JP2006042671A - Cell-culturing microarray having electrode and method for electrically measuring cell - Google Patents

Cell-culturing microarray having electrode and method for electrically measuring cell Download PDF

Info

Publication number
JP2006042671A
JP2006042671A JP2004227686A JP2004227686A JP2006042671A JP 2006042671 A JP2006042671 A JP 2006042671A JP 2004227686 A JP2004227686 A JP 2004227686A JP 2004227686 A JP2004227686 A JP 2004227686A JP 2006042671 A JP2006042671 A JP 2006042671A
Authority
JP
Japan
Prior art keywords
cell
cells
agarose
cell culture
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004227686A
Other languages
Japanese (ja)
Other versions
JP4320286B2 (en
Inventor
Kazunobu Okano
和宣 岡野
Kenji Yasuda
賢二 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
On-chip Cellomics Consortium
Original Assignee
On-chip Cellomics Consortium
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by On-chip Cellomics Consortium filed Critical On-chip Cellomics Consortium
Priority to JP2004227686A priority Critical patent/JP4320286B2/en
Priority to EP07013611A priority patent/EP1901067A3/en
Priority to EP05016714A priority patent/EP1626278A3/en
Priority to US11/195,662 priority patent/US7569354B2/en
Publication of JP2006042671A publication Critical patent/JP2006042671A/en
Priority to US12/143,156 priority patent/US20090042200A1/en
Priority to US12/143,181 priority patent/US20090042739A1/en
Priority to US12/471,947 priority patent/US20100016568A1/en
Priority to US12/472,037 priority patent/US20090325215A1/en
Priority to US12/472,010 priority patent/US20100016569A1/en
Priority to US12/471,993 priority patent/US20100018862A1/en
Priority to US12/471,853 priority patent/US20100021933A1/en
Application granted granted Critical
Publication of JP4320286B2 publication Critical patent/JP4320286B2/en
Priority to US13/755,079 priority patent/US20130252848A1/en
Priority to US14/640,471 priority patent/US20150231635A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/04Cell isolation or sorting

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cell-culturing microarray installed with electrodes in grooves or tunnels connecting in a plurality of fine compartments capable of holding one cell each, and a method of measurement by utilizing the same. <P>SOLUTION: This cell-culturing microarray is provided by having in the plurality of compartment walls for confining the cells in a specific spacial arrangement and grooves or tunnels connecting the compartments, installing in the plurality of electrode patterns for measuring the electric potential change of the cells in each of the grooves or tunnels, and arranging an optically transparent semi-permeable membrane and a vessel for culturing liquid on the compartment wall. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、細胞の状態を顕微鏡観察しながら、1細胞単位で神経細胞を培養し、かつ、同時に細胞活動にかかわる電位変化を計測することのできる新しい細胞培養マイクロチャンバーに関する。   The present invention relates to a new cell culture microchamber capable of culturing nerve cells in a single cell unit while observing the state of cells under a microscope and simultaneously measuring potential changes related to cell activity.

従来、細胞の状態の変化や、細胞の薬物等に対する応答を観察するのに、細胞集団の値の平均値をあたかも一細胞の特性であるかの様に観察してきた。しかし、実際には細胞は集団の中で細胞周期が同調しているものはまれであり、各々の細胞が異なった周期でタンパク質を発現している。   Conventionally, in order to observe changes in the state of cells and the response of cells to drugs, the average value of the cell population has been observed as if it were a single cell characteristic. In reality, however, cells rarely have a synchronized cell cycle in the population, and each cell expresses a protein in a different cycle.

これらの問題を解決するために、同調培養等の手法が開発されているが、培養された細胞の由来が全く同一の一細胞からでは無いことから、培養前の由来細胞各々の遺伝子の違いがタンパク質発現の違いを生み出す可能性があり、実際に刺激に対する応答の結果を解析するときに、そのゆらぎが細胞の反応機構自体が普遍的に持つ応答のゆらぎに由来するものなのか、細胞の違い(すなわち遺伝情報の違い)に由来するゆらぎなのか明らかにすることは難しかった。   In order to solve these problems, techniques such as synchronized culture have been developed, but since the origin of the cultured cells is not from the same single cell, the difference in the genes of each of the derived cells before the culture is Differences in protein expression may be generated, and when analyzing the results of responses to stimuli, whether the fluctuations are derived from the fluctuations of the responses that the cell reaction mechanism itself has universally It was difficult to clarify whether the fluctuation originated from the difference (that is, the difference in genetic information).

また、同様の理由から、細胞株についても、一般には完全に一細胞から培養したものでは無いため、刺激に対する応答の再現性が細胞各々の遺伝子の違いによってゆらぐものか明らかにするのは難しかった。   For the same reason, cell lines are generally not completely cultured from a single cell, so it was difficult to clarify whether the reproducibility of responses to stimuli fluctuates due to differences in the genes of each cell. .

また、細胞に対する刺激(シグナル)は、細胞周辺の溶液に含まれるシグナル物質、栄養、溶存気体の量によって与えられるものと、他の細胞との物理的接触によるものの2種類があることからも、ゆらぎについての判断が難しいのが実情であった。   In addition, because there are two types of stimulation (signal) for cells, which are given by the amount of signal substances, nutrients, dissolved gas contained in the solution around the cell, and by physical contact with other cells, It was actually difficult to judge fluctuations.

さらに、細胞活動をモニターするには、細胞表面に露出するタンパク質や糖鎖を蛍光標識抗体で修飾して得られる蛍光像を観察するように、細胞そのものが損傷を受ける検出法が多用されている。   Furthermore, in order to monitor cell activity, detection methods in which cells themselves are damaged are often used, such as observing fluorescence images obtained by modifying proteins and sugar chains exposed on the cell surface with fluorescently labeled antibodies. .

細胞にそれほどダメージを与えない方法としては、細胞内のカルシウムやpHをこれらの指示薬で測定する方法が開発されている。いずれにせよ、指示薬(一般的には蛍光試薬)を細胞内に挿入して計測するのが一般的である。あるいは、細胞に電極を接触させて電位変化を追跡できるように工夫された計測法もある。   As a method that does not damage cells so much, a method of measuring intracellular calcium and pH with these indicators has been developed. In any case, an indicator (generally a fluorescent reagent) is generally inserted into the cell and measured. Alternatively, there is a measurement method devised so that a change in potential can be traced by bringing an electrode into contact with a cell.

細胞の状態を測定する上で、特に神経細胞においては、人工的に少数の神経細胞からなる比較的単純な神経回路網を構築し、完全に制御した環境下で細胞ネットワークが情報処理機能を明らかにしようとする研究も盛んに行われている(非特許文献1−3)。   In measuring the state of cells, especially in neurons, a relatively simple neural network consisting of a small number of neurons is artificially constructed, and the cell network reveals information processing functions in a fully controlled environment. Research to try to do is also actively conducted (Non-Patent Documents 1-3).

