JP2006042234A - Osnr measuring method and apparatus - Google Patents

Osnr measuring method and apparatus Download PDF

Info

Publication number
JP2006042234A
JP2006042234A JP2004222922A JP2004222922A JP2006042234A JP 2006042234 A JP2006042234 A JP 2006042234A JP 2004222922 A JP2004222922 A JP 2004222922A JP 2004222922 A JP2004222922 A JP 2004222922A JP 2006042234 A JP2006042234 A JP 2006042234A
Authority
JP
Japan
Prior art keywords
osnr
polarization
degree
component
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004222922A
Other languages
Japanese (ja)
Inventor
Michiaki Hayashi
通秋 林
Hideaki Tanaka
英明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
KDDI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KDDI Corp filed Critical KDDI Corp
Priority to JP2004222922A priority Critical patent/JP2006042234A/en
Publication of JP2006042234A publication Critical patent/JP2006042234A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To present an OSNR measuring method and apparatus capable of measuring an optical signal noise ratio (OSNR). <P>SOLUTION: An optical band pass filter (OBPF) 20 extracts a waveform of a target to be measured or a signal light component of a channel. A beam splitter 22 equally splits an output beam of the OBPF 20 into seven beams. Light intensities P<SB>1</SB>, P<SB>2</SB>, P<SB>3</SB>, P<SB>4</SB>of respective linearly polarized components in a horizontal direction, a vertical direction, +45° direction and -45° direction are obtained by polarizers 24, 28, 32, 36 and photo-diodes 26, 30, 34, 38. Light intensities P<SB>5</SB>, P<SB>6</SB>of respective turning-right and turning-left circularly polarized components are obtained by quarter-wave plates 40, 46, polarizers 42, 48 and photo-diodes 44, 50. A light intensity S<SB>0</SB>of signal light as a target to be measured is obtained by a photo-diode 52. Subtracters 54, 58, 62 calculate S<SB>1</SB>(=P<SB>1</SB>-P<SB>2</SB>), S<SB>2</SB>(=P<SB>3</SB>-P<SB>4</SB>) and S<SB>3</SB>(=P<SB>5</SB>-P<SB>6</SB>), respectively. An arithmetic unit 68 calculates a degree of polarization (DOP) from S<SB>1</SB>, S<SB>2</SB>, S<SB>3</SB>, S<SB>0</SB>and a converter 70 converts DOP into OSNR. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光信号対雑音比(OSNR)を測定するOSNR測定方法及び装置に関し、より具体的には、オールプティカルネットワークにおける光信号対雑音比(OSNR)を測定するOSNR測定方法及び装置に関する。   The present invention relates to an OSNR measurement method and apparatus for measuring an optical signal-to-noise ratio (OSNR), and more specifically to an OSNR measurement method and apparatus for measuring an optical signal-to-noise ratio (OSNR) in an all optical network. .

光ネットワーク、特に光パスを選択可能な光ネットワークでは、OSNRの管理が非常に重要である。波長分割多重(WDM)光伝送システムでは、波長毎に光パスを設定可能であるので、波長毎のOSNRの管理もまた、重要になる。光ノードの波長パス処理として、波長分離、クロスコネクト(アドドロップ)、光再生、及び波長合波があり、これらにより、OSNRが大きく変動することがある。   In an optical network, particularly an optical network in which an optical path can be selected, OSNR management is very important. In a wavelength division multiplexing (WDM) optical transmission system, since an optical path can be set for each wavelength, management of the OSNR for each wavelength is also important. The wavelength path processing of the optical node includes wavelength separation, cross connect (add / drop), optical regeneration, and wavelength multiplexing, and the OSNR may fluctuate greatly due to these.

WDM光伝送システムにおいて波長毎のOSNRを測定する従来の方法では、光スペクトラムアナライザにより、各信号波長のピークパワーと両側のフロアの強度を測定し、その比をOSNRとしていた。   In the conventional method of measuring the OSNR for each wavelength in the WDM optical transmission system, the peak power of each signal wavelength and the intensity of the floors on both sides are measured by an optical spectrum analyzer, and the ratio is defined as OSNR.

