JP2006042852A - Auxiliary tool for roentgenography, roentgenography method, and processing method for roentgenograph - Google Patents

Auxiliary tool for roentgenography, roentgenography method, and processing method for roentgenograph Download PDF

Info

Publication number
JP2006042852A
JP2006042852A JP2004223921A JP2004223921A JP2006042852A JP 2006042852 A JP2006042852 A JP 2006042852A JP 2004223921 A JP2004223921 A JP 2004223921A JP 2004223921 A JP2004223921 A JP 2004223921A JP 2006042852 A JP2006042852 A JP 2006042852A
Authority
JP
Japan
Prior art keywords
ray
ray imaging
image
imaging
arbitrary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004223921A
Other languages
Japanese (ja)
Other versions
JP4607516B2 (en
Inventor
Katsumi Niwa
克味 丹羽
Hisanori Nakahama
久則 中浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yoshida Dental Mfg Co Ltd
Original Assignee
Yoshida Dental Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshida Dental Mfg Co Ltd filed Critical Yoshida Dental Mfg Co Ltd
Priority to JP2004223921A priority Critical patent/JP4607516B2/en
Publication of JP2006042852A publication Critical patent/JP2006042852A/en
Application granted granted Critical
Publication of JP4607516B2 publication Critical patent/JP4607516B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/51Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for dentistry
    • A61B6/512Intraoral means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4435Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make it possible to grasp the form of a dental root and the form of a root canal differing according to individuals from a three-dimensional image and to surely treat the root canal by obtaining two roentgenographs performing roentgenography from left and right two directions by using an auxiliary tool for a roentgenography and by forming the three-dimensional image of the tooth by performing procession of the two obtained roentgenographs. <P>SOLUTION: In the auxiliary tool for the roentgenography having adaptor portions and supporting arms and a roentgenography holder, the roentgenography holder is equipped with the two adaptor portions arranged spaced apart in left and right two directions, and the distal ends of the two supporting arms respectively extended from the two adaptor portions are arranged by being supported to be secured rotatably and in an arbitrary angle relatively to the roentgenography holder, such that the angles formed by the two adaptors against the roentgenography holder can be adjusted in left and right directions. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明はX線撮影用補助具、X線撮影方法及びX線撮影像の処理方法に係り、特に、抜髄や感染根管処置を行う歯牙に対して任意のX線入射角度で左右2方向からX線撮影を行い、得られた2枚のX線撮影像を用いて所望部位の横断面の近似スライス像を作成し、該スライス像を複数重ね合わせて3次元画像を作成することにより、根管の弯曲及び形態を知ることができるだけでなく、X線撮影像では写らないほど細い根管を予測することのできるX線撮影用補助具、X線撮影方法及びX線撮影像の処理方法に関する。   The present invention relates to an X-ray imaging auxiliary tool, an X-ray imaging method, and an X-ray imaging image processing method. By performing X-ray photography, using the obtained two X-ray photography images, an approximate slice image of a cross section of a desired part is created, and a plurality of the slice images are superimposed to create a three-dimensional image. The present invention relates to an X-ray imaging auxiliary tool, an X-ray imaging method, and an X-ray imaging image processing method capable of not only knowing the curvature and form of a tube but also predicting a root canal that is so thin that the X-ray imaging image does not appear. .

歯牙の歯内療法(根管治療)の特徴は、歯冠部は可視領域であるが、歯根部の根管根端部はたとえ顕微鏡を導入しても不可視の領域が存在する。その根管根端部の不可視領域の補足手段は、歯牙内部の歯髄腔−根管系の形態的知識、治療歯の視覚化されたX線撮影像、根管から器具を通じて手指に伝わる感覚−筋覚の情報、そして根管長計測値などである。それらをもとにして、根管治療は必要な歯髄腔−根管系の原形の3次元画像を総合的にイメージ化することで行われている。
2001別冊Quintessenceエンドドンティックス
The feature of endodontic treatment (root canal treatment) of the tooth is that the crown portion is a visible region, but there is an invisible region at the root canal end portion of the root portion even if a microscope is introduced. The supplementary means of the invisible region of the root canal are the pulpal cavity inside the tooth-morphological knowledge of the root canal system, the visualized X-ray image of the treated tooth, the sense transmitted from the root canal to the finger through the instrument- This includes muscle sense information and root canal length measurements. Based on these, root canal treatment is performed by comprehensively imaging a three-dimensional image of the original pulp cavity-root canal system.
2001 separate volume Quintessence Endontics

ここで、治療歯の視覚化されたX線撮影像としては、デンタル撮影やパノラマ撮影があるが、得られるX線撮影像は2次元画像のため、根管の奥行きや弯曲形状等を正確に判断するのは困難であった。また、CT撮影を用いて3次元画像を生成する場合は、分解能の面、コストの面、被曝の面から歯内療法ではほとんど用いられていないのが現状である。   Here, there are dental imaging and panoramic imaging as a visualized X-ray image of the treatment tooth, but since the obtained X-ray image is a two-dimensional image, the depth of the root canal and the curved shape are accurately determined. It was difficult to judge. In addition, in the case of generating a three-dimensional image using CT imaging, the current situation is that it is hardly used in endodontic therapy in terms of resolution, cost, and exposure.

国内外で報告されている著名な臨床家の歯内療法処置、特に根管処理の成功率は、70%から80%であるという。これは、歯内療法は対象である根管の直視が困難で、手探りの処理であると言われ、根管も変化に富み、個人差はもとより、加齢的な変化によっても、より複雑な形態をとっているためである。   The success rate of prominent clinicians and endodontic treatments, especially root canal treatments, reported at home and abroad, is said to be 70% to 80%. It is said that endodontic treatment is difficult to look directly at the root canal, and it is said that it is a groping process, and the root canal is also varied, and it is more complicated not only by individual differences but also by age-related changes. This is because it takes a form.

抜髄や感染根管処置の診療に際し、デンタル撮影やパノラマ撮影では、2次元画像であるために、歯根の近遠心的な情報は把握できるが、頬舌的(歯根の幅径や弯曲状態)な情報を把握することは困難である。そのため、直接根管内にリーマやファイルを挿入して、根管の方向を探りながら処置を行っている。   When performing dental or pancreatic treatments for pulpectomy or infected root canal treatment, since the two-dimensional image is used, it is possible to grasp information on the root of the root, but it is cheek-lingual (the width of the root and the curvature of the root). It is difficult to grasp information. Therefore, a reamer or a file is inserted directly into the root canal, and treatment is performed while searching for the direction of the root canal.

CT撮影で根管形態の情報を得ることは、有用な手段の一つである。しかし、分解能の面で情報が足りないことや、設置スペースが大きく、高額な装置であり、被曝線量も多くなるため、一般的には頻繁に行われるものではない。
小児歯科学雑誌40巻1号:171−176 2002
Obtaining root canal morphology information by CT imaging is one of useful means. However, in general, it is not frequently performed because of lack of information in terms of resolution, a large installation space, an expensive device, and an increased exposure dose.
Journal of Pediatric Dentistry 40 No.1: 171-176 2002

上記のような手探りでの根管治療(歯内療法)である抜髄や感染根管処置の診療では、歯根及び根管の弯曲方向によって、根管内の死んだ歯髄(血管や神経)・汚染された象牙質をとるクレンザーや根管内を拡大して清掃するリーマ・ファイルが根尖まで届かない場合、不適切なリーマやファイルの操作による根管の穿孔(根管を破ったりすること)、リーマやファイルの根管内での破折等の問題が考えられる。例えば、根管方向外へのズレ、根管外への穿孔等のさまざまな問題が起き、再治療の必要が生じるばかりでなく、不適切な処置内容によっては、治療不能になることがある。   In the medical treatment of root canal treatment (endodontic therapy) and infected root canal treatment as described above, dead pulp (blood vessels and nerves) / contamination in the root canal depending on the root and root canal bending direction. If the reamer file that cleans the dentin that has been removed or the inside of the root canal is enlarged and does not reach the apex, the root canal may be perforated by manipulation of the inappropriate reamer or file (breaking the root canal) Problems such as breakage in the root canal of reamers and files are considered. For example, various problems such as misalignment outside the root canal and perforation outside the root canal occur, and not only need to be re-treated, but depending on the inappropriate treatment, it may become impossible to treat.

そこで、個々の歯牙の歯根部の3次元画像がX線撮像手段の分解能を有したままの情報として事前に得られれば、抜髄や感染根管処置の治療を行う際に有効な情報源となり、手指の感覚による根管原形の探索が容易になるばかりではなく、処置時間の短縮、不適切なリーマやファイルの操作による根管の穿孔防止、リーマやファイルの根管内での破折防止が期待される。   Therefore, if a three-dimensional image of the root portion of each tooth is obtained in advance as information that has the resolution of the X-ray imaging means, it becomes an effective information source when performing treatment for extraction of the pulp and infected root canal treatment, Not only is it easy to search for root canal shapes using the senses of the fingers, but also shortens the treatment time, prevents perforation of the root canal due to inappropriate reamers and file operations, and prevents breakage of the reamer or file within the root canal. Be expected.

しかし、前記従来のデンタル撮影やパノマラ撮影方法では、3次元画像を生成することが困難であり、根管の奥行きや弯曲形状等の歯科臨床で十分利用できる情報が得られない不都合がある。また、CT撮影の場合では、装置が大掛かりなものとなってしまう不都合がある。   However, it is difficult to generate a three-dimensional image by the conventional dental imaging and pano-mala imaging methods, and there is a disadvantage that information that can be sufficiently used in dentistry such as a root canal depth and a curved shape cannot be obtained. In the case of CT imaging, there is a disadvantage that the apparatus becomes large.