神経細胞を1つ1つを最小構成単位とする情報処理モデルの計測のために重要なものは、多点同時計測技術と、細胞ネットワークパターンの制御技術であるが、神経細胞の活動電位計測技術も初期の段階では、パッチクランプ法などの細胞に損傷を与える手法が主だったため、同時に3点以上の多点で計測できない、計測を開始してから数時間で測定している細胞が死んでしまうといった問題点があったが、近年、電極アレー(MEAS)基板上での神経細胞の培養計測法が開発されることで上記の問題点を克服して数週間に及ぶ長期培養も可能となっている。   Multi-point simultaneous measurement technology and cell network pattern control technology are important for the measurement of information processing models in which each neuron is the smallest structural unit. Neuronal action potential measurement technology However, at the initial stage, the method of damaging cells such as the patch clamp method was mainly used, so it was not possible to measure at multiple points of 3 or more at the same time. In recent years, the development of a method for measuring and culturing nerve cells on an electrode array (MEAS) substrate has made it possible to overcome the above-mentioned problems and perform long-term culture for several weeks. ing.

また、神経細胞のネットワークパターンを化学的、あるいは物理的な手法を用いて制御する技術についても古くから多くの研究がなされている。たとえば、化学的方法では、Letourneau達が神経細胞を培養する基板表面にラミニンなどの細胞接着性の基質でパターンを描き、神経突起をパターンに沿って伸展させることに成功している(例えば、非特許文献4)。   In addition, many researches have been made on techniques for controlling the network pattern of nerve cells using chemical or physical techniques. For example, in chemical methods, Letourneau et al. Succeeded in drawing a pattern with a cell-adhesive substrate such as laminin on the surface of a substrate on which neurons are cultured, and extending neurites along the pattern (for example, non- Patent Document 4).

物理学的方法では、基板表面に神経細胞の伸展にとって障壁となる段差を構築した基板上で培養することで、障壁の高さが10μm程度以上であれば神経細胞の伸展・移動を制限することが可能という報告がある(例えば、非特許文献5−6)。   In the physical method, the growth and movement of nerve cells are restricted if the height of the barrier is about 10 μm or more by culturing on a substrate on which a step that becomes a barrier for the extension of nerve cells is constructed on the substrate surface. There is a report that this is possible (for example, Non-Patent Documents 5-6).

発明者らのグループは、特定の一細胞のみを選択し、その一細胞を細胞株として培養する技術、及び細胞を観察する場合に、細胞の溶液環境条件を制御し、かつ、容器中での細胞濃度を一定に制御する技術、あるいは相互作用する細胞を特定しながら培養観察する技術を開発した(特許文献1)。また、細胞培養を行いながら集束光を照射して加熱した領域の細胞培養容器の形状を自在に変化させることが可能な細胞培養マイクロチャンバーを開発している(特許文献2)。   The inventors' group selects only one specific cell, cultures that single cell as a cell line, and controls the solution environmental conditions of the cell when observing the cell, and A technology for controlling the cell concentration at a constant level or a technology for culturing and observing the cells while identifying interacting cells has been developed (Patent Document 1). Furthermore, a cell culture microchamber has been developed that can freely change the shape of a cell culture container in a region heated by irradiation with focused light while performing cell culture (Patent Document 2).

特開2004−81086号公報JP 2004-81086 A 特開2004−81085号公報JP 2004-81085 A Dichter, M.A. Brain Res., 149, 279-293 (1978) や、Mains R.E., Patterson P. H. J. Cell. Biol., 59, 329-345 (1973)Dichter, M.A.Brain Res., 149, 279-293 (1978) and Mains R.E., Patterson P. H. J. Cell. Biol., 59, 329-345 (1973) Potter S.M., DeMarse T.B., J. Neurosci. Methods, 110, 17-24 (2001)Potter S.M., DeMarse T.B., J. Neurosci.Methods, 110, 17-24 (2001) Jimbo Y., Tateno T., Robinson H.P.C., Biophys. J. 76, 670-678 (1999)Jimbo Y., Tateno T., Robinson H.P.C., Biophys. J. 76, 670-678 (1999) Letourneau P.C.: Dev. Biol., 66, 183-196 (1975)Letourneau P.C .: Dev. Biol., 66, 183-196 (1975) Stopak D. et al.: Dev. Biol., 90, 383-398 (1982)Stopak D. et al .: Dev. Biol., 90, 383-398 (1982) Hirono T.,Torimitsu K., Kawana A., Fukuda J., Brain Res., 446, 189-194 (1988)Hirono T., Torimitsu K., Kawana A., Fukuda J., Brain Res., 446, 189-194 (1988)

従来の電極アレー基板技術では、細胞が直に電極と接する構造をしている。このため、細胞そのものの電位変化を測定することはできるが、たとえば、神経細胞のようにネットワークを構成する細胞群においては、どの細胞とインタラクションを行っているかの情報が抜け落ちてしまい、すべての平均値的な実験結果しか得られない問題点がある。神経細胞のように神経突起や軸索を伸ばし、複数の細胞とインタラクションする系では、電極と細胞の方向と向きの配置関係を厳密に規定してデータをとるようにしなければ、有用なデータを得ることが難しい。   The conventional electrode array substrate technology has a structure in which cells are in direct contact with electrodes. For this reason, it is possible to measure changes in the potential of the cell itself. For example, in a cell group that constitutes a network such as a nerve cell, information on which cell is interacting with it is lost, and all the averages are averaged. There is a problem that only the experimental result of value can be obtained. In a system that extends neurites and axons and interacts with multiple cells like a nerve cell, if you do not take data by strictly defining the relationship between the electrode and the direction and orientation of the cell, you can obtain useful data. Difficult to get.

本発明は、以上のような従来技術の問題点を解消し、細胞の機能を明らかにするため、細胞間ネットワーク形状を完全に制御しながら、細胞ネットワークの刺激応答の変化を、長期間に渡って電気的な計測を行うことのできる新しい技術手段を提供することを課題としている。   The present invention eliminates the above-mentioned problems of the prior art and clarifies the function of the cell, and changes the stimulation response of the cell network over a long period of time while completely controlling the shape of the intercellular network. Therefore, it is an object to provide a new technical means capable of performing electrical measurement.

本発明は、上記の課題を解決するものとして、細胞を特定の空間配置の中に閉じ込めておくための複数の細胞培養区画を有し、各区画は細胞の通り抜けることができない溝でお互いが連結されており、この溝の中に細胞の電位変化を計測するための複数の電極パターンを持つ構造としている。   In order to solve the above problems, the present invention has a plurality of cell culture compartments for confining cells in a specific spatial arrangement, and each compartment is connected to each other by a groove through which cells cannot pass. In this groove, a structure having a plurality of electrode patterns for measuring changes in cell potential is provided.

電極パターンは、隣り合う細胞培養区の間の溝に設置されており、細胞間のポテンシャルの違いを測定できる構造となっている。測定細胞が、神経細胞の場合は、細胞が軸索を伸ばし、隣接する細胞とシナプスでカップルする細胞間の軸索そのものの電位変化を測定することとなる。   The electrode pattern is installed in a groove between adjacent cell culture sections, and has a structure capable of measuring a potential difference between cells. When the measurement cell is a nerve cell, the cell stretches the axon, and the potential change of the axon itself between the cells that couple with adjacent cells at the synapse is measured.

本発明によれば、細胞のネットワークの空間配置を1細胞単位で制御しつつ、長期培養しながら、その形態変化、電気的特性の変化を連続的に計測することが可能となる。電気特性変化を検出する電極は、細胞間に配置されているので、電極をはさむ細胞同士の情報のみを得ることができる。   According to the present invention, it is possible to continuously measure morphological changes and changes in electrical characteristics while culturing for a long time while controlling the spatial arrangement of a cell network in units of one cell. Since the electrodes for detecting the change in electrical characteristics are arranged between the cells, it is possible to obtain only information on the cells sandwiching the electrodes.