WDM信号光から分離した1チャネルの光信号には、図3に示すように、信号帯域内にもノイズ光が混入する。このノイズ光は、光増幅器等で発生するASE光からなる。   As shown in FIG. 3, noise light is also mixed in the signal band in the one-channel optical signal separated from the WDM signal light. The noise light is ASE light generated by an optical amplifier or the like.

信号帯域内のノイズ光成分を分離できる別の方法として、WDM信号光から目的波長又はチャネル成分を分離した後、偏波コントローラ及び偏波ビームスプリッタ(PBS)により信号の偏波成分とこれに直交する偏波成分とに分離して、OSNRを測定する方法が知られている。この方法では、光ノイズ光成分がPBSにより2分割されるので、信号の偏波成分は信号成分以外にノイズ成分の半分を含み、直交する偏波成分がノイズ成分の残る半分を含む。信号帯域内のノイズ成分を定量的に測定できるので、OSNRを精度良く測定できる。   As another method for separating the noise light component in the signal band, after separating the target wavelength or channel component from the WDM signal light, the signal is orthogonal to the polarization component of the signal by the polarization controller and polarization beam splitter (PBS). There is known a method of measuring the OSNR separately from the polarization component. In this method, since the optical noise light component is divided into two by the PBS, the polarization component of the signal includes half of the noise component in addition to the signal component, and the orthogonal polarization component includes the remaining half of the noise component. Since the noise component in the signal band can be measured quantitatively, the OSNR can be measured with high accuracy.

前者の方法では、WDM光伝送システムでは、隣接チャネルからの漏れ込みにより、フロア強度が増大する。また、信号帯域内に存在する光ノイズ成分を見積もることが難しい。これらの理由で、従来の方法では、OSNRを正確に評価することが困難であった。   In the former method, in the WDM optical transmission system, the floor strength increases due to leakage from an adjacent channel. In addition, it is difficult to estimate the optical noise component existing in the signal band. For these reasons, it has been difficult to accurately evaluate the OSNR with the conventional method.

後者の方法では、偏波ビームスプリッタの出力光に従い、波長分離後の信号光の偏波方向を所定方向に制御する偏波コントローラが必要になる。信号光の偏波変動に追従して、偏波コントローラを無限に帰還制御する必要があり、装置構成が複雑で大規模なものになってしまう。   The latter method requires a polarization controller that controls the polarization direction of the signal light after wavelength separation in a predetermined direction according to the output light of the polarization beam splitter. The polarization controller needs to be feedback-controlled infinitely following the polarization fluctuation of the signal light, resulting in a complicated and large device configuration.

本発明は、簡易な構成でより高精度にOSNRを測定可能なOSNR測定方法及び装置を提示することを目的とする。   An object of the present invention is to provide an OSNR measurement method and apparatus capable of measuring OSNR with higher accuracy with a simple configuration.

本発明に係るOSNR測定方法は、請求項1に記載されるように、入力信号光の偏光度を計測する偏光度計測ステップと、当該偏光度計測ステップで計測された偏光度を、当該入力信号光の光信号対雑音比(OSNR)を代表する値に換算するOSNR換算ステップとからなることを特徴とする。   According to the OSNR measurement method of the present invention, as described in claim 1, a polarization degree measurement step for measuring the polarization degree of the input signal light, and the polarization degree measured in the polarization degree measurement step are used as the input signal. And an OSNR conversion step for converting the optical signal-to-noise ratio (OSNR) of light into a representative value.

本発明に係るOSNR測定装置は、請求項5に記載されるように、入力信号光の偏光度を計測する偏光度計測装置と、当該偏光度計測装置で計測された偏光度を、当該入力信号光の光信号対雑音比(OSNR)を代表する値に換算するOSNR換算装置とを具備することを特徴とする。   The OSNR measurement apparatus according to the present invention includes a polarization degree measurement apparatus that measures the degree of polarization of input signal light, and the polarization degree measured by the polarization degree measurement apparatus. And an OSNR conversion device that converts an optical signal-to-noise ratio (OSNR) of light into a representative value.

以上の説明から容易に理解できるように、本発明によれば、非常に簡単な構成でOSNRを測定できる。信号帯域内の光ノイズ成分も考慮されているので、正確なOSNRを測定できる。   As can be easily understood from the above description, according to the present invention, the OSNR can be measured with a very simple configuration. Since an optical noise component in the signal band is also taken into account, an accurate OSNR can be measured.

以下、図面を参照して、本発明の実施例を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の一実施例の概略構成ブロック図を示す。実線は光信号を示し、破線は電気信号を示す。本出願の発明者は、偏光度(DOP)がOSNRと相関を有することを発見した。本実施例では、ストークスパラメータにより測定対象の信号光の偏光度(DOP)を測定し、得られたDOPから対象の信号光のOSNRを決定する。   FIG. 1 shows a schematic block diagram of an embodiment of the present invention. A solid line indicates an optical signal, and a broken line indicates an electrical signal. The inventors of the present application have discovered that the degree of polarization (DOP) is correlated with OSNR. In this embodiment, the degree of polarization (DOP) of the signal light to be measured is measured by the Stokes parameter, and the OSNR of the target signal light is determined from the obtained DOP.

光送信端局10は、波長λ1〜λnの直線偏波の信号光からなるWDM信号光を出力する。そのWDM信号光は、光ファイバ伝送路12を伝搬して、OSNR測定装置14に入射する。OSNR測定装置14は、例えば、光受信端局内に設置される。   The optical transmission terminal station 10 outputs WDM signal light composed of linearly polarized signal light having wavelengths λ1 to λn. The WDM signal light propagates through the optical fiber transmission line 12 and enters the OSNR measurement device 14. The OSNR measurement device 14 is installed in, for example, an optical receiving terminal station.

測定装置14では、光バンドパスフィルタ(OBPF)20が、光ファイバ伝送路12から入力するWDM信号光から測定対象の波長又はチャネルの信号光成分を抽出する。光バンドパスフィルタ20の通過波長をλ1乃至λnの所望の波長に変更可能とすることで、各波長λ1〜λnのOSNRを測定できる。   In the measurement device 14, the optical bandpass filter (OBPF) 20 extracts the signal light component of the wavelength or channel to be measured from the WDM signal light input from the optical fiber transmission line 12. The OSNR of each wavelength λ1 to λn can be measured by changing the pass wavelength of the optical bandpass filter 20 to a desired wavelength of λ1 to λn.

光スプリッタ22は、光バンドパスフィルタ20の出力光を7つに等分に分割する。   The optical splitter 22 divides the output light of the optical bandpass filter 20 into seven equal parts.

光スプリッタ22から出力される第1の光成分は、水平方向の偏光子24を介してフォトダイオード26に入力する。これにより、水平方向の直線偏光成分の光強度Pを計測する。 The first light component output from the optical splitter 22 is input to the photodiode 26 via the horizontal polarizer 24. Thus, measuring the light intensity P 1 in the horizontal direction of the linearly polarized light component.

光スプリッタ22から出力される第2の光成分は、垂直方向の偏光子28を介してフォトダイオード30に入力する。これにより、垂直方向の直線偏光成分の光強度Pを計測する。 The second light component output from the optical splitter 22 is input to the photodiode 30 via the vertical polarizer 28. Thus, measuring the light intensity P 2 in the vertical direction of the linear polarized light component.

光スプリッタ22から出力される第3の光成分は、+45度の偏光子32を介してフォトダイオード34に入力する。これにより、+45度の直線偏光成分の光強度Pを計測する。 The third light component output from the optical splitter 22 is input to the photodiode 34 via the +45 degree polarizer 32. Thus, measuring the light intensity P 3 of the linearly polarized light component of + 45 °.

光スプリッタ22から出力される第4の光成分は、−45度の偏光子36を介してフォトダイオード38に入力する。これにより、−45度の直線偏光成分の光強度Pを計測する。 The fourth light component output from the optical splitter 22 is input to the photodiode 38 via the −45 degree polarizer 36. Thus, measuring the light intensity P 4 of the linearly polarized light component of -45 degrees.

光スプリッタ22から出力される第5の光成分は、1/4波長板40及び+45度の偏光子42を介してフォトダイオード44に入力する。1/4波長板40及び+45度の偏光子42により、右回り円偏光成分を抽出できる。これにより、右回り円偏光成分の光強度Pを計測する。 The fifth light component output from the optical splitter 22 is input to the photodiode 44 via the quarter wavelength plate 40 and the +45 degree polarizer 42. The clockwise circular polarized light component can be extracted by the quarter wavelength plate 40 and the +42 degree polarizer 42. Thus, measuring the light intensity P 5 of right-handed circularly polarized light component.

光スプリッタ22から出力される第6の光成分は、1/4波長板46及び−45度の偏光子48を介してフォトダイオード50に入力する。1/4波長板46及び−45度の偏光子48により、左回り円偏光成分を抽出できる。これにより、左回り円偏光成分の光強度Pを計測する。 The sixth light component output from the optical splitter 22 is input to the photodiode 50 via the quarter-wave plate 46 and the −48 degree polarizer 48. The counterclockwise circularly polarized light component can be extracted by the ¼ wavelength plate 46 and the −45 degree polarizer 48. Thus, measuring the light intensity P 6 of the left-handed circularly polarized light component.

光スプリッタ22から出力される第7の光成分は、フォトダイオード52に入力する。これにより、測定対象の信号光の光強度Sを測定する。 The seventh light component output from the optical splitter 22 is input to the photodiode 52. Thus, measuring the light intensity S 0 of the signal light to be measured.

減算器54は、フォトダイオード26の出力Pからフォトダイオード30の出力Pを減算し、その結果S(=P−P)をA/D変換器56に出力する。A/D変換器56は減算器54の出力Sをデジタル信号に変換する。 The subtractor 54 subtracts the output P 2 of the photodiode 30 from the output P 1 of the photodiode 26 and outputs S 1 (= P 1 −P 2 ) as a result to the A / D converter 56. A / D converter 56 converts the output S 1 of the subtractor 54 into a digital signal.

減算器58は、フォトダイオード34の出力Pからフォトダイオード38の出力Pを減算し、その結果S(=P−P)をA/D変換器60に出力する。A/D変換器60は減算器58の出力Sをデジタル信号に変換する。 The subtractor 58 subtracts the output P 4 of the photodiode 38 from the output P 3 of the photodiode 34 and outputs the result S 2 (= P 3 −P 4 ) to the A / D converter 60. A / D converter 60 converts the output S 2 of the subtractor 58 into a digital signal.

減算器62は、フォトダイオード44の出力Pからフォトダイオード50の出力Pを減算し、その結果S(=P−P)をA/D変換器64に出力する。A/D変換器64は減算器62の出力Sをデジタル信号に変換する。 Subtractor 62 subtracts the output P 6 of the photodiode 50 from the output P 5 of the photodiode 44, and outputs the result S 3 a (= P 5 -P 6) to the A / D converter 64. A / D converter 64 converts the output S 3 of the subtractor 62 into a digital signal.

,S,Sは、いわゆるストークスパラメータである。 S 1 , S 2 , and S 3 are so-called Stokes parameters.

A/D変換器66はフォトダイオード52の出力Sをデジタル信号に変換する。 A / D converter 66 converts the output S 0 of the photodiode 52 into a digital signal.

A/D変換器56,60,64,66の出力は演算装置68に入力する。演算装置68は、A/D変換器56,60,64,66の出力を使って下記式、
(S +S +S 1/2/S
を計算する。この計算結果は、光バンドパスフィルタ20により抽出された信号光の偏光度(DOP)を示す。S,S,Sは、入射光強度に依存するので、上式では、入射光強度Sで規格化している。したがって、上式で得られたDOP値は、入射光強度に依存しない。
The outputs of the A / D converters 56, 60, 64, 66 are input to the arithmetic unit 68. The arithmetic unit 68 uses the outputs of the A / D converters 56, 60, 64, and 66 to express the following equation:
(S 1 2 + S 2 2 + S 3 2 ) 1/2 / S 0
Calculate This calculation result indicates the degree of polarization (DOP) of the signal light extracted by the optical bandpass filter 20. Since S 1 , S 2 , and S 3 depend on the incident light intensity, the above expression is normalized by the incident light intensity S 0 . Therefore, the DOP value obtained by the above equation does not depend on the incident light intensity.

図2は、光信号対雑音比OSNRと偏光度DOPとの相関関係を実測した結果を示す。横軸は、OSNR(dB)を示し、縦軸はDOP(%)を示す。   FIG. 2 shows the result of actual measurement of the correlation between the optical signal-to-noise ratio OSNR and the polarization degree DOP. The horizontal axis represents OSNR (dB), and the vertical axis represents DOP (%).

換算装置70は、演算装置68から出力されるDOP値を図2に示す対応関係に照合して、OSNR値に換算する。換算装置70は、例えば、図2に示す対応関係データを有するルックアップテーブルから成る。   The conversion device 70 compares the DOP value output from the arithmetic device 68 with the correspondence shown in FIG. 2 and converts it to the OSNR value. The conversion device 70 is composed of, for example, a lookup table having correspondence data shown in FIG.

信号成分は偏光度がほぼ100%であるのに対し、ASEノイズ成分の偏光度はほぼ0%である。受信端局での入射信号光は、偏光度100%の信号光に偏光度0%のASEノイズ光が重畳したものになっている。従って、入射光の偏光度を測定することで、ASEノイズ成分を定量的に把握できる。ここで把握されるASEノイズ成分は、勿論、信号波長帯域内のノイズ成分を含むこと。従って、本実施例では、信号帯域内のノイズ成分を考慮したOSNRを測定できる。   The signal component has a degree of polarization of almost 100%, while the ASE noise component has a degree of polarization of almost 0%. The incident signal light at the receiving terminal station is obtained by superposing ASE noise light with a polarization degree of 0% on signal light with a polarization degree of 100%. Therefore, the ASE noise component can be quantitatively grasped by measuring the degree of polarization of incident light. The ASE noise component grasped here includes, of course, a noise component within the signal wavelength band. Therefore, in this embodiment, the OSNR can be measured in consideration of noise components in the signal band.

上記実施例では、ストークスパラメータの測定によるDOP測定法を採用したが、その他の方法でDOPを測定した場合にも、同様に、OSNRを測定できることは明らかである。   In the above embodiment, the DOP measurement method by measuring the Stokes parameters is adopted. However, it is obvious that the OSNR can be measured similarly when the DOP is measured by other methods.

本発明の一実施例の概略構成ブロック図である。It is a schematic block diagram of one Example of this invention. OSNRとDOPの関係の測定結果を示す図である。It is a figure which shows the measurement result of the relationship between OSNR and DOP. 信号帯域内に混入するノイズ光成分を示す模式図である。It is a schematic diagram which shows the noise light component mixed in a signal band.

符号の説明Explanation of symbols

10:光送信端局
12:光ファイバ伝送路
14:OSNR測定装置
20:光バンドパスフィルタ(OBPF)
22:光スプリッタ
24:偏光子
26:フォトダイオード
28:偏光子
30:フォトダイオード
32:偏光子
34:フォトダイオード
36:偏光子
38:フォトダイオード
40:1/4波長板
42:偏光子
44:フォトダイオード
46:1/4波長板
48:偏光子
50:フォトダイオード
52:フォトダイオード
54:減算器
56:A/D変換器
58:減算器
60:A/D変換器
62:減算器
64:A/D変換器
66:A/D変換器
68:演算装置
70:換算装置
10: Optical transmitting terminal 12: Optical fiber transmission line 14: OSNR measuring device 20: Optical bandpass filter (OBPF)
22: optical splitter 24: polarizer 26: photodiode 28: polarizer 30: photodiode 32: polarizer 34: photodiode 36: polarizer 38: photodiode 40: 1/4 wavelength plate 42: polarizer 44: photo Diode 46: 1/4 wavelength plate 48: Polarizer 50: Photodiode 52: Photodiode 54: Subtractor 56: A / D converter 58: Subtractor 60: A / D converter 62: Subtractor 64: A / D converter 66: A / D converter 68: arithmetic device 70: conversion device

Claims (8)

入力信号光の偏光度を計測する偏光度計測ステップと、
当該偏光度計測ステップで計測された偏光度を、当該入力信号光の光信号対雑音比(OSNR)を代表する値に換算するOSNR換算ステップ
とからなることを特徴とするOSNR測定方法。
A degree of polarization measurement step for measuring the degree of polarization of the input signal light;
An OSNR measurement method comprising: an OSNR conversion step of converting the polarization degree measured in the polarization degree measurement step into a value representative of an optical signal-to-noise ratio (OSNR) of the input signal light.
当該偏光度計測ステップが、
当該入力信号光を7つの成分に分割する分割ステップと、
当該分割ステップで分割された7つの成分から、水平直線偏波成分、垂直直線偏波成分、+45直線偏波成分、−45度直線偏波成分、右回り回転偏波成分及び左周り回転偏波成分の各光強度、並びに当該入力信号光の光強度を計測する強度計測ステップと、
水平直線偏波成分の光強度と垂直直線偏波成分の光強度の差分、+45直線偏波成分の光強度と−45度直線偏波成分の光強度の差分、右回り回転偏波成分の光強度と左周り回転偏波成分の光強度の差分を算出する差分算出ステップと、
当該差分算出ステップで算出される各差分の二乗の和の平方根を、当該入力信号光の光強度で規格化する規格化ステップ
とを具備することを特徴とする請求項1に記載のOSNR測定方法。
The polarization degree measuring step is
A dividing step of dividing the input signal light into seven components;
From the seven components divided in the division step, horizontal linear polarization component, vertical linear polarization component, +45 linear polarization component, -45 degree linear polarization component, clockwise rotation polarization component, and counterclockwise rotation polarization An intensity measurement step for measuring each light intensity of the component, and the light intensity of the input signal light;
Difference between light intensity of horizontal linear polarization component and light intensity of vertical linear polarization component, difference of light intensity of +45 linear polarization component and light intensity of -45 degree linear polarization component, light of clockwise rotation polarization component A difference calculating step for calculating the difference between the intensity and the light intensity of the left-handed rotational polarization component;
2. The OSNR measurement method according to claim 1, further comprising: a normalization step of normalizing a square root of a sum of squares of the differences calculated in the difference calculation step with a light intensity of the input signal light. .
当該OSNR換算ステップが、当該偏光度計測ステップで計測された偏光度を、偏光度とOSNRの対応関係に照合するOSNR決定ステップからなる請求項1又は2に記載のOSNR測定方法。   3. The OSNR measurement method according to claim 1, wherein the OSNR conversion step includes an OSNR determination step of collating the polarization degree measured in the polarization degree measurement step with a correspondence relationship between the polarization degree and the OSNR. 更に、光伝送路から入力する波長分割多重光信号から測定対象の波長の信号光を抽出する抽出ステップを具備する請求項一乃至3の何れか1項に記載のOSNR測定方法。   The OSNR measurement method according to any one of claims 1 to 3, further comprising an extraction step of extracting signal light having a wavelength to be measured from a wavelength division multiplexed optical signal input from an optical transmission line. 入力信号光の偏光度を計測する偏光度計測装置(22〜68)と、
当該偏光度計測装置で計測された偏光度を、当該入力信号光の光信号対雑音比(OSNR)を代表する値に換算するOSNR換算装置(70)
とを具備することを特徴とするOSNR測定装置。
A degree of polarization measuring device (22-68) for measuring the degree of polarization of the input signal light;
OSNR conversion device (70) for converting the polarization degree measured by the polarization degree measurement device into a value representative of the optical signal-to-noise ratio (OSNR) of the input signal light.
An OSNR measurement apparatus comprising:
当該偏光度計測装置が、
当該入力信号光を7つの成分に分割する光スプリッタ(22)と、
当該光スプリッタで分割された7つの成分から、水平直線偏波成分、垂直直線偏波成分、+45直線偏波成分、−45度直線偏波成分、右回り回転偏波成分及び左周り回転偏波成分の各光強度、並びに当該入力信号光の光強度を計測する強度計測装置(24,26,28,30,32,34,36,38,40,42,44,46,48,50,52)と、
水平直線偏波成分の光強度と垂直直線偏波成分の光強度の差分(S)、+45直線偏波成分の光強度と−45度直線偏波成分の光強度の差分(S)、右回り回転偏波成分の光強度と左周り回転偏波成分の光強度の差分(S)を算出する差分算出装置(54,58,62)と、
当該差分算出装置(54,58,62)で算出される各差分(S,S,S)の二乗の和の平方根を、当該入力信号光の光強度(S)で規格化する演算装置(56,60,64,66,68)
とを具備することを特徴とする請求項5に記載のOSNR測定装置。
The polarization degree measuring device is
An optical splitter (22) for dividing the input signal light into seven components;
From the seven components divided by the optical splitter, horizontal linear polarization component, vertical linear polarization component, +45 linear polarization component, -45 degree linear polarization component, clockwise rotation polarization component, and counterclockwise rotation polarization Intensity measuring devices (24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52) that measure the light intensity of each component and the light intensity of the input signal light. )When,
Horizontal linear polarization component of the light intensity and the light intensity of the perpendicular linear polarization components differential (S 1), + 45 of the light intensity of the light intensity and -45 degree linearly polarized component of the linearly polarized component difference (S 2), A difference calculation device (54, 58, 62) for calculating a difference (S 3 ) between the light intensity of the clockwise rotation polarization component and the light intensity of the left rotation polarization component;
The square root of the sum of the squares of the differences (S 1 , S 2 , S 3 ) calculated by the difference calculation device (54, 58, 62) is normalized by the light intensity (S 0 ) of the input signal light. Arithmetic unit (56, 60, 64, 66, 68)
The OSNR measurement apparatus according to claim 5, comprising:
当該OSNR換算装置(70)が、偏光度とOSNRの対応関係を示すテーブルを具備し、当該偏光度計測装置で計測された偏光度を当該テーブルに調合して、当該入力信号光の光信号対雑音比(OSNR)を決定する請求項5又は6に記載のOSNR測定装置。   The OSNR conversion device (70) includes a table indicating the correspondence between the degree of polarization and the OSNR, and the degree of polarization measured by the degree of polarization measurement device is prepared in the table, and the optical signal pair of the input signal light is combined. The OSNR measurement apparatus according to claim 5 or 6, wherein the OSNR is determined. 更に、光伝送路から入力する波長分割多重光信号から測定対象の波長の信号光を抽出し、抽出した成分を当該入力信号光として当該偏光度測定装置に供給する波長抽出装置(20)を具備する請求項5乃至7の何れか1項に記載のOSNR測定装置。   And a wavelength extraction device (20) for extracting signal light having a wavelength to be measured from the wavelength division multiplexed optical signal input from the optical transmission line and supplying the extracted component as the input signal light to the polarization degree measuring device. The OSNR measurement apparatus according to any one of claims 5 to 7.
JP2004222922A 2004-07-30 2004-07-30 Osnr measuring method and apparatus Pending JP2006042234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004222922A JP2006042234A (en) 2004-07-30 2004-07-30 Osnr measuring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004222922A JP2006042234A (en) 2004-07-30 2004-07-30 Osnr measuring method and apparatus

Publications (1)

Publication Number Publication Date
JP2006042234A true JP2006042234A (en) 2006-02-09

Family

ID=35906694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004222922A Pending JP2006042234A (en) 2004-07-30 2004-07-30 Osnr measuring method and apparatus

Country Status (1)

Country Link
JP (1) JP2006042234A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014016197A (en) * 2012-07-06 2014-01-30 Nippon Telegr & Teleph Corp <Ntt> Optical signal measuring device
JP2015004668A (en) * 2013-06-18 2015-01-08 富士通株式会社 Double polarization interference measurement optical signal-to-noise ratio monitoring device
JP2016166841A (en) * 2015-03-10 2016-09-15 アンリツ株式会社 Spectral device, spectral method, and analyzer
WO2021124848A1 (en) * 2019-12-17 2021-06-24 ソニーグループ株式会社 Signal processing device, signal processing method, and program
CN114448505A (en) * 2022-01-19 2022-05-06 武汉烽火技术服务有限公司 Method, device and storage medium for calculating optical signal-to-noise ratio based on TE link

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618332A (en) * 1992-07-01 1994-01-25 Kokusai Denshin Denwa Co Ltd <Kdd> Measuring method and device for stokes parameter
JPH10271066A (en) * 1997-02-05 1998-10-09 Northern Telecom Ltd Transmitting method/system for light signal and monitoring device for light transmitting system
JP2001168813A (en) * 1999-10-15 2001-06-22 Korea Advanced Inst Of Sci Technol Device and method for measuring optical signal versus noise ratio
JP2004112427A (en) * 2002-09-19 2004-04-08 Fujitsu Ltd Monitoring method of optical signal to noise ratio, and optical transmission system using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618332A (en) * 1992-07-01 1994-01-25 Kokusai Denshin Denwa Co Ltd <Kdd> Measuring method and device for stokes parameter
JPH10271066A (en) * 1997-02-05 1998-10-09 Northern Telecom Ltd Transmitting method/system for light signal and monitoring device for light transmitting system
JP2001168813A (en) * 1999-10-15 2001-06-22 Korea Advanced Inst Of Sci Technol Device and method for measuring optical signal versus noise ratio
JP2004112427A (en) * 2002-09-19 2004-04-08 Fujitsu Ltd Monitoring method of optical signal to noise ratio, and optical transmission system using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014016197A (en) * 2012-07-06 2014-01-30 Nippon Telegr & Teleph Corp <Ntt> Optical signal measuring device
JP2015004668A (en) * 2013-06-18 2015-01-08 富士通株式会社 Double polarization interference measurement optical signal-to-noise ratio monitoring device
JP2016166841A (en) * 2015-03-10 2016-09-15 アンリツ株式会社 Spectral device, spectral method, and analyzer
WO2021124848A1 (en) * 2019-12-17 2021-06-24 ソニーグループ株式会社 Signal processing device, signal processing method, and program
CN114448505A (en) * 2022-01-19 2022-05-06 武汉烽火技术服务有限公司 Method, device and storage medium for calculating optical signal-to-noise ratio based on TE link
CN114448505B (en) * 2022-01-19 2023-06-09 武汉烽火技术服务有限公司 Method, device and storage medium for calculating optical signal to noise ratio based on TE link

Similar Documents

Publication Publication Date Title
US6813021B2 (en) Method and apparatus for monitoring optical signal-to-noise ratio (OSNR) using polarization-nulling method
US8078054B2 (en) Apparatus and method for improving the tolerance of tone-based optical channel monitoring to stimulated Raman scattering
US20080124076A1 (en) OSNR Monitoring Apparatus And Method Using Polarization Splitting
US9425894B2 (en) In-band optical signal-to-noise ratio measurement
WO2013139039A1 (en) Method and apparatus for detecting optical signal-to-noise ratio, node device, and network system
CN1720680A (en) OSNR monitoring method and apparatus using tunable optical bandpass filter and polarization nulling method
US10256901B2 (en) Systems and methods for optical signal-to-noise ratio monitoring
US20160056891A1 (en) Optical signal-to-noise ratio measuring method
CN102594447A (en) OSNR (Optical Signal to Noise Ratio) monitoring device for wavelength division multiplexing system and method
JP3569217B2 (en) Apparatus and method for measuring optical signal to noise ratio
CN105830365A (en) Optical signal to noise ratio monitoring method and device
JP2011257194A (en) Osnr evaluation device and osnr evaluation method
JP2018170562A (en) Signal quality measurement device and signal quality measurement method
JP2006042234A (en) Osnr measuring method and apparatus
US20120002962A1 (en) Wdm signal light monitoring apparatus, wdm system and wdm signal light monitoring method
US6867852B2 (en) Method and apparatus for channel detection
JP2010025670A (en) Optical signal sn ratio measuring apparatus
Petersson et al. Performance monitoring in optical networks using Stokes parameters
JP2004350081A (en) Noise repressing method and apparatus thereof
JP2009244163A (en) Device and method for measuring ratio of light signal to noise
US20060051087A1 (en) Method for determining the signal-to-noise ratio of an optical signal
JP4150193B2 (en) Wavelength control apparatus and wavelength control method
EP1936841A2 (en) OSNR monitoring apparatus and method using polarization splitting
US20150117856A1 (en) System and method for monitoring power imbalance induced by polarization-dependent loss
EP3174223B1 (en) Method and apparatus for determining optical signal-to-noise ratio

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090929