この発明は、X線を発生するX線源のX線照射部が着脱自在に装着されるアダプター部と、該アダプター部からX線照射方向へ向けて延長される支持アームと、該支持アームの先端に設けられて前記X線照射部より照射されて被写体を通過したX線を検出するX線撮像手段を着脱自在に保持するX線撮像ホルダーとを備えたX線撮影用補助具において、前記X線撮像ホルダーに対して左右2方向に離間して設置される2つのアダプター部を設け、これら2つのアダプター部を前記X線撮像ホルダーに対して左右方向に角度調整可能なように、前記2つのアダプター部から夫々延長される2本の支持アームの先端を前記X線撮像ホルダーに回動可能且つ任意の角度で固定可能に支持して設けたことを特徴とする。そして、2つのアダプター部の方向はX線撮像手段、すなわち、支持アームの回転はCCDセンサ等の受光面に対して設定される。
また、この発明は、X線を発生するX線源とこのX線源のX線照射部より照射されるX線を検出するX線撮像手段との間に被写体を位置させ、前記X線撮像手段に対して任意のX線入射角度で左右2方向から前記X線源のX線照射部よりX線を前記被写体に照射してX線撮影を行って前記被写体の左右2方向からのX線撮影像を得ることを特徴とする。
さらに、この発明は、X線撮像手段に対して任意のX線入射角度で左右2方向からX線源のX線照射部より被写体にX線を照射してX線撮影を行い、前記X線撮像手段に対して右方向から任意のX線入射角度を付けてX線撮影を行って得られたX線撮影像を左側に位置させ、前記X線撮像手段に対して左方向から任意のX線入射角度を付けてX線撮影を行って得られたX線撮影像を右側に位置させ、左右に位置させた各々のX線撮影像中にある被写体の位置情報を検知するための、撮影基準線を設定する。この基準線とは、左側に配置されたX線撮影像では画面の右側にY軸に平行に直線を、右側に配置されたX線撮影像では画面の左側に直線を引くものである。そして2枚の画像の基準線同士を重ね合わせ、左右2方向から得られたX線撮影像に対して任意の辺縁幅の外形点を決定し、任意の辺縁幅の外形点からX線入射角度方向へ投影線を引き、引かれた投影線に囲まれた領域に前記投影線に内接する閉曲線の図形を作成し、得られた閉曲線の図形を被写体の任意の辺縁幅の外形点における断面図に近似する図形として得ることを特徴とし、前記任意の辺縁幅の外形点から引いた投影線に囲まれた領域に前記投影線に内接する閉曲線の図形として円または楕円を作成し、得られた円または楕円を複数重ね合わせることで被写体の近似的な3次元画像を作成することを特徴とする。
The present invention relates to an adapter unit to which an X-ray irradiation unit of an X-ray source for generating X-rays is detachably mounted, a support arm extended from the adapter unit in the X-ray irradiation direction, An X-ray imaging auxiliary tool provided with an X-ray imaging holder that is detachably held in an X-ray imaging unit that is provided at a tip and detects X-rays irradiated from the X-ray irradiation unit and passed through the subject. The two adapter portions are provided so as to be spaced apart from each other in the left and right directions with respect to the X-ray imaging holder, and the two adapter portions can be adjusted in the left-right direction with respect to the X-ray imaging holder. It is characterized in that the tip ends of two support arms respectively extending from two adapter parts are provided so as to be rotatable and fixed at an arbitrary angle to the X-ray imaging holder. The directions of the two adapter parts are set with respect to the X-ray imaging means, that is, the rotation of the support arm with respect to the light receiving surface of the CCD sensor or the like.
According to the present invention, a subject is positioned between an X-ray source that generates X-rays and an X-ray imaging unit that detects X-rays emitted from an X-ray irradiation unit of the X-ray source, and the X-ray imaging is performed. X-ray imaging is performed by irradiating the subject with X-rays from the X-ray irradiating unit of the X-ray source from the left and right directions at an arbitrary X-ray incident angle with respect to the means, and performing X-ray imaging. A photographed image is obtained.
Furthermore, the present invention performs X-ray imaging by irradiating a subject with X-rays from an X-ray irradiation unit of an X-ray source from two directions on the left and right sides at an arbitrary X-ray incident angle with respect to the X-ray imaging means. An X-ray image obtained by performing X-ray imaging with an arbitrary X-ray incident angle from the right direction with respect to the imaging means is positioned on the left side, and an arbitrary X from the left direction with respect to the X-ray imaging means. X-ray image obtained by performing X-ray imaging with a line incident angle is positioned on the right side, and imaging for detecting the position information of the subject in each X-ray image positioned on the left and right Set the reference line. The reference line draws a straight line parallel to the Y axis on the right side of the screen in the X-ray image arranged on the left side, and draws a straight line on the left side of the screen in the X-ray image arranged on the right side. Then, the reference lines of the two images are overlapped with each other, an outline point having an arbitrary edge width is determined for the X-ray image obtained from the left and right directions, and an X-ray is obtained from the outline point having an arbitrary edge width A projection line is drawn in the direction of the incident angle, a closed curve figure inscribed in the projection line is created in the area surrounded by the drawn projection line, and the obtained closed curve figure is an outline point of an arbitrary edge width of the subject A circle or an ellipse is created as a closed curve figure inscribed in the projection line in an area surrounded by the projection line drawn from the outline point of the arbitrary marginal width. An approximate three-dimensional image of a subject is created by superimposing a plurality of obtained circles or ellipses.

この発明は、X線撮影用補助具によりX線撮像ホルダーに対して2つのアダプター部を左右2方向に離間して設置し、X線源とX線撮像手段との間に被写体を位置させ、X線撮像手段に対して任意のX線入射角度で左右2方向からX線源のX線照射部よりX線を被写体に照射してX線撮影を行って、被写体の左右2方向からのX線撮影像を得る。
任意のX線照射角度で左右2方向からX線撮影して得られた左右2方向のX線撮影像を、X線撮像手段に対して右方向から任意のX線照射角度を付けてX線撮影を行って得られたX線撮影像を左側に位置させ、X線撮像手段に対して左方向から任意のX線照射角度を付けてX線撮影を行って得られたX線撮影像を右側に位置させ、左右それぞれのX線撮影像に対して任意の角度方向からX線撮影を行う際に設けた被写体の位置情報を検知する撮影基準線同士を重ね合わせ、左右に位置させた各々のX線撮影像を基準位置に配置する。
左右2方向のX線撮影から得られたX線撮影像を基準位置に配置した後、得られた2方向からのX線撮影像に対して任意の辺縁幅(例えば、1枚のX線撮影像に映し出された被写体である歯根のX線撮影像の一辺の辺縁から他の辺縁までの幅)の外形点を決定し、各々の任意の辺縁幅の外形点から投影線をX線入射角度方向に引く。これを左右のX線撮影像について行って、2枚のX線撮影像から4本の投影線を引き、引かれた投影線に囲まれた領域に投影線に内接する閉曲線の図形として円または楕円のスライス像を各X線撮像手段の縦方向に連続的に作成する。得られた複数枚の被写体の横断面の内接円または内接楕円のスライス像を重ね合わせていくことにより、被写体の3次元画像を得ることができる。
このように、この発明は、抜髄や感染根管処置を行う歯牙に対してX線撮影用補助具により任意のX線入射角度で左右2方向から撮影を行い、得られた2枚のX線撮影像を用いて所望部位の横断面の近似スライス像を作成し、該スライス像を複数重ね合わせて3次元画像を作成する処理を行うことにより、根管の弯曲及び形態を知ることができるだけでなく、X線撮影像では写らないほど細い根管を予測することができる。
In the present invention, two adapter parts are set apart from each other in the left and right directions with respect to the X-ray imaging holder by an X-ray imaging auxiliary tool, and a subject is positioned between the X-ray source and the X-ray imaging means. X-ray imaging is performed by irradiating the subject with X-rays from the X-ray irradiator of the X-ray source from the left and right directions at an arbitrary X-ray incident angle with respect to the X-ray imaging means, and X-ray imaging is performed. A radiograph is obtained.
An X-ray image obtained by X-ray imaging from the left and right directions at an arbitrary X-ray irradiation angle is obtained by adding an arbitrary X-ray irradiation angle from the right direction to the X-ray imaging means. An X-ray image obtained by performing X-ray imaging by positioning an X-ray image obtained by imaging on the left side and adding an arbitrary X-ray irradiation angle from the left direction to the X-ray imaging means. Positioned on the right side, the imaging reference lines for detecting the position information of the subject provided when performing X-ray imaging from an arbitrary angle direction on the left and right X-ray imaging images are overlapped and positioned on the left and right The X-ray image is arranged at the reference position.
After an X-ray image obtained from X-ray imaging in the left and right directions is arranged at the reference position, an arbitrary edge width (for example, one X-ray image) is obtained with respect to the X-ray image obtained from the two directions. Determine the outline point of the X-ray image of the tooth root that is the subject displayed in the captured image (width from one side edge to the other edge), and project the projection line from each arbitrary edge width outline point It is drawn in the X-ray incident angle direction. This is performed on the left and right X-ray images, and four projection lines are drawn from the two X-ray images, and a circle or a closed curve figure inscribed in the projection line in a region surrounded by the drawn projection lines Ellipse slice images are continuously created in the vertical direction of each X-ray imaging means. By superimposing the inscribed circles or inscribed ellipse slice images of the cross-sections of the obtained plurality of subjects, a three-dimensional image of the subject can be obtained.
As described above, the present invention captures two X-rays obtained by imaging the left and right directions at an arbitrary X-ray incidence angle with an X-ray imaging auxiliary tool for a tooth to be subjected to extraction or root canal treatment. By creating an approximate slice image of the cross-section of the desired site using the photographed image and performing a process of creating a three-dimensional image by superimposing a plurality of slice images, it is possible to know the curvature and form of the root canal In addition, it is possible to predict a root canal that is so thin that it cannot be seen in an X-ray image.

この発明は、歯牙に対して任意のX線入射角度で左右2方向からX線撮影を行い、得られた2枚のX線撮影像を用いて所望部位の横断面の近似スライス像を作成し、該スライス像を複数重ね合わせ3次元画像を作成する処理を行うことにより、根管の弯曲及び形態を知ることができるだけでなく、X線撮影像では写らないほど細い根管を予測することができるものである。
その理由は、根管は歯根の中央に位置するという解剖学的原則があることから根管が細いため、X線撮影像の分解能では抽出できない場合でも歯根断面の抽出ができる場合にはその中央に根管の存在を予測できるものである。
以下、図面に基づいて、この発明の実施例を説明する。
In this invention, X-ray imaging is performed from two directions on the tooth at an arbitrary X-ray incident angle, and an approximate slice image of a cross section of a desired site is created using the obtained two X-ray imaging images. By performing the process of creating a three-dimensional image by superimposing a plurality of slice images, not only can the curvature and morphology of the root canal be known, but also a root canal that is so thin that it cannot be seen in an X-ray image can be predicted. It can be done.
The reason is that the root canal is thin because the root canal is located in the center of the root, so if the root cross section can be extracted even if it cannot be extracted with the resolution of the X-ray image, the root canal can be extracted. The existence of root canals can be predicted.
Embodiments of the present invention will be described below with reference to the drawings.

図1〜図18は、この発明の実施例を示すものである。この発明は、被写体としての歯牙の根管の弯曲及び形態を知ることができ、また、X線撮影像では写らないほど細い根管を予測することができるようにするものである。   1 to 18 show an embodiment of the present invention. The present invention makes it possible to know the curvature and form of the root canal of a tooth as a subject, and to predict a root canal that is so thin that it cannot be seen in an X-ray image.

歯牙は、直視できる歯冠部と直視できない歯根部とがある。歯髄腔は、歯牙の中心に位置する腔洞であり、概ね歯牙の外形に一致した形態の空間のなかに神経や血管が入り込んだ軟組織である歯髄が満たされている。この歯髄腔のうち、歯根部を根管という。
・歯の形態学;
著者 白数美輝雄、中村正雄、古橋九平
臨牀歯科社 1968年7月1日発行
・新歯科衛生士教本 解剖学・組織発生学・口腔解剖学 第2版:
著者 井出吉信、大里重雄、小林 繁、高橋和人、戸田善久、東 義景、矢嶋俊彦
医歯薬出版株式会社 1997年1月10日発行
The tooth has a crown portion that can be directly viewed and a root portion that cannot be directly viewed. The pulp cavity is a cavity that is located at the center of the tooth, and is filled with a pulp, which is a soft tissue in which nerves and blood vessels have entered, in a space that roughly matches the outer shape of the tooth. Of these pulp cavities, the root is called the root canal.
・ Dental morphology;
Authors Mikio Shiratsu, Masao Nakamura, Kyuhei Furuhashi Linyi Dental Co., Ltd. Published July 1, 1968. New Dental Hygienist Textbook Anatomy, Histogenesis, Oral Anatomy 2nd Edition:
Authors Yoshinobu Ide, Shigeo Osato, Shigeru Kobayashi, Kazuhito Takahashi, Yoshihisa Toda, Yoshikazu Higashi, Toshihiko Yajima Ishiyaku Shuppan Publishing Co., Ltd. issued on January 10, 1997

この根管の中の死んだ歯髄(血管や神経)や汚染された象牙質をクレンザーでとり、さらにリーマやファイルを用いて根管の中を拡大・清掃し、薬剤を用いて消毒を行うのが根管治療(歯内療法)と呼ばれる。その後、根管の太さと長さに合わせてゴム状の防腐的材料を根尖孔まで緊密に充填する。これを根管充填と言う。   The dead pulp (blood vessels and nerves) and contaminated dentin in this root canal are removed with a cleanser, and the root canal is enlarged and cleaned using a reamer or file, and then disinfected with a drug. Is called root canal treatment (endodontic treatment). Thereafter, a rubber-like antiseptic material is tightly filled up to the apical hole according to the thickness and length of the root canal. This is called root canal filling.

根管治療(歯内療法)を行う場合に、一番の問題点は根管を直視して処置が行えないことである。根管が弯曲していたり、根管の形態によって、リーマやファイルが根尖まで届かない場合や、不適切なリーマやファイルの操作による根管の穿孔(根管を破ったりすること)や、リーマやファイルの根管内での破折が考えられる。   When performing root canal treatment (endodontic therapy), the biggest problem is that treatment cannot be performed by directly looking at the root canal. If the root canal is bent, or depending on the shape of the root canal, the reamer or file may not reach the apex, or the root canal may be perforated (breaking the root canal) by inappropriate reamer or file manipulation, A breakage in the root canal of the reamer or file can be considered.