(実施例1)
図1は実施例1に係る本発明の電極付細胞培養マイクロアレーの構造の1例を模式的に示した上面図、図2は、図1のA−A位置において矢印方向に見た断面図である。1は基板であり、すべての構造物は基板1の上に構築されている。2は細胞培養区画であり、所定の間隔で周期的に複数個構築されている。3は溝であり、隣接する細胞培養区画を互いに結んでいる。10は樹脂層であり、基板1の上に形成され、細胞培養区画2とこれらの間を連絡する溝3は、樹脂層10を除去して形成されている。4は電位測定用の電極であり、溝3のすべてに設けられる。電極4は100nmの厚みの金で基板1の表面に蒸着で付けてある。5は外部端子であり、基板1の周辺で電極4に対応してその近傍に設けられる。6は配線で電極4と外部端子5とを接続する。
Example 1
1 is a top view schematically showing an example of the structure of a cell culture microarray with electrodes according to the present invention according to Example 1, and FIG. 2 is a cross-sectional view taken in the direction of the arrow at the position AA in FIG. It is. Reference numeral 1 denotes a substrate, and all the structures are constructed on the substrate 1. Reference numeral 2 denotes a cell culture section, which is periodically constructed at a predetermined interval. 3 is a groove that connects adjacent cell culture compartments. Reference numeral 10 denotes a resin layer, which is formed on the substrate 1, and the cell culture compartment 2 and the groove 3 communicating between them are formed by removing the resin layer 10. Reference numeral 4 denotes an electrode for potential measurement, which is provided in all of the grooves 3. The electrode 4 is deposited on the surface of the substrate 1 with gold having a thickness of 100 nm. Reference numeral 5 denotes an external terminal, which is provided in the vicinity of the substrate 1 corresponding to the electrode 4. Reference numeral 6 denotes a wiring for connecting the electrode 4 and the external terminal 5.

9は半透膜であり、細胞培養区画2とこれらの間を連絡する溝3を形成した樹脂層10の上面に密着して設けられる。22は上部ハウジングであり、半透膜9の上に適当なスペースをとって樹脂層10の全面を覆う。22−1は、上部ハウジング22の立下り部である。21は半透膜9と上部ハウジング22との間に形成される培養液槽である。23は、上部ハウジング22に設けられた開口部であり、これを通して培養液が培養液槽21に供給される。14は共通電極であり、培養液槽21に設けられる。   Reference numeral 9 denotes a semipermeable membrane, which is provided in close contact with the upper surface of the resin layer 10 in which the cell culture compartment 2 and the groove 3 communicating between them are formed. An upper housing 22 covers the entire surface of the resin layer 10 with an appropriate space on the semipermeable membrane 9. Reference numeral 22-1 denotes a falling portion of the upper housing 22. Reference numeral 21 denotes a culture solution tank formed between the semipermeable membrane 9 and the upper housing 22. Reference numeral 23 denotes an opening provided in the upper housing 22, through which a culture solution is supplied to the culture solution tank 21. A common electrode 14 is provided in the culture solution tank 21.

実施例1は、ヒト由来の細胞を1細胞ずつ培養しながら計測する目的のため、各細胞培養区画2は一辺が30μmで深さが25μmとされている。溝3は幅が5μm、深さは25μmである。細胞培養区画1間の距離は30から200μmである。   In Example 1, each cell culture section 2 has a side of 30 μm and a depth of 25 μm for the purpose of measuring cells derived from human cells one by one. The groove 3 has a width of 5 μm and a depth of 25 μm. The distance between the cell culture compartments 1 is 30 to 200 μm.

具体的な作成法を述べる。基板1は100倍の対物レンズでの観察が可能な0.18mmの無蛍光ガラスであり、この上面に、まず電極4、配線6、端子5の層が蒸着により形成される。次に、電極4および端子5の領域をマスクして、全面に絶縁層を形成する。次に、層の厚さが25μmとなるように粘度を調整した光硬化性樹脂SU−8(エポキシ系フォトレジスト材料:Micro Chem Inc.製、米国特許4,882,245号)で電極4、絶縁層、端子5の面を被覆して樹脂層10を形成する。次いで、樹脂層10の細胞培養区画2と溝3に対応する位置を局所的に除去する。これにより、細胞培養区画2と溝3を形成する。溝3には露出した電極4が配置されることになるが、溝3を横切る配線6は絶縁層で隔離される。また、端子5も露出させる。   A specific preparation method is described. The substrate 1 is a 0.18 mm non-fluorescent glass that can be observed with a 100 × objective lens. First, layers of electrodes 4, wirings 6, and terminals 5 are formed on the upper surface by vapor deposition. Next, the region of the electrode 4 and the terminal 5 is masked to form an insulating layer on the entire surface. Next, the photocurable resin SU-8 (epoxy-based photoresist material: manufactured by Micro Chem Inc., US Pat. No. 4,882,245) having a viscosity adjusted so that the layer thickness is 25 μm, the electrode 4, The resin layer 10 is formed by covering the insulating layer and the surface of the terminal 5. Next, positions corresponding to the cell culture section 2 and the groove 3 of the resin layer 10 are locally removed. Thereby, the cell culture section 2 and the groove 3 are formed. The exposed electrode 4 is disposed in the groove 3, but the wiring 6 crossing the groove 3 is isolated by an insulating layer. Also, the terminal 5 is exposed.

細胞培養区画2と溝3の表面にはラミニンやコラーゲンなどの細胞親和性物質を塗布するとともに、細胞培養区画2と溝3を培養液バッファで満たし、細胞培養区画2に細胞を入れる。次いで、細胞培養区画2に細胞を封入するために、細胞培養区画2と溝3の領域の上面に半透膜9の蓋をかぶせる。その後、半透膜9の蓋(樹脂層10の全面)を全面的にカバーする上部ハウジング22を取り付ける。この際、上部ハウジング22は、適当な立下り部22−1を有し、半透膜9の上に適当なスペースをとって覆い、培養液槽21を形成する。14は共通電極で、培養液槽21の上部ハウジング22内面にITOなどの光学的に透明な電極を用いて形成してある。23は、培養液槽21の開口部であり、この開口部を介して培養液槽21には、常に新鮮な培養液が供給、排出されている。   A cell affinity substance such as laminin or collagen is applied to the surfaces of the cell culture compartment 2 and the groove 3, and the cell culture compartment 2 and the groove 3 are filled with a culture buffer, and the cells are put into the cell culture compartment 2. Next, in order to encapsulate the cells in the cell culture compartment 2, a cover of the semipermeable membrane 9 is put on the upper surfaces of the areas of the cell culture compartment 2 and the groove 3. Thereafter, an upper housing 22 that covers the entire lid of the semipermeable membrane 9 (the entire surface of the resin layer 10) is attached. At this time, the upper housing 22 has an appropriate falling portion 22-1, covers an appropriate space on the semipermeable membrane 9, and forms a culture bath 21. A common electrode 14 is formed on the inner surface of the upper housing 22 of the culture bath 21 using an optically transparent electrode such as ITO. Reference numeral 23 denotes an opening of the culture solution tank 21, and fresh culture solution is always supplied to and discharged from the culture solution tank 21 through this opening.

上述の半透膜9は光学的観察を妨げないように透明なセルロース膜を用いる。ここでは分画分子量3万ダルトンのものを用いている。上部ハウジング22も、光学的観察を妨げないように透明な材質の材料、例えば、プラスティックで作られる。   The above-mentioned semipermeable membrane 9 uses a transparent cellulose membrane so as not to interfere with optical observation. Here, the molecular weight cut off is 30,000 daltons. The upper housing 22 is also made of a transparent material such as plastic so as not to interfere with optical observation.

このようにして複数の細胞を個々に収納した細胞培養マイクロアレーが作成できる。ここで、細胞培養区画2に細胞を入れる方法についてみると、いくつかの方法が考えられる。例えば、細胞を入れた容液中にマイクロキャピラリを挿入し、先端に細胞を一つ捕らえて、これを細胞培養区画2に入れる方法がある。あるいは、細胞培養区画2と細胞のサイズがほぼ同じ程度である場合には、細胞培養区画2と溝3の領域の上面に細胞を含む液滴を垂らし、余分な液を押し出すように上面をなぞることにより、細胞培養区画2に細胞を入れることができる。   In this way, a cell culture microarray containing a plurality of cells can be prepared. Here, regarding the method of putting cells into the cell culture compartment 2, several methods are conceivable. For example, there is a method in which a microcapillary is inserted into a solution containing cells, one cell is caught at the tip, and this is put into the cell culture section 2. Alternatively, when the cell size is approximately the same as that of the cell culture compartment 2, a droplet containing cells is dropped on the upper surfaces of the cell culture compartment 2 and the groove 3 region, and the upper surface is traced so as to push out excess liquid. Thus, cells can be placed in the cell culture compartment 2.

細胞培養区画2に入れられた細胞を安定に定着させるには、ビオチンアビジン反応による自立的結合形成を用いる。光硬化性樹脂SU−8は、反応性のエポキシ基を有していることから、光照射の前にプレベークして基板SU−8層を形成した後に、直ちにビオチンヒドラジドを含む溶液を塗布し、樹脂のエポキシ基とヒドラジド基を反応させてビオチンを固定する。光照射して、樹脂を固化させ構造体を形成することで、表面にビオチンを導入したSU−8パターンを得ることができる。   In order to stably fix the cells placed in the cell culture compartment 2, self-supporting bond formation by biotin-avidin reaction is used. Since the photocurable resin SU-8 has a reactive epoxy group, after pre-baking before light irradiation to form the substrate SU-8 layer, immediately apply a solution containing biotin hydrazide, The biotin is immobilized by reacting the epoxy group and hydrazide group of the resin. By irradiating light to solidify the resin to form a structure, a SU-8 pattern with biotin introduced on the surface can be obtained.

溝3を軸索が延伸する状態は、溝3に配置された電極4に接続された端子5と共通電極14との間で電極間のインピーダンスを測定し、あるいは、電極4に接続された端子5に検出される細胞そのものによる起電力を、共通電極14の電位を基準値として測定することで検出できる。これらはすべて顕微鏡で細胞を観察しながら行うことができる。また、本発明の電極付細胞培養マイクロアレーでは、多数ある電極を選択することで、特定の細胞に同一電極で細胞に刺激を与えたり、計測したりすることが可能である。   The state in which the axon extends in the groove 3 is measured by measuring the impedance between the terminals 5 connected to the electrode 4 arranged in the groove 3 and the common electrode 14 or connected to the electrode 4. 5 can be detected by measuring the electromotive force due to the cell itself detected at 5 using the potential of the common electrode 14 as a reference value. All of this can be done while observing the cells with a microscope. Moreover, in the cell culture microarray with electrodes of the present invention, it is possible to stimulate or measure a specific cell with the same electrode by selecting a large number of electrodes.

例えば、ラット小脳顆粒細胞を、本発明の電極付細胞培養マイクロアレーで培養した結果、細胞培養区画2に入れられた細胞は、細胞培養区画2から逃れることなく、ネットワークを形成しているのが観察される。軸索が伸び細胞同士が接触する前と後では、軸索が伸び細胞同士が接触した細胞培養区画2間の溝3に配した電極4と、細胞の反対側の軸索が伸びていない溝3に配した電極4間で起電力が生じることが確認される。これらのことから、本発明の電極付細胞培養マイクロアレーの構造は、期待された性能を発揮していることがわかる。   For example, as a result of culturing rat cerebellar granule cells with the cell culture microarray with electrodes of the present invention, cells placed in the cell culture compartment 2 form a network without escaping from the cell culture compartment 2. Observed. Before and after the axon is extended and the cells are in contact with each other, the electrode 4 arranged in the groove 3 between the cell culture compartments 2 where the axon is extended and the cells are in contact with each other, and the groove in which the axon on the opposite side of the cell is not extended It is confirmed that an electromotive force is generated between the electrodes 4 arranged on the line 3. From these, it can be seen that the structure of the cell culture microarray with electrode of the present invention exhibits the expected performance.

また、ペプチドやアミノ酸などの生体物質ないし、内分泌かく乱物質や毒性を疑われる化学物質を添加し、細胞の応答を電位変化で測定することができる。   In addition, biological responses such as peptides and amino acids, endocrine disrupting substances, and chemical substances suspected of toxicity can be added, and the cellular response can be measured by potential change.

(実施例2)
実施例2は光硬化性樹脂SU−8に代えてアガロースゲル100で、細胞培養区画2や溝3を形成する例に付いて説明する。
(Example 2)
Example 2 describes an example in which the cell culture compartment 2 and the groove 3 are formed with an agarose gel 100 instead of the photocurable resin SU-8.

図3は、本発明の実施例2の平面図、図4は、図3のB−B位置で矢印方向に見た断面図である。図1,2と図3,4とを対比して明らかなように、細胞培養区画2を結ぶ溝3がトンネル3に変えられ、トンネル3に複数の電極4が設けられたことおよびトンネル3がアガロースゲル100の底面部にのみ作られている点を除けば、本質的には実施例1と同じ構造である。ただし、1−1は壁であり、基板1上に設けられ、アガロースゲル100の周辺部を、この壁で形成、保持するものとしている。   FIG. 3 is a plan view of the second embodiment of the present invention, and FIG. 4 is a cross-sectional view seen in the arrow direction at the position BB in FIG. 1 and 2 and FIGS. 3 and 4, the groove 3 connecting the cell culture compartments 2 is changed to a tunnel 3, and a plurality of electrodes 4 are provided in the tunnel 3 and the tunnel 3 is Except for the fact that it is made only on the bottom surface of the agarose gel 100, the structure is essentially the same as in Example 1. However, 1-1 is a wall, provided on the substrate 1, and the peripheral portion of the agarose gel 100 is formed and held by this wall.

実施例2では、実施例1と同様に基板1上に、電極4、配線6、端子5を形成した後、壁1−1を基板1上面に貼り付け、壁1−1内にアガロースゲル100を入れる。2%アガロースゲル(融解温度65℃)を電子レンジで加熱し、融解させる。65℃に加熱した下部基板1の外壁の内側に融解したアガロース溶液を添加し、直ちにスピンコーターを用いて均一の厚さに広げる。ここではアガロースゲル膜が1mm厚になるようにアガロースゲルの添加量とスピンコーターの回転速度を調整する。装置やアガロースゲルのロットにより厚みが異なるが、50rpm,15秒間、続いて200rpm10秒間で良い結果を得ている。湿潤箱の中で25℃1時間放置することでアガロースゲル膜100を形成する。この時点では、アガロースゲル膜は基板1の外壁の内側全面に形成されている。次に、アガロースゲル100で細胞培養区画2を形成するために、アガロースゲル100を形成した後、細胞培養区画2の部分を取り除く。   In Example 2, after forming the electrode 4, the wiring 6, and the terminal 5 on the board | substrate 1 similarly to Example 1, the wall 1-1 is affixed on the upper surface of the board | substrate 1, and the agarose gel 100 is put in the wall 1-1. Insert. A 2% agarose gel (melting temperature 65 ° C.) is heated in a microwave to melt. A melted agarose solution is added to the inside of the outer wall of the lower substrate 1 heated to 65 ° C., and immediately spread to a uniform thickness using a spin coater. Here, the addition amount of the agarose gel and the rotation speed of the spin coater are adjusted so that the agarose gel film becomes 1 mm thick. Although the thickness varies depending on the device and the lot of agarose gel, good results are obtained at 50 rpm for 15 seconds and then at 200 rpm for 10 seconds. The agarose gel film 100 is formed by leaving it in a wet box at 25 ° C. for 1 hour. At this time, the agarose gel film is formed on the entire inner surface of the outer wall of the substrate 1. Next, in order to form the cell culture compartment 2 with the agarose gel 100, after the agarose gel 100 is formed, the portion of the cell culture compartment 2 is removed.

図4には細胞培養区画2の作成が終わったアガロース製電極付細胞培養マイクロアレーの断面図と、アガロースゲル100にトンネル3を作成する光学系と制御系を模式的に示している。アガロースゲル上面は実施例1と同様にセルロース膜を貼って用いる。たとえば、加熱溶融したアガロースをスピンコーターでセルロース膜表面に塗布、片面にアガロース薄膜を形成したものを予め作成し、これを、細胞を区画2に入れた後にアガロース塗布面がアガロースゲル100に接するように乗せればよい。あるいは、アガロースゲル100を形成するときに、ストレプトアビジンコンジュゲートアガロースを少量添加して固める。このアガロースゲル誘導体の表面にはストレプトアビジンが露出している。別途、実施例1と同様に過ヨウ素酸酸化によりアルデヒド基を導入したセルロース膜にビオチンヒドラジドを反応させ、ハイドロボレーション反応で還元して得るビオチン修飾セルロース膜を調製する。アガロースゲル誘導体とビオチン修飾セルロース膜をビオチン―アビジン反応を用いて固定することで、アガロース構造体に細胞を封じ込めた構造体を形成することができる。   FIG. 4 schematically shows a cross-sectional view of an agarose electrode-attached cell culture microarray having the cell culture compartment 2 created, and an optical system and a control system for creating the tunnel 3 in the agarose gel 100. The upper surface of the agarose gel is used by attaching a cellulose film in the same manner as in Example 1. For example, heat-melted agarose is applied to the surface of the cellulose film with a spin coater, and an agarose thin film is formed on one side in advance. After the cells are placed in the compartment 2, the agarose-coated surface comes into contact with the agarose gel 100. Just place it on Alternatively, when the agarose gel 100 is formed, a small amount of streptavidin-conjugated agarose is added and hardened. Streptavidin is exposed on the surface of the agarose gel derivative. Separately, as in Example 1, a biotin-modified cellulose membrane obtained by reacting biotin hydrazide with a cellulose membrane into which an aldehyde group has been introduced by periodate oxidation and reducing by a hydroboration reaction is prepared. By fixing the agarose gel derivative and the biotin-modified cellulose membrane using a biotin-avidin reaction, a structure in which cells are enclosed in an agarose structure can be formed.

照射するレーザーは水に吸収される1480nmのレーザー141を用いる。レーザービーム142はエキスパンダー143を通り、740nm以上の赤外光を反射するが1480nm(±20nm)の光を透過するフィルター144を通過し、さらに700nm以上の光を透過する蒸着フィルター145を通り抜け、集光レンズ146で基板1の上面に焦点が合う。1480nmの収束光はアガロース層に含まれる水に吸収され、近傍の温度が沸点近くまで上昇する。レーザーパワーが20mWでは、収束光の当った近傍が20μm程度の線幅でアガロースが融解し、熱対流により除去される。問題は基板1の電極の有る無しでアガロースに吸収される収束光の強度が変化することである。そこで、アガロースゲル温度を推定してフィードバック制御によりレーザーパワーを制御し常に収束光照射での温度コントロールをできるように工夫してある。アガロース部に到達した収束光は熱に変換されると共に赤外光を発する。赤外光はフィルター145を通過し、フィルター144で反射され赤外カメラ160−1に到達する。赤外カメラ160−1の画像データをビデオ記録機構付き演算装置161に取り込み、光検出強度から温度を推計し、レーザー141のパワーを調製する。レーザーパワーのみで温度コントロールが困難な場合は、演算装置からの出力でステージ164の移動速度をコントロールし、常に収束光照射部のアガロース温度が維持されるようにする。即ち、演算装置161によりステッピングモータ162の回転を制御し、ステッピングモータの回転は動力伝達装置163によりステージ164が動く仕掛けになっている。   As the laser to be irradiated, a laser 1480 nm that is absorbed by water is used. The laser beam 142 passes through an expander 143, reflects infrared light of 740 nm or more, passes through a filter 144 that transmits light of 1480 nm (± 20 nm), passes through a vapor deposition filter 145 that transmits light of 700 nm or more, and collects the light. The optical lens 146 focuses on the upper surface of the substrate 1. The convergent light of 1480 nm is absorbed by the water contained in the agarose layer, and the temperature in the vicinity rises to near the boiling point. When the laser power is 20 mW, the agarose melts with a line width of about 20 μm in the vicinity where the focused light hits and is removed by thermal convection. The problem is that the intensity of the convergent light absorbed by the agarose changes without the substrate 1 electrode. Therefore, the agarose gel temperature is estimated and the laser power is controlled by feedback control so that the temperature can always be controlled by convergent light irradiation. The convergent light reaching the agarose part is converted into heat and emits infrared light. The infrared light passes through the filter 145, is reflected by the filter 144, and reaches the infrared camera 160-1. The image data of the infrared camera 160-1 is taken into the arithmetic device with a video recording mechanism 161, the temperature is estimated from the light detection intensity, and the power of the laser 141 is prepared. When it is difficult to control the temperature only with the laser power, the moving speed of the stage 164 is controlled by the output from the arithmetic unit so that the agarose temperature of the convergent light irradiation unit is always maintained. That is, the rotation of the stepping motor 162 is controlled by the arithmetic device 161, and the rotation of the stepping motor is a mechanism for moving the stage 164 by the power transmission device 163.

ステージ164には基板1が装着されており、自在にアガロースゲルにトンネル3を形成することができる。トンネル3にはITO透明電極が予め形成されている。また、細胞観察やアガロース加工の進捗状況をモニターするために、光源170からの透過光を検出する光学系も組み込まれている。光源170からの光は透明な上部ハウジング22を透過し、アガロース部分で散乱しながら対物レンズ146を透過し、可視光を反射する蒸着フィルター(ミラー)でCCDカメラ160−2で画像として取り込まれる。画像データは演算装置161に送られ、赤外カメラ160−1とオーバーラップさせて、レーザー照射による温度上昇部と構造体のパターンの確認などに用いられる。   The substrate 1 is mounted on the stage 164, and the tunnel 3 can be freely formed in the agarose gel. An ITO transparent electrode is formed in the tunnel 3 in advance. In addition, an optical system for detecting transmitted light from the light source 170 is also incorporated in order to monitor the progress of cell observation and agarose processing. Light from the light source 170 passes through the transparent upper housing 22, passes through the objective lens 146 while being scattered at the agarose portion, and is captured as an image by the CCD camera 160-2 by a vapor deposition filter (mirror) that reflects visible light. The image data is sent to the arithmetic device 161, overlapped with the infrared camera 160-1, and used for confirmation of a temperature rise portion and a structure pattern by laser irradiation.

アガロースゲルの上面は開口部23より供給排出される培養液が常に循環している。或いは開口部23より細胞の刺激物質や内分泌かく乱物質を始めとする種々化学物質を添加し、電極や兼備観察で細胞の状態をモニターできる。   On the upper surface of the agarose gel, the culture solution supplied and discharged from the opening 23 is constantly circulating. Alternatively, various chemical substances such as a cell stimulating substance and an endocrine disrupting substance can be added from the opening 23, and the state of the cell can be monitored by an electrode or combined observation.

実施例2では、一つのトンネル3に電極を二つ設けたので、トンネル3内でのインピーダンスやインダクタンスの変異をとらえやすくなっている。各電極はそれぞれ配線6で端子5に結合しており、独立にあるいは対として電気的計測ができるようになっている。たとえば、神経細胞が軸索を伸ばし隣の細胞とカップリングするとき、片方の細胞と隣接した電極5の電位を他の電極を基準電位として、計測するといった使い方ができる。   In the second embodiment, since two electrodes are provided in one tunnel 3, it is easy to detect variations in impedance and inductance in the tunnel 3. Each electrode is coupled to a terminal 5 by a wiring 6 so that electrical measurement can be performed independently or as a pair. For example, when a nerve cell extends an axon and couples with a neighboring cell, the potential of the electrode 5 adjacent to one cell can be measured using another electrode as a reference potential.

また、実施例2では、トンネル3を追加的に掘ることができるから、研究の状況を見ながら、トンネル構成を変えた細胞の活動状況を評価することができる。   Moreover, in Example 2, since the tunnel 3 can be dug additionally, the activity condition of the cell which changed the tunnel structure can be evaluated, seeing the condition of research.

(実施例3)
図5は、最も実用上重要である複数の細胞培養区画2を1次元アレーとして複数隣接させた実施例3を示す平面図である。図5と図3とを対比して明らかなように、実施例3では、アガロースゲル100を用いた細胞培養区画2とこれらを繋ぐトンネル3が横方向に形成されているだけで、他は実施例2と同じである。実施例3でも、細胞培養区画2をつなぐトンネル3は最初から形成されている必要は必ずしもなく、たとえば、神経細胞が軸策を延ばしたい方向のみを軸策が形成されるときにあわせて開通させることができる。電極4は各トンネル或いは将来トンネルを作成するであろう位置に全てあらかじめ作成しておく。
(Example 3)
FIG. 5 is a plan view showing Example 3 in which a plurality of cell culture sections 2 that are most practically important are adjacent to each other as a one-dimensional array. As is clear by comparing FIG. 5 and FIG. 3, in Example 3, the cell culture section 2 using the agarose gel 100 and the tunnel 3 connecting them are formed in the horizontal direction, and the others are performed. Same as Example 2. Even in Example 3, the tunnel 3 that connects the cell culture sections 2 does not necessarily have to be formed from the beginning. For example, only the direction in which the nerve cell wants to extend the axon is opened when the axon is formed. be able to. The electrodes 4 are all prepared in advance at positions where tunnels or future tunnels will be created.

実施例3の断面図は、実施例2と同様であるから、省略する。   The cross-sectional view of the third embodiment is the same as that of the second embodiment, and is omitted.

(その他)
上述の実施例は、いずれも、完成された細胞培養マイクロアレーとして説明した。しかし、細胞培養マイクロアレーは、これを使用する研究者等が細胞等を細胞培養区画2に入れることが必要である。したがって、実施例1で見れば、電極4、外部端子5、配線6、細胞培養区画2および溝3を形成した基板1と、半透膜9および上部ハウジング22を細胞培養マイクロアレーキットとして供給され、これを購入した研究者等が培養液を準備し、細胞等を細胞培養区画2に入れ、半透膜9および上部ハウジング22を重ねて、完成させて使用することにするのが実用的である。実施例2,3でも、同様に、基板1上に、電極等、細胞培養区画2および必要なトンネルを形成したアガロースゲルを配した基板1と、半透膜9および上部ハウジング22を細胞培養マイクロアレーキットとして供給され、これを研究目的合わせて、使用することにするのが実用的である。
(Other)
All of the above examples have been described as completed cell culture microarrays. However, the cell culture microarray requires researchers or the like who use the cell culture microarray to put cells or the like into the cell culture compartment 2. Accordingly, in Example 1, the substrate 1 on which the electrode 4, the external terminal 5, the wiring 6, the cell culture section 2 and the groove 3 are formed, the semipermeable membrane 9 and the upper housing 22 are supplied as a cell culture microarray kit. It is practical that a researcher or the like who has purchased this prepares a culture solution, puts cells or the like into the cell culture section 2, overlaps the semipermeable membrane 9 and the upper housing 22, and completes and uses it. is there. Similarly in Examples 2 and 3, the substrate 1 in which the agarose gel in which the cell culture compartment 2 and the necessary tunnel are formed, such as electrodes, is arranged on the substrate 1, the semipermeable membrane 9 and the upper housing 22 are arranged in the cell culture micro. It is practical that it is supplied as an array kit and used for the purpose of research.

実施例1に係る本発明の電極付細胞培養マイクロアレーの構造の1例を模式的に示した上面図。The top view which showed typically one example of the structure of the cell culture microarray with an electrode of this invention concerning Example 1. FIG. 図1のA−A位置において矢印方向に見た断面図。Sectional drawing seen in the arrow direction in the AA position of FIG. 本発明の実施例2の平面図。The top view of Example 2 of this invention. 図3のB−B位置で矢印方向に見た断面図。Sectional drawing seen in the arrow direction in the BB position of FIG. 最も実用上重要である複数の細胞培養区画2を1次元アレーとして複数隣接させた実施例3を示す平面図。The top view which shows Example 3 which made the some cell culture division 2 most practically important adjoined by using one-dimensional array.

符号の説明Explanation of symbols

1…基板、1−1…壁、2…細胞培養区画、3…溝、4…電位測定用の電極、5…外部端子、6…配線、9…半透膜、10…樹脂層、14…共通電極、21…培養液槽、22…上部ハウジング、22−1…上部ハウジングの立下り部、23…開口部、100…アガロースゲル、141…レーザー、142…レーザービーム、143…エキスパンダー、144…フィルター、145…蒸着フィルター、146…集光レンズ、160−1…赤外カメラ、160−2…CCDカメラ、161…演算装置、163…動力伝達装置、164…ステージ、170…光源。
DESCRIPTION OF SYMBOLS 1 ... Board | substrate, 1-1 ... Wall, 2 ... Cell culture division, 3 ... Groove, 4 ... Electrode for electric potential measurement, 5 ... External terminal, 6 ... Wiring, 9 ... Semipermeable membrane, 10 ... Resin layer, 14 ... Common electrode, 21 ... culture bath, 22 ... upper housing, 22-1 ... falling part of upper housing, 23 ... opening, 100 ... agarose gel, 141 ... laser, 142 ... laser beam, 143 ... expander, 144 ... Filters, 145 ... deposition filters, 146 ... condensing lenses, 160-1 ... infrared cameras, 160-2 ... CCD cameras, 161 ... calculation devices, 163 ... power transmission devices, 164 ... stages, 170 ... light sources.

Claims (9)

細胞を1細胞ずつ保持できる複数の微小区画をつなぐ溝またはトンネル内に電極が設けられている細胞培養マイクロアレー。   A cell culture microarray in which electrodes are provided in grooves or tunnels that connect multiple microcompartments that can hold cells one by one. 基板上に、細胞を特定の空間配置の中に閉じ込めておくための複数の区画壁を有し、細胞の電位変化を計測するための複数の電極パターンが各細胞の間に設けられ、区画壁の上には、光学的に透明な半透膜および培養液槽が配置されていることを特徴とする神経細胞培養マイクロチャンバー。   A plurality of partition walls for confining cells in a specific spatial arrangement are provided on a substrate, and a plurality of electrode patterns for measuring cell potential changes are provided between the cells. A neuron cell culture microchamber characterized in that an optically transparent semipermeable membrane and a culture solution tank are arranged on the top. 基板上に、材質がアガロース製で、細胞を特定の空間配置の中に閉じ込めておくための複数の区画があり、各区画をつなぐトンネル内に電極が設けられている細胞培養マイクロアレー。   A cell culture microarray in which a material is made of agarose and has a plurality of compartments for confining cells in a specific spatial arrangement, and electrodes are provided in the tunnels connecting the compartments. 基板上に、材質がアガロース製ないしアガロースの誘導体で、細胞を特定の空間配置の中に閉じ込めておくための複数の区画があり、各区画に実質1個ずつの細胞が保持され、細胞間のインタラクションを得るために、任意の方向に収束光でアガロースを局所過熱しトンネルを形成させ、各トンネルには必ず1個以上の電極が配される構造の細胞培養マイクロアレー。   On the substrate, the material is made of agarose or an agarose derivative, and there are multiple compartments for confining the cells in a specific spatial arrangement, and each compartment holds substantially one cell, In order to obtain interaction, a cell culture microarray in which agarose is locally heated with convergent light in any direction to form tunnels, and at least one electrode is arranged in each tunnel. アガロース上面に任意に溶液を替えることの出来る培養液槽を配した請求項3または4記載の細胞培養マイクロアレー。   The cell culture microarray according to claim 3 or 4, wherein a culture solution tank capable of arbitrarily changing the solution is arranged on the upper surface of the agarose. 基板上に、材質がアガロース製ないしアガロースの誘導体で、細胞を特定の空間配置の中に閉じ込めておくための複数の区画があり、各区画に実質1個ずつの細胞が保持し、各細胞が軸策などを延ばし細胞間のインタラクションを確保する方向を任意に規定すべく収束光でアガロースを局所過熱しトンネルを形成させ各区画を連結し、各トンネルに配置する電極を用いて細胞間のインタラクションに起因する電位変化を計測する電気的細胞計測法。   On the substrate, the material is made of agarose or an agarose derivative, and there are multiple compartments for confining cells in a specific spatial arrangement. Each compartment holds substantially one cell, and each cell In order to arbitrarily define the direction to secure the interaction between cells by extending axons etc., the agarose is locally heated with convergent light to form tunnels, connect the compartments, and use the electrodes placed in each tunnel to interact between cells An electrical cell measurement method that measures the potential change caused by aging. 基板上に、材質がアガロース製で、細胞を特定の空間配置の中に閉じ込めておくための複数の区画があり、各区画に実質1個ずつの細胞が保持し、各細胞が軸策などを延ばし細胞間のインタラクションを確保する方向を任意に規定すべく収束光でアガロースを局所加熱過熱しトンネルを形成させ各区画を連結し、各トンネルに配置する電極を用いて細胞間に電気的刺激を与え、細胞が応答する電位変化を計測する電気的細胞計測法。   On the substrate, the material is made of agarose and there are multiple compartments to keep the cells confined in a specific spatial arrangement. Each compartment holds substantially one cell, and each cell carries In order to arbitrarily define the direction to ensure the interaction between extended cells, agarose is locally heated and heated with convergent light to form tunnels, connect the compartments, and use the electrodes placed in each tunnel to stimulate electrical stimulation between the cells. An electrical cell counting method that measures changes in potential to which cells respond. ペプチドやアミノ酸などの生体物質ないし、内分泌かく乱物質や毒性を疑われる化学物質を添加し、細胞の応答を電位変化で測定する請求項6または7記載の細胞培養マイクロアレーを用いる電気的細胞計測法。   8. An electrical cell measurement method using a cell culture microarray according to claim 6 or 7, wherein a biological substance such as a peptide or amino acid, an endocrine disrupting substance, or a chemical substance suspected of toxicity is added, and the cell response is measured by a potential change. . 基板上に、細胞を特定の空間配置の中に閉じ込めておくための複数の区画壁と区画壁間を結ぶトンネルを有し、細胞の電位変化を計測するための複数の電極パターンが各トンネルに設けられ、区画壁の上には、光学的に透明な半透膜および培養液槽が配置されていることを特徴とする神経細胞培養マイクロチャンバーを使用して、各トンネルに配置する電極を用いて細胞間に電気的刺激を与え、細胞が応答する電位変化を計測する電気的細胞計測法。
On the substrate, there are tunnels connecting between the partition walls and a plurality of partition walls for confining cells in a specific spatial arrangement, and a plurality of electrode patterns for measuring cell potential changes are provided in each tunnel. An electrode placed in each tunnel is used using a nerve cell culture microchamber characterized in that an optically transparent semipermeable membrane and a culture bath are arranged on the partition wall. An electrical cell measurement method that measures electrical potential changes in response to electrical stimulation between cells.
JP2004227686A 2004-08-03 2004-08-04 Electrode cell culture microarray and electrical cell counting method Expired - Fee Related JP4320286B2 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP2004227686A JP4320286B2 (en) 2004-08-04 2004-08-04 Electrode cell culture microarray and electrical cell counting method
EP07013611A EP1901067A3 (en) 2004-08-03 2005-08-01 Cellomics system
EP05016714A EP1626278A3 (en) 2004-08-03 2005-08-01 Cellomics system
US11/195,662 US7569354B2 (en) 2004-08-03 2005-08-03 Cellomics system
US12/143,156 US20090042200A1 (en) 2004-08-03 2008-06-20 Cellomics system
US12/143,181 US20090042739A1 (en) 2004-08-03 2008-06-20 Cellomics system
US12/471,947 US20100016568A1 (en) 2004-08-03 2009-05-26 Cellomics system
US12/472,037 US20090325215A1 (en) 2004-08-03 2009-05-26 Cellomics system
US12/472,010 US20100016569A1 (en) 2004-08-03 2009-05-26 Cellomics system
US12/471,993 US20100018862A1 (en) 2004-08-03 2009-05-26 Cellomics system
US12/471,853 US20100021933A1 (en) 2004-08-03 2009-05-26 Cellomics systems
US13/755,079 US20130252848A1 (en) 2004-08-03 2013-01-31 Cellomics system
US14/640,471 US20150231635A1 (en) 2004-08-03 2015-03-06 Cellomics system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004227686A JP4320286B2 (en) 2004-08-04 2004-08-04 Electrode cell culture microarray and electrical cell counting method

Publications (2)

Publication Number Publication Date
JP2006042671A true JP2006042671A (en) 2006-02-16
JP4320286B2 JP4320286B2 (en) 2009-08-26

Family

ID=36021922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004227686A Expired - Fee Related JP4320286B2 (en) 2004-08-03 2004-08-04 Electrode cell culture microarray and electrical cell counting method

Country Status (1)

Country Link
JP (1) JP4320286B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009544947A (en) * 2006-07-24 2009-12-17 バイオツァー エントヴィックルングス−ゲーエムベーハー Equipment for on-line measurement of cells
WO2010055829A1 (en) 2008-11-11 2010-05-20 独立行政法人科学技術振興機構 Method and kit for detecting biological signal of three-dimensional cell culture material
JP2010207143A (en) * 2009-03-10 2010-09-24 Okayama Univ Device and method for cell observation
WO2011102385A1 (en) * 2010-02-16 2011-08-25 財団法人神奈川科学技術アカデミー Image recognition-type cell collector
KR101118087B1 (en) 2009-10-30 2012-03-09 (주)나비바이오텍 Lab-on-a-chip and Manfacturing Method and Cell Cultivation Method for Cell Cultivation and Observation Using Transparency Macromolecule Material
JP2013128458A (en) * 2011-12-22 2013-07-04 Hitachi Ltd Packaging container
JP2013158330A (en) * 2012-02-08 2013-08-19 Tokai Hit:Kk Culture apparatus for microscopic observation
KR101370931B1 (en) 2012-04-26 2014-03-19 한국과학기술원 Microfluidic cell culture device equipped with multi-physical stimulations of electrical field, shear stress and substrate rigidity
JP2022094337A (en) * 2020-12-14 2022-06-24 國立中央大學 Composite chip for cell imaging and biochemical detection and method of using the same
CN115895877A (en) * 2022-11-30 2023-04-04 重庆大学 Micro-fluidic chip detection system for reverse killing

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009544947A (en) * 2006-07-24 2009-12-17 バイオツァー エントヴィックルングス−ゲーエムベーハー Equipment for on-line measurement of cells
WO2010055829A1 (en) 2008-11-11 2010-05-20 独立行政法人科学技術振興機構 Method and kit for detecting biological signal of three-dimensional cell culture material
US8828679B2 (en) 2008-11-11 2014-09-09 Japan Science And Technology Agency Method and kit for detecting biological signal of three-dimensional cell culture material
JP2010207143A (en) * 2009-03-10 2010-09-24 Okayama Univ Device and method for cell observation
JP4674337B2 (en) * 2009-03-10 2011-04-20 国立大学法人 岡山大学 Cell observation device and cell observation method
KR101118087B1 (en) 2009-10-30 2012-03-09 (주)나비바이오텍 Lab-on-a-chip and Manfacturing Method and Cell Cultivation Method for Cell Cultivation and Observation Using Transparency Macromolecule Material
JPWO2011102385A1 (en) * 2010-02-16 2013-06-17 財団法人神奈川科学技術アカデミー Image recognition cell recovery device
WO2011102385A1 (en) * 2010-02-16 2011-08-25 財団法人神奈川科学技術アカデミー Image recognition-type cell collector
JP2013128458A (en) * 2011-12-22 2013-07-04 Hitachi Ltd Packaging container
JP2013158330A (en) * 2012-02-08 2013-08-19 Tokai Hit:Kk Culture apparatus for microscopic observation
KR101370931B1 (en) 2012-04-26 2014-03-19 한국과학기술원 Microfluidic cell culture device equipped with multi-physical stimulations of electrical field, shear stress and substrate rigidity
JP2022094337A (en) * 2020-12-14 2022-06-24 國立中央大學 Composite chip for cell imaging and biochemical detection and method of using the same
CN115895877A (en) * 2022-11-30 2023-04-04 重庆大学 Micro-fluidic chip detection system for reverse killing
CN115895877B (en) * 2022-11-30 2024-03-12 重庆大学 Microfluidic chip detection system for reverse killing

Also Published As

Publication number Publication date
JP4320286B2 (en) 2009-08-26

Similar Documents

Publication Publication Date Title
Neto et al. Compartmentalized microfluidic platforms: the unrivaled breakthrough of in vitro tools for neurobiological research
Fuchs et al. In-line analysis of organ-on-chip systems with sensors: Integration, fabrication, challenges, and potential
JP4320286B2 (en) Electrode cell culture microarray and electrical cell counting method
Schmid et al. Electrical impedance spectroscopy for microtissue spheroid analysis in hanging-drop networks
US20050014201A1 (en) Interactive transparent individual cells biochip processor
Kavand et al. Advanced materials and sensors for microphysiological systems: focus on electronic and electrooptical interfaces
US10997871B2 (en) Contractile function measuring devices, systems, and methods of use thereof
JP4812271B2 (en) Cell bioassay chip using cardiac beating cells and bioassay using the same
US20180372725A1 (en) Polymeric fiber-scaffolded engineered tissues and uses thereof
US20090053813A1 (en) Multiplexed electroporation apparatus
Conzuelo et al. Biological imaging with scanning electrochemical microscopy
CN115261224A (en) Cell culture, transport and exploration
Forro et al. Electrophysiology read-out tools for brain-on-chip biotechnology
Kaech et al. General considerations for live imaging of developing hippocampal neurons in culture
JP4370082B2 (en) Neuron culture microchamber
EP1180162A2 (en) An apparatus for the analysis of the electrophysiology of neuronal cells and its use in high-throughput functional genomics
JP2022500021A (en) Microelectrode array and how to use it
JP2021511823A (en) Cell culture device and method
Son et al. Electrophysiological monitoring of neurochemical-based neural signal transmission in a human brain–spinal cord assembloid
JP4535832B2 (en) Cell reconstitution device using heterogeneous cells and bioassay using the same
Habibey et al. Long-term morphological and functional dynamics of human stem cell-derived neuronal networks on high-density micro-electrode arrays
JP2006115723A (en) Microchamber for cell culture and method for constructing cellular structure
JP2007267727A (en) Chip for cell analysis, system for cell analysis and method for cell analysis
Nie et al. 3D Biofabrication using living cells for applications in biohybrid sensors and actuators
JP4498139B2 (en) Apparatus and method for performing electrical measurements on a membrane body

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070125

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070125

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070319

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070703

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090601

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees