発明が解決しようとしている課題は、閉塞区間を互いに電気的に絶縁して順次繋げ鉄道模型車両が連続する複数の閉塞区間を続けて走行できるような形状に設置してある軌道を構成するそれぞれの閉塞区間について、軌道上を鉄道模型車両が走行している閉塞区間では直流電源装置3の出力と閉塞区間を構成するレールとの接続を保持し、軌道上に鉄道模型車両が存在しない閉塞区間では直流電源装置3の出力と閉塞区間を構成するレールとの接続を遮断し、鉄道模型車両が進入した閉塞区間では鉄道模型車両が進入前に走行していた閉塞区間での走行と同じ向きに走行を続けられるようにプラス・マイナス極性を切り換えて直流電源装置3の出力と閉塞区間を構成するレールとを接続し、鉄道模型車両が通過して軌道上に鉄道模型車両が存在しなくなった閉塞区間では直流電源装置3の出力と閉塞区間を構成するレールとの接続を遮断する機能を持ち、さらに直流電源装置3を操作してその出力電圧を0ボルトから昇圧して軌道上に停止している鉄道模型車両を発進させる閉塞区間では直流電源装置3に内蔵する直流電源出力のプラス・マイナス極性反転スイッチを操作することで鉄道模型車両の前進、または後退の向きを選択できる機能を持つ装置を提供することにある。
However, referring to FIGS. 7 (b) and 8 (a), as shown in FIG. 7 (b), a conventional auto-reverse driving system apparatus is configured such that the model train 20 has a forward end position detection sensor. Although a simple reciprocating traveling that automatically repeats the forward operation / reverse operation is realized between 58 and the backward end position detection sensor 60, for example, as shown in FIG. It is not a system for automatically driving the model railway vehicle 20 on the rail layout called reverse.
FIG. 8A shows an example of a rail layout called “reverse” in which the present invention aims to realize automatic running of a model railway vehicle. This will be described with reference to FIG. In order to lay out the reverse with a pair of left and right rails, as shown in FIG. 8 (a), both the left and right rails are cut at two locations and gaps 95, 96 and 97, 98 are provided. The rail is divided into two closed sections, a first closed section 4 and a second closed section 5 are provided, and the DC power supply 3 that feeds power to the rail and each of the first closed section 4 and the second closed section 5 are supplied with a feeding potential. It is necessary to connect via the changeover switches 68 and 69 that invert the plus and minus. For example, when the potential of the rail 93 and the potential of the rail 91 are the same plus potential, the potential of the rail 94 is a minus potential and the potential of the rail 91 and the potential of the rail 94 are plus. -Since the minus is reversed, the model railway vehicle can pass through the gaps 95 and 96, but cannot pass through the gaps 97 and 98. In the prior art, as shown in FIG. 8A, the model train vehicle 20 travels in the direction of the arrow 71 in the second closed section 5 on the reverse composed of the first closed section 4 and the second closed section 5. In order to drive the first closed section 4 in the direction of the arrow 72 and then the second closed section 5 in the direction of the arrow 73, the model railway vehicle 20 moves the second closed section 5 While the vehicle is traveling in the direction of the arrow 71, the power supply to the first closed section 4 is switched so that the potentials of the rail 93 and the rail 91 and the rail 94 and the rail 92 are the same so that the potential of the power supply potential is reversed. The switch 68 is operated to supply power to the second closed section 5 between the rail 91 and the rail 94 and between the rail 92 and the rail 93 while the model railway vehicle 20 is traveling in the direction of the arrow 72 in the first closed section 4. So that the potential is the same. It must operate the switch 69 to reverse the Las negative but had to perform these operations manually. It is difficult to manually operate the changeover switches 68 and 69 while paying attention to the running of the model train.
An object of the present invention is to solve such problems by connecting the model railway vehicle 20 to the first closed section 4 when traveling in the second closed section 5 in the direction of the arrow 71 and entering the first closed section 4. The change-over switch 68 automatically switches and connects the power supply potential to the rail 91 and the rail 92 so that the rails 93 and 91 and the rail 94 and the rail 92 have the same potential. When the switch 69 connected to the second closed section 5 travels in the direction of the arrow 72 and enters the second closed section 5, the rails 91 and 94 and the rails 92 and 93 have the same potential. 94 and providing a system for automatically switching and connecting the power supply potential to the rail 93. FIG. 8B is a system diagram for facilitating the explanation of the operation of the device of the present invention, which is electrically equivalent to the layout called reverse shown in FIG. FIG. 6 is a system diagram in which the illustrated switches 68 and 69 are replaced with the inventive device 1 and the inventive device 2, respectively. The problem of the present invention will be described with reference to FIG. The problem to be solved by the device of the present invention described with reference to FIG. 8A is that, in the system shown in FIG. 8B, the model railway vehicle 20 traveling in the second closed section 5 has gaps 95 and 96. For example, if the rail 94 in the second closed section 5 has a positive potential and the rail 92 in the first closed section 4 has a negative potential when entering the first closed section 4 through the railway model, Since the vehicle 20 cannot enter the first closed section 4, the wheels 29 and 31 of the model railway vehicle 20 electrically short-circuit the rail 94 and the rail 92 across the gap 96 to supply power to the rail in the first closed section 4. The invention apparatus 1 has been replaced with a problem of providing a function of detecting that the potential of the rail 94 is a positive potential and inverting the potential of the rail 92 to a positive potential.
The problem to be solved by the present invention is that each of the tracks that are installed in a shape in which the closed sections are electrically insulated from each other and sequentially connected through a plurality of closed sections in which the model trains are continuously connected. In the closed section where the model railway is traveling on the track, the closed section where the output of the DC power supply 3 and the rail constituting the closed section are maintained and the model model vehicle does not exist on the track. Then, the connection between the output of the DC power supply device 3 and the rails constituting the closed section is cut off, and the closed section where the model train has entered is in the same direction as traveling in the closed section where the model train was traveling before entering The plus / minus polarity is switched so that traveling can be continued, and the output of the DC power supply device 3 is connected to the rail constituting the closed section, and the model train passes through the track. In the closed section that no longer exists, it has a function to cut off the connection between the output of the DC power supply device 3 and the rails constituting the closed section, and further, the DC power supply device 3 is operated to increase its output voltage from 0 volts to the track. In the closed section where the model train that is stopped is started, the forward or reverse direction of the model train can be selected by operating the plus / minus polarity reversing switch of the DC power output built in the DC power supply 3 It is to provide a device having a function.

上記課題を解決するため、本発明では、左右2本一対のレールからなり、駆動用直流モータを内蔵し直流電源装置に接続されたレールから電源の供給を受けて走行する鉄道模型車両走行用の軌道をこの軌道上で走行する鉄道模型車両一編成の全長より長い寸法で切断してできる閉塞区間を複数作り、これらの閉塞区間を互いに電気的に絶縁して順次繋げ鉄道模型車両が連続する複数の閉塞区間を続けて走行できるような形状に設置してある軌道において、この軌道を構成する複数の閉塞区間に電源を供給する直流電源装置とそれぞれの閉塞区間とを複数のリレーおよびこれらのリレーを制御するリレー制御回路を介在させて接続し、鉄道模型車両の走行により生じる電流の検出回路、閉塞区間を構成するレールに給電する電圧のプラス・マイナス極性検出回路、リレー制御回路に入力する直流電源装置の出力電圧を検出する入力電圧検出回路、およびリレー制御回路に入力する直流電源出力のプラス・マイナス極性を検出する入力極性検出回路によって複数のリレーを制御する手段で、鉄道模型車両が軌道上を走行している閉塞区間では直流電源装置の出力と閉塞区間を構成するレールとの接続を保持し、軌道上に鉄道模型車両が存在しない閉塞区間では直流電源装置の出力と閉塞区間を構成するレールとの接続を遮断し、鉄道模型車両が進入した閉塞区間では鉄道模型車両が進入前に走行していた閉塞区間での走行と同じ向きの走行を続けられるようにプラス・マイナス極性を切り換えて直流電源装置の出力と閉塞区間を構成するレールとを接続し、鉄道模型車両が通過して軌道上に鉄道模型車両が存在しなくなった閉塞区間では直流電源装置の出力と閉塞区間を構成するレールとの接続を遮断する機能、さらに直流電源を操作してその出力電圧を0ボルトから昇圧して軌道上に停止している鉄道模型車両を発進させる閉塞区間に対しては直流電源に内蔵される直流電源出力のプラス・マイナス極性反転スイッチを操作することで鉄道模型車両の前進、または後退の向きを選択できる機能を提供することを特徴とする鉄道模型車両走行用直流電源出力極性自動切換装置。In order to solve the above problems, in the present invention, a railroad model vehicle for traveling which is composed of a pair of left and right rails and which is powered by a power supply from a rail which has a built-in driving DC motor and is connected to a DC power supply device. A plurality of closed sections can be formed by cutting a section of a model train that runs on the track with a length longer than the entire length of the train, and these sections are electrically isolated from each other and connected in sequence. In a track installed in such a shape that it can continuously travel in the closed section, a DC power supply device that supplies power to the plurality of closed sections constituting the track, and each closed section includes a plurality of relays and these relays Connected via a relay control circuit to control the current, a detection circuit for the current generated by the running of the model train, and the plus / minus voltage supplied to the rails constituting the closed section A polarity detection circuit, an input voltage detection circuit that detects the output voltage of the DC power supply device that is input to the relay control circuit, and an input polarity detection circuit that detects the positive / negative polarity of the DC power supply output that is input to the relay control circuit. A means to control the relay. In the closed section where the model train is traveling on the track, the connection between the output of the DC power supply and the rail constituting the block section is maintained, and the model model vehicle does not exist on the track. In the section, the connection between the output of the DC power supply and the rails constituting the blockage section is cut off, and in the blockage section where the model train has entered, the direction of travel in the blockage section where the model train was traveling before entering Switch the plus / minus polarity so that you can continue running, connect the output of the DC power supply and the rails that make up the closed section, and the model train will pass through the track In the closed section where the model railway vehicle no longer exists, the function that cuts off the connection between the output of the DC power supply and the rail that constitutes the closed section, and further, the DC power supply is operated to increase the output voltage from 0 volts to the track For the closed section where the model train that is stopped above is started, operate the plus / minus polarity reversing switch of the DC power output built in the DC power supply to adjust the forward or backward direction of the model train. A DC power supply output polarity automatic switching device for running a model train, characterized by providing a selectable function.

以上、詳細に説明したように、本発明によれば、リバースと呼ぶレールレイアウト上での鉄道模型車両運転において、レールへの給電電圧極性切換操作が自動化され手動でのスイッチ操作が不要になり運転操作が容易になる。従って、より複雑なレールレイアウト上での鉄道模型車両走行運転も可能になる。As described above in detail, according to the present invention, in the model train vehicle operation on the rail layout called reverse, the operation of switching the polarity of the supply voltage polarity to the rail is automated and the manual switch operation is unnecessary. Easy to operate. Accordingly, it is possible to drive the model train on a more complicated rail layout.

本発明に係わる鉄道模型車両走行用直流電源出力極性自動切換装置について、添付図面を参照して説明する。図1は、本発明の実施の形態を示すシステム図であり、本発明装置1、本発明装置2、直流電源装置3、第一閉塞区間4および第二閉塞区間5についてそれぞれ相互間の結線を示し、本発明装置1および直流電源装置3についてはそれぞれの回路構成をそれぞれのブロック枠内に示している。本発明装置をシステムに組み込むには最低2台必要であることから、図1に示すように本発明装置1および本発明装置2がシステムに組み込まれ結線されており、本発明装置2では回路構成の記載を省略してあるがその回路構成および機能は本発明装置1と同じである。本発明装置に給電をする鉄道模型車両走行用の直流電源装置3は一般の市販品であり0ボルトから約16ボルト程度までの範囲で出力電圧調整が可能で出力極性反転スイッチ7を備えている。また、VCCは本発明装置1、本発明装置2の回路駆動用電源である。
まず、図1を参照して、リレーX、Yの動作について説明する。本発明装置の特徴は、リレーXと協働する常開接点X−1a、X−2a、およびリレーYと協働する常開接点Y−1a、Y−2aを直流電源装置3の出力端子T1、T2とレール91、92の間に介在させ、リレーX、Yのスイッチング動作を利用して直流電源装置3の出力端子T1、T2をそれぞれレール91、92に直接接続するか、電圧極性が反転するように接続するか、または直流電源装置3の出力端子T1、T2とレール91、92との接続を開放するかの選択を鉄道模型車両の走行を検知して自動で行うための制御方式にある。
リレーXおよびリレーYについては、リレーXだけが励磁されリレーXと協働する常開接点X−1a、および常開接点X−2aだけが閉成すると直流電源装置3の出力端子T1はダイオードD1を経由してレール91に接続し、出力端子T2はダイオードD2を経由してレール92にそれぞれ接続するが、リレーYだけが励磁されリレーYと協働する常開接点Y−1a、および常開接点Y−2aだけが閉成すると直流電源装置3の出力端子T1はダイオードD2を経由してレール92に接続し、出力端子T2はダイオードD1を経由してレール91に接続することから、リレーXまたはリレーYのいずれかを励磁する手段で直流電源装置3の出力端子T1、T2とレール91、92との接続を入れ換えることができる。一方、リレーXまたはリレーYのいずれかが励磁されている状態では出力端子T1、T2がそれぞれレール91、92へ接続するかまたは出力端子T1、T2がそれぞれレール92、91へ接続しているので、直流電源装置3の出力極性反転スイッチ7を操作して出力端子T1、T2の出力電圧極性を反転させることでレール91、92への給電電圧極性を反転できるようになっている。また、本システムは、リレーXおよびリレーYの双方が減勢されそれらの常開接点の全てが開放し直流電源装置3の出力端子T1、T2とレール91、92とが直接接続されていない状態において、例えば直流電源装置3の出力端子T1とレール91とを直接電線で接続するような方法で外部からレール91に電圧を印可すると、リレーXまたはリレーYのいずれかが励磁され自己保持し、出力端子T1とレール91との外部接続を開放してもレール91、92にはそれぞれ直流電源装置3の出力端子T1、T2の出力が給電され続け、逆に、直流電源装置3の出力端子T1とレール92とを直接電線で接続するような方法で外部からレール92に電圧を印可するとリレーXまたはリレーYのいずれかが励磁され自己保持し、出力端子T1とレール92との外部接続を開放してもレール91、92にはそれぞれ直流電源装置3の出力端子T2、T1の出力が給電され続けるように動作する。
次に、リレーX、Yの動作に係わる電流検出回路11、出力極性検出回路12、入力極性検出回路13、および入力電圧検出回路14についてそれぞれ説明する。
図3は入力電圧検出回路14の回路図であり、説明の都合上、入力電圧検出回路14の入力IN5、IN6に接続する直流電源装置3、および入力電圧検出回路14の出力OUT4、OUT5に接続する周辺回路も示している。図3に示すように、入力電圧検出回路14は本発明装置を構成する回路の一部であり直流電源装置3の出力電圧レベルを検知し、直流電源装置3の電圧レベルが0ボルトから約2ボルトの範囲ではリレーXを励磁し、直流電源装置3の電圧レベルが約2ボルトに達するとリレーXおよびリレーYを減勢するための出力をする回路の具体的実施例であり、本発明装置を実現するために発明した回路である。図1、図3を参照して入力電圧検出回路14について説明する。オペアンプIC11は差動増幅器として作用するが、その非反転入力端子にはダイオードD13またはダイオードD14を経由して入力IN5に接続する直流電源装置3の出力端子T1の電位または入力IN6に接続するT2の電位のいずれか高い方の電位が入力され、その反転入力端子にはダイオードD11またはダイオードD12を経由して入力IN5に接続する直流電源装置3の出力端子T1の電位または入力IN6に接続する出力端子T2の電位のいずれか低い方の電位が入力されるため、オペアンプIC11の出力は直流電源装置3の出力端子T1の電位と出力端子T2の電位との電位差すなわち直流電源装置3の出力電圧にほぼ比例した、1/2VCC電位に対して0またはプラス側電位の出力になる。オペアンプIC11の出力は抵抗、ダイオードを経由してトランジスタTR11のベースに接続されており、オペアンプIC11の出力レベルが上昇してトランジスタTR11への入力電圧が閾値を超えるとトランジスタTR11はオン状態になり、トランジスタTR11のコレクタがトランジスタTR12のベースに接続しているのでトランジスタTR12はオフ状態になる。本発明入力電圧検出回路14では直流電源装置3の出力電圧が約2ボルト以上でトランジスタTR11がオン状態になりトランジスタTR12がオフ状態になるように閾値を定めてあり、直流電源装置3の出力電圧が0ボルトから約2ボルト以下の範囲ではトランジスタTR11はオフ状態であるから、トランジスタTR12はオン状態、トランジスタTR13もオン状態であり入力電圧検出回路14の出力端子OUT4はVCCを出力し、一方、トランジスタTR12がオン状態であることからコンデンサC11のプラス極側端子の電位がダイオードD15によりほぼ1/2VCC電位にクランプされ、出力OUT5はグランド電位になっている。従って、直流電源装置3の出力電圧が0ボルトから約2ボルト以下の範囲では入力電圧検出回路14の出力OUT4はVCCを出力し出力OUT5はグランド電位であることから図3に示す結線によりリレーXは励磁され、リレーXと協働する常開接点X−1a、および常開接点X−2aが閉成され、図1に示すように、直流電源装置3の出力端子T1、T2はそれぞれ出力極性検出回路12の入力IN1、入力IN2に接続され入力IN1と入力IN2との間には電位差が生じ出力極性検出回路12が後述するように作動してトランジスタTR1をオン状態にし、リレーXを自己保持させる。直流電源装置3の出力電圧を上昇させ約2ボルトに達しオペアンプIC11の出力レベルが上昇してトランジスタTR11への入力電圧が閾値を超えるとトランジスタTR11はオン状態、トランジスタTR12はオフ状態、トランジスタTR13はオフ状態になるので、入力電圧検出回路14の出力OUT4はリレーXへの給電を遮断し、その出力OUT5は、トランジスタTR12がオフ状態になりダイオードD15によるクランプを解除されたコンデンサC11のプラス極側端子の電位がほぼ1/2VCC電位からVCC電位に急激に上昇するためコンデンサC11のマイナス極側端子に接続している入力電圧検出回路14の出力OUT5の電位も一瞬上昇し、出力OUT5に接続しているトランジスタTR6のベースに約0,1秒間ベース電流を流しトランジスタTR6をオン状態にし、その間トランジスタTR4をオフ状態にする。トランジスタTR4がオフ状態になるとリレーXおよびリレーYは共に減勢状態になりレーXと協働する常開接点X−1a、および常開接点X−2aおよびリレーYと協働する常開接点Y−1a、および常開接点Y−2aが共に開放され、リレーXおよびリレーYのいずれかが、自己保持状態にあるときには、それを解除する。
図4は出力極性検出回路12の回路図であり、説明の都合上、ダイオードD1、D2およびトランジスタTR1、TR2との接続も示している。図4に示すように、出力極性検出回路12はレール91の電位とレール92の電位とを比較し、いずれが高いかを検出し出力する回路の具体的実施例であり、本発明装置を実現するために発明した回路である。出力極性検出回路12について図4を参照して説明する。オペアンプIC1、およびオペアンプIC2は共に差動増幅器として作用するが、入力端子IN1に接続するオペアンプIC1の反転入力端子とオペアンプIC2の非反転入力端子にはダイオードD1を経由してレール91の電位が、入力IN2に接続するオペアンプIC1の非反転入力端子とオペアンプIC2の反転入力端子にはダイオードD2を経由してレール92の電位が入力され、オペアンプIC1の出力は入力IN2の電位が入力IN1の電位より高いとき1/2VCC電位に対してプラス電位の出力をしてトランジスタTR8をオン状態にし、オペアンプIC2の出力は入力IN1の電位が入力IN2の電位より高いとき1/2VCC電位に対してプラス電位の出力をしてトランジスタTR9をオン状態にする。出力端子OUT1は抵抗を介してトランジスタTR9のコレクタに接続しておりトランジスタTR9がオン状態であるとトランジスタTR1をオン状態にし、出力OUT2は抵抗を介してトランジスタTR8のコレクタに接続しておりトランジスタTR8がオン状態であるとトランジスタTR2をオン状態にする。出力極性検出回路12は、その入力IN1と入力IN2との間の電位差が約1ボルト以上であると入力IN1と入力IN2の電位差の極性向きを検知するように設定されている。図1に示すように、出力極性検出回路12は、その入力IN1に常開接点X−2aと常開接点Y−2aとが共に接続され、その入力IN2に常開接点X−1aと常開接点Y−1aとが共に接続されており、リレーXまたはリレーYのいずれかが励磁され直流電源3の出力端子T1、T2が入力IN1または入力IN2にそれぞれ接続された状態において、入力IN1の電位が1/2VCC電位に対して+側電位であると出力極性検出回路12の出力OUT1に接続するトランジスタTR1のベースをドライブしてトランジスタTR1をオン状態にし、逆に入力IN2の電位が1/2VCC電位に対して+側電位であるとその出力OUT2に接続するトランジスタTR2のベースをドライブしてトランジスタTR2をオン状態にする。また、入力IN1の電位が1/2VCC電位に対して−側電位であると出力極性検出回路12は出力OUT2に接続するトランジスタTR2のベースをドライブしてトランジスタTR2をオン状態にし、逆に入力IN2の電位が1/2VCC電位に対して−側電位であるとその出力OUT1に接続するトランジスタTR1のベースをドライブしてトランジスタTR1をオン状態にする。さらに出力極性検出回路12は、その入力IN1にダイオードD1を経由してレール91が接続し、その入力IN2にダイオードD2を経由してレール92が接続されていることから、リレーXおよびリレーYの双方が減勢され直流電源装置3の出力端子T1、T2が入力IN1または入力IN2のいずれとも接続せず開放されている状態において、レール91またはレール92に前述したような方法で電線などを用いて外部から電圧が印可されレール91に接続する入力IN1の電位と1/2VCC電位との電位差、およびレール92に接続する入力IN2の電位と1/2VCC電位との電位差のいずれか一方が約1ボルト以上、または双方がそれぞれ逆電位で約0.5ボルト以上になると、入力IN1の電位が1/2VCC電位に対して+側電位のときはトランジスタTR1をオン状態にし、入力IN2の電位が1/2VCC電位に対して+側電位のときはトランジスタTR2をオン状態にし、逆に入力IN1の電位が1/2VCC電位に対して−側電位のときはトランジスタTR2をオン状態にし、入力端子IN2の電位が1/2VCC電位に対して−側電位のときはトランジスタTR1をオン状態にする。
図5は入力極性検出回路13の回路図であり、説明の都合上、直流電源装置3、トランジスタTR3、およびリレーZの励磁コイルとの接続も示している。
図5に示すように、入力極性検出回路13は本発明装置を構成する回路の一部であり直流電源装置3の出力電圧極性を検知し、直流電源装置3の出力端子T2の電位が出力端子T1の電位より高いときにTR21をオン状態にする回路の具体的実施例であり、本発明装置を実現するために発明した回路である。入力極性検出回路13について図1、図5を参照して説明する。オペアンプIC21は差動増幅器として作用するが、その非反転入力端子には入力IN3に接続する直流電源装置3の出力端子T2が接続され、またその反転入力端子には入力IN4に接続する出力端子T1が接続され、直流電源装置3の出力端子T2の電位が出力端子T1の電位より高いとオペアンプIC21は1/2VCC電位に対してプラス電位の出力をするのでトランジスタTR21をオン状態にする。入力極性検出回路13では、その入力IN3と入力IN4との間の電位差が約0.5ボルト以上で入力IN3と入力IN4の電位差の極性向きを検知するように設定されている。トランジスタTR21のコレクタは入力極性検出回路13の出力OUT3に接続し抵抗を経由してトランジスタTR3のベースに接続していることから、トランジスタTR21がオン状態になるとトランジスタTR3もオン状態になりTR3のコレクタに接続しているリレーZが励磁される。従って、図1を参照して説明すると、直流電源装置3の出力端子T1の電位が出力端子T2の電位に対して+側電位であるとリレーZは減勢されリレーZと協働する常開接点Z−1a、および常開接点Z−2aが開放になり常閉接点Z−1b、および常閉接点Z−2bが閉成しトランジスタTR1のコレクタがリレーXの励磁コイルに接続しトランジスタTR2のコレクタはリレーYの励磁コイルに接続するが、直流電源装置3の出力端子T2の電位が出力端子T1の電位に対して+側電位であるときはリレーZが励磁されリレーZと協働する常開接点Z−1a、および常開接点Z−2aが閉成し、トランジスタTR1のコレクタがリレーYの励磁コイルに接続しトランジスタTR2のコレクタはリレーXの励磁コイルにそれぞれ接続する。例えば、直流電源装置3の出力端子T1の電位が出力端子T2の電位に対して+側電位でありトランジスタTR1のコレクタがリレーXの励磁コイルに接続しているとき、リレーXおよびリレーYの双方が減勢された状態において直流電源3の出力端子T1を直接電線で接続するような方法でレール91に外部から+側電位を印可すると出力極性検出回路12の入力IN1が1/2VCC電位に対して+側電位になりオペアンプIC2が入力電位の向きを検知してトランジスタTR9をオン状態にし、トランジスタTR1をオン状態にするとリレーXが励磁されリレーXと協働する常開接点X−1a、常開接点X−2aが閉成し直流電源装置3の出力端子T1が常開接点X−2aを経由して出力極性検出回路12の入力IN1に接続し入力IN1の電位は+側電位に保たれることから、リレーXは自己保持状態になる。この例における条件の下で、レール91に対して直流電源3の出力端子T2を直接電線で接続するような方法で外部から加える電位を−側電位にしたときには、出力極性検出回路12の入力IN1が1/2VCC電位に対して−側電位になるが、このように入力IN1が1/2VCC電位に対して−側電位のとき出力極性検出回路12は前述したようにトランジスタTR1ではなくトランジスタTR2をオン状態にするように作用する。トランジスタTR2がオン状態になるとリレーYが励磁されリレーYと協働する常開接点Y−1a、常開接点Y−2aが閉成し直流電源3の出力端子T2が常開接点Y−2aを経由して出力極性検出回路12の入力IN1に接続し入力IN1の電位は−側電位に保たれることから、リレーYは自己保持状態になる。同様に、レール92に対して直流電源3の出力端子T1を直接電線で接続するような方法で外部から+側電位が印可されるとトランジスタTR2がオン状態になりリレーYが自己保持状態になり、レール92に対して直流電源3の出力端子T2を直接電線で接続するような方法で外部から−電位が印可されるとトランジスタTR1がオン状態になりリレーXが自己保持状態になる。リレーXまたはリレーYのいずれかが自己保持状態にあり、常開接点X−1aと常開接点X−2a、または常開接点Y−1aと常開接点Y−2aのいずれかが閉成すると直流電源3の出力端子T1、T2はレール91、92接続されて直流電源装置3の電源からレール91、92へ給電が可能になる。一方、前述したように直流電源装置3の出力端子T1の電位が−電位であり、出力端子T2の電位が+電位であると、入力極性検出回路13が直流電源3の出力端子T1、T2の電位向きを検出してトランジスタTR3がオン状態になりリレーZが励磁されリレーZと協働する常開接点Z−1a、常開接点Z−2が閉成するためトランジスタTR1のコレクタがリレーYの励磁コイルに接続し、トランジスタTR2のコレクタがリレーXの励磁コイルに接続しているので、リレーXおよびリレーYの双方が減勢された状態でレール91に直流電源装置3の出力端子T1を直接電線で接続するような方法で外部から−側電位が印可され出力極性検出回路12の入力IN1が基準電位に対して−側電位になり入力電位の向きを検知するとトランジスタTR2がオン状態になりリレーXを励磁すると、リレーXと協働する常開接点X−1a、常開接点X−2aが閉成するため直流電源3の出力端子T1が常開接点X−2aを経由して出力極性検出回路12の入力IN1に接続することから入力IN1には直流電源装置3の出力端子T1の−側電位が印可されリレーXは自己保持状態になる。同様に、レール91に対して直流電源装置3の出力端子T2を直接電線で接続するような方法で外部から+側電位が印可されると、トランジスタTR1がオン状態になりリレーYが励磁され常開接点Y−2aが閉成し直流電源装置3の出力端子T2の+側電位が入力IN1印可されリレーYが自己保持状態になり、レール92に対して直流電源3の出力端子T1を直接電線で接続するような方法で外部から−側電位が印可されると、トランジスタTR1がオン状態になりリレーYが励磁され常開接点Y−1aが閉成し直流電源3の出力端子T1の−側電位が入力IN2に印可されリレーYが自己保持状態になり、レール92に対して直流電源3の出力端子T2を直接電線で接続するような方法で外部から+側電位が印可されると、トランジスタTR2がオン状態になりリレーXが励磁され常開接点X−1aが閉成し直流電源3の出力端子T2の+側電位が入力IN2に印可されリレーXが自己保持状態になる。
以上の説明から、直流電源装置3の出力端子T1またはT2を直接電線で接続するような方法でレール91または92のいずれかに接続し外部からレールに電圧が印可されるとレールに印可された電圧の極性と同じ極性で直流電源装置3がレール91、92に給電するようにリレーXまたはYが励磁され自己保持状態になることから、図2(b)に示すように、鉄道模型車両20が第二閉塞区間5を走行して第一閉塞区間4に進入するときギャップ95、96をまたいで例えばレール94とレール92を電気的に短絡するとレール94の極性と同じ極性で直流電源装置3がレール91、92に給電するようにリレーXまたはYが励磁され自己保持状態になる。
図3に示す入力電圧検出回路14は、本発明装置の起動時、すなわち直流電源装置3の電圧を0ボルトから上昇させ約2ボルトに達すると前述したようにリレーXを減勢させ、リレーXと協働する常開接点X−1a、および常開接点X−2aを開放して、直流電源装置3の出力端子T1、T2とレール91、92との接続を開放する。但し、これらはレール91、92上に鉄道模型車両20が存在せず次に説明する電流検出回路11が電流検出をしないときの作用であり、レール91、92上に鉄道模型車両20が存在し、電流検出回路11が電流検出をすると図1に示すトランジスタTR7によって入力電圧検出回路14の出力OUT5は減勢されリレーXは励磁され続ける。
図6は電流検出回路11の回路図であり、説明に必要なレール91、レール92、および鉄道模型車両駆動モータ21との接続も示している。
図6に示すように、電流検出回路11は本発明装置を構成する回路の一部であり直流電源装置3からダイオードD1を経由してレール91、およびダイオードD2を経由してレール92へ給電される電流の有無をそれぞれ検知し、レール91、レール92またはレール91およびレール92の双方から鉄道模型車両20への給電があるかないかを検知する回路の具体的実施例であり、本発明装置を実現するために発明した回路である。電流検出回路11について図6を参照して説明する。例えば、レール91とレール92上に鉄道模型車両20が存在しレール91がマイナス電位、レール92がプラス電位であるとダイオードD1には矢印41の向きに電流が流れトランジスタTR41のベース電位がそのエミッタ電位より高くトランジスタTR41はオン状態になり、トランジスタTR41のコレクタは抵抗R45とダイオードD42を経由して抵抗R41の一方端45に接続し、抵抗R41の他方端46がダイオードD41と抵抗R44を経由して1/2VCCに接続していることから抵抗R41には矢印47の向きに電流が流れ、抵抗R41の一方端45の電位が抵抗R41の他方端46の電位より低い向きに電位差を発生する。また、ダイオードD2には矢印44の向きに電流が流れトランジスタTR44のベース電位がそのエミッタ電位より低くトランジスタTR44はオン状態になるので抵抗R41の一方端45がダイオードD43と抵抗R46を経由して1/2VCCに接続し、トランジスタTR44のコレクタは抵抗R47とダイオードD44を経由して抵抗R41の他方端46に接続していることから抵抗R41には矢印47の向きに電流が流れ抵抗R41の一方端45の電位が抵抗R41の他方端46の電位より低い向きに電位差を発生する。本電流検出回路11は、ダイオードD1に矢印41の方向に電流が流れるとTR41がオン状態になり、ダイオードD1に矢印42の方向に電流が流れるとTR42がオン状態になり、ダイオードD2に矢印43の方向に電流が流れるとTR43がオン状態になり、ダイオードD2に矢印44の方向に電流が流れるとトランジスタTR44がオン状態になる回路構成になっており、ダイオードD1またはダイオードD2に流れる電流の向きがいずれであっても抵抗R41にはその一方端45の電位がその他方端46の電位より低い向きの電位差を発生する。抵抗R41の一方端45および他方端46には差動増幅器として作用するオペアンプIC41の非反転入力端子および反転入力端子がそれぞれ接続されており、ダイオードD1またはダイオードD2に電流がれて抵抗R41の両端に電位差が生じるとオペアンプIC41は1/2VCC電位に対してマイナス側電位の出力をし、トランジスタTR45をオン状態にして本電流検出回路11の出力端子OUT6に1/2VCCを出力する。抵抗R48およびコンデンサC41を経由してオペアンプIC41の出力端子に接続する本電流検出回路のもう一方の出力端子OUT7は、鉄道模型車両20がレール91とレール92の双方から離脱してダイオードD1およびダイオードD2に流れる電流が遮断されオペアンプIC41の出力電位がマイナス側電位から1/2VCC電位へ急激に上昇するとコンデンサC41の充電電流が抵抗R48と抵抗R49に流れることからグランドに対してプラスの電圧を約0.1秒の間出力する。電流検出回路11はダイオードD1、D2の両端電圧を検知してレール91、レール92に流れる電流の有無を検出する回路であり、レール91とレール92の上に鉄道模型車両20が存在しないときは、レール91とレール92との間は電気的に開放でありダイオードD1、D2には電流が流れずダイオードD1、D2双方の両端電圧は0ボルトであるが、例えば図1の第二閉塞区間5で示すように鉄道模型車両20がレール91とレール92の上に存在すると、駆動用モータ21に電流が流れ、ダイオードD1、D2に電流が流れダイオードD1、D2双方の両端に電圧が発生し、前記抵抗R41の両端に電位差が発生し、オペアンプIC41が作動することで電流検出をする機能を備えている。図6に示すように、電流検出回路11の出力には2種類あり、一方の出力OUT7は、レール91とレール92上を鉄道模型車両20が走行しリレーX、Yのいずれかが励磁され自己保持状態になっており直流電源装置3の出力端子とレール91、レール92とが接続されている状態から鉄道模型車両20がレール91とレール92上を離脱してレール91とレール92の間を電気的に開放にすると、電流検出回路11は電流が0になったことを検知し自己保持状態になっているリレーXまたはリレーYを減勢し直流電源装置3の出力端子とレール91、レール92との接続を開放する出力であり、他方の出力OUT6は、鉄道模型車両20を停止状態から走行を開始するために直流電源装置3の電圧を0ボルトから上昇させ約2ボルトに達すると、入力電圧検出回路14の出力OUT5が作用してリレーXまたはリレーYを減勢し自己保持状態を解除する構造になっているので、レール91とレール92の上に鉄道模型車両20が存在するときにはこの出力OUT5を減勢してリレーXまたはリレーYの自己保持状態を継続させる出力である。
これまで説明したように、リレーX、リレーYは、電流検出回路11、出力極性検出回路12、入力極性検出回路13、および入力電圧検出回路14からの情報信号で動作し、鉄道模型車両走行用レールへの給電極性を反転して接続する、または給電を遮断するスイッチとして作用するが、鉄道模型車両走行に伴うレールへの給電電位の切り換えに対するリレーXおよびリレーYの動作の関わりは次のようになる。
図2(a)、(b)、(c)、(d)、(e)は鉄道模型車両20が走行して第二閉塞区間5から第一閉塞区間4へ移動するときに車輪とレールとの接触状態変化を示す遷移図である。図1および図2(a)、(b)、(c)、(d)、(e)を参照して鉄道模型車両20の走行と鉄道模型車両20の走行に伴い変化する本発明装置1の動作を説明する。第一閉塞区間4および第二閉塞区間5は前述したようにそれぞれがレール91、92およびレール93、94で構成される。図1に示すように、本発明装置1、本発明装置2は共に直流電源装置3から受電し、本発明装置1は第一閉塞区間4のレール91、92へ、および本発明装置2は第二閉塞区間5のレール93、94へそれぞれ給電する。例えば、直流電源装置3の出力電圧を0ボルトから上昇させた時、直流電源装置3の出力端子T1は+側電位、出力端子T2は−側電位で出力し、本発明明装置2が第二閉塞区間5のレール93へは−側電位、レール94へは+側電位になる極性で給電し、この条件の下で鉄道模型車両20はレール93、94上を第一閉塞区間4に向けて走行するものとして説明する。図2(a)に示すように、鉄道模型車両20の車輪全てがレール93またはレール94の上にありレール91、92には接触していない状態で、直流電源装置3の出力を0ボルトから約4ボルトまで上昇させると鉄道模型車両20は走行を開始するが、この間レール93、レール94との間には車両の駆動用モータ21が接続しているため本発明明装置2は電流を検出しレール93に−側電位、レール94に+側電位になる給電を保持する。一方本発明装置1については次の動作をする。まず、直流電源装置3の出力電圧を0ボルトから上昇させると入力電圧検出回路14が作動し前述したようにリレーXはあらかじめ励磁され、常開接点X−1a、常開接点X−2aが閉成していることでレール91、92に給電する。直流電源装置3の出力電圧が約1ボルトに達すると前述したように出力極性検出回路12が作動しトランジスタTR1をオン状態にするのでリレーXは自己保持状態になり、レール91、92への給電を保持する。直流電源装置3の出力が約2ボルトに達すると前述したように入力電圧検出回路14の出力端子OUT4は開放に転じVCCを遮断するがリレーXは自己保持状態にあることからレール91、92には給電が保持される。一方、入力電圧検出回路14の出力端子OUT4が開放に転じた直後出力端子OUT5は約0.1秒遅れて約0.1秒幅の正極性パルスを出力しその間トランジスタTR6がオン状態になりトランジスタTR4が約0.1秒オフ状態になりリレーXが減勢されこれと協動するリレーXの常開接点X−1a、X−2aが開放になるが、図1に示すように、これら常開接点の両端は全て同じ抵抗値の抵抗R1、R2、R3、R4で終端されおり、レール91の電位は抵抗R2とR4、レール92の電位は抵抗R1とR3とでそれぞれ分圧された電位、すなわち直流電源装置3の出力端子T1の+側電位と出力端子T2の−側電位との中間電位になっている。この結果、レール91の電位とレール92の電位とは同電位になり、双方の間の電圧は0ボルトである。直流電源装置3の出力電圧を約3ボルト以上約16ボルトまでの範囲で変化させても本発明明装置1はこの状態を維持し同時にリレーXおよびリレーYの常開接点は全て開放でありレール91、92には直流電源装置3の出力が直接接続されておらず、第二閉塞区間5から鉄道模型車両20が進入すると出力極性検出回路12はレール93、レール94の電圧極性を検出できる状態になっている。図2(b)に示すように、第二閉塞区間5で走行を開始した鉄道模型車両20が走行を続け車輪30、31だけがギャップ95、96を通過し車輪28、29はギャップ95、96を通過する前の状態では、前述したように車輪29と31とは電気的に接続していることからレール92とレール94とは電気的に短絡されレール92の電位は94の電位と同電位の+電位になる。一方、この時点に至る前に車輪30もギャップ95を通過するが、車輪28と30とは電気的に絶縁されており車輪30がギャップ95を通過するときにレール91とレール93を短絡する確率は低いものの、短絡するとレール91はレール93と同電位の−電位になる。以上の説明から、レール91、92の電位は車輪30、31がギャップ95、96を通過する前は共に直流電源装置3の出力端子T1の+側電位と出力端子T2の−側電位との中間電位であり通過後はレール92の電位が直流電源装置3の+電位になり、レール91の電位は直流電源装置3の出力端子T1の+側電位と出力端子T2の−側電位との中間電位を維持するか、または車輪21がレール91と93とを短絡すると直流電源装置3の−電位になることからレール91、92間に電圧が発生し、この電圧を出力極性検出回路12が検出しTR2がオン状態になるとリレーYが励磁されこれと協動するリレーYの常開接点Y−1a、Y−2aが閉成してリレーYが自己保持状態になり、レール92には+電位、レール91には−電位での給電が保持される。この状態ではレール91と93およびレール92と94とはそれぞれ互いに同極性で同じ電圧を保持し鉄道模型車両20は+電位の電源をレール92,94の双方から車輪31、29を介して集電し、−電位の電源をレール93から車輪24、26を介して集電して同じ向きに走行を継続できる。図2(c)、図2(d)に示すように、鉄道模型車両20の最後尾の車輪24、25がギャップを通過し終わる直前までは集電する車輪24、26が第一閉塞区間4のレール91または第二閉塞区間5のレール93と接触し、集電する車輪29と31が第一閉塞区間4のレール92と接触しているため本発明装置1、2とも電流検出をしており図2(b)に示す状態と同様にレール91と93、レール92と94はそれぞれ互いに同電位を保持しており鉄道模型車両20は同じ向きに走行を継続できる。図2(e)に示すように、車輪が全て第一閉塞区間4のレール91、92上に移動した後はレール91、92には給電が保持されており鉄道模型車両20が走行できる状態であるが、車輪が全て離脱した第二閉塞区間5のレール93およびレール94の電気的状態は変化する。第二閉塞区間5のレール93、94から車輪が全て離脱すると、レール93、94の間には駆動用モータ21の接続が解除され電流が流れなり本発明装置1と同じ機能をもつ本発明装置2の電流検出回路が電流0を検出し直流電源装置3の出力端子T1、T2とレール93、94との接続を開放し、図2(a)に示した、第一閉塞区間において本発明装置1の出力極性検出回路12がレール91、92の電圧極性を検出できる状態と同様に第二閉塞区間に接続する本発明装置2の出力極性検出回路12がレール93、94の電圧極性を検出できる状態になる。鉄道模型車両20の停止については、例えば、図1に示す第一閉塞区間4上を鉄道模型車両20が走行中に直流電源3の出力電圧を約4ボルトまで減圧すると鉄道模型車両20は停止するが、前述したように出力極性検出回路12は、その入力IN1と入力IN2との間の電位差が約1ボルト以上ではリレーXまたはリレーYを自己保持状態にしているで、鉄道模型車両20が停止するまではレール91、92に給電を保持する。
以上説明した実施例に示すように、本発明鉄道模型車両20走行用直流電源出力極性自動切換装置は、閉塞区間を互いに電気的に絶縁して順次繋げ鉄道模型車両20が連続する複数の閉塞区間を続けて走行できるような形状に設置してある軌道を構成するそれぞれの閉塞区間について、軌道上を鉄道模型車両20が走行している閉塞区間では直流電源装置3の出力と閉塞区間を構成するレールとの接続を保持し、軌道上に鉄道模型車両20が存在しない閉塞区間では直流電源装置3の出力と閉塞区間を構成するレールとの接続を遮断し、鉄道模型車両20が進入した閉塞区間では鉄道模型車両20が進入前に走行していた閉塞区間での走行と同じ向きの走行を続けられるようにプラス・マイナス極性を切り換えて直流電源装置3の出力と閉塞区間を構成するレールとを接続し、鉄道模型車両20が通過して軌道上に鉄道模型車両20が存在しなくなった閉塞区間では直流電源装置3の出力と閉塞区間を構成するレールとの接続を遮断する機能、さらに直流電源を操作してその出力電圧を0ボルトから昇圧して軌道上に停止している鉄道模型車両20を発進させる閉塞区間に対しては直流電源に内蔵される直流電源出力のプラス・マイナス極性反転スイッチを操作することで鉄道模型車両20の前進、または後退の向きを選択できる機能を提供する課題を解決した装置であり、この課題を解決していることから、本発明鉄道模型車両走行用直流電源出力極性自動切換装置は、リバースと呼ばれるレイアウトの鉄道模型車両走行用軌道上を鉄道模型車両20が同じ向きに走行するための給電電位の反転切り換え、給電の遮断を自動で行うことを特徴とする装置である。
A DC power supply output polarity automatic switching device for running a model train according to the present invention will be described with reference to the accompanying drawings. FIG. 1 is a system diagram showing an embodiment of the present invention. The present invention device 1, the present invention device 2, the DC power supply device 3, the first closed section 4 and the second closed section 5 are connected to each other. The circuit configuration of the present invention device 1 and the DC power supply device 3 is shown in each block frame. Since at least two devices are required to incorporate the device of the present invention into the system, the device 1 of the present invention and the device 2 of the present invention are assembled and connected to the system as shown in FIG. Is omitted, but the circuit configuration and function are the same as those of the device 1 of the present invention. The DC power supply device 3 for running a model railway vehicle that supplies power to the device of the present invention is a general commercial product, and the output voltage can be adjusted in the range of 0 to about 16 volts, and includes an output polarity reversing switch 7. . VCC is a circuit driving power source for the inventive device 1 and the inventive device 2.
First, the operation of the relays X and Y will be described with reference to FIG. The device of the present invention is characterized in that the normally open contacts X-1a and X-2a cooperating with the relay X and the normally open contacts Y-1a and Y-2a cooperating with the relay Y are connected to the output terminal T1 of the DC power supply device 3. , T2 and the rails 91 and 92, and using the switching operation of the relays X and Y, the output terminals T1 and T2 of the DC power supply 3 are directly connected to the rails 91 and 92, respectively, or the voltage polarity is inverted. A control method for automatically selecting the connection between the output terminals T1 and T2 of the DC power supply device 3 and the rails 91 and 92 by detecting the travel of the model train. is there.
Regarding the relay X and the relay Y, when only the relay X is excited and only the normally open contact X-1a cooperating with the relay X and the normally open contact X-2a are closed, the output terminal T1 of the DC power supply 3 is the diode D1. And the output terminal T2 is connected to the rail 92 via the diode D2, but only the relay Y is excited and the normally open contact Y-1a cooperating with the relay Y, and the normally open. When only the contact Y-2a is closed, the output terminal T1 of the DC power supply device 3 is connected to the rail 92 via the diode D2, and the output terminal T2 is connected to the rail 91 via the diode D1. Alternatively, the connection between the output terminals T1 and T2 of the DC power supply device 3 and the rails 91 and 92 can be switched by means for exciting one of the relays Y. On the other hand, in the state where either relay X or relay Y is excited, the output terminals T1 and T2 are connected to the rails 91 and 92, respectively, or the output terminals T1 and T2 are connected to the rails 92 and 91, respectively. The polarity of the voltage supplied to the rails 91 and 92 can be inverted by operating the output polarity reversing switch 7 of the DC power supply device 3 to invert the output voltage polarity of the output terminals T1 and T2. In this system, both relay X and relay Y are deenergized, all of their normally open contacts are opened, and the output terminals T1, T2 of the DC power supply 3 and the rails 91, 92 are not directly connected. For example, when a voltage is applied to the rail 91 from the outside in such a manner that the output terminal T1 of the DC power supply device 3 and the rail 91 are directly connected by an electric wire, either the relay X or the relay Y is excited and self-held, Even if the external connection between the output terminal T1 and the rail 91 is released, the outputs of the output terminals T1 and T2 of the DC power supply device 3 continue to be fed to the rails 91 and 92, respectively, and conversely the output terminal T1 of the DC power supply device 3 When a voltage is applied to the rail 92 from the outside in such a manner that the rail 92 is directly connected to the rail 92, either the relay X or the relay Y is excited and self-holds, and the output terminal T1 The output of Lumpur 92 output terminal T2, respectively the rail 91 and 92 be opened direct-current power supply 3 to an external connection to the T1 operates to continue to be powered.
Next, the current detection circuit 11, the output polarity detection circuit 12, the input polarity detection circuit 13, and the input voltage detection circuit 14 related to the operation of the relays X and Y will be described.
3 is a circuit diagram of the input voltage detection circuit 14. For convenience of explanation, the DC power supply device 3 connected to the inputs IN5 and IN6 of the input voltage detection circuit 14 and the outputs OUT4 and OUT5 of the input voltage detection circuit 14 are connected. A peripheral circuit is also shown. As shown in FIG. 3, the input voltage detection circuit 14 is a part of a circuit constituting the device of the present invention, detects the output voltage level of the DC power supply device 3, and the voltage level of the DC power supply device 3 is about 0 to about 2 volts. In the range of volts, the relay X is energized, and when the voltage level of the DC power supply device 3 reaches about 2 volts, this is a specific embodiment of a circuit that outputs to deenergize the relay X and relay Y. It is the circuit which invented in order to realize. The input voltage detection circuit 14 will be described with reference to FIGS. The operational amplifier IC11 acts as a differential amplifier, but the non-inverting input terminal of the output terminal T1 of the DC power supply device 3 connected to the input IN5 via the diode D13 or the diode D14 or the potential of T2 connected to the input IN6. The higher one of the potentials is input, and the potential of the output terminal T1 of the DC power supply device 3 connected to the input IN5 via the diode D11 or the diode D12 or the output terminal connected to the input IN6 is input to the inverting input terminal. Since the lower potential of T2 is input, the output of the operational amplifier IC11 is almost equal to the potential difference between the potential of the output terminal T1 of the DC power supply device 3 and the potential of the output terminal T2, that is, the output voltage of the DC power supply device 3. Proportional output of 0 or plus side potential with respect to 1/2 VCC potential. The output of the operational amplifier IC11 is connected to the base of the transistor TR11 via a resistor and a diode. When the output level of the operational amplifier IC11 rises and the input voltage to the transistor TR11 exceeds the threshold, the transistor TR11 is turned on. Since the collector of the transistor TR11 is connected to the base of the transistor TR12, the transistor TR12 is turned off. In the input voltage detection circuit 14 according to the present invention, a threshold is set so that the transistor TR11 is turned on and the transistor TR12 is turned off when the output voltage of the DC power supply device 3 is about 2 volts or more. Since the transistor TR11 is in the off state in the range of 0 to about 2 volts or less, the transistor TR12 is in the on state, the transistor TR13 is also in the on state, and the output terminal OUT4 of the input voltage detection circuit 14 outputs VCC, Since the transistor TR12 is in the ON state, the potential at the positive electrode side terminal of the capacitor C11 is clamped to approximately 1/2 VCC potential by the diode D15, and the output OUT5 is at the ground potential. Therefore, when the output voltage of the DC power supply device 3 is in the range of 0 volts to about 2 volts or less, the output OUT4 of the input voltage detection circuit 14 outputs VCC and the output OUT5 is the ground potential. Is normally excited and the normally open contact X-1a and the normally open contact X-2a cooperating with the relay X are closed. As shown in FIG. 1, the output terminals T1 and T2 of the DC power supply device 3 have output polarities, respectively. A potential difference is generated between the input IN1 and the input IN2 connected to the inputs IN1 and IN2 of the detection circuit 12, and the output polarity detection circuit 12 operates as described later to turn on the transistor TR1 and hold the relay X by itself. Let When the output voltage of the DC power supply device 3 is increased to reach about 2 volts and the output level of the operational amplifier IC11 rises and the input voltage to the transistor TR11 exceeds the threshold value, the transistor TR11 is turned on, the transistor TR12 is turned off, and the transistor TR13 is turned on. Since the output is turned off, the output OUT4 of the input voltage detection circuit 14 cuts off the power supply to the relay X, and the output OUT5 is the positive pole side of the capacitor C11 in which the transistor TR12 is turned off and the clamp by the diode D15 is released. Since the potential of the terminal suddenly rises from about 1/2 VCC potential to VCC potential, the potential of the output OUT5 of the input voltage detection circuit 14 connected to the negative terminal of the capacitor C11 also rises momentarily and is connected to the output OUT5. About 0.1 second at the base of the transistor TR6 The transistor TR6 flowing over scan current in the on state and the off state during which the transistor TR4. When the transistor TR4 is turned off, the relay X and the relay Y are both de-energized, and the normally open contact X-1a that cooperates with the X and the normally open contact X-2a and the normally open contact Y that cooperates with the relay Y. -1a and normally open contact Y-2a are both opened, and when either relay X or relay Y is in a self-holding state, it is released.
FIG. 4 is a circuit diagram of the output polarity detection circuit 12 and, for convenience of explanation, also shows connections with the diodes D1 and D2 and the transistors TR1 and TR2. As shown in FIG. 4, the output polarity detection circuit 12 is a specific embodiment of a circuit that compares the potential of the rail 91 with the potential of the rail 92, detects which is higher, and implements the device of the present invention. This is a circuit invented to achieve this. The output polarity detection circuit 12 will be described with reference to FIG. Both the operational amplifier IC1 and the operational amplifier IC2 function as a differential amplifier. However, the potential of the rail 91 is connected to the inverting input terminal of the operational amplifier IC1 connected to the input terminal IN1 and the non-inverting input terminal of the operational amplifier IC2 via the diode D1. The potential of the rail 92 is input to the non-inverting input terminal of the operational amplifier IC1 connected to the input IN2 and the inverting input terminal of the operational amplifier IC2 via the diode D2, and the output of the operational amplifier IC1 is such that the potential of the input IN2 is higher than the potential of the input IN1. When the potential is high, a positive potential is output with respect to the ½ VCC potential to turn on the transistor TR8. The output of the operational amplifier IC2 is a positive potential with respect to the ½ VCC potential when the potential at the input IN1 is higher than the potential at the input IN2. Output is performed to turn on the transistor TR9. The output terminal OUT1 is connected to the collector of the transistor TR9 via a resistor. When the transistor TR9 is on, the transistor TR1 is turned on, and the output OUT2 is connected to the collector of the transistor TR8 via a resistor. When is turned on, the transistor TR2 is turned on. The output polarity detection circuit 12 is set to detect the polarity direction of the potential difference between the input IN1 and the input IN2 when the potential difference between the input IN1 and the input IN2 is about 1 volt or more. As shown in FIG. 1, the output polarity detection circuit 12 has a normally open contact X-2a and a normally open contact Y-2a connected to the input IN1, and a normally open contact X-1a and a normally open to the input IN2. When the contact Y-1a is connected together, and either the relay X or the relay Y is excited and the output terminals T1 and T2 of the DC power supply 3 are connected to the input IN1 or the input IN2, respectively, the potential of the input IN1 Is a positive side potential with respect to 1/2 VCC potential, the base of the transistor TR1 connected to the output OUT1 of the output polarity detection circuit 12 is driven to turn on the transistor TR1, and conversely, the potential of the input IN2 is 1/2 VCC. When the potential is a positive side potential, the base of the transistor TR2 connected to the output OUT2 is driven to turn on the transistor TR2. When the potential of the input IN1 is a negative potential with respect to the 1/2 VCC potential, the output polarity detection circuit 12 drives the base of the transistor TR2 connected to the output OUT2 to turn on the transistor TR2, and conversely the input IN2 When the potential of the transistor TR1 is a negative potential with respect to the 1/2 VCC potential, the base of the transistor TR1 connected to the output OUT1 is driven to turn on the transistor TR1. Further, since the rail 91 is connected to the input IN1 via the diode D1 and the rail 92 is connected to the input IN2 via the diode D2, the output polarity detection circuit 12 is connected to the relay X and the relay Y. In the state where both are de-energized and the output terminals T1 and T2 of the DC power supply device 3 are not connected to either the input IN1 or the input IN2 and are open, a wire or the like is used for the rail 91 or the rail 92 in the manner described above Any one of the potential difference between the potential of the input IN1 connected to the rail 91 and the 1/2 VCC potential and the potential difference between the potential of the input IN2 connected to the rail 92 and the 1/2 VCC potential is about 1 When the voltage is more than volt, or both are about 0.5 volt or more with opposite potentials, the potential at the input IN1 becomes 1/2 VCC When the potential is the side potential, the transistor TR1 is turned on. When the potential of the input IN2 is the positive potential with respect to the 1/2 VCC potential, the transistor TR2 is turned on. Conversely, the potential of the input IN1 is the potential with respect to the 1/2 VCC potential. When the potential is negative, the transistor TR2 is turned on. When the potential of the input terminal IN2 is negative with respect to the ½ VCC potential, the transistor TR1 is turned on.
FIG. 5 is a circuit diagram of the input polarity detection circuit 13. For convenience of explanation, the DC power supply device 3, the transistor TR3, and the connection with the exciting coil of the relay Z are also shown.
As shown in FIG. 5, the input polarity detection circuit 13 is a part of the circuit constituting the device of the present invention, detects the output voltage polarity of the DC power supply device 3, and the potential of the output terminal T2 of the DC power supply device 3 is the output terminal. This is a specific embodiment of a circuit for turning on TR21 when it is higher than the potential of T1, and is a circuit invented to realize the device of the present invention. The input polarity detection circuit 13 will be described with reference to FIGS. The operational amplifier IC21 acts as a differential amplifier, and its non-inverting input terminal is connected to the output terminal T2 of the DC power supply device 3 connected to the input IN3, and its inverting input terminal is connected to the output terminal T1 connected to the input IN4. Are connected and the potential of the output terminal T2 of the DC power supply device 3 is higher than the potential of the output terminal T1, the operational amplifier IC21 outputs a positive potential with respect to the 1/2 VCC potential, so that the transistor TR21 is turned on. The input polarity detection circuit 13 is set to detect the polarity direction of the potential difference between the input IN3 and the input IN4 when the potential difference between the input IN3 and the input IN4 is about 0.5 volts or more. Since the collector of the transistor TR21 is connected to the output OUT3 of the input polarity detection circuit 13 and connected to the base of the transistor TR3 via a resistor, the transistor TR3 is also turned on when the transistor TR21 is turned on, and the collector of the TR3. The relay Z connected to is excited. Accordingly, when described with reference to FIG. 1, when the potential of the output terminal T1 of the DC power supply device 3 is a positive potential with respect to the potential of the output terminal T2, the relay Z is deenergized and cooperates with the relay Z. The contact Z-1a and the normally open contact Z-2a are opened, the normally closed contact Z-1b and the normally closed contact Z-2b are closed, the collector of the transistor TR1 is connected to the exciting coil of the relay X, and the transistor TR2 The collector is connected to the exciting coil of the relay Y, but when the potential of the output terminal T2 of the DC power supply device 3 is a positive potential with respect to the potential of the output terminal T1, the relay Z is normally excited and cooperates with the relay Z. The open contact Z-1a and the normally open contact Z-2a are closed, the collector of the transistor TR1 is connected to the exciting coil of the relay Y, and the collector of the transistor TR2 is connected to the exciting coil of the relay X. For example, when the potential of the output terminal T1 of the DC power supply device 3 is a positive potential with respect to the potential of the output terminal T2, and the collector of the transistor TR1 is connected to the exciting coil of the relay X, both the relay X and the relay Y are used. When the positive side potential is applied to the rail 91 from the outside in such a manner that the output terminal T1 of the DC power source 3 is directly connected to the rail 91 in a state where the power supply is deenergized, the input IN1 of the output polarity detection circuit 12 is set to the 1/2 VCC potential. And the operational amplifier IC2 detects the direction of the input potential and turns on the transistor TR9. When the transistor TR1 is turned on, the relay X is energized and cooperates with the relay X. The open contact X-2a is closed, and the output terminal T1 of the DC power supply 3 is connected to the input IN1 of the output polarity detection circuit 12 via the normally open contact X-2a. From being kept at 1 potential + side potential, relay X becomes self-holding state. Under the conditions in this example, when the potential applied from the outside is set to the-side potential by a method in which the output terminal T2 of the DC power supply 3 is directly connected to the rail 91 by a wire, the input IN1 of the output polarity detection circuit 12 is set. However, when the input IN1 is in the minus side potential with respect to the 1/2 VCC potential, the output polarity detection circuit 12 does not use the transistor TR1 but the transistor TR2 as described above. Acts to turn on. When the transistor TR2 is turned on, the relay Y is excited and the normally open contact Y-1a and the normally open contact Y-2a that cooperate with the relay Y are closed, and the output terminal T2 of the DC power supply 3 is connected to the normally open contact Y-2a. Since the input IN1 is connected to the input IN1 of the output polarity detection circuit 12 and the potential of the input IN1 is kept at a negative potential, the relay Y is in a self-holding state. Similarly, when a positive side potential is applied from the outside by connecting the output terminal T1 of the DC power supply 3 directly to the rail 92 with a wire, the transistor TR2 is turned on and the relay Y is in a self-holding state. When a negative potential is applied from the outside in such a manner that the output terminal T2 of the DC power supply 3 is directly connected to the rail 92 by a wire, the transistor TR1 is turned on and the relay X is in a self-holding state. When either relay X or relay Y is in a self-holding state, and either normally open contact X-1a and normally open contact X-2a, or normally open contact Y-1a and normally open contact Y-2a are closed The output terminals T1 and T2 of the DC power supply 3 are connected to the rails 91 and 92 so that power can be supplied from the power supply of the DC power supply device 3 to the rails 91 and 92. On the other hand, as described above, when the potential of the output terminal T1 of the DC power supply device 3 is −potential and the potential of the output terminal T2 is + potential, the input polarity detection circuit 13 is connected to the output terminals T1 and T2 of the DC power supply 3. The direction of the potential is detected, the transistor TR3 is turned on, the relay Z is excited, and the normally open contact Z-1a and the normally open contact Z-2 that cooperate with the relay Z are closed, so that the collector of the transistor TR1 is the relay Y. Since the collector of the transistor TR2 is connected to the exciting coil of the relay X, the output terminal T1 of the DC power supply device 3 is directly connected to the rail 91 in a state where both the relay X and the relay Y are deenergized. When a negative potential is applied from the outside by a method of connecting with an electric wire, the input IN1 of the output polarity detection circuit 12 becomes a negative potential with respect to the reference potential, and the direction of the input potential is detected. When the relay TR2 is turned on and the relay X is energized, the normally open contact X-1a and the normally open contact X-2a that cooperate with the relay X are closed, so that the output terminal T1 of the DC power supply 3 is the normally open contact X-. Since it is connected to the input IN1 of the output polarity detection circuit 12 via 2a, the negative potential of the output terminal T1 of the DC power supply device 3 is applied to the input IN1, and the relay X is in a self-holding state. Similarly, when a positive potential is applied from the outside in such a manner that the output terminal T2 of the DC power supply device 3 is directly connected to the rail 91 by a wire, the transistor TR1 is turned on and the relay Y is normally excited. The open contact Y-2a is closed, the + side potential of the output terminal T2 of the DC power supply device 3 is applied to the input IN1, and the relay Y is in a self-holding state, and the output terminal T1 of the DC power supply 3 is directly connected to the rail 92 by the electric wire. When a negative potential is applied from the outside in such a way that the transistor TR1 is connected, the transistor TR1 is turned on, the relay Y is excited, the normally open contact Y-1a is closed, and the negative side of the output terminal T1 of the DC power source 3 is closed. When the potential is applied to the input IN2 and the relay Y is in a self-holding state, and the positive side potential is applied from the outside in such a manner that the output terminal T2 of the DC power supply 3 is directly connected to the rail 92 by an electric wire, TR2 relay X is applied to the + side potential is input IN2 of the output terminal T2 of the normally open contact X-1a relay X is energized closed direct-current power supply 3 turned on becomes self-holding state.
From the above description, the output terminal T1 or T2 of the DC power supply device 3 is directly connected to the rail 91 or 92 by a method such that the voltage is applied to the rail from the outside. Since the relay X or Y is excited so that the DC power supply 3 supplies power to the rails 91 and 92 with the same polarity as that of the voltage, the model railway vehicle 20 is in a self-holding state as shown in FIG. Travels through the second closed section 5 and enters the first closed section 4, for example, when the rail 94 and the rail 92 are electrically short-circuited across the gaps 95 and 96, the DC power supply 3 has the same polarity as the rail 94. Relays X and Y are energized so as to supply power to the rails 91 and 92, and are in a self-holding state.
The input voltage detection circuit 14 shown in FIG. 3 depresses the relay X as described above at the start-up of the device of the present invention, that is, when the voltage of the DC power supply device 3 is increased from 0 volts and reaches about 2 volts. The normally open contact X-1a and the normally open contact X-2a that cooperate with each other are opened, and the connection between the output terminals T1, T2 of the DC power supply device 3 and the rails 91, 92 is opened. However, these are the operations when the model railway vehicle 20 does not exist on the rails 91 and 92 and the current detection circuit 11 described below does not detect current, and the model railway vehicle 20 exists on the rails 91 and 92. When the current detection circuit 11 detects the current, the output OUT5 of the input voltage detection circuit 14 is deenergized by the transistor TR7 shown in FIG. 1, and the relay X continues to be excited.
FIG. 6 is a circuit diagram of the current detection circuit 11 and also shows connections with the rail 91, the rail 92, and the model train vehicle drive motor 21 necessary for the description.
As shown in FIG. 6, the current detection circuit 11 is a part of the circuit constituting the device of the present invention, and is fed from the DC power supply device 3 to the rail 91 via the diode D1 and to the rail 92 via the diode D2. This is a specific example of a circuit that detects whether or not there is power to the railway model vehicle 20 from the rail 91, the rail 92, or both the rail 91 and the rail 92, and It is a circuit invented to realize. The current detection circuit 11 will be described with reference to FIG. For example, when the model railway vehicle 20 exists on the rail 91 and the rail 92, the rail 91 has a negative potential, and the rail 92 has a positive potential, a current flows through the diode D1 in the direction of the arrow 41, and the base potential of the transistor TR41 becomes its emitter. The transistor TR41 is turned on higher than the potential, the collector of the transistor TR41 is connected to one end 45 of the resistor R41 via the resistor R45 and the diode D42, and the other end 46 of the resistor R41 is connected to the diode D41 and the resistor R44. Therefore, a current flows in the direction of the arrow 47 through the resistor R41, and a potential difference is generated in a direction in which the potential at one end 45 of the resistor R41 is lower than the potential at the other end 46 of the resistor R41. In addition, a current flows through the diode D2 in the direction of the arrow 44, the base potential of the transistor TR44 is lower than its emitter potential, and the transistor TR44 is turned on, so that one end 45 of the resistor R41 is 1 through the diode D43 and the resistor R46. Since the collector of the transistor TR44 is connected to the other end 46 of the resistor R41 via the resistor R47 and the diode D44, a current flows in the direction of the arrow 47 through the resistor R41, and one end of the resistor R41. A potential difference is generated in a direction in which the potential of 45 is lower than the potential of the other end 46 of the resistor R41. In the current detection circuit 11, when a current flows through the diode D1 in the direction of the arrow 41, the TR41 is turned on. When a current flows through the diode D1 in the direction of the arrow 42, the TR42 is turned on, and the diode D2 has an arrow 43. TR43 is turned on when current flows in the direction of, and the transistor TR44 is turned on when current flows in the direction of the arrow 44 through the diode D2. The direction of the current flowing through the diode D1 or the diode D2 In either case, the resistor R41 generates a potential difference in which the potential at one end 45 is lower than the potential at the other end 46. A non-inverting input terminal and an inverting input terminal of an operational amplifier IC41 functioning as a differential amplifier are connected to one end 45 and the other end 46 of the resistor R41, respectively, and current is supplied to the diode D1 or the diode D2 so that both ends of the resistor R41 are connected. When the potential difference occurs, the operational amplifier IC41 outputs a negative potential with respect to the 1 / 2VCC potential, turns on the transistor TR45, and outputs 1 / 2VCC to the output terminal OUT6 of the current detection circuit 11. The other output terminal OUT7 of the current detection circuit connected to the output terminal of the operational amplifier IC41 via the resistor R48 and the capacitor C41 is connected to the diode D1 and the diode when the model railway vehicle 20 is disconnected from both the rail 91 and the rail 92. When the current flowing through D2 is cut off and the output potential of the operational amplifier IC41 suddenly rises from the negative potential to 1/2 VCC potential, the charging current of the capacitor C41 flows through the resistor R48 and the resistor R49. Output for 0.1 seconds. The current detection circuit 11 is a circuit that detects the presence or absence of current flowing through the rails 91 and 92 by detecting the voltage across the diodes D1 and D2, and when the model railway vehicle 20 does not exist on the rails 91 and 92, The rail 91 and the rail 92 are electrically open, no current flows through the diodes D1 and D2, and the voltage across the diodes D1 and D2 is 0 volts. When the model railway vehicle 20 exists on the rail 91 and the rail 92 as shown by the following, current flows through the driving motor 21, current flows through the diodes D1 and D2, and a voltage is generated at both ends of the diodes D1 and D2. A potential difference is generated between both ends of the resistor R41, and the operational amplifier IC41 operates to detect a current. As shown in FIG. 6, there are two types of outputs of the current detection circuit 11, and one output OUT7 is self-excited when the model railway vehicle 20 runs on the rail 91 and the rail 92 and one of the relays X and Y is excited. From the state in which the output terminal of the DC power supply device 3 is connected to the rail 91 and the rail 92, the model railway vehicle 20 is separated from the rail 91 and the rail 92, and the space between the rail 91 and the rail 92 is reached. When it is electrically opened, the current detection circuit 11 detects that the current has become 0 and deenergizes the relay X or relay Y that is in a self-holding state, and the output terminal of the DC power supply 3 and the rail 91, rail The other output OUT6 increases the voltage of the DC power supply 3 from 0 volts to reach about 2 volts in order to start running the model railway vehicle 20 from a stopped state. Then, since the output OUT5 of the input voltage detection circuit 14 acts to deenergize the relay X or the relay Y and release the self-holding state, the model railway vehicle 20 is placed on the rail 91 and the rail 92. When present, the output OUT5 is deenergized to continue the self-holding state of the relay X or relay Y.
As described so far, the relay X and the relay Y operate on information signals from the current detection circuit 11, the output polarity detection circuit 12, the input polarity detection circuit 13, and the input voltage detection circuit 14, and are used for running a model train. The relay X and relay Y operate as a switch for connecting or reversing the polarity of the power feeding to the rail, or switching the power feeding potential to the rail when the model train is running. become.
2 (a), 2 (b), 2 (c), 2 (d), and 2 (e) show that when the model railway vehicle 20 travels and moves from the second closed section 5 to the first closed section 4, the wheel and rail It is a transition diagram which shows a contact state change. Referring to FIGS. 1 and 2 (a), (b), (c), (d), and (e), the apparatus 1 of the present invention that changes as the model train 20 travels and the model train 20 travels. The operation will be described. The first closed section 4 and the second closed section 5 are each composed of the rails 91 and 92 and the rails 93 and 94 as described above. As shown in FIG. 1, both the device 1 of the present invention and the device 2 of the present invention receive power from the DC power supply device 3, the device 1 of the present invention supplies the rails 91 and 92 in the first closed section 4, and the device 2 of the present invention Power is supplied to the rails 93 and 94 in the two closed sections 5 respectively. For example, when the output voltage of the DC power supply device 3 is increased from 0 volts, the output terminal T1 of the DC power supply device 3 outputs with a positive potential and the output terminal T2 outputs with a negative potential. Electric power is supplied to the rail 93 in the closed section 5 with a negative side potential and to the rail 94 with a positive side potential. Under this condition, the model railway vehicle 20 faces the rails 93 and 94 toward the first closed section 4. It will be described as traveling. As shown in FIG. 2 (a), the output of the DC power supply 3 is changed from 0 volts in a state where all the wheels of the model railway vehicle 20 are on the rail 93 or the rail 94 and are not in contact with the rails 91 and 92. When it is raised to about 4 volts, the model railway vehicle 20 starts running. During this time, the vehicle driving motor 21 is connected between the rail 93 and the rail 94, so that the present invention device 2 detects the current. The rail 93 holds the power supply which is at the negative potential and the rail 94 is at the positive potential. On the other hand, the apparatus 1 of the present invention performs the following operation. First, when the output voltage of the DC power supply device 3 is increased from 0 volts, the input voltage detection circuit 14 is activated and the relay X is pre-excited as described above, and the normally open contact X-1a and the normally open contact X-2a are closed. Thus, power is supplied to the rails 91 and 92. When the output voltage of the DC power supply device 3 reaches about 1 volt, the output polarity detection circuit 12 operates as described above to turn on the transistor TR1, so that the relay X is in a self-holding state and feeds power to the rails 91 and 92. Hold. When the output of the DC power supply device 3 reaches about 2 volts, as described above, the output terminal OUT4 of the input voltage detection circuit 14 turns open to shut off VCC, but the relay X is in a self-holding state, so that the rails 91 and 92 are connected. The power supply is maintained. On the other hand, immediately after the output terminal OUT4 of the input voltage detection circuit 14 is opened, the output terminal OUT5 outputs a positive pulse having a width of about 0.1 seconds with a delay of about 0.1 seconds, during which the transistor TR6 is turned on and the transistor TR6 is turned on. The TR4 is turned off for about 0.1 second, the relay X is de-energized, and the normally open contacts X-1a and X-2a of the relay X that cooperate with the TR4 are opened. However, as shown in FIG. Both ends of the open contact are terminated by resistors R1, R2, R3, and R4 having the same resistance value, the potential of the rail 91 is divided by resistors R2 and R4, and the potential of the rail 92 is divided by resistors R1 and R3, respectively. That is, it is an intermediate potential between the + side potential of the output terminal T1 of the DC power supply device 3 and the − side potential of the output terminal T2. As a result, the potential of the rail 91 and the potential of the rail 92 become the same potential, and the voltage between them is 0 volts. Even if the output voltage of the DC power supply device 3 is changed in the range of about 3 volts to about 16 volts, the present invention device 1 maintains this state and at the same time, the normally open contacts of the relay X and the relay Y are all open and the rail 91 and 92 are not directly connected to the output of the DC power supply device 3, and when the model railway vehicle 20 enters from the second closed section 5, the output polarity detection circuit 12 can detect the voltage polarity of the rails 93 and 94 It has become. As shown in FIG. 2B, the model railway vehicle 20 that has started traveling in the second closed section 5 continues to travel, and only the wheels 30 and 31 pass through the gaps 95 and 96, and the wheels 28 and 29 have the gaps 95 and 96. In the state before passing through the wheel, since the wheels 29 and 31 are electrically connected as described above, the rail 92 and the rail 94 are electrically short-circuited, and the potential of the rail 92 is the same as the potential of 94. + Potential. On the other hand, the wheel 30 also passes through the gap 95 before reaching this point, but the wheels 28 and 30 are electrically insulated, and the probability that the rail 91 and the rail 93 are short-circuited when the wheel 30 passes through the gap 95. Is low, but when short-circuited, the rail 91 becomes the same potential as the rail 93. From the above description, the potential of the rails 91 and 92 is intermediate between the positive potential of the output terminal T1 of the DC power supply 3 and the negative potential of the output terminal T2 before the wheels 30 and 31 pass through the gaps 95 and 96. After passing, the potential of the rail 92 becomes the positive potential of the DC power supply device 3, and the potential of the rail 91 is an intermediate potential between the positive potential of the output terminal T1 of the direct current power supply device 3 and the negative potential of the output terminal T2. Is maintained, or when the wheel 21 shorts the rails 91 and 93, the voltage of the DC power supply device 3 becomes negative, so that a voltage is generated between the rails 91 and 92, and this voltage is detected by the output polarity detection circuit 12. When TR2 is turned on, relay Y is energized and normally open contacts Y-1a and Y-2a of relay Y cooperating therewith are closed, and relay Y is in a self-holding state. Rail 91 has a negative potential Power is held. In this state, the rails 91 and 93 and the rails 92 and 94 have the same polarity and the same voltage, and the model railway vehicle 20 collects a positive potential from both the rails 92 and 94 via the wheels 31 and 29. Then, it is possible to continue traveling in the same direction by collecting a negative potential power source from the rail 93 via the wheels 24 and 26. As shown in FIGS. 2 (c) and 2 (d), the wheels 24, 26 that collect current until the last wheels 24, 25 of the model railway vehicle 20 have passed through the gap are in the first closed section 4. Since the wheels 29 and 31 which are in contact with the rail 91 of the second closed section 5 and the rail 92 of the first closed section 4 are in contact with the rail 92 of the first closed section 4, current detection is performed with both the present invention devices 1 and 2. Similarly to the state shown in FIG. 2B, the rails 91 and 93 and the rails 92 and 94 maintain the same potential, and the model railway vehicle 20 can continue traveling in the same direction. As shown in FIG. 2 (e), after all the wheels have been moved onto the rails 91 and 92 in the first closed section 4, the rails 91 and 92 are supplied with power, and the model train vehicle 20 can travel. However, the electrical state of the rail 93 and the rail 94 in the second closed section 5 from which all the wheels are separated changes. When all the wheels are disengaged from the rails 93 and 94 in the second closed section 5, the drive motor 21 is disconnected between the rails 93 and 94, and a current flows. 2 detects the current 0, opens the connection between the output terminals T1 and T2 of the DC power supply device 3 and the rails 93 and 94, and the device of the present invention in the first closed section shown in FIG. The output polarity detection circuit 12 of the device 2 of the present invention connected to the second blockage section can detect the voltage polarity of the rails 93 and 94 in the same manner as the one output polarity detection circuit 12 can detect the voltage polarity of the rails 91 and 92. It becomes a state. For stopping the model train 20, for example, if the output voltage of the DC power supply 3 is reduced to about 4 volts while the model train 20 is traveling on the first closed section 4 shown in FIG. 1, the model train 20 stops. However, as described above, the output polarity detection circuit 12 stops the model railway vehicle 20 because the relay X or the relay Y is in a self-holding state when the potential difference between the input IN1 and the input IN2 is about 1 volt or more. Until this is done, the rails 91 and 92 are kept powered.
As shown in the embodiment described above, the automatic DC power supply output polarity switching device for traveling the model train 20 of the present invention is a plurality of block sections in which the block model sections 20 are continuously connected by electrically insulating the block sections from each other. As for the respective closed sections constituting the track installed in such a shape that can continuously travel, the output of the DC power supply device 3 and the closed section are configured in the closed section in which the model railway vehicle 20 is traveling on the track. In the closed section where the connection with the rail is maintained and the model railway vehicle 20 does not exist on the track, the connection between the output of the DC power supply device 3 and the rail constituting the closed section is cut off, and the blocked section into which the model railway vehicle 20 has entered. Then, the positive and negative polarities are switched so that the model railway vehicle 20 can continue traveling in the same direction as the traveling in the closed section where it was traveling before entering, and the output of the DC power supply device 3 and the blocked In the closed section where the model train 20 passes and the model train 20 no longer exists on the track, the output of the DC power supply device 3 is connected to the rail constituting the block section. DC power supply output built in the DC power supply for the shut-off section where the model model vehicle 20 that starts the function of shutting down and operates the DC power supply to boost its output voltage from 0 volts and stops on the track This is an apparatus that solves the problem of providing a function of selecting the forward or backward direction of the model railway vehicle 20 by operating the plus / minus polarity reversing switch of the present invention. The automatic DC power supply output polarity switching device for running a model train for traveling the model train 20 in the same direction on a model train running track having a layout called reverse. Inversion switching of Denden position, is a device which is characterized in that the interruption of the power supply automatically.

本発明装置実施の形態に係わるシステム図であり、本発明装置2台とレール、直流電源装置、本発明装置駆動用電源との結線を示し、本発明装置の回路構成を示すブロック図も併記している。FIG. 2 is a system diagram relating to an embodiment of the present invention device, showing connections between the two present invention devices, a rail, a DC power supply, and a power supply for driving the present device, and also includes a block diagram showing a circuit configuration of the present device. ing. (a)、(b)、(c)、(d)、(e)は、鉄道模型車両が第二閉塞区間のレール上を走行し、第二閉塞区間から第一閉塞区間へギャップを通過して進入し、第二閉塞区間から離脱して第一閉塞区間のレール上を走行するまでに変化する鉄道模型車両の車輪とレールとの接触状態遷移図。(A), (b), (c), (d), (e) shows that the model train travels on the rail of the second closed section and passes through the gap from the second closed section to the first closed section. FIG. 6 is a contact state transition diagram of the rails and wheels of a model railway vehicle that changes until the vehicle enters, moves away from the second closed section, and travels on the rail in the first closed section. 本発明装置実施の形態に係わる入力電圧検出回路の回路図を含み、この回路図に接続する直流電源装置、および一部の周辺回路を示す図面である。1 is a drawing showing a circuit diagram of an input voltage detection circuit according to an embodiment of the present invention device, showing a DC power supply device connected to this circuit diagram, and some peripheral circuits. 本発明装置実施の形態に係わる出力極性検出回路の回路図を含み、この回路図に接続する一部の周辺回路を示す図面である。It is drawing which contains the circuit diagram of the output polarity detection circuit concerning embodiment of this invention apparatus, and shows the one part peripheral circuit connected to this circuit diagram. 本発明装置実施の形態に係わる入力極性検出回路の回路図を含み、この回路図に接続する直流電源装置、および一部の周辺回路を示す図面である。It is drawing which includes the circuit diagram of the input polarity detection circuit concerning embodiment of this invention apparatus, and shows the direct-current power supply device connected to this circuit diagram, and some peripheral circuits. 本発明装置実施の形態に係わる電流検出回路の回路図を含み、この回路図に接続するレールおよび鉄道模型車両を示す図面である。It is drawing which contains the circuit diagram of the electric current detection circuit concerning embodiment of this invention apparatus, and shows the rail connected to this circuit diagram, and a model railway vehicle. (a)、(b)はそれぞれ、従来の鉄道模型車両の電気回路図、および従来の鉄道模型車両走行用直流電源出力極性自動切換装置の一例であるオートリバース運転システム装置のシステム図である。(A), (b) is an electric circuit diagram of a conventional model train and a system diagram of an auto reverse operation system device which is an example of a conventional DC power supply output polarity automatic switching device for running a model train, respectively. (a)、(b)はそれぞれ、リバースと呼ぶレールレイアウト上で鉄道模型車両走行を走行させるときのシステム図、および図8(a)に示したリバースと呼ぶイアウトと電気的に等価であり、図8(a)に示した切換スイッチを本発明装置に置き換えた、本発明装置の動作説明を容易にするためのシステム図である。(A) and (b) are respectively electrically equivalent to a system diagram when traveling on a model train on a rail layout called reverse, and an iout called reverse shown in FIG. FIG. 9 is a system diagram for facilitating the explanation of the operation of the device of the present invention in which the changeover switch shown in FIG.

符号の説明Explanation of symbols

1 本発明装置(鉄道模型車両走行用直流電源出力極性自動切換装置)
2 本発明装置(鉄道模型車両走行用直流電源出力極性自動切換装置)
3 直流電源装置(一般市販品の鉄道模型車両走行用直流電源)
4 第一閉塞区間(鉄道模型用軌道の閉塞)
5 第二閉塞区間(鉄道模型用軌道の閉塞)
7 出力極性反転スイッチ(鉄道模型車両走行用直流電源に内蔵)
11 電流検出回路(本発明装置の一部を構成する発明回路)
12 出力極性検出回路(本発明装置の一部を構成する発明回路)
13 入力極性検出回路(本発明装置の一部を構成する発明回路)
14 入力電圧検出回路(本発明装置の一部を構成する発明回路)
20 鉄道模型車両
21 駆動用モータ(鉄道模型車両駆動用)
22 台車(鉄道模型車両用)
23 台車(鉄道模型車両用)
24 車輪(鉄道模型車両用)
25 車輪(鉄道模型車両用)
26 車輪(鉄道模型車両用)
27 車輪(鉄道模型車両用)
28 車輪(鉄道模型車両用)
29 車輪(鉄道模型車両用)
30 車輪(鉄道模型車両用)
31 車輪(鉄道模型車両用)
41 矢印(電流の向きを示す)
42 矢印(電流の向きを示す)
43 矢印(電流の向きを示す)
44 矢印(電流の向きを示す)
45 一方端(抵抗R41の)
46 他方端(抵抗R41の)
47 矢印(電流の向きを示す)
53 左側接続具
54 右側接続具
55 切換リレー(給電電位のプラス・マイナス反転用)
56 電源装置
57 当接バー
58 前進端位置感知用センサ
59 当接バー
60 後退端位置感知用センサ
61 矢印(鉄道模型車両の前進向きを示す)
62 矢印(鉄道模型車両の後退向きを示す)
68 切換スイッチ(給電電位のプラス・マイナス反転用)
69 切換スイッチ(給電電位のプラス・マイナス反転用)
71 矢印(鉄道模型車両走行向きを示す)
72 矢印(鉄道模型車両走行向きを示す)
73 矢印(鉄道模型車両走行向きを示す)
91 鉄道模型車両走行用レール(第一閉塞区間用)
92 鉄道模型車両走行用レール(第一閉塞区間用)
93 鉄道模型車両走行用レール(第二閉塞区間用)
94 鉄道模型車両走行用レール(第二閉塞区間用)
95 ギャップ(鉄道模型車両走行用レールの絶縁部)
96 ギャップ(鉄道模型車両走行用レールの絶縁部)
97 ギャップ(鉄道模型車両走行用レールの絶縁部)
98 ギャップ(鉄道模型車両走行用レールの絶縁部)
1 Device of the present invention (DC power supply output polarity automatic switching device for running a model train)
2 Device of the present invention (DC power supply output polarity automatic switching device for running a model train)
3. DC power supply (general commercial product DC power supply for running model trains)
4 First closed section (block of model railroad track)
5 Second closed section (block of model railroad track)
7 Output polarity reversing switch (built in DC power supply for running model railway vehicles)
11 Current detection circuit (invention circuit constituting a part of the device of the present invention)
12 Output polarity detection circuit (invention circuit constituting a part of the device of the present invention)
13 Input polarity detection circuit (invention circuit constituting a part of the device of the present invention)
14 Input voltage detection circuit (invention circuit constituting a part of the device of the present invention)
20 Model train 21 Drive motor (for model train drive)
22 Bogie (for model train)
23 trolleys (for model trains)
24 wheels (for model trains)
25 wheels (for model trains)
26 wheels (for model trains)
27 wheels (for model trains)
28 wheels (for model trains)
29 wheels (for model trains)
30 wheels (for model trains)
31 wheels (for model trains)
41 Arrow (indicates current direction)
42 Arrow (indicates current direction)
43 Arrow (indicates current direction)
44 Arrow (indicates current direction)
45 One end (of resistor R41)
46 The other end (of resistor R41)
47 Arrow (indicates current direction)
53 Left side connector 54 Right side connector 55 Switching relay (for plus / minus reversal of feeding potential)
56 Power supply device 57 Contact bar 58 Advance end position detection sensor 59 Contact bar 60 Back end position detection sensor 61 Arrow (indicates the forward direction of the model train)
62 Arrow (indicates the direction of reversing the model train)
68 selector switch (for plus / minus reversal of feeding potential)
69 selector switch (for plus / minus reversal of feeding potential)
71 arrow (indicates direction of model train)
72 arrow (indicates direction of running model train)
73 Arrow (indicates direction of model train)
91 Railroad for model railway vehicles (for first closed section)
92 Railroad for model railway vehicles (for first closed section)
93 Railroad for model railway vehicles (for second closed section)
94 Railroad for model trains (for second closed section)
95 Gap (insulation part of railroad for model train)
96 Gap (insulation part of railroad for model train)
97 Gap (insulation part of railroad for model train)
98 Gap (insulation part of railroad for model train)

Claims (7)

左右2本一対のレールからなり、駆動用直流モータを内蔵し直流電源装置に接続されたレールから電源の供給を受けて走行する鉄道模型車両走行用の軌道をこの軌道上で走行する鉄道模型車両一編成の全長より長い寸法で切断してできる閉塞区間を複数作り、これらの閉塞区間を互いに電気的に絶縁して順次繋げ鉄道模型車両が連続する複数の閉塞区間を続けて走行できるような形状に設置してある軌道において、この軌道を構成する複数の閉塞区間に電源を供給する直流電源装置と電源供給を受けるそれぞれの閉塞区間との間に介在させる装置であって、複数のリレーおよびこれらのリレーを制御するリレー制御回路を備え、鉄道模型車両の走行により生じる電流の検出回路、閉塞区間を構成するレールに給電する電圧のプラス・マイナス極性検出回路、リレー制御回路に入力する直流電源装置の電圧を検出する入力電圧検出回路、およびリレー制御回路に入力する直流電源装置出力のプラス・マイナス極性を検出する入力極性検出回路によって複数のリレーを制御し、鉄道模型車両が軌道上を走行している閉塞区間では直流電源装置の出力と閉塞区間を構成するレールとの接続を保持し、軌道上に鉄道模型車両が存在しない閉塞区間では直流電源装置の出力と閉塞区間を構成するレールとの接続を遮断し、鉄道模型車両が進入した閉塞区間では鉄道模型車両が進入前に走行していた閉塞区間での走行と同じ向きの走行を続けられるようにプラス・マイナス極性を切り換えて直流電源装置の出力と閉塞区間を構成するレールとを接続し、鉄道模型車両が通過して軌道上に鉄道模型車両が存在しなくなった閉塞区間では直流電源装置の出力と閉塞区間を構成するレールとの接続を遮断する機能を持ち、さらに直流電源装置を操作してその出力電圧を0ボルトから昇圧して軌道上に停止している鉄道模型車両を発進させる閉塞区間では直流電源装置に内蔵されるプラス・マイナス極性反転スイッチを操作することで鉄道模型車両の前進、または後退の向きを選択できる機能を持つことを特徴とする鉄道模型車両走行用直流電源出力極性自動切換装置。A model train vehicle that travels on a track for traveling on a model train that consists of a pair of left and right rails and that is driven by power supplied from a rail that has a built-in DC motor for driving and is connected to a DC power supply. A shape that makes it possible to continuously run a plurality of closed sections where a series of model trains are connected by making multiple closed sections that can be cut by a length longer than the overall length of a single train and electrically connecting these closed sections together. A DC power supply device that supplies power to a plurality of closed sections constituting the track, and a device that is interposed between each closed section that receives power supply, including a plurality of relays and these With a relay control circuit that controls the relay of the model, a detection circuit for the current generated by the running of the model train, and the voltage to be supplied to the rails that constitute the block section Multiple relays using a polarity detection circuit, an input voltage detection circuit for detecting the voltage of the DC power supply device input to the relay control circuit, and an input polarity detection circuit for detecting the positive / negative polarity of the output of the DC power supply device input to the relay control circuit In the closed section where the model train is traveling on the track, the connection between the output of the DC power supply and the rail constituting the block section is maintained, and in the closed section where the model train does not exist on the track The connection between the output of the power supply unit and the rails that make up the closed section is cut off, and in the closed section where the model train has entered, it continues to travel in the same direction as the traveling in the closed section where the model train traveled before entering. Switch the plus / minus polarity so that the output of the DC power supply and the rails that make up the closed section are connected, and the model train passes through the model train In the closed section where both are no longer present, it has the function of cutting off the connection between the output of the DC power supply and the rails that make up the closed section, and further operating the DC power supply to boost its output voltage from 0 volts to the track In the closed section where the model train is stopped, it has the function of selecting the forward or reverse direction of the model train by operating the plus / minus polarity reversing switch built in the DC power supply. DC power supply output polarity automatic switching device for running a model railway model. 前記リレー制御回路は、直流電源装置から閉成されたリレー接点を経由して閉塞区間を構成するレールに給電される電圧のプラス・マイナス極性、および直流電源装置と閉塞区間を構成するレールとの接続がリレー接点により開放された状態の閉塞区間に鉄道模型車両が進入したときレールに印可される電圧のプラス・マイナス極性を検出する出力極性検出回路を含んでおり、この出力極性検出回路が鉄道模型車両走行の向きに対するプラス・マイナス極性の接続条件を満たすリレーを選択してこれを自己保持させることで鉄道模型車両が軌道上を走行する閉塞区間では直流電源装置の出力のプラス・マイナス極性を切り換えてレールに接続し電源供給ができるようになっている請求項1に記載の鉄道模型車両走行用直流電源出力極性自動切換装置。The relay control circuit includes a plus / minus polarity of a voltage supplied to a rail constituting the closed section via a relay contact closed from the DC power supply apparatus, and a DC power supply unit and a rail constituting the closed section. It includes an output polarity detection circuit that detects the positive / negative polarity of the voltage applied to the rail when the model railway vehicle enters the closed section where the connection is opened by the relay contact. By selecting a relay that satisfies the plus / minus polarity connection condition for the direction of the model vehicle and allowing it to self-hold, the plus / minus polarity of the output of the DC power supply can be adjusted in the closed section where the model train travels on the track. The DC power supply output polarity automatic switching for the railway model vehicle traveling according to claim 1, wherein the power supply can be performed by switching to a rail. Apparatus. 前記リレー制御回路は、直流電源装置からリレー接点を経由して閉塞区間に流れる電流を検出する電流検出回路を含んでおり、この電流検出回路の指令によって鉄道模型車両が軌道上を走行している閉塞区間では直流電源装置の出力と閉塞区間を構成するレールとを接続するリレーの自己保持状態を継続し、鉄道模型車両が存在しない閉塞区間では直流電源装置の出力と閉塞区間を構成するレールとを接続するリレーの自己保持状態を解除するようになっている請求項1または2に記載の鉄道模型車両走行用直流電源出力極性自動切換装置。The relay control circuit includes a current detection circuit that detects a current flowing in the closed section from the DC power supply device via the relay contact, and the model railway vehicle is traveling on the track by a command of the current detection circuit In the blockage section, the relay that connects the output of the DC power supply device and the rail that configures the blockage section continues to be self-holding, and in the blockage section where there is no model train, the output of the DC power supply device and the rail that configures the blockage section The DC power supply output polarity automatic switching device for running a model train according to claim 1 or 2, wherein the self-holding state of the relay for connecting the motor is released. 前記リレー制御回路は、この回路に入力する直流電源装置の出力電圧を検出する入力電圧検出回路を含んでおり、停止している鉄道模型車両を発進させるために直流電源装置を操作してその出力電圧を0ボルトから昇圧して出力極性検出回路がプラス・マイナス極性の条件を満たすリレーを選択し自己保持させる電圧に達するまでは、直流電源装置の出力と全ての閉塞区間を構成するレールとをそれぞれ接続し、さらに昇圧すると鉄道模型車両が軌道上にある閉塞区間ではプラス・マイナス極性の条件を満たすリレーだけを自己保持状態にして直流電源装置と閉塞区間を構成するレールとの接続を保持し、鉄道模型車両が存在しない閉塞区間ではリレーの自己保持状態を解除して直流電源装置の出力と閉塞区間を構成するレールとの接続を開放するようになっている請求項1から3のいずれかに記載の鉄道模型車両走行用直流電源出力極性自動切換装置。The relay control circuit includes an input voltage detection circuit that detects an output voltage of a DC power supply device that is input to the circuit, and operates the DC power supply device to start a stopped model railway vehicle. Until the voltage is boosted from 0 volts and the output polarity detection circuit selects a relay that satisfies the conditions of plus / minus polarity and reaches the voltage that self-holds, the output of the DC power supply unit and the rails that make up all the closed sections are When each is connected and further boosted, in the closed section where the model train is on the track, only the relays that satisfy the plus / minus polarity conditions are kept in a self-holding state and the connection between the DC power supply and the rails constituting the closed section is maintained. In the closed section where there is no model train, the relay's self-holding state is released, and the connection between the output of the DC power supply and the rails constituting the closed section is opened. Train vehicle running DC power supply output polarity automatic switching device according to any one by which of claims 1 to 3, which adapted to. 前記リレー制御回路は、この回路に入力する直流電源出力のプラス・マイナス極性を検出する入力極性検出回路を含んでおり、停止している鉄道模型車両を発進させるために直流電源装置を操作してその出力電圧を0Vから昇圧するとき、直流電源装置に内蔵される直流電源出力のプラス・マイナス極性反転スイッチを操作するとこの入力極性検出回路が直流電源装置出力のプラス・マイナス極性を検出しリレーを制御することで鉄道模型車両の前進、または後退の向きを選択できるようになっている請求項1から4のいずれかに記載の鉄道模型車両走行用直流電源出力極性自動切換装置。The relay control circuit includes an input polarity detection circuit for detecting the plus / minus polarity of the DC power supply output input to the circuit, and operates the DC power supply device to start the stopped model railway vehicle. When boosting the output voltage from 0V, operating the plus / minus polarity reversing switch of the DC power supply output built in the DC power supply device, this input polarity detection circuit detects the plus / minus polarity of the DC power supply device output and turns the relay on 5. The DC power supply output polarity automatic switching device for a railway model vehicle according to any one of claims 1 to 4, wherein a forward or backward direction of the model railway model can be selected by controlling. 前記リレー制御回路は、入力電圧検出回路、出力極性検出回路、入力極性検出回路、を含んでおり、これら回路への入力電圧に対するこれら回路動作の閾値として、入力電圧検出回路については約2ボルト、出力極性検出回路については約1ボルト、入力極性検出回路については約0.5ボルト、に設定されているがシステムを構成するために組み合わせる直流電源装置の特性によっては閾値を変更することがあり、本発明の主旨を逸脱しない限りにおいてこれら閾値を種々改変している請求項1から5のいずれかに記載の鉄道模型車両走行用直流電源出力極性自動切換装置。The relay control circuit includes an input voltage detection circuit, an output polarity detection circuit, and an input polarity detection circuit. As a threshold of these circuit operations with respect to the input voltage to these circuits, about 2 volts for the input voltage detection circuit, Although the output polarity detection circuit is set to about 1 volt and the input polarity detection circuit is set to about 0.5 volt, the threshold value may be changed depending on the characteristics of the DC power supply device combined to constitute the system. 6. A DC power supply output polarity automatic switching device for running a model railway vehicle according to claim 1, wherein the threshold values are variously modified without departing from the gist of the present invention. 前記複数のリレーおよびこれらのリレーを制御するリレー制御回路は、その電源VCCに電池または電池以外の直流電源全てのいずれかを接続して動作することから、本発明の主旨を逸脱しない限りにおいてこれら直流電源を種々改変して成る請求項1から6のいずれかに記載の鉄道模型車両走行用直流電源出力極性自動切換装置。The plurality of relays and the relay control circuit for controlling these relays operate by connecting either the battery or all of the DC power supplies other than the battery to the power supply VCC. 7. The DC power source output polarity automatic switching device for running a model train according to claim 1, wherein the DC power source is variously modified.
JP2004254975A 2004-08-05 2004-08-05 Direct current power supply output polarity automatic switching device for running railway model rolling stock Pending JP2006043384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004254975A JP2006043384A (en) 2004-08-05 2004-08-05 Direct current power supply output polarity automatic switching device for running railway model rolling stock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004254975A JP2006043384A (en) 2004-08-05 2004-08-05 Direct current power supply output polarity automatic switching device for running railway model rolling stock

Publications (1)

Publication Number Publication Date
JP2006043384A true JP2006043384A (en) 2006-02-16

Family

ID=36022575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004254975A Pending JP2006043384A (en) 2004-08-05 2004-08-05 Direct current power supply output polarity automatic switching device for running railway model rolling stock

Country Status (1)

Country Link
JP (1) JP2006043384A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008029808A1 (en) * 2006-09-04 2008-03-13 Eishindo Co., Ltd. Toy vehicle, and wheel device and carriage frame for the toy vehicle
JP2010252955A (en) * 2009-04-23 2010-11-11 Masahiro Nakamura Automatic operation device of railway model, two-train automatic operation method, and two-train rear-end collision preventing automatic operation method of railway model
JP2013132539A (en) * 2011-12-27 2013-07-08 Michiyasu Okamoto Vehicle travel control method and automatic operation device of railway model
JP5897751B1 (en) * 2015-04-23 2016-03-30 株式会社トミーテック Distributed power feeder and control system for model vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008029808A1 (en) * 2006-09-04 2008-03-13 Eishindo Co., Ltd. Toy vehicle, and wheel device and carriage frame for the toy vehicle
US8109805B2 (en) 2006-09-04 2012-02-07 Eishindo Co., Ltd. Toy vehicle, and wheel device and carriage frame for the toy vehicle
JP2010252955A (en) * 2009-04-23 2010-11-11 Masahiro Nakamura Automatic operation device of railway model, two-train automatic operation method, and two-train rear-end collision preventing automatic operation method of railway model
JP2013132539A (en) * 2011-12-27 2013-07-08 Michiyasu Okamoto Vehicle travel control method and automatic operation device of railway model
JP5897751B1 (en) * 2015-04-23 2016-03-30 株式会社トミーテック Distributed power feeder and control system for model vehicle
US9744470B2 (en) 2015-04-23 2017-08-29 Tomy Tec Co., Ltd. Distributed feeding device and control system of model vehicle

Similar Documents

Publication Publication Date Title
WO1988004250A1 (en) Motor-driven power steering system
US4922161A (en) Method and apparatus for improving the regulation of the speed of a motor
EP0827266A3 (en) High-side type motor current detecting circuit
JP2006043384A (en) Direct current power supply output polarity automatic switching device for running railway model rolling stock
KR900001848B1 (en) Motor-driven steering system for a vehicle
US4325015A (en) Dual motor drive for machine tool
JP5136351B2 (en) A storage battery charging method for a carrier and a spot welder used therefor.
US434871A (en) hunter
KR20170005911A (en) Local pantograph control device and railroad train having the same
JP2671295B2 (en) Electric trolley travel control device
US667110A (en) Electric railway.
JP3257314B2 (en) Motor control device
JP2008018908A (en) Power supply device
US675050A (en) Electric railway.
US851799A (en) Electric traction system.
DE719604C (en) Electromagnetic contact wire switch setting device
US718183A (en) Electric-railway system.
JPH0834654B2 (en) Power supply system for assembly line
JPH0514484B2 (en)
JPS5856023Y2 (en) Mobile bolster device
US884646A (en) Electric railway.
US1282017A (en) Motor-control system.
US920339A (en) Electric-railway system.
JPS58141606A (en) Travel controller for motor driven truck
JP2001157485A (en) Motor drive circuit