これにより、歯髄を完全に取り除けない状況が起こったり、防腐的材料を根尖孔まで緊密に充填(根管充填)できずに空間ができてしまうため、白血球や細菌・腐敗産物がたまり、病巣ができ、骨(歯槽骨)が溶けてしまうという問題がおこる。   As a result, the dental pulp cannot be completely removed, or a space is created without preserving the antiseptic material up to the apical foramen (root canal filling), resulting in accumulation of white blood cells, bacteria and spoilage products, and lesions. And the bone (alveolar bone) melts.

すなわち、根管の形態を把握することが根管治療(歯内療法)を行う上で最も重要となる。しかし、この根管の形態は歯種ごとに違い、また個人差や加齢に伴う変化によって、より複雑な形態をとっているため、完全な処置が行いにくいのが現状である。   That is, grasping the form of the root canal is most important in performing root canal treatment (endodontic therapy). However, the form of the root canal varies from tooth type to tooth type, and has a more complicated form depending on individual differences and changes with aging, so it is difficult to perform complete treatment.

そこで、根管治療を行う前に、事前に根管の弯曲方向、形態等が明確になれば、根管治療の処置が行いやすく、さらには上記のような病巣ができ、歯槽骨が溶けてしまうという問題を回避することが可能となる。   Therefore, if the bending direction and shape of the root canal are clarified in advance before root canal treatment, the root canal treatment can be easily performed, and the above lesion can be formed, and the alveolar bone is melted. It becomes possible to avoid the problem of end.

ここで、直視できない歯根部の歯種毎の一般的に言われている形態的特徴(断面形状)は、おおむね以下のような特徴を持つ事が知られている。   Here, it is known that morphological characteristics (cross-sectional shape) generally referred to for each tooth type of the root portion that cannot be directly viewed have the following characteristics.

・上顎前歯(1番から3番)…円形
・下顎前歯(1番から3番)…楕円形
・上顎小臼歯(4番、5番)…ひょうたん形
・下顎小臼歯(4番、5番)…円形
・上顎大臼歯(6番、7番)
近心頬側根…ひょうたん形
遠心頬側根…円形
口蓋根…円形
・下顎大臼歯(6番、7番)
近心根…ひょうたん形
遠心根…円形
以上の形状は、組織発生学的に近似している
• Maxillary anterior teeth (No. 1 to 3)… Circular • Mandibular anterior teeth (No. 1 to 3)… Oval shape • Maxillary premolars (Nos. 4 and 5)… Gourd shape • Mandibular premolars (No. 4 and 5) ... Round / maxillary molars (Nos. 6 and 7)
Mesial cheek side root ... gourd shape
Centrifugal cheek root ... round
Palate root ... round, mandibular molar (No. 6, No. 7)
Mesial root ... gourd shape
Centrifugal root: circular The above shape approximates histologically

また、根管(歯根部の歯髄腔)は、歯根部の中心に位置する腔洞であって、概ね歯牙の外形に一致した形態であるため、根管もほぼ上記のような形態をしていると考えられる。   The root canal (the pulpal cavity of the root) is a cavity that is located in the center of the root and has a shape that substantially matches the external shape of the tooth. It is thought that there is.

通法のX線撮影像では、根管形状には個人差等があるので、根管の弯曲状態まで把握するとなると困難である。   In conventional X-ray images, there are individual differences in the root canal shape, and it is difficult to grasp the bent state of the root canal.

そこで、この発明は、3次元画像で根管の弯曲及び形態を知ることにより、確実に根管治療を行えるようにするものである。さらに、根管の弯曲や形態によっては治療不可能な場合や、X線撮影像では写らないほど細い根管を予測できる場合もあり、この発明はこれを事前に推測することができるようにするものである。   In view of this, the present invention makes it possible to reliably perform root canal treatment by knowing the curvature and form of the root canal from a three-dimensional image. Furthermore, depending on the curvature and form of the root canal, it may be impossible to treat, or a root canal that is so thin that it cannot be seen in an X-ray image may be predicted, and the present invention makes it possible to estimate this in advance. Is.

この発明は、図1〜図2に示す如く、X線撮影装置2にX線撮影用補助具4を使用してX線撮影像を撮影する。X線撮影装置2は、X線を発生するX線源であるX線発生器6と、このX線発生器6のX線照射部8より照射されて被写体である歯牙Zを通過したX線を検出するX線撮像手段10とから構成される。   In the present invention, as shown in FIGS. 1 to 2, an X-ray imaging image is acquired by using an X-ray imaging auxiliary tool 4 in the X-ray imaging apparatus 2. The X-ray imaging apparatus 2 includes an X-ray generator 6 that is an X-ray source that generates X-rays, and an X-ray that is irradiated from an X-ray irradiation unit 8 of the X-ray generator 6 and passes through a tooth Z that is a subject. And X-ray imaging means 10 for detecting.

X線撮像手段10としては、例えば、CCDセンサ、フィルム、その他の2次元X線イメージセンサである画像センサ(TFT,MOS,CCD,XII,XICCD、FPD、IP等)等がある。X線撮像手段10は、像を再現できるものであれば何を使用してもよい。2次元X線イメージセンサである画像センサとは、X線フィルムの代わりにX線撮影像を電気信号に変換するX線センサである。この実施例においては、X線撮像手段10としてCCDセンサを例示して説明する。   Examples of the X-ray imaging means 10 include a CCD sensor, a film, and an image sensor (TFT, MOS, CCD, XII, XICCD, FPD, IP, etc.) that is a two-dimensional X-ray image sensor. Any X-ray imaging means 10 may be used as long as it can reproduce an image. An image sensor that is a two-dimensional X-ray image sensor is an X-ray sensor that converts an X-ray image into an electrical signal instead of an X-ray film. In this embodiment, a CCD sensor will be exemplified and described as the X-ray imaging means 10.

前記X線撮影用補助具4は、アダプター部12と支持アーム14とX線撮像ホルダー16とを備えている。アダプター部12は、リング形状に形成され、デンタル撮影で使用されるX線撮影装置2を構成するX線発生器6のX線照射部8が着脱自在に装着される。支持アーム14は、基端をアダプター部12に固定され、アダプター部12からX線照射方向へ向けて先端を延長される。X線撮像ホルダー16は、支持アーム14の延長された先端に設けられ、保持部18と支持部20とにより略L字形状に形成される。保持部18には、X線撮影装置2を構成するX線撮像手段たるCCDセンサ10を着脱自在に保持する保持溝22を形成して設けている。支持部20には、歯牙Zに押圧されるバイトブロック24を固定して設けている。バイトブロック24は、複数本の突条形状の突出部26を平行に形成して設けている。   The X-ray imaging auxiliary tool 4 includes an adapter unit 12, a support arm 14, and an X-ray imaging holder 16. The adapter part 12 is formed in a ring shape, and is detachably mounted with an X-ray irradiation part 8 of an X-ray generator 6 constituting the X-ray imaging apparatus 2 used for dental imaging. The support arm 14 has a proximal end fixed to the adapter portion 12 and has a distal end extended from the adapter portion 12 in the X-ray irradiation direction. The X-ray imaging holder 16 is provided at the extended tip of the support arm 14 and is formed in a substantially L shape by the holding portion 18 and the support portion 20. The holding unit 18 is provided with a holding groove 22 that detachably holds the CCD sensor 10 that is an X-ray imaging unit constituting the X-ray imaging apparatus 2. A bite block 24 that is pressed against the tooth Z is fixed to the support portion 20. The bite block 24 is provided with a plurality of protruding protrusions 26 formed in parallel.

このX線撮影用補助具4は、X線撮像ホルダー16に対して左右2方向に離間して設置される2つのアダプター部12−1・12−2を設けている。2つのアダプター部12−1・12−2から夫々延長される2本の支持アーム14−1・14−2の先端には、段差状の切欠部28−1・28−2を形成して設けている。一方の支持アーム14−1の切欠部28−1は、X線撮像ホルダー16の支持部20と対向する側に設けられている。他方の支持アーム14−2の切欠部28−2は、前記切欠部28−1と係合するように、前記支持部20から離間する側に設けられている。また、2本の支持アーム14−1・14−2は、これら切欠部28−1・28−2に貫通孔30−1・30−2を形成して設け、これら貫通孔30−1・30−2を中心とする同一半径上であって支持部20と対向する側に突起部32−1・32−2を形成して設けている。   The X-ray imaging auxiliary tool 4 is provided with two adapter portions 12-1 and 12-2 that are spaced apart from each other in the left and right directions with respect to the X-ray imaging holder 16. Stepped cutout portions 28-1 and 28-2 are formed at the tips of the two support arms 14-1 and 14-2 that are extended from the two adapter portions 12-1 and 12-2, respectively. ing. The cutout portion 28-1 of one support arm 14-1 is provided on the side facing the support portion 20 of the X-ray imaging holder 16. The cutout portion 28-2 of the other support arm 14-2 is provided on the side away from the support portion 20 so as to engage with the cutout portion 28-1. The two support arms 14-1 and 14-2 are provided with through holes 30-1 and 30-2 formed in the notches 28-1 and 28-2, and the through holes 30-1 and 30-2 are provided. The protrusions 32-1 and 32-2 are formed on the same radius centered at −2 and on the side facing the support portion 20.

前記X線撮像ホルダー16の支持部20には、2本の支持アーム14−1・14−2の先端と対向する側に、回動自在な締結手段、例えばねじ孔34を形成して設け、このねじ孔34を中心とする同一半径上であって2本の支持アーム14−1・14−2と対向する側に前記突起部32−1・32−2が係合される複数の係合孔36−1・36−2を周方向の等間隔位置に形成して設けている。なお、支持アーム14−1・14−2の固定は、ねじ孔34に限定されるものではない。   The support portion 20 of the X-ray imaging holder 16 is provided with a rotatable fastening means, for example, a screw hole 34, on the side facing the tips of the two support arms 14-1 and 14-2, A plurality of engagements in which the protrusions 32-1 and 32-2 are engaged with each other on the side opposite to the two support arms 14-1 and 14-2 on the same radius around the screw hole 34. The holes 36-1 and 36-2 are formed at equal intervals in the circumferential direction. The fixing of the support arms 14-1 and 14-2 is not limited to the screw hole 34.

2本の支持アーム14−1・14−2は、切欠部28−1・28−2同士を当接させながら貫通孔30−1・30−2を合致させて任意の角度θに開き、突起部32−1・32−2をX線撮像ホルダー16の支持部20に形成した任意の係合孔36−1・36−2に係合させて貫通孔30−1・30−2に固定バネ38が嵌装された固定ねじ40を挿通し、固定ねじ40を支持部20のねじ孔34に螺着することにより、固定バネ38の弾性力によって支持部20に対して回動可能に支持され、突起部32−1・32−2と複数の係合孔36−1・36−2のいずれか1つとの係合によって任意の角度θに固定される。   The two support arms 14-1 and 14-2 open at an arbitrary angle θ by matching the through holes 30-1 and 30-2 with the notches 28-1 and 28-2 coming into contact with each other. The parts 32-1 and 32-2 are engaged with arbitrary engaging holes 36-1 and 36-2 formed in the support part 20 of the X-ray imaging holder 16, and fixed to the through holes 30-1 and 30-2. By inserting the fixing screw 40 fitted with the screw 38 and screwing the fixing screw 40 into the screw hole 34 of the supporting portion 20, the fixing screw 40 is rotatably supported by the supporting portion 20 by the elastic force of the fixing spring 38. The projections 32-1 and 32-2 are fixed to an arbitrary angle θ by engagement with any one of the plurality of engagement holes 36-1 and 36-2.

これにより、X線撮影用補助具4は、2つのアダプター部12−1・12−2をX線撮像ホルダー16に対して左右方向に角度調整可能なように、2つのアダプター部12−1・12−2から夫々延長される2本の支持アーム14−1・14−2の先端を支持部20に回動可能且つ任意の角度θで固定可能に支持して設けている。   Thereby, the auxiliary tool 4 for X-ray imaging has two adapter parts 12-1 and 12-2 so that the angle of the two adapter parts 12-1 and 12-2 can be adjusted in the horizontal direction with respect to the X-ray imaging holder 16. The ends of the two support arms 14-1 and 14-2 respectively extended from 12-2 are supported and provided on the support portion 20 so as to be rotatable and fixed at an arbitrary angle θ.

このX線撮影用補助具4は、2本の支持アーム14−1・14−2が先端の固定ねじ40を回動中心P1としてなす角度θ、つまり、X線発生器6のX線照射部8より照射されるX線のCCDセンサ10に対するX線入射角度を、回動中心P1の固定ねじ40に嵌装した固定バネ38の弾性力と突起部32−1・32−2及び係合孔36−1・36−2の係合とによって、任意の角度に変更することができるとともに設定した角度に固定することができることや、また別にその設定角度を保持する固定方法をもつ補助具である。   This X-ray imaging auxiliary tool 4 has an angle θ formed by the two support arms 14-1 and 14-2 with the fixing screw 40 at the tip as a rotation center P1, that is, an X-ray irradiation unit of the X-ray generator 6. The X-ray incident angle of the X-rays irradiated from the CCD sensor 10 with respect to the elastic force of the fixing spring 38 fitted to the fixing screw 40 of the rotation center P1, the projections 32-1 and 32-2 and the engaging hole It is an auxiliary tool that can be changed to an arbitrary angle by being engaged with 36-1 and 36-2, can be fixed at a set angle, and has a fixing method for holding the set angle separately. .

X線撮影用補助具4は、X線源であるX線発生器6とX線撮像手段であるCCDセンサ10との間に被写体である歯牙Zを位置させ、X線撮像ホルダー16に対して2つのアダプター部12−1・12−2を先端の固定ねじ40を回動中心P1として左右2方向に離間して設置し、2本の支持アーム14−1・14−2が先端の回動中心P1に対してなす角度θを任意の角度、この実施例においてはCCDセンサ面から左右45度に開く。すなわち、CCDセンサ10に対して任意のX線入射角度を45度の2方向からX線発生器6のX線照射部8よりX線を歯牙Zに照射してX線撮影を行い、歯牙Zの左右2方向からのX線撮影像を得る。   The X-ray imaging auxiliary tool 4 positions a tooth Z, which is a subject, between an X-ray generator 6 that is an X-ray source and a CCD sensor 10 that is an X-ray imaging unit. The two adapter parts 12-1 and 12-2 are set apart from each other in the left and right directions with the fixing screw 40 at the tip as the turning center P1, and the two support arms 14-1 and 14-2 are turned at the tip. The angle θ formed with respect to the center P1 is set to an arbitrary angle, in this embodiment, 45 degrees from the CCD sensor surface. That is, X-ray imaging is performed by irradiating the tooth Z with X-rays from the X-ray irradiation unit 8 of the X-ray generator 6 from two directions of 45 degrees with respect to the CCD sensor 10 at an arbitrary X-ray incident angle. X-ray images from two left and right directions are obtained.

なお、このX線撮影用補助具4は、2本の支持アーム14−1・14−2の一方を外すことにより、通常のX線撮影用の補助具としても使用することができる。   The X-ray imaging auxiliary tool 4 can also be used as a normal X-ray imaging auxiliary tool by removing one of the two support arms 14-1 and 14-2.

また、このX線撮影用補助具4は、図3に示す如く、大臼歯等のX線撮影を行う場合を考慮して、略コ字形状の補助アーム42を設けることができる。   Further, as shown in FIG. 3, the auxiliary tool 4 for X-ray imaging can be provided with a substantially U-shaped auxiliary arm 42 in consideration of X-ray imaging of a molar or the like.

補助アーム42は、一端側にねじ孔43を形成して設けるとともにこのねじ孔43を囲むように支持部44を形成して設け、この支持部44にねじ孔43を中心とする同一半径上に前記2本の支持アーム14−1・14−2の突起部32−1・32−2が係合される複数の係合孔45−1・45−2を形成して設け、また、他端側に貫通孔46を形成して設けている。補助アーム42は、2本の支持アーム14−1・14−2の切欠部28−1・28−2同士を当接させながら貫通孔30−1・30−2を合致させて任意の角度θに開き、突起部32−1・32−2を一端側の支持部44に形成した任意の係合孔45−1・45−2に係合させて、貫通孔30−1・30−2に固定バネ38が嵌装された固定ねじ40を挿通し、この固定ねじ40を一端側のねじ孔43に螺着することにより、固定バネ38の弾性力によって2本の支持アーム14−1・14−2を一端側に回動可能且つ任意の角度で固定可能に支持して設けている。また、補助アーム42は、他端側の貫通孔46に固定バネ48が嵌装された固定ねじ50を挿通し、この固定ねじ50をX線撮像ホルダー16の支持部20のねじ孔34に螺着することにより、固定バネ48の弾性力によって他端側を支持部20に回動可能且つ任意の角度で固定可能に支持して設けている。   The auxiliary arm 42 is provided with a screw hole 43 formed at one end thereof, and a support portion 44 is formed so as to surround the screw hole 43, and the support portion 44 has the same radius around the screw hole 43. A plurality of engagement holes 45-1 and 45-2 are formed to engage the protrusions 32-1 and 32-2 of the two support arms 14-1 and 14-2, and the other end A through hole 46 is formed on the side. The auxiliary arm 42 matches the through holes 30-1 and 30-2 while bringing the notches 28-1 and 28-2 of the two support arms 14-1 and 14-2 into contact with each other, and an arbitrary angle θ The projecting portions 32-1 and 32-2 are engaged with arbitrary engagement holes 45-1 and 45-2 formed in the support portion 44 on one end side, and the through holes 30-1 and 30-2 are engaged. By inserting the fixing screw 40 fitted with the fixing spring 38 and screwing the fixing screw 40 into the screw hole 43 on one end side, the two supporting arms 14-1 and 14 are elastically applied by the fixing spring 38. -2 is supported to be rotatable at one end and fixed at an arbitrary angle. Further, the auxiliary arm 42 inserts a fixing screw 50 in which a fixing spring 48 is fitted into the through hole 46 on the other end side, and the fixing screw 50 is screwed into the screw hole 34 of the support portion 20 of the X-ray imaging holder 16. By wearing, the other end side is supported by the elastic force of the fixing spring 48 so as to be rotatable to the support portion 20 and fixed at an arbitrary angle.

補助アーム42を設けたX線撮影用補助具4は、固定ねじ50による回動中心P1に対して固定ねじ40による回動中心P2をX線撮像ホルダー16の支持部20から離間させるように、補助アーム42により2本の支持アーム14−1・14−2を支持する。このとき、補助アーム42と2本の支持アーム14−1・14−2とは、X線撮像ホルダー16に対して2つのアダプター部12−1・12−2のX線入射角度が要求される角度になるように、回動中心P1・P2を夫々設定する。なお、アダプター部12−1・12−2は、X線撮像ホルダー16面に対して任意の角度で向くように、アダプター部12−1・12−2の向きを調節可能な取付機構(図示せず)によって支持アーム14−1・14−2の基端に取付けることできる。   The X-ray imaging auxiliary tool 4 provided with the auxiliary arm 42 is configured so that the rotation center P2 of the fixing screw 40 is separated from the support portion 20 of the X-ray imaging holder 16 with respect to the rotation center P1 of the fixing screw 50. The two support arms 14-1 and 14-2 are supported by the auxiliary arm 42. At this time, the auxiliary arm 42 and the two support arms 14-1 and 14-2 are required to have the X-ray incident angles of the two adapter units 12-1 and 12-2 with respect to the X-ray imaging holder 16. The rotation centers P1 and P2 are respectively set so as to have an angle. In addition, the adapter parts 12-1 and 12-2 can be adjusted at any angle with respect to the surface of the X-ray imaging holder 16 so that the orientation of the adapter parts 12-1 and 12-2 can be adjusted (not shown). To the base ends of the support arms 14-1 and 14-2.

これにより、補助アーム42を設けたX線撮影用補助具4は、図4に示す如く、口腔52内の上顎右側奥にX線撮像ホルダー16を位置させ、上顎右側の大臼歯54でX線撮像ホルダー16のバイトブロック24を噛んだ場合に、補助アーム42の一端側(アダプター部12−1・12−2側)が口腔52外に飛び出て右側の頬まで回り込むので、X線を照射してX線撮影を行うことができる。なお、口腔52内の上顎左大臼歯をX線撮影する場合は、補助アーム42を逆に回転させて、アダプター部12−1・12−2も180度回転し、左側用として使用する、あるいは左側用の補助アーム(図示せず)に取り換えて使用することにより、左大臼歯をX線撮影することができる。   As a result, the X-ray imaging auxiliary tool 4 provided with the auxiliary arm 42 positions the X-ray imaging holder 16 behind the upper right side of the upper jaw in the oral cavity 52 as shown in FIG. When the bite block 24 of the imaging holder 16 is bitten, one end side (adapter part 12-1 and 12-2 side) of the auxiliary arm 42 jumps out of the oral cavity 52 and wraps around to the right cheek. X-ray imaging can be performed. In addition, when radiographing the maxillary left molar in the oral cavity 52, the auxiliary arm 42 is rotated in the reverse direction, and the adapter parts 12-1 and 12-2 are also rotated 180 degrees and used for the left side, or By replacing the left auxiliary arm (not shown) and using it, the left molar can be radiographed.

さらに、このX線撮影用補助具4は、大臼歯等のX線撮影を行う場合を考慮しつつ、任意に撮影角度を変更可能なように、図5・図6に示す如く、略フ字形状の補助アーム56を設けるとともに、アダプター部12−1・12−2に逆T字形状の固定部58−1・58−2を設けることができる。   Further, the X-ray imaging auxiliary tool 4 has a substantially letter F shape as shown in FIGS. 5 and 6 so that the imaging angle can be arbitrarily changed while taking into account the case of X-ray imaging of a molar or the like. While providing the shape auxiliary arm 56, the adapter parts 12-1 and 12-2 can be provided with inverted T-shaped fixing parts 58-1 and 58-2.

補助アーム56は、アダプター部12−1・12−2の固定部58−1・58−2が固定される弯曲した支持部60と、この支持部60に連続してX線撮像ホルダー16の支持部20に固定される直線状の延長部62とからなる。支持部60には、所定間隔で複数の固定孔64を形成して設けている。アダプター部12−1・12−2は、固定部58−1・58−2に前記固定孔64に嵌合される突出部66−1・66−2を設けている。   The auxiliary arm 56 is a curved support part 60 to which the fixing parts 58-1 and 58-2 of the adapter parts 12-1 and 12-2 are fixed, and supports the X-ray imaging holder 16 continuously to the support part 60. It consists of a linear extension 62 fixed to the part 20. A plurality of fixing holes 64 are formed in the support portion 60 at predetermined intervals. The adapter parts 12-1 and 12-2 are provided with protruding parts 66-1 and 66-2 fitted into the fixing holes 64 in the fixing parts 58-1 and 58-2.

このX線撮影用補助具4は、X線撮像ホルダー16の支持部20に補助フレーム56のる延長部62を固定し、支持部60の任意の固定孔64に固定部58−1・58−2の突出部66−1・66−2を嵌合することにより、アダプター部12−1・12−2を任意の撮影角度で固定が可能であり、しかも、補助アーム56によって頬を回り込んでX線撮像ホルダー16を口腔内の奥に位置させることができ、大臼歯等のX線撮影を行うことができる。   In the X-ray imaging auxiliary tool 4, the extension 62 of the auxiliary frame 56 is fixed to the support portion 20 of the X-ray imaging holder 16, and the fixing portions 58-1 and 58-are fixed to arbitrary fixing holes 64 of the support portion 60. By fitting the two protrusions 66-1 and 66-2, the adapter parts 12-1 and 12-2 can be fixed at an arbitrary photographing angle, and the auxiliary arm 56 goes around the cheek. The X-ray imaging holder 16 can be positioned in the back of the oral cavity, and X-ray imaging of a molar or the like can be performed.

このように、このX線撮影用補助具4は、1個の補助具で上下左右兼用でき、消毒が可能であり、チタンやアルミ、プラスチック、ステンレス等で軽く、分解収納が可能でコンパクトに収納できるという条件を具備している。   In this way, this X-ray imaging auxiliary tool 4 can be used in the vertical and horizontal directions with one auxiliary tool and can be disinfected. It is light and can be disassembled and stored compactly with titanium, aluminum, plastic, stainless steel, etc. It has the condition that it can be done.

このX線撮影用補助具4は、X線撮影方法及びX線撮影像の処理方法に使用される。X線撮影用補助具4を使用したX線撮影方法及びX線撮影像の処理方法は、図7に示す如く、X線撮影処理装置68により実施される。X線撮影処理装置68は、前記X線発生器6とCCDセンサ10とから構成されるX線撮影装置2を含み、X線撮影装置2の撮影処理及びX線撮影像処理を行う処理手段70と、処理手段70に指令を入力する入力手段72と、処理された画像を表示するモニタ手段74とを備えている。   The X-ray imaging auxiliary tool 4 is used in an X-ray imaging method and an X-ray imaging image processing method. An X-ray imaging method and an X-ray imaging image processing method using the X-ray imaging auxiliary tool 4 are performed by an X-ray imaging processing device 68 as shown in FIG. The X-ray imaging processing device 68 includes the X-ray imaging device 2 including the X-ray generator 6 and the CCD sensor 10, and processing means 70 that performs imaging processing and X-ray imaging image processing of the X-ray imaging device 2. And an input means 72 for inputting a command to the processing means 70 and a monitor means 74 for displaying the processed image.

X線撮影処理装置68の処理手段70は、X線撮影実施手段76と、X線撮影像取込手段78と、距離計測手段80と、平面座標描出手段82と、平面スライス像作成手段84と、3次元画像生成手段86とを備えている。   The processing means 70 of the X-ray imaging processing apparatus 68 includes an X-ray imaging performing means 76, an X-ray imaging image capturing means 78, a distance measuring means 80, a plane coordinate drawing means 82, and a plane slice image creating means 84. 3D image generation means 86.

X線撮影実施手段76は、X線撮影装置2のX線発生器6とCCDセンサ10との動作を制御し、歯牙にX線を照射させて歯牙を透過したX線を検出する。X線撮影像取込手段78は、CCDセンサ10により検出された歯牙のX線撮影像を処理手段70に取り込む。距離計測手段80は、撮影基準線からX線撮影像の幅方向の2ヶ所の点までの距離を計測する。平面座標描出手段82は、計測されたX線撮影像の2ヶ所の点までの距離を平面座標軸上にプロットし、2ヶ所の点から投影線を引く。平面スライス像作成手段84は、2つのX線撮影像の各2ヶ所の点から引かれた4本の投影線で囲まれる四角形の領域内に投影線に内接する閉曲線の図形として円または楕円を作成し、平面スライス像を描出する。3次元画像生成手段86は、平面スライス像を重ね合わせて3次元画像を生成する。   The X-ray imaging execution means 76 controls the operations of the X-ray generator 6 and the CCD sensor 10 of the X-ray imaging apparatus 2 to detect X-rays that have passed through the teeth by irradiating the teeth with X-rays. The X-ray image capturing unit 78 captures the X-ray image of the teeth detected by the CCD sensor 10 into the processing unit 70. The distance measuring means 80 measures the distance from the imaging reference line to two points in the width direction of the X-ray image. The plane coordinate drawing means 82 plots the distances to two points of the measured X-ray image on the plane coordinate axis, and draws projection lines from the two points. The plane slice image creating means 84 uses a circle or an ellipse as a closed curve figure inscribed in a quadrilateral area surrounded by four projection lines drawn from two points of two X-ray images. Create a plane slice image. The three-dimensional image generation unit 86 generates a three-dimensional image by superimposing planar slice images.

次に、前記X線撮影用補助具4を使用したX線撮影方法及び得られたX線撮影像の処理方法を説明する。なお、ここでは、図8に示す如く、下顎の4番の歯牙Zを左右45度の角度からそれぞれX線撮影を行うX線撮影方法及び得られたX線撮影像の処理方法を説明する。   Next, an X-ray imaging method using the X-ray imaging auxiliary tool 4 and a method for processing the obtained X-ray imaging image will be described. Here, as shown in FIG. 8, an X-ray imaging method for performing X-ray imaging of the fourth tooth Z of the lower jaw from an angle of 45 degrees to the left and right and a processing method for the obtained X-ray imaging image will be described.

通常、X線撮像手段であるCCDセンサ10のサイズは、図9に示す如く、縦512×横768ピクセルである。被写体である歯牙Zを通過したX線を検出するCCDセンサ10に歯牙ZのX線撮影像が収まりきらない場合には、CCDセンサ10のサイズを大きくする。また、歯牙Zは、どんな方向を向いていても、X線がCCDセンサ10に対して45度のX線入射角度で照射されていれば、CCDセンサ10に映し出される歯牙Zの3次元画像形成のアルゴリズムに関しては問題がない。また、CCDセンサ10に対して照射されるX線の入射角度は、歯牙の発生学的、及び/又は、形態学的な角度によって決定することが可能である。   Normally, the size of the CCD sensor 10 as the X-ray imaging means is 512 × 768 pixels as shown in FIG. If the X-ray image of the tooth Z does not fit in the CCD sensor 10 that detects X-rays that have passed through the tooth Z that is the subject, the size of the CCD sensor 10 is increased. Further, no matter what direction the tooth Z faces, if the X-ray is irradiated at an X-ray incident angle of 45 degrees to the CCD sensor 10, a three-dimensional image formation of the tooth Z displayed on the CCD sensor 10 is performed. There is no problem with this algorithm. Further, the incident angle of the X-rays irradiated to the CCD sensor 10 can be determined by the developmental and / or morphological angle of the tooth.

先ず、左側からのX線撮方法及び処理方法を説明する。   First, an X-ray imaging method and a processing method from the left side will be described.

(1)、X線撮影方法においては、図8に示す如く、X線撮影装置2のX線を発生するX線源であるX線発生器6と、被写体である歯牙Zを通過したX線を検出するX線撮像手段であるCCDセンサ10との間に、被写体である歯牙Z(下顎の4番)を位置させる。 (1) In the X-ray imaging method, as shown in FIG. 8, the X-ray generator 6 that is an X-ray source for generating X-rays of the X-ray imaging apparatus 2 and the X-rays that have passed through the tooth Z that is the subject. The tooth Z (the lower jaw No. 4) as the subject is positioned between the CCD sensor 10 as the X-ray imaging means for detecting the above.

(2)、X線を発生するX線発生器6は、CCDセンサ10に対して左側から45度の角度でX線が照射されるように、X線撮影用補助具4により左側のアダプター部12−1を利用してX線照射部8を装着する。 (2) The X-ray generator 6 that generates X-rays is arranged such that the X-ray imaging auxiliary tool 4 allows the X-ray generator 6 to emit X-rays at an angle of 45 degrees from the left side. The X-ray irradiation unit 8 is mounted using 12-1.

このとき、CCDセンサ10と歯牙Zとの位置関係(距離)は、CCDセンサ10に対して左側45度の角度でX線発生器6からX線が照射されたときに歯牙Zを通過したX線を検出し、映し出されるX線撮影像がCCDセンサ10におさまるような距離に、歯牙ZとCCDセンサ10とを設置する。   At this time, the positional relationship (distance) between the CCD sensor 10 and the tooth Z is such that X passes through the tooth Z when the X-ray generator 6 emits X-rays at an angle of 45 degrees to the left with respect to the CCD sensor 10. The tooth Z and the CCD sensor 10 are placed at such a distance that the line is detected and the projected X-ray image is contained in the CCD sensor 10.

(3)、CCDセンサ10に対して左右45度からのX線撮影によって得られたX線撮影像の相対距離を計測するため、図10に示す如く、CCDセンサ10の左から例えば5列目のピクセルに歯牙Zの位置情報を検知する撮影基準線(A1’)を設けておく。 (3) In order to measure the relative distance of the X-ray image obtained by X-ray imaging from 45 degrees to the left and right with respect to the CCD sensor 10, as shown in FIG. An imaging reference line (A1 ′) for detecting the position information of the tooth Z is provided in each pixel.

(4)、CCDセンサ10に対して左45度からX線撮影を行い、左45度からのX線撮影像L1を得る。このとき得られたX線撮影像L1に映し出された歯牙ZのX線撮影像をZ1、撮影基準線をA1’とする。 (4) X-ray imaging is performed on the CCD sensor 10 from the left 45 degrees to obtain an X-ray imaging image L1 from the left 45 degrees. An X-ray image of the tooth Z projected in the X-ray image L1 obtained at this time is Z1, and an imaging reference line is A1 '.

(5)、得られたX線撮影像L1に映し出された歯牙ZのX線撮影像Z1は、辺縁幅の外形点(歯牙Zの幅方向における外形ラインの内側と外側との2ヶ所の点)を決定し、撮影基準線A1’からの距離(X1及びX2)を計測する。 (5) The X-ray image Z1 of the tooth Z projected on the obtained X-ray image L1 is obtained by using the outline points of the marginal width (the inside and outside of the outline line in the width direction of the tooth Z). Point) and the distances (X1 and X2) from the photographing reference line A1 ′ are measured.

歯牙Zの辺縁部であるX線撮影像Z1の幅方向における内側と外側の2点は、図10に示す如く、同一の水平な画素列(行)上に存在する。これにより、X線撮影像Z1の辺縁幅の外形点(以下、辺縁部という)の距離を計測した2ヶ所の点を通るCCDセンサ10のピクセルの画素列(行)を、n+1番とおく。なお、図10においては、X線撮影像L1に映し出された歯牙Zの左からのX線撮影像Z1の、辺縁幅の2つの外形点(X1及びX2)を夫々説明するために、X線撮影像Z1を内側と外側との2枚に分けて使用して説明しているが、実際には1枚のX線撮影像Z1である。   As shown in FIG. 10, two points on the inner side and the outer side in the width direction of the X-ray image Z1, which is the edge portion of the tooth Z, exist on the same horizontal pixel column (row). As a result, the pixel column (row) of the pixels of the CCD sensor 10 passing through two points where the distance between the outline points (hereinafter referred to as edge portions) of the edge width of the X-ray image Z1 is measured is expressed as n + 1. deep. In FIG. 10, in order to explain the two outline points (X1 and X2) of the edge width of the X-ray image Z1 from the left of the tooth Z displayed on the X-ray image L1, respectively. The X-ray image Z1 is described as being divided into two images, the inner side and the outer side, but in actuality, it is one X-ray image Z1.

(6)、計測された辺縁部の2つの外形点の距離(X1及びX2)を平面座標軸上に置き換えるために、図11に示す如く、撮影基準線A1’をY軸とし、X線撮影像Z1の辺縁部の計測した2点(X1及びX2)を通り、撮影基準線A1’であるY軸に対して垂直に交わる画素列(行)をX軸とおく。 (6) In order to replace the distance (X1 and X2) of the two outer contour points of the measured edge with the plane coordinate axis, as shown in FIG. 11, the X-ray imaging is performed with the imaging reference line A1 ′ as the Y axis. A pixel column (row) passing through two points (X1 and X2) measured at the edge of the image Z1 and perpendicular to the Y axis that is the imaging reference line A1 ′ is defined as the X axis.

(7)、前記(5)で計測したX線撮影像Z1の辺縁部の2点(X1及びX2)を平面座標軸上にプロットする。 (7) Two points (X1 and X2) at the edge of the X-ray image Z1 measured in (5) are plotted on the plane coordinate axis.

例えば、図10に示す如く、撮影基準線A1’であるY軸から映し出されたX線撮影像Z1の辺縁部の計測した2点までの距離がそれぞれXl、X2であるため、平面座標軸上にプロットすると、図11に示す如く、計測された2点(X1,X2)の座標軸上での位置は(X1,0)、(X2,0)とプロットすることができる。   For example, as shown in FIG. 10, since the distances to the two measured points at the edge of the X-ray image Z1 projected from the Y-axis that is the imaging reference line A1 ′ are X1 and X2, respectively, As shown in FIG. 11, the measured positions of the two points (X1, X2) on the coordinate axis can be plotted as (X1,0) and (X2,0).

(8)、座標にプロットした2点(X1,0)、(X2,0)から、X線撮影方向側に撮影角度と同じ45度の角度で投影線B1、B2を引く。 (8) Projection lines B1 and B2 are drawn from the two points (X1, 0) and (X2, 0) plotted on the coordinates at the same 45-degree angle as the imaging angle in the X-ray imaging direction side.

次に、右側からのX線撮影方法及び処理方法を説明する。   Next, an X-ray imaging method and processing method from the right side will be described.

(9)、X線を発生するX線発生器6は、CCDセンサ10に対して右側から45度の角度でX線が照射されるように、X線撮影用補助具4により右側のアダプター部12−2を利用してX線照射部8を装着する。 (9) The X-ray generator 6 that generates X-rays is adapted so that the right-side adapter unit is used by the X-ray imaging aid 4 so that the CCD sensor 10 is irradiated with X-rays at an angle of 45 degrees from the right side. The X-ray irradiation unit 8 is mounted using 12-2.

このとき、CCDセンサ10に対して左45度からX線撮影を行った歯牙Zの位置とCCDセンサ10の位置は移動させず、X線発生器6のみをCCDセンサ10に対して右45度の入射角度でX線が照射される位置に移動させる。すなわち、図1において右側のアダプター部12−2にX線発生器6を移動して装着する。   At this time, the position of the tooth Z and the position of the CCD sensor 10 obtained by X-ray imaging from the left 45 degrees with respect to the CCD sensor 10 are not moved, and only the X-ray generator 6 is moved 45 degrees to the right with respect to the CCD sensor 10. It moves to the position where X-rays are irradiated at an incident angle of. That is, in FIG. 1, the X-ray generator 6 is moved and attached to the right adapter section 12-2.

(10)、CCDセンサ10に対して左右45度からのX線撮影によって得られたX線撮影像の相対距離を計測するため、図12に示す如く、CCDセンサ10の右から例えば5列目のピクセルに歯牙Zの位置情報を検知する撮影基準線(A1”)を設けておく。 (10) In order to measure the relative distance of the X-ray image obtained by X-ray imaging from 45 degrees to the left and right with respect to the CCD sensor 10, as shown in FIG. An imaging reference line (A1 ″) for detecting the position information of the tooth Z is provided in each pixel.

(11)、CCDセンサ10に対して右45度からX線撮影を行い、右45度からのX線撮影像L2を得る。このとき得られたX線撮影像L2に映し出された歯牙ZのX線撮影像をZ2、撮影基準線をA1”とする。 (11) X-ray imaging is performed on the CCD sensor 10 from the right 45 degrees, and an X-ray imaging image L2 from the right 45 degrees is obtained. The X-ray image of the tooth Z projected in the X-ray image L2 obtained at this time is Z2, and the reference line is A1 ″.

(12)、得られたX線撮影像L2に映し出されたX線撮影像Z2は、辺縁幅の外形点(歯牙Zの幅方向における外形ラインの内側と外側の2ヶ所の点)を決定し、撮影基準線A1”からの距離(X3及びX4)を計測する。 (12) The X-ray image Z2 displayed on the obtained X-ray image L2 determines the outline points of the marginal width (two points on the inside and outside of the outline line in the width direction of the tooth Z). Then, the distances (X3 and X4) from the photographing reference line A1 ″ are measured.

このとき、歯牙Zの辺縁部であるX線撮影像Z2の幅方向における内側と外側の2点は、図12に示す如く、同一の水平な画素列(行)上に存在するので、X線撮影像L2のCCDセンサ10のピクセルの画素列(行)n+1番のピクセル(行)上に位置するX線撮影像Z2の辺縁部の2点を計測する。このX線撮影像L2のn+1番のCCDセンサ10のピクセルの画素列(行)は、X線撮影像L1で決定したX線撮影像Z1の辺縁部の2点を通るCCDセンサ10のピクセルの画素列(行)n+1番のピクセル列(行)と同じにすることで、3次元画像を作成するうえでの基準線とすることができる。   At this time, since the inner and outer two points in the width direction of the X-ray image Z2, which is the edge of the tooth Z, exist on the same horizontal pixel column (row) as shown in FIG. Two points at the edge of the X-ray image Z2 located on the pixel row (row) n + 1 of the pixel (row) of the CCD sensor 10 of the line image L2 are measured. The pixel array (row) of pixels of the (n + 1) -th CCD sensor 10 of the X-ray image L2 is a pixel of the CCD sensor 10 passing through two points at the edge of the X-ray image Z1 determined by the X-ray image L1. By making the pixel column (row) n + 1 the same as the pixel column (row), it can be used as a reference line for creating a three-dimensional image.

(13)、計測された辺縁部の2つの外形点の距離(X3及びX4)を平面座標軸上に置き換えるために、図13に示す如く、撮影基準線A1”をY軸とし、X線撮影像Z2の辺縁部の計測した2点(X3及びX4)を通り、撮影基準線A1”であるY軸に対して垂直に交わる画素列(行)をX軸とおく。 (13) In order to replace the distance (X3 and X4) of the two outer contour points of the measured edge with the plane coordinate axis, as shown in FIG. 13, the X-ray imaging is performed with the imaging reference line A1 ″ as the Y axis. A pixel column (row) passing through two points (X3 and X4) measured at the edge of the image Z2 and perpendicular to the Y axis as the imaging reference line A1 ″ is set as the X axis.

(14)、前記(12)で計測されたX線撮影像Z2の辺縁部の2点(X3及びX4)を平面座標軸上にプロットする。 (14) The two points (X3 and X4) at the edge of the X-ray image Z2 measured in (12) are plotted on the plane coordinate axis.

例えば、図12に示す如く、撮影基準線A1”であるY軸から映し出されたX線撮影像Z2の辺縁部の計測した2点までの距離がそれぞれX3、X4であるため、平面座標軸上にプロットすると、図13に示す如く、計測された2点(X3及びX4)の座標軸上での位置は(X3,0)、(X4,0)とプロットすることができる。   For example, as shown in FIG. 12, since the distances from the Y axis which is the imaging reference line A1 ″ to the two measured points of the edge of the X-ray image Z2 projected are X3 and X4, respectively, As shown in FIG. 13, the measured positions of the two points (X3 and X4) on the coordinate axis can be plotted as (X3, 0) and (X4, 0).

(15)、座標にプロットした(X3,0)、(X4,0)から、X線撮影方向側に撮影角度と同じ45度の角度で投影線B3、B4を引く。 (15) From (X3, 0) and (X4, 0) plotted on the coordinates, the projection lines B3 and B4 are drawn at the same 45 degree angle as the imaging angle on the X-ray imaging direction side.

(16)、前記左右2方向からX線撮影されて得られた歯牙Zの2つのX線撮影像Z1、Z2の辺縁部の各2つの座標を同一座標上にプロットすると、図14に示す如く、各座標から引かれた4本の投影線B1〜B4が平面座標上で交わり、4本の投影線B1〜B4で囲まれる四角形が作成される。 (16) When the two coordinates of the two X-ray images Z1 and Z2 of the tooth Z obtained by X-ray imaging from the left and right directions are plotted on the same coordinate, the result is shown in FIG. As described above, the four projection lines B1 to B4 drawn from each coordinate intersect on the plane coordinates to create a quadrangle surrounded by the four projection lines B1 to B4.

(17)、この作成された四角形を区画する投影線B1〜B4に内接する円、または、内接する楕円を、図15に示す如く作成する。この処理を行うことにより、X線撮影された被写体である歯牙の平面スライス像D(断面図)を描出することできる。 (17) As shown in FIG. 15, a circle inscribed in the projection lines B1 to B4 defining the created quadrangle or an inscribed ellipse is created. By performing this processing, it is possible to draw a planar slice image D (cross-sectional view) of a tooth that is an X-rayed subject.

前記左右2方向からX線撮影されて得られた歯牙Zの2枚のX線撮影像Z1、Z2の処理方法の基本は、図16・図17に示す如く、四角形に内接する円を作成し、内接円が作成できない場合には内接する楕円を作成する。または、歯根部の歯種毎の形態的特徴から、一般的に言われている歯根部の断面形状に基づいて内接する円または内接する楕円を作成する。   The basic method of processing the two X-ray images Z1 and Z2 of the tooth Z obtained by X-ray imaging from the left and right directions is to create a circle inscribed in a quadrangle as shown in FIGS. If an inscribed circle cannot be created, an inscribed ellipse is created. Alternatively, an inscribed circle or an inscribed ellipse is created from the morphological characteristics of each tooth type of the tooth root based on the generally-known cross-sectional shape of the tooth root.

この場合、左右45度の角度で2回X線撮影を行う前に、被写体である歯牙Zの正面のX線撮影像を撮影しておくことで、歯牙Zの大まかな外形を把握することができ、歯根部の歯種毎の形態的特徴と合わせながら平面スライス像D(断面図)を作成していくことで、実際の被写体である歯牙Zに近いスライス像を作成することができる。   In this case, it is possible to grasp the rough outline of the tooth Z by photographing an X-ray image of the front surface of the tooth Z as a subject before performing X-ray imaging twice at an angle of 45 degrees on the left and right. It is possible to create a slice image close to the tooth Z, which is an actual subject, by creating a planar slice image D (cross-sectional view) while matching with the morphological characteristics of each tooth type at the root portion.

また、CCDセンサ10とX線発生器6の距離が小さい場合には、投影線B1とB2、投影線B3とB4は平行線とはならず、投影線B1とB2、投影線B3とB4はX線発生器6の焦点で交差する三角形の2辺を呈するようになることもある。   When the distance between the CCD sensor 10 and the X-ray generator 6 is small, the projection lines B1 and B2 and the projection lines B3 and B4 are not parallel lines, and the projection lines B1 and B2 and the projection lines B3 and B4 are In some cases, two sides of a triangle intersecting at the focal point of the X-ray generator 6 may be exhibited.

(18)、前記(17)の処理を、CCDセンサ10の各ピクセル毎にZ軸のプラス方向へ歯根部先端から歯冠部に向かい順に行い、CCDセンサ10のピクセル毎の平面スライス像D(断面図)を作成していく。 (18) The processing of (17) is performed for each pixel of the CCD sensor 10 in the positive direction of the Z-axis in order from the root tip to the crown, and a planar slice image D (for each pixel of the CCD sensor 10) (Cross section).

例えば、図18に示す如く、CCDセンサ10のピクセルn番目のX軸の歯牙Zの辺縁部の計測から得られた平面スライス像(断面図)をD0とおき、CCDセンサ10のピクセルn+1番目のX軸の歯牙Zの辺縁部の計測から得られた平面スライス像(断面図)をD1、CCDセンサ10のピクセルn+2番目のX軸の歯牙Zの辺縁部の計測から得られた平面スライス像(断面図)をD2、……とZ軸のプラス方向に向かって順次に作成する。   For example, as shown in FIG. 18, a plane slice image (cross-sectional view) obtained from the measurement of the edge of the n-th X-axis tooth Z of the pixel n of the CCD sensor 10 is denoted as D0, and the pixel n + 1-th pixel of the CCD sensor 10 is obtained. A plane slice image (cross-sectional view) obtained from the measurement of the edge portion of the X-axis tooth Z is D1, and the plane obtained from the measurement of the edge portion of the pixel n + second X-axis tooth Z of the CCD sensor 10 Slice images (cross-sectional views) are sequentially created in the positive direction of D2,.

このとき、CCDセンサ10のピクセル毎に平面スライス像D(断面図)を展開していくが、X線撮影像L1、L2に映し出された左右45度のX線撮影像Z1、Z2の辺縁部の距離を計測して平面座標軸上にプロットするときは、X軸のみの計測のため、Y軸座標は必ずY=0(例えば(X,0)のような座標となる)として平面座標軸上に展開されていく。   At this time, the plane slice image D (cross-sectional view) is developed for each pixel of the CCD sensor 10, but the edges of the 45-degree X-ray images Z1 and Z2 projected on the left and right X-ray images L1 and L2 are displayed. When measuring the distance of the part and plotting it on the plane coordinate axis, since the measurement is performed only on the X axis, the Y axis coordinate is always Y = 0 (for example, coordinates such as (X, 0)) on the plane coordinate axis It will be expanded to.

(19)、前記(18)にて得られたCCDセンサ10のピクセル毎の平面スライス像D(断面図)を、図19に示す如く、歯根部先端であるCCDセンサ10のピクセルn番目の平面スライス像D0(断面図)から順にZ軸のプラス方向へ重ねていく。 (19) As shown in FIG. 19, the plane slice image D (cross-sectional view) for each pixel of the CCD sensor 10 obtained in the above (18) is the nth plane of the pixel n of the CCD sensor 10 at the tip of the tooth root. The slice images D0 (cross-sectional view) are sequentially stacked in the positive direction of the Z axis.

この重ね合わせを行う場合、CCDセンサ10の各ピクセルごとに作成した平面スライス像D(断面図)の位置は基準線であるY軸からの距離で把握できるため、重ね合わせを行う場合にはY軸とX軸の原点を基準にして各平面スライス像Dを順に重ねていく。   When this superposition is performed, the position of the planar slice image D (cross-sectional view) created for each pixel of the CCD sensor 10 can be grasped by the distance from the Y axis that is the reference line. The plane slice images D are sequentially overlapped with respect to the origin of the axis and the X axis.

基準であるY軸とX軸の原点は、平面スライス像Dを重ねる際の位置基準となる。これにより、作成された平面スライス像D(断面図)の位置情報がわかり、基準であるY軸とX軸の原点にあわせて、各ピクセルのZ軸のプラス方向へ重ねていくことで、歯根部の弯曲状況を把握することができる。このとき、Z軸へ重ねていくときは、Z軸のピクセルサイズも考慮して、1スライス幅を決定する。   The origins of the Y axis and the X axis, which are the references, serve as a position reference when the plane slice images D are overlapped. As a result, the positional information of the created planar slice image D (cross-sectional view) is known, and the roots are overlapped in the positive direction of the Z axis of each pixel in accordance with the origins of the reference Y axis and X axis. It is possible to grasp the situation of the music of the club. At this time, when superimposing on the Z axis, one slice width is determined in consideration of the pixel size of the Z axis.

(20)、この平面スライス像D(断面図)を、ボリュームレンダリングソフト等の3次元画像生成ソフトを使用して重ねることにより、3次元画像を生成する。 (20) A three-dimensional image is generated by superimposing the planar slice image D (cross-sectional view) using three-dimensional image generation software such as volume rendering software.

このとき、ここで得られる歯牙Zの外形は、あくまで近似3次元画像であるが、個々の歯牙の解剖学的形態は特徴があるので、その特徴を加味することによって、充分臨床に利用することができる。また、根や根管の弯曲度は正確に表示でき、X線撮影像には写らない細い根管を予測し、画像表示することも可能である。画像の分解能は、CCDセンサやその他の画像記録の分解能の能力を落とすことなく、3次元画像として構築できる。   At this time, the external shape of the tooth Z obtained here is only an approximate three-dimensional image, but the anatomical form of each tooth has its characteristics. Can do. In addition, the curvature of the root and root canal can be accurately displayed, and a thin root canal that is not reflected in the X-ray image can be predicted and displayed as an image. The resolution of the image can be constructed as a three-dimensional image without reducing the resolution capability of the CCD sensor or other image recording.

このように、X線撮影用補助具4により左右2方向からX線撮影を行って2枚のX線撮影像を得て、得られた2枚のX線撮影像に上記のような処理を行うことで、歯牙の3次元画像を形成することができ、この3次元画像から個人差等がある根管形状(根管の弯曲状態及び形態等)を把握することが可能となり、確実に根管治療を行えるようにすることができる。   In this way, X-ray imaging is performed from the left and right directions by the X-ray imaging auxiliary tool 4 to obtain two X-ray imaging images, and the above-described processing is performed on the two X-ray imaging images obtained. By doing so, it is possible to form a three-dimensional image of a tooth, and from this three-dimensional image, it becomes possible to grasp the root canal shape (curvature state and form of the root canal) with individual differences and the like, and reliably Tube treatment can be performed.

なお、この実施例においては、歯根が一本の場合で説明を行ったが、歯根が複数ある場合でも同様の撮影方法及び処理方法を行うことで3次元画像を得ることが可能となる。また、この実施例におては、歯牙の左右2方向からX線撮影を行って2枚のX線撮影像を得て、2枚のX線撮影像から歯牙の3次元画像を形成したが、撮影方向をさらに増加することにより、さらに精細な歯牙の3次元画像を形成することができる。   In this embodiment, the case where there is one tooth root has been described. However, even when there are a plurality of tooth roots, it is possible to obtain a three-dimensional image by performing the same imaging method and processing method. In this embodiment, X-ray imaging was performed from the left and right directions of the tooth to obtain two X-ray imaging images, and a three-dimensional image of the tooth was formed from the two X-ray imaging images. By further increasing the photographing direction, a finer three-dimensional image of the tooth can be formed.

この発明は、歯牙に対して任意のX線入射角度で左右2方向から撮影を行い、得られた2枚のX線撮影像を用いて所望部位の横断面の近似スライス像を作成し、該スライス像を複数重ね合わせ3次元画像を作成する処理を行うことにより、根管の弯曲及び形態を知ることができるだけでなく、X線撮影像では写らないほど細い根管を予測することができるものであり、確実に根管治療を行えるようにすることができる。   According to the present invention, an image is taken from the left and right directions at an arbitrary X-ray incident angle with respect to a tooth, an approximate slice image of a cross section of a desired portion is created using the obtained two X-ray images, By performing the process of creating a three-dimensional image by superimposing multiple slice images, it is possible not only to know the curvature and form of the root canal, but also to predict a root canal that is so thin that it cannot be seen in an X-ray image Therefore, root canal treatment can be surely performed.

実施例を示すX線撮影用補助具のX線撮影状態の斜視図である。It is a perspective view of the X-ray imaging state of the auxiliary tool for X-ray imaging which shows an Example. X線撮影用補助具の下側からの斜視図である。It is a perspective view from the lower side of the auxiliary tool for X-ray imaging. X線撮影用補助具の第1の変形例を示す斜視図である。It is a perspective view which shows the 1st modification of the auxiliary tool for X-ray imaging. 図3のX線撮影用補助具の使用形態を示す説明図である。It is explanatory drawing which shows the usage condition of the auxiliary tool for X-ray imaging of FIG. X線撮影用補助具の第2の変形例を示す斜視図である。It is a perspective view which shows the 2nd modification of the auxiliary tool for X-ray imaging. 図5のX線撮影用補助具の支持部の要部拡大説明図である。FIG. 6 is an enlarged explanatory view of a main part of a support part of the X-ray imaging auxiliary tool in FIG. 5. X線撮影処理装置のブロック図である。It is a block diagram of an X-ray imaging processing apparatus. 歯牙のX線撮影状態を示す説明図である。It is explanatory drawing which shows the X-ray imaging state of a tooth. CCDセンサの説明図である。It is explanatory drawing of a CCD sensor. (A)は左からのX線撮影像の内側の外形点を説明する正面図、(B)は左からのX線撮影像の外側の外形点を説明する正面図である。(A) is a front view for explaining the outer contour point inside the X-ray image from the left, and (B) is a front view for explaining the outer contour point outside the X-ray image from the left. 左からのX線撮影像の外形点及び投影線を描出した平面座標軸の説明図である。It is explanatory drawing of the plane coordinate axis which drawn the external shape point and projection line of the X-ray imaging image from the left. (A)は右からのX線撮影像の内側の外形点を説明する正面図、(B)は右からのX線撮影像の外側の外形点を説明する正面図である。(A) is a front view for explaining the outer contour point of the X-ray image from the right, and (B) is a front view for explaining the outer contour point of the X-ray image from the right. 右からのX線撮影像の外形点及び投影線を描出した平面座標軸の説明図である。It is explanatory drawing of the plane coordinate axis which drawn the external shape point and projection line | wire of the X-ray imaging image from the right. 左右2方向からのX線撮影像の各外形点及び各投影線を重ねて描出した平面座標軸の説明図である。It is explanatory drawing of the plane coordinate axis which drew each outline point and each projection line of the X-ray imaging image from two directions on the left and right. 左右2方向からのX線撮影像の各投影線の交わる部分に円を描出した平面座標軸の説明図である。It is explanatory drawing of the plane coordinate axis which drawn the circle | round | yen in the part which each projection line of the X-ray imaging image from right-and-left 2 direction crosses. (A)は左右2方向からのX線撮影像を合わせた正面図、(B)は左右2方向からのX線撮影像の各外形点及び各投影線を合わせて描出した平面座標軸の説明図である。(A) is a front view that combines X-ray images from the left and right directions, and (B) is an explanatory diagram of the plane coordinate axes that are drawn by combining the outline points and projection lines of the X-ray images from the left and right directions. It is. 左右2方向からのX線撮影像を合わせ各外形点及び各投影線を描出した平面座標軸の斜視図である。It is the perspective view of the plane coordinate axis which put together the X-ray photography image from two right and left directions, and drawn each outline point and each projection line. CCDセンサの各ピクセル毎の平面スライス像を描出した平面座標軸の説明図である。It is explanatory drawing of the plane coordinate axis which drew the plane slice image for every pixel of a CCD sensor. CCDセンサの各ピクセル毎に描出した平面スライス像を重ねた3次元座標軸での説明図である。It is explanatory drawing in the three-dimensional coordinate axis which piled up the plane slice image drawn for every pixel of the CCD sensor.

符号の説明Explanation of symbols

2 X線撮影装置
4 X線撮影用補助具
6 X線発生器
8 X線照射部
10 CCDセンサ
12−1・12−2 アダプター部
14−1・14−2 支持アーム
16 X線撮像ホルダー
18 保持部
20 支持部
24 バイトブロック
32−1・32−2 突起部
36−1・36−2 係合孔
38 固定バネ
40 固定ねじ
68 X線撮影処理装置
70 処理手段
72 入力手段
74 モニタ手段
76 X線撮影実施手段
78 X線撮影像取込手段
80 距離計測手段
82 平面座標描出手段
84 平面スライス像作成手段
86 3次元画像生成手段
2 X-ray imaging apparatus 4 X-ray imaging auxiliary tool 6 X-ray generator 8 X-ray irradiation unit 10 CCD sensor 12-1 and 12-2 adapter unit 14-1 and 14-2 Support arm 16 X-ray imaging holder 18 Holding Section 20 Support section 24 Bite block 32-1, 32-2 Protrusion section 36-1, 36-2 Engagement hole 38 Fixing spring 40 Fixing screw 68 X-ray imaging processing apparatus 70 Processing means 72 Input means 74 Monitor means 76 X-ray Imaging execution means 78 X-ray imaging image capturing means 80 Distance measuring means 82 Planar coordinate drawing means 84 Planar slice image creating means 86 Three-dimensional image generating means

Claims (4)

X線を発生するX線源のX線照射部が着脱自在に装着されるアダプター部と、該アダプター部からX線照射方向へ向けて延長される支持アームと、該支持アームの先端に設けられて前記X線照射部より照射されて被写体を通過したX線を検出するX線撮像手段を着脱自在に保持するX線撮像ホルダーとを備えたX線撮影用補助具において、前記X線撮像ホルダーに対して左右2方向に離間して設置される2つのアダプター部を設け、これら2つのアダプター部を前記X線撮像ホルダーに対して左右方向に角度調整可能なように、前記2つのアダプター部から夫々延長される2本の支持アームの先端を前記X線撮像ホルダーに回動可能且つ任意の角度で固定可能に支持して設けたことを特徴とするX線撮影用補助具。 An adapter unit to which an X-ray irradiation unit of an X-ray source for generating X-rays is detachably mounted, a support arm extending from the adapter unit in the X-ray irradiation direction, and a tip of the support arm An X-ray imaging auxiliary tool including an X-ray imaging holder that detachably holds an X-ray imaging means for detecting X-rays irradiated from the X-ray irradiation unit and passing through the subject. Two adapter parts that are spaced apart from each other in the left and right directions with respect to the X-ray imaging holder are provided so that the two adapter parts can be angled in the left and right directions with respect to the X-ray imaging holder. An auxiliary tool for X-ray imaging, characterized in that the tips of two extending support arms are supported so as to be rotatable to the X-ray imaging holder and fixed at an arbitrary angle. X線を発生するX線源とこのX線源のX線照射部より照射されるX線を検出するX線撮像手段との間に被写体を位置させ、前記X線撮像手段に対して任意のX線入射角度で左右2方向から前記X線源のX線照射部よりX線を前記被写体に照射してX線撮影を行って前記被写体の左右2方向からのX線撮影像を得ることを特徴とするX線撮影方法。 An object is positioned between an X-ray source that generates X-rays and an X-ray imaging unit that detects X-rays emitted from an X-ray irradiation unit of the X-ray source. X-ray imaging is performed by irradiating the subject with X-rays from the X-ray irradiation unit of the X-ray source from the left and right directions at an X-ray incident angle to obtain an X-ray image of the subject from the left and right directions. A characteristic X-ray imaging method. X線撮像手段に対して任意のX線入射角度で左右2方向からX線源のX線照射部より被写体にX線を照射してX線撮影を行い、前記X線撮像手段に対して右方向から任意のX線入射角度を付けてX線撮影を行って得られたX線撮影像を左側に位置させ、前記X線撮像手段に対して左方向から任意のX線入射角度を付けてX線撮影を行って得られたX線撮影像を右側に位置させ、左右位置させた各々のX線撮影像中にある被写体の位置情報を検知する撮影基準線同士を重ね合わせ、左右2方向から得られたX線撮影像に対して任意の辺縁幅の外形点を決定し、任意の辺縁幅の外形点からX線入射角度方向へ投影線を引き、引かれた投影線に囲まれた領域に前記投影線に内接する閉曲線の図形を作成し、得られた閉曲線の図形を被写体の任意の辺縁幅の外形点における断面図に近似する図形として得ることを特徴とするX線撮影像の処理方法。 X-ray imaging is performed by irradiating the subject with X-rays from the X-ray irradiator of the X-ray source from the left and right directions at an arbitrary X-ray incident angle with respect to the X-ray imaging unit, and the right side with respect to the X-ray imaging unit An X-ray image obtained by performing X-ray imaging with an arbitrary X-ray incident angle from the direction is positioned on the left side, and an arbitrary X-ray incident angle is applied to the X-ray imaging unit from the left direction. An X-ray image obtained by X-ray imaging is positioned on the right side, and imaging reference lines for detecting position information of a subject in each of the X-ray images positioned on the left and right sides are overlapped, and the two directions are left and right An outline point with an arbitrary edge width is determined for the X-ray image obtained from the above, and a projection line is drawn from the outline point with an arbitrary edge width in the X-ray incident angle direction and surrounded by the drawn projection line Create a closed curve figure inscribed in the projected line in the specified area, and use the obtained closed curve figure for any side of the subject. Processing method of the X-ray imaging image, characterized in that to obtain a figure that approximates the cross-sectional view in outline point width. 前記任意の辺縁幅の外形点から引いた投影線に囲まれた領域に前記投影線に内接する閉曲線の図形として円または楕円を作成し、得られた円または楕円を複数重ね合わせることで被写体の近似的な3次元画像を作成することを特徴とする請求項3に記載のX線撮影像の処理方法。 A circle or an ellipse is created as a closed curve figure inscribed in the projection line in an area surrounded by the projection line drawn from the outline point of the arbitrary marginal width, and a plurality of the obtained circles or ellipses are overlapped The method of processing an X-ray image according to claim 3, wherein an approximate three-dimensional image is created.
JP2004223921A 2004-07-30 2004-07-30 X-ray imaging auxiliary tool, X-ray imaging method, and X-ray imaging image processing method Expired - Fee Related JP4607516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004223921A JP4607516B2 (en) 2004-07-30 2004-07-30 X-ray imaging auxiliary tool, X-ray imaging method, and X-ray imaging image processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004223921A JP4607516B2 (en) 2004-07-30 2004-07-30 X-ray imaging auxiliary tool, X-ray imaging method, and X-ray imaging image processing method

Publications (2)

Publication Number Publication Date
JP2006042852A true JP2006042852A (en) 2006-02-16
JP4607516B2 JP4607516B2 (en) 2011-01-05

Family

ID=36022081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004223921A Expired - Fee Related JP4607516B2 (en) 2004-07-30 2004-07-30 X-ray imaging auxiliary tool, X-ray imaging method, and X-ray imaging image processing method

Country Status (1)

Country Link
JP (1) JP4607516B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009254472A (en) * 2008-04-15 2009-11-05 Yoshida Dental Mfg Co Ltd X-ray imaging method and device
JP4571697B1 (en) * 2009-04-28 2010-10-27 株式会社Wes Camera with dedicated sensor holder for mounting a CCD sensor for dental X-ray imaging
CN102325500A (en) * 2009-02-27 2012-01-18 您可试股份有限公司 Intraoral photography aid
JP2012501212A (en) * 2008-08-28 2012-01-19 デンツプライ インターナショナル インコーポレーテッド Dental X-ray treatment positioning device
WO2012026065A1 (en) * 2010-08-24 2012-03-01 株式会社ニックス Dental oral radiography device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0322259U (en) * 1989-07-12 1991-03-07
JPH0353968U (en) * 1989-09-28 1991-05-24
JPH03240169A (en) * 1990-02-16 1991-10-25 Hitachi Medical Corp Center positioning method for reformed image of medical image diagnosis device
JPH0568679A (en) * 1991-09-10 1993-03-23 Harutaka Yagi Method for reproducing continuous stereoscopic images of x-ray fluoroscopic mapping for row of theeth
JPH05317307A (en) * 1992-05-20 1993-12-03 Michio Okada Buccal cavity x ray standard photographing apparatus
JPH105203A (en) * 1996-06-21 1998-01-13 Toshiba Corp Diagnostic system, diagnostic information producing method and three dimensional image reconfiguration method
JP2002336222A (en) * 2001-03-06 2002-11-26 Toshiba Corp X-ray diagnostic apparatus and image processor
JP2003190150A (en) * 2001-12-28 2003-07-08 Yasuyuki Shimizu Auxiliary tool for oral x-ray radiography

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0322259U (en) * 1989-07-12 1991-03-07
JPH0353968U (en) * 1989-09-28 1991-05-24
JPH03240169A (en) * 1990-02-16 1991-10-25 Hitachi Medical Corp Center positioning method for reformed image of medical image diagnosis device
JPH0568679A (en) * 1991-09-10 1993-03-23 Harutaka Yagi Method for reproducing continuous stereoscopic images of x-ray fluoroscopic mapping for row of theeth
JPH05317307A (en) * 1992-05-20 1993-12-03 Michio Okada Buccal cavity x ray standard photographing apparatus
JPH105203A (en) * 1996-06-21 1998-01-13 Toshiba Corp Diagnostic system, diagnostic information producing method and three dimensional image reconfiguration method
JP2002336222A (en) * 2001-03-06 2002-11-26 Toshiba Corp X-ray diagnostic apparatus and image processor
JP2003190150A (en) * 2001-12-28 2003-07-08 Yasuyuki Shimizu Auxiliary tool for oral x-ray radiography

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009254472A (en) * 2008-04-15 2009-11-05 Yoshida Dental Mfg Co Ltd X-ray imaging method and device
JP4716442B2 (en) * 2008-04-15 2011-07-06 株式会社吉田製作所 X-ray imaging method and apparatus
JP2012501212A (en) * 2008-08-28 2012-01-19 デンツプライ インターナショナル インコーポレーテッド Dental X-ray treatment positioning device
CN102325500A (en) * 2009-02-27 2012-01-18 您可试股份有限公司 Intraoral photography aid
TWI489975B (en) * 2009-02-27 2015-07-01 Nix Co Ltd Intraocular photography aids
JP4571697B1 (en) * 2009-04-28 2010-10-27 株式会社Wes Camera with dedicated sensor holder for mounting a CCD sensor for dental X-ray imaging
JP2010253127A (en) * 2009-04-28 2010-11-11 Wes Corp Photographing implement with exclusive sensor holder for mounting ccd sensor for photographing dental x-ray image
CN102395321A (en) * 2009-04-28 2012-03-28 株式会社Wes Photography tool with exclusive sensor holder for mounting ccd sensor for capturing dental x-ray image
WO2012026065A1 (en) * 2010-08-24 2012-03-01 株式会社ニックス Dental oral radiography device
JP5356602B2 (en) * 2010-08-24 2013-12-04 株式会社ニックス Dental intraoral X-ray imaging system

Also Published As

Publication number Publication date
JP4607516B2 (en) 2011-01-05

Similar Documents

Publication Publication Date Title
Mah et al. Practical applications of cone-beam computed tomography in orthodontics
Van Elslande et al. Accuracy of mesiodistal root angulation projected by cone-beam computed tomographic panoramic-like images
US20160324598A1 (en) Method for implant surgery using augmented visualization
Manosudprasit et al. Diagnosis and treatment planning of orthodontic patients with 3-dimensional dentofacial records
US20210052235A1 (en) Dental bite block for 2d imaging
US20090274267A1 (en) System and method for automatic jaw measurement for panoramic radiology
Felemban et al. Accuracy of cone-beam computed tomography and extraoral bitewings compared to intraoral bitewings in detection of interproximal caries
JP4607516B2 (en) X-ray imaging auxiliary tool, X-ray imaging method, and X-ray imaging image processing method
US11341609B2 (en) Method and system for generating a panoramic image
JP2010246855A (en) Two-dimensional image display
Al-Ubaydi et al. The validity and reliability of automatic tooth segmentation generated using artificial intelligence
Palomo et al. Diagnostic value of 3D imaging in clinical orthodontics
JP2022505911A (en) Oral tomosynthesis radiography with replaceable collimators, systems, and methods
Walton Diagnostic imaging A. endodontic radiography
Chen et al. 3D printing of drill guide template for access cavity preparation in human molars: a preliminary study
KR101836817B1 (en) Method and Apparatus for Processing 3-Dimensional Radiographic Images
Anistoroaei et al. Cone-Beam Computed Tomography-A Useful Tool in Orthodontic Diagnosis
Cha Clinical application of three-dimensional reverse engineering technology in orthodontic diagnosis
JP6811716B2 (en) Dental Imaging Equipment and Methods for Positioning Subjects for Dental Radiation Transmission Imaging
Singh et al. CONE BEAM COMPUTERISED TOMOGRAPHY A NEW RAY FOR DIAGNOSIS IN DENTAL RADIOLOGY.
Ahluwalia et al. The Use of CBCT in Dentistry Represents the Future of the Profession
Keerthna et al. Comparison of accuracy of digital radiography and panoramic radiography in dental implants procedure-A literature review.
Korobeinikova et al. Cone-Beam Computed Tomography in Dental Practice: Literature Review and Own Observations
EP4375928A1 (en) Method for length measurement within dental panoramic images
Hayakawa et al. Clinical validity of the interactive and low-dose three-dimensional dento-alveolar imaging system, Tuned-Aperture Computed Tomography

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101007

R150 Certificate of patent or registration of utility model

Ref document number: 4607516

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees