JP2006040631A - Polymer electrolyte membrane and polymer electrolyte fuel cell - Google Patents

Polymer electrolyte membrane and polymer electrolyte fuel cell Download PDF

Info

Publication number
JP2006040631A
JP2006040631A JP2004216025A JP2004216025A JP2006040631A JP 2006040631 A JP2006040631 A JP 2006040631A JP 2004216025 A JP2004216025 A JP 2004216025A JP 2004216025 A JP2004216025 A JP 2004216025A JP 2006040631 A JP2006040631 A JP 2006040631A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
reinforcing material
electrolyte membrane
exchange resin
ion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004216025A
Other languages
Japanese (ja)
Inventor
Mikiko Yoshimura
美貴子 吉村
Yoshihiro Hori
喜博 堀
Akihiko Yoshida
昭彦 吉田
Makoto Uchida
誠 内田
Yasuo Takebe
安男 武部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004216025A priority Critical patent/JP2006040631A/en
Publication of JP2006040631A publication Critical patent/JP2006040631A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polymer electrolyte membrane enhancing mechanical strength and dimension stability and to provide a polymer electrolyte fuel cell using the polymer electrolyte membrane. <P>SOLUTION: The polymer electrolyte membrane is equipped with a reinforcement layer 2 having first ion exchange resin and a reinforcement 5 and irregularity 5b formed on at least one surface 5a and an ion exchange resin layer 3 formed on the surface 5a on which the irregularity 5b is formed so as to cover the irregularity 5b and having second ion exchange resin, the reinforcement layer 2 has a plurality of through holes 4 formed in substantially the direction perpendicular to the surface 5a, and the first ion exchange resin is filled in the through holes 4. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高分子電解質形燃料電池に用いる高分子電解質膜に関する。   The present invention relates to a polymer electrolyte membrane used for a polymer electrolyte fuel cell.

高分子電解質を用いた燃料電池は、水素を含有する燃料ガスと、空気など酸素を含有する酸化ガスとを、電気化学的に反応させることで、電力と熱とを同時に発生させるものである。   A fuel cell using a polymer electrolyte generates electric power and heat simultaneously by electrochemically reacting a fuel gas containing hydrogen and an oxidizing gas containing oxygen such as air.

その構造は、まず、水素イオンを選択的に輸送する高分子電解質膜の両面に、白金などの金属触媒を担持したカーボン粉末を触媒体とし、これに水素イオン伝導性高分子電解質を混合したもので触媒反応層を形成する。   The structure is made by first using a carbon powder carrying a metal catalyst such as platinum as a catalyst on both sides of a polymer electrolyte membrane that selectively transports hydrogen ions, and then mixing this with a hydrogen ion conductive polymer electrolyte. To form a catalytic reaction layer.

一方、燃料ガスの通気性と、電子伝導性を併せ持つ導電性カ−ボンから構成される撥水カーボン層をカーボンペーパーなどのガス拡散層基材上に形成する。これら触媒反応層を形成した水素イオン伝導性高分子電解質膜とガス拡散層基材を接合した電極を高分子電解質形燃料電池電極(MEA)と呼ぶ。   On the other hand, a water-repellent carbon layer composed of conductive carbon having both air permeability and fuel conductivity is formed on a gas diffusion layer substrate such as carbon paper. The electrode obtained by joining the hydrogen ion conductive polymer electrolyte membrane having the catalyst reaction layer and the gas diffusion layer base material is referred to as a polymer electrolyte fuel cell electrode (MEA).

一般に高分子電解質膜は、厚さ20〜120μm程度であり、化学的に安定なスルホン酸を有するパーフルオロカーボン重合体からなる陽イオン交換膜が用いられる場合が多い。しかし、機械的な強度は十分ではなく、MEA作製時に、しわ、破損等が生じる。さらに発電時においては、高分子電解質のイオン伝導性の発揮には充分な水分が必要であり、そのため、燃料および酸化ガスは加湿され供給される。この加湿による水分および生成水により、高分子電解質は含水し、含水率により寸法が変化し、電池の信頼性は必ずしも十分ではなかった。そのため、十分な機械的強度、化学的安定性、寸法安定性を備えた高分子電解質膜の開発が進められている。   In general, the polymer electrolyte membrane has a thickness of about 20 to 120 μm, and a cation exchange membrane made of a perfluorocarbon polymer having a chemically stable sulfonic acid is often used. However, the mechanical strength is not sufficient, and wrinkles, breakage, etc. occur during MEA fabrication. Furthermore, at the time of power generation, sufficient moisture is necessary for the ionic conductivity of the polymer electrolyte to be exhibited, and therefore, the fuel and the oxidizing gas are humidified and supplied. The polymer electrolyte contained water due to the moisture and water produced by the humidification, and the dimensions changed depending on the moisture content, and the reliability of the battery was not always sufficient. Therefore, development of a polymer electrolyte membrane having sufficient mechanical strength, chemical stability, and dimensional stability is being promoted.

上記課題を解決する方法として、補強材を使用する方法が報告されている。例えば、補強材としてポリテトラフルオロエチレン多孔膜を使用し、スルホン酸基を有する高分子電解質を含浸させた高分子電解質膜が提案されている(例えば、特許文献1参照。)。   As a method for solving the above problems, a method using a reinforcing material has been reported. For example, a polymer electrolyte membrane in which a polytetrafluoroethylene porous membrane is used as a reinforcing material and impregnated with a polymer electrolyte having a sulfonic acid group has been proposed (see, for example, Patent Document 1).

また、フィブリル状、織布状、又は不織布状のパーフルオロカーボン重合体で補強された高分子電解質膜が提案されている(例えば、特許文献2参照。)。この補強材の使用により、機械的強度の改善は観られた。   In addition, a polymer electrolyte membrane reinforced with a fibril-like, woven-like, or non-woven-like perfluorocarbon polymer has been proposed (see, for example, Patent Document 2). By using this reinforcement, an improvement in mechanical strength was observed.

しかしながら、上述した様に含水時における寸法安定性においては、補強材による高分子電解質の伸びる応力を抑える効果によるが、十分ではなかった。   However, as described above, the dimensional stability at the time of hydration is not sufficient although it is due to the effect of suppressing the stress that the polymer electrolyte stretches by the reinforcing material.

燃料電池はその実発電形態により頻度は異なるものの、起動停止および出力変動を繰り返す。この際、燃料および酸化ガス中に加湿として含まれる水分量、発電により生成される水分量ともに変化が生じる。含水率による寸法安定性が低い場合は、高分子電解質膜中の高分子電解質部分の棒潤・収縮に伴い、補強材部分と剥離が生じ、高分子電解質膜の破損に繋がる。つまり、補強材と高分子電解質との結着性が重要となる。   Although the frequency of the fuel cell varies depending on the actual power generation mode, it repeatedly starts and stops and the output fluctuates. At this time, the amount of moisture contained as humidification in the fuel and the oxidizing gas and the amount of moisture generated by power generation change. When the dimensional stability due to the water content is low, the reinforcing part is peeled off due to the sticking / shrinking of the polymer electrolyte part in the polymer electrolyte film, which leads to damage of the polymer electrolyte film. That is, the binding property between the reinforcing material and the polymer electrolyte is important.

これに対して、補強材を親水化処理することにより、高分子電解質溶液の浸透力を改善する方法(例えば、特許文献3参照)、又、逆に高分子電解質溶液の補強材に対する接触角を調節し浸透力を高める方法(例えば、特許文献4参照)が報告されている。
特公平05−75835号公報 特公平06−231779号公報 特開平06−271688号公報 特開2003−41031号公報
On the other hand, the method of improving the permeability of the polymer electrolyte solution by hydrophilizing the reinforcing material (for example, see Patent Document 3), and conversely, the contact angle of the polymer electrolyte solution with respect to the reinforcing material is increased. A method for adjusting and increasing the penetrating power (for example, see Patent Document 4) has been reported.
Japanese Patent Publication No. 05-75835 Japanese Patent Publication No. 06-231799 Japanese Patent Laid-Open No. 06-271688 JP 2003-41031 A

しかしながら、上記いずれの方法を用いても高分子電解質と補強材の結着性の向上は十分とは言えなかった。そのため、機械的強度及び寸法安定性の低下が生じ、燃料電池の起動停止を繰り返した際の高分子電解質膜の劣化を加速させる一要因となっていた。   However, none of the above methods has been sufficient to improve the binding properties of the polymer electrolyte and the reinforcing material. For this reason, mechanical strength and dimensional stability are reduced, which is one factor for accelerating the deterioration of the polymer electrolyte membrane when the fuel cell is repeatedly started and stopped.

本発明は、上記従来の課題を考慮し、機械的強度及び寸法安定性がより向上した高分子電解質膜およびそれを用いた高分子電解質形燃料電池を提供することを目的とする。   In view of the above conventional problems, an object of the present invention is to provide a polymer electrolyte membrane with improved mechanical strength and dimensional stability and a polymer electrolyte fuel cell using the same.

上記目的を達成するために、第1の本発明は、
第1のイオン交換樹脂と補強材を有し、少なくとも一方の表面に凹凸が形成された補強材層と、
前記凹凸が形成された表面に、前記凹凸を覆うように形成された、第2のイオン交換樹脂を有するイオン交換樹脂層とを備えた、高分子電解質膜である。
In order to achieve the above object, the first present invention provides:
A reinforcing material layer having a first ion exchange resin and a reinforcing material, wherein at least one surface has irregularities;
It is a polymer electrolyte membrane provided with the ion exchange resin layer which has the 2nd ion exchange resin formed in the surface in which the said unevenness | corrugation was formed so that the said unevenness | corrugation might be covered.

又、第2の本発明は、
前記補強材は、前記表面と実質上垂直方向に形成された複数の貫通孔を有しており、前記第1のイオン交換樹脂は、前記貫通孔に充填されている、第1の本発明の高分子電解質膜である。
The second aspect of the present invention is
The reinforcing material has a plurality of through holes formed in a direction substantially perpendicular to the surface, and the first ion exchange resin is filled in the through holes. It is a polymer electrolyte membrane.

又、第3の本発明は、
前記第1のイオン交換樹脂と、前記第2のイオン交換樹脂は、同一のイオン交換樹脂である、第1の本発明の高分子電解質膜である。
The third aspect of the present invention
The first ion exchange resin and the second ion exchange resin are the polymer electrolyte membrane according to the first aspect of the present invention, which is the same ion exchange resin.

又、第4の本発明は、
前記凹凸は、ブラスト処理、プラズマエッチング処理、コロナ放電処理、及びフレーム処理から選択される1種類以上の物理的表面処理によって形成された凹凸である、第1の本発明の高分子電解質膜である。
The fourth aspect of the present invention is
The said unevenness | corrugation is a polymer electrolyte membrane of 1st this invention which is an unevenness | corrugation formed by 1 or more types of physical surface treatments selected from a blast process, a plasma etching process, a corona discharge process, and a flame process. .

又、第5の本発明は、
前記凹凸が形成された表面の算術平均粗さ(Ra)は、1μm以上、5μm以下である、第1の本発明の高分子電解質膜である。
The fifth aspect of the present invention is
The arithmetic average roughness (Ra) of the surface on which the irregularities are formed is the polymer electrolyte membrane according to the first aspect of the present invention, which is 1 μm or more and 5 μm or less.

又、第6の本発明は、
前記補強材層の厚さは、10μm以上、20μm以下である、第1の本発明の高分子電解質膜である。
The sixth aspect of the present invention
The thickness of the reinforcing material layer is the polymer electrolyte membrane according to the first aspect of the present invention, which is 10 μm or more and 20 μm or less.

又、第7の本発明は、
前記表面に対する、前記貫通孔による開口率は、30%以上、80%以下である、第2の本発明の高分子電解質膜である。
The seventh aspect of the present invention
In the polymer electrolyte membrane according to the second aspect of the present invention, the opening ratio of the through holes with respect to the surface is 30% or more and 80% or less.

又、第8の本発明は、
前記貫通孔の1個あたりの平均断面積は、0.03mm以上、1mm以下である、第2の本発明の高分子電解質膜である。
Further, the eighth aspect of the present invention is
The average cross-sectional area per one of said through holes, 0.03 mm 2 or more and 1 mm 2 or less, a polymer electrolyte membrane of the second aspect of the present invention.

又、第9の本発明は、
前記補強材層は、両面に前記凹凸を有しており、
前記補強材層の両面に前記イオン交換樹脂層が形成されており、
前記補強材層、及び前記イオン交換樹脂層は3層以上、7層以下積層されている、第1の本発明の高分子電解質膜である。
The ninth aspect of the present invention provides
The reinforcing material layer has the irregularities on both sides,
The ion exchange resin layer is formed on both sides of the reinforcing material layer,
The reinforcing material layer and the ion exchange resin layer are the polymer electrolyte membrane according to the first aspect of the present invention, wherein 3 or more and 7 or less layers are laminated.

又、第10の本発明は、
前記補強材層、及び前記イオン交換樹脂層は、複数層積層されており、
少なくとも前記補強材層は2層以上であり、
隣り合う前記補強材層の各々に形成されている複数の貫通孔は、中心が一致しないように形成されている、第2の本発明の高分子電解質膜である。
The tenth aspect of the present invention is
The reinforcing material layer and the ion exchange resin layer are laminated in a plurality of layers,
At least the reinforcing material layer is two or more layers,
The plurality of through holes formed in each of the adjacent reinforcing material layers is the polymer electrolyte membrane according to the second aspect of the present invention formed so that the centers do not coincide with each other.

又、第11の本発明は、
第1〜10のいずれかの本発明の高分子電解質膜と、
前記高分子電解質膜の両面に形成された一対のガス拡散電極と、
前記一対のガス拡散電極を両側から挟むように設けられた一対のセパレータと有する、積層された複数の単電池を備えた、高分子電解質形燃料電池である。
The eleventh aspect of the present invention is
Any one of the first to tenth polymer electrolyte membranes of the present invention;
A pair of gas diffusion electrodes formed on both sides of the polymer electrolyte membrane;
A polymer electrolyte fuel cell comprising a plurality of stacked unit cells having a pair of separators provided so as to sandwich the pair of gas diffusion electrodes from both sides.

本発明によれば、機械的強度及び寸法安定性が、より向上した高分子電解質膜及びそれを用いた高分子電解質形燃料電池を提供することが出来る。   According to the present invention, it is possible to provide a polymer electrolyte membrane with improved mechanical strength and dimensional stability and a polymer electrolyte fuel cell using the same.

以下に本発明の実施の形態について図面を用いて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(実施の形態1)
図1(a)は、本実施の形態1における高分子電解質膜の斜視図である。又、図1(b)は、図1(a)に示す高分子電解質膜の断面図である。
(Embodiment 1)
FIG. 1A is a perspective view of the polymer electrolyte membrane according to the first embodiment. FIG. 1B is a cross-sectional view of the polymer electrolyte membrane shown in FIG.

図1(a)、(b)に示す様に、本実施の形態1における高分子電解質膜1は、補強材層2と、補強材層2を挟むように形成された高分子電解質層3とを備えている。尚、本発明のイオン交換樹脂層の一例は、高分子電解質層3に相当し、本発明の第2のイオン交換樹脂の一例は、高分子電解質層3が有する高分子電解質に相当する。この高分子電解質層3によりイオン伝導性が向上する。   As shown in FIGS. 1 (a) and 1 (b), a polymer electrolyte membrane 1 in Embodiment 1 includes a reinforcing material layer 2, and a polymer electrolyte layer 3 formed so as to sandwich the reinforcing material layer 2. It has. An example of the ion exchange resin layer of the present invention corresponds to the polymer electrolyte layer 3, and an example of the second ion exchange resin of the present invention corresponds to the polymer electrolyte included in the polymer electrolyte layer 3. The polymer electrolyte layer 3 improves ionic conductivity.

又、補強材層2には、高分子電解質層3と接している表面と実質上垂直に(積層方向と平行に)貫通され、多数の貫通孔4が形成された補強材5と、この貫通孔4内に充填された、本発明の第1のイオン交換樹脂の一例である高分子電解質とを有している。この多数の貫通孔4が形成された補強材5を得る方法としては、基材となる無孔シートに対して、抜き型等を使用し機械的に打ち抜く方法や、レーザ光線を使用し孔を形成する方法等がある。尚、高分子電解質層3の高分子電解質と、貫通孔4内の高分子電解質の種類は、同じであっても異なっていても良い。   Further, the reinforcing material layer 2 is penetrated substantially perpendicularly (in parallel with the laminating direction) to the surface in contact with the polymer electrolyte layer 3, and the reinforcing material 5 having a large number of through holes 4 is formed. And a polymer electrolyte which is an example of the first ion exchange resin of the present invention filled in the holes 4. As a method for obtaining the reinforcing material 5 having a large number of through-holes 4, a punching die or the like is used to mechanically punch a non-porous sheet serving as a base material, or a laser beam is used to form holes. There is a method of forming. The type of polymer electrolyte in the polymer electrolyte layer 3 and the polymer electrolyte in the through-hole 4 may be the same or different.

この高分子電解質層3と接している、補強材5の表面5aは、1種類以上の物理的表面処理が施されている。   The surface 5a of the reinforcing material 5 in contact with the polymer electrolyte layer 3 is subjected to one or more types of physical surface treatments.

この物理的表面処理の方法としては、前記物理的表面処理の方法としては、ブラスト処理、プラズマエッチング処理、コロナ放電処理、フレーム処理等がある。ブラスト処理は、処理対象物の表面に賦与する粗さを使用メディア等により制御可能であり、工業的にも確立された手法である。さらには近年、メディアが残存しない氷、ドライアイスでの処理も開発されており、これらの手法を用いて物理的表面処理を施しても良い。   Examples of the physical surface treatment method include blast treatment, plasma etching treatment, corona discharge treatment, flame treatment, and the like. Blasting is an industrially established technique that can control the roughness imparted to the surface of the object to be treated by the media used. Furthermore, in recent years, treatment with ice or dry ice in which no medium remains has been developed, and physical surface treatment may be performed using these methods.

上記物理的表面処理が施された補強材5の表面5aには、図1(b)に示す様に、凹凸5bが賦与される。又、図2(a)は、高分子電解質層3と補強剤層2の境界部分の拡大図である。図2(a)に示す様に、表面5a上に形成された高分子電解質層3は、凹凸5bを完全に覆うよう形成されている。例えば、図2(b)のように、凹凸5bが覆われていない部分が存在すると、起動停止、出力変動を繰り返すうちに、そこから、補強材5と高分子電解質の剥離が生じ、電気的短絡およびガス透過性が高まる恐れがある。   As shown in FIG. 1B, the unevenness 5b is given to the surface 5a of the reinforcing material 5 subjected to the physical surface treatment. FIG. 2A is an enlarged view of a boundary portion between the polymer electrolyte layer 3 and the reinforcing agent layer 2. As shown in FIG. 2A, the polymer electrolyte layer 3 formed on the surface 5a is formed so as to completely cover the unevenness 5b. For example, as shown in FIG. 2 (b), if there is a portion where the unevenness 5b is not covered, the reinforcing material 5 and the polymer electrolyte peel from each other while the start and stop and the output fluctuation are repeated, and the electrical Short circuit and gas permeability may be increased.

上記補強材層2及び高分子電解質層3を有する高分子電解質膜1を挟んでその両面に、触媒金属を担持したカーボン担体と、前記カーボン担体にイオン伝導性高分子電解質を混合付着させた触媒層を密着させて膜電極構造体が作製される。そして、この膜電極構造体を用いて固体高分子形燃料電池が作製される。   A carbon carrier carrying a catalyst metal on both sides of the polymer electrolyte membrane 1 having the reinforcing material layer 2 and the polymer electrolyte layer 3 and a catalyst in which an ion conductive polymer electrolyte is mixed and attached to the carbon carrier. The layers are brought into close contact to produce a membrane electrode structure. Then, a polymer electrolyte fuel cell is manufactured using this membrane electrode structure.

上述した様に、前記物理的表面処理を施された補強材5の表面5aには、マイクロメートルオーダーの表面粗さが賦与され、イオン伝導性の高分子電解質層3と接する表面積が増加する。この補強材層2と高分子電解質層3との接触面積の増加によりアンカー効果が発揮され、補強材5と高分子電解質との間の結着性の向上が期待される。この結着性の向上は、高分子電解質膜1の寸法安定性の向上に繋がる。これにより、燃料電池起動停止および出力変化に伴う高分子電解質膜の劣化が低減され、長期に及ぶ安定的な出力を実現できる固体高分子電解質形燃料電池を提供することができる。   As described above, the surface 5a of the reinforcing material 5 subjected to the physical surface treatment is given a surface roughness on the order of micrometers, and the surface area in contact with the ion conductive polymer electrolyte layer 3 is increased. An anchor effect is exhibited by increasing the contact area between the reinforcing material layer 2 and the polymer electrolyte layer 3, and an improvement in the binding property between the reinforcing material 5 and the polymer electrolyte is expected. This improvement in binding properties leads to an improvement in dimensional stability of the polymer electrolyte membrane 1. Thereby, the deterioration of the polymer electrolyte membrane due to the start / stop of the fuel cell and the output change is reduced, and a solid polymer electrolyte fuel cell capable of realizing a long-term stable output can be provided.

尚、補強材層2に対して、前記物理的表面処理により賦与される補強材層2表面積の増加は、表面の凹凸5bの算術平均粗さにして1μm以上、5μm以下であることが望ましい。5μmより大きい表面粗さが賦与されると、前記の通り、電池運転時における高分子電解質膜の劣化の一要因となる。さらには、締結時に触媒層の破損を生じる可能性がある。又、下限値が1μm以下の場合には、凹凸5bが小さいためアンカー効果が十分に得られず、機械的強度、寸法安定性が十分とはならない。   The increase in the surface area of the reinforcing material layer 2 imparted to the reinforcing material layer 2 by the physical surface treatment is preferably 1 μm or more and 5 μm or less in terms of the arithmetic average roughness of the surface irregularities 5b. When a surface roughness greater than 5 μm is applied, as described above, it becomes a factor for deterioration of the polymer electrolyte membrane during battery operation. Furthermore, the catalyst layer may be damaged at the time of fastening. On the other hand, when the lower limit value is 1 μm or less, since the unevenness 5b is small, the anchor effect cannot be sufficiently obtained, and the mechanical strength and the dimensional stability are not sufficient.

又、補強材層2の厚さは、10μm以上〜20μm以下であることが望ましい。補強材層2の厚さが薄すぎると高分子電解質膜を充分に補強できず、厚すぎるとイオン伝導抵抗が高くなり、充分な電池出力を得ることが出来ない恐れがある。更に、薄すぎると十分な強度が得られない恐れがある。   The thickness of the reinforcing material layer 2 is desirably 10 μm to 20 μm. If the thickness of the reinforcing material layer 2 is too thin, the polymer electrolyte membrane cannot be sufficiently reinforced, and if it is too thick, the ion conduction resistance becomes high, and there is a possibility that sufficient battery output cannot be obtained. Furthermore, if it is too thin, sufficient strength may not be obtained.

又、貫通孔4を有する部分の補強材層2の表面に対する開口率は30%以上、80%以下であることが望ましい。開口率が低すぎるとイオン伝導性が妨げられ、高すぎると得られる高分子電解質膜を充分に補強できず、機械的強度が不充分となる。   Moreover, it is desirable that the opening ratio of the portion having the through hole 4 with respect to the surface of the reinforcing material layer 2 is 30% or more and 80% or less. If the aperture ratio is too low, the ion conductivity is hindered, and if it is too high, the resulting polymer electrolyte membrane cannot be sufficiently reinforced, resulting in insufficient mechanical strength.

さらに、複数の貫通孔4の1つの平均断面積は0.03mm以上、1mm以下であることが望ましい。貫通孔4の大きさが小さすぎると、単位面積当たりの孔の数が非常に多くなるため、補強材5として用いる多孔シートの生産性が低下したり、イオン交換樹脂の充填が困難になる。又、貫通孔4の大きさが大きすぎると、得られる高分子電解質膜を充分に補強できず、機械的強度が不充分となる。又、貫通孔4の大きさや形状は均一であっても、不均一であっても良く、2種類以上の大きさや形状が混在してもよい。 Furthermore, one of the average cross-sectional area of the plurality of through holes 4 is 0.03 mm 2 or more is desirably 1 mm 2 or less. If the size of the through-holes 4 is too small, the number of holes per unit area becomes very large, so that the productivity of the porous sheet used as the reinforcing material 5 is reduced, and it is difficult to fill the ion-exchange resin. On the other hand, if the size of the through hole 4 is too large, the obtained polymer electrolyte membrane cannot be sufficiently reinforced and the mechanical strength becomes insufficient. The size and shape of the through-hole 4 may be uniform or non-uniform, and two or more types and sizes may be mixed.

又、本実施の形態1においては、補強材層2の両面に高分子電解質層3を形成した構成を示したが、図3に示す様に補強材5の片面にのみ物理的表面処理を施し、高分子電解質層3を、処理を施した表面にのみ形成した2層構造であっても良い。   In the first embodiment, the configuration in which the polymer electrolyte layer 3 is formed on both surfaces of the reinforcing material layer 2 is shown. However, as shown in FIG. 3, only one surface of the reinforcing material 5 is subjected to physical surface treatment. Alternatively, a two-layer structure in which the polymer electrolyte layer 3 is formed only on the treated surface may be used.

又、補強材層2及び高分子電解質を主に有する高分子電解質層3は、本実施の形態1の図1(a)、(b)に示されている3層よりも多く積層させても良い。3層以上積層する場合は、補強材層2の両面に高分子電解質層3を形成した構成であることがより望ましい。又、8層以上積層する場合は、少なくとも4層以上が補強材を含む層で構成されるため、生産工程が頻雑になり生産性は低下する。さらに、積層による電気抵抗の増加を抑制するためには、各層の厚さをより薄くする必要があり、制御およびハンドリングが困難になる。そのため、補強材層2と高分子電解質層3を積層する場合は、3〜7層が望ましい。   Further, the reinforcing material layer 2 and the polymer electrolyte layer 3 mainly including the polymer electrolyte may be laminated more than the three layers shown in FIGS. 1A and 1B of the first embodiment. good. When three or more layers are laminated, it is more desirable that the polymer electrolyte layer 3 is formed on both surfaces of the reinforcing material layer 2. In the case where eight or more layers are laminated, at least four or more layers are composed of layers including a reinforcing material, so that the production process becomes complicated and the productivity is lowered. Furthermore, in order to suppress an increase in electrical resistance due to lamination, it is necessary to make the thickness of each layer thinner, making control and handling difficult. Therefore, when the reinforcing material layer 2 and the polymer electrolyte layer 3 are laminated, 3 to 7 layers are desirable.

この場合、補強材層2と高分子電解質層3は隣接して重なっていても、高分子電解質層3のみからなる層を介して重なっていてもよい。また、補強材層2が2層以上である場合は、貫通孔4の中心が、厚さ方向に対して上又は下に存在する層の貫通孔4の中心と重ならないことが望ましい。重ならない場合の方が、得られる高分子電解質膜の機械的強度の向上に繋がるためである。   In this case, the reinforcing material layer 2 and the polymer electrolyte layer 3 may overlap with each other or may overlap with each other through a layer made of only the polymer electrolyte layer 3. Moreover, when the reinforcing material layer 2 is two or more layers, it is desirable that the center of the through hole 4 does not overlap with the center of the through hole 4 of the layer existing above or below the thickness direction. This is because the case where they do not overlap leads to improvement in the mechanical strength of the obtained polymer electrolyte membrane.

以下、本発明の高分子電解質膜について実施例にてより具体的に説明する。   Hereinafter, the polymer electrolyte membrane of the present invention will be described more specifically in Examples.

(実施例1)
はじめに、厚さが15μmのポリフェニルスルフィドフィルム(東レ社製)に打抜き機によってφ400μmの貫通孔(1個当たりの平均断面積0.126mm)を中心間距離が500μmとなるように千鳥配列で開孔する。作製された多孔シートを補強材として使用する。尚、この多孔シート補強材の開口率は58%である。
Example 1
First, through a 15 μm thick polyphenyl sulfide film (manufactured by Toray Industries, Inc.) with a punching machine, φ400 μm through holes (average cross-sectional area of 0.126 mm 2 per piece) are arranged in a staggered arrangement so that the center-to-center distance is 500 μm. Open a hole. The produced porous sheet is used as a reinforcing material. The aperture ratio of the porous sheet reinforcing material is 58%.

この補強材5に対して、物理的表面処理としてブラスト処理(SFK−1型、不二製作所)を施した。ブラスト処理の方式として、細かい研削材でも効率的に噴射可能なエア−ブラスト方式を採用し、研削材としては炭化ケイ素アルミナを使用した。又、炭化ケイ素アルミナの粒度範囲は2.5〜3.5μmとした。   A blast treatment (SFK-1 type, Fuji Seisakusho) was applied to the reinforcing material 5 as a physical surface treatment. As a blasting method, an air-blasting method capable of efficiently injecting even a fine abrasive was adopted, and silicon carbide alumina was used as the abrasive. The particle size range of silicon carbide alumina was 2.5 to 3.5 μm.

次に、物理的表面処理を施した補強材5を厚み100μmのPET基材上に配置し、イオン伝導性高分子電解質エタノール分散液を、ダイコート法で総厚み25μmとなるように塗工し80℃で乾燥させた。   Next, the reinforcing material 5 subjected to physical surface treatment is placed on a PET substrate having a thickness of 100 μm, and an ion conductive polymer electrolyte ethanol dispersion is applied by a die coating method so that the total thickness becomes 25 μm. Dry at 0C.

上記ダイコート法とは水平なテーブルの上に被塗着物を固定し、ダイヘッドにより液体状の塗着物を塗布するコーティング法のことである。   The die coating method is a coating method in which an object to be coated is fixed on a horizontal table and a liquid coating material is applied by a die head.

得られた膜を前記PET基材から剥離し、表裏を反転させ、別途用意したPET基材上に配置した。同様に前記分散液をダイコート法で総厚み35μmとなるように塗工、80℃での乾燥を行った。この高分子電解質膜1は前記表面物理処理を施した補強材5と高分子電解質からなる厚さ15μmの補強材層2の両面に、高分子電解質のみからなる厚さ10μmの高分子電解質層3が積層された構造となっている。   The obtained film was peeled from the PET base material, the front and back sides were reversed, and placed on a separately prepared PET base material. Similarly, the dispersion was applied by a die coating method to a total thickness of 35 μm and dried at 80 ° C. The polymer electrolyte membrane 1 has a 10 μm-thick polymer electrolyte layer 3 made of only a polymer electrolyte on both sides of a reinforcing material 5 subjected to the above surface physical treatment and a 15 μm-thick reinforcing material layer 2 made of a polymer electrolyte. Has a laminated structure.

次に、MEAの作製及び燃料電池セル(単電池)の組立を以下のように行った。   Next, production of MEA and assembly of a fuel cell (unit cell) were performed as follows.

ケッチェンブラック(登録商標)EC(オランダ国、AKZO Chemie 社)に、平均粒径約30Åの白金粒子を50重量%担持したものを、空気極側の触媒担持粒子とした。一方、ケッチェンブラック ECに平均粒径約30Åの白金粒子とルテニウム粒子を、それぞれ25重量%担持したものを燃料極側の触媒担持粒子とした。   Ketjen Black (registered trademark) EC (AKZO Chemie, Netherlands) carrying 50% by weight of platinum particles having an average particle diameter of about 30 mm was used as catalyst-carrying particles on the air electrode side. On the other hand, 25 wt% platinum particles and ruthenium particles having an average particle size of about 30 mm were supported on Ketjen Black EC as catalyst-supported particles on the fuel electrode side.

前記触媒担持粒子に対して、はじめに水を加え、その後水素イオン伝導性高分子電解質のエタノ−ル分散液(旭硝子社製フレミオン)を混合・攪拌し、触媒担持粒子の表面に電解質を被覆した。ここで、水素イオン伝導性高分子としては、9重量%濃度のパーフルオロカーボンスルホン酸のエタノ−ル分散液を用いた。又、水素イオン伝導性高分子電解質の導入量は、触媒を担持したカ−ボンの重量に対して、カソード、アノードインクともに80重量%となるように添加した。そして、前記触媒インクを空中にスプレーするスプレー工程により、高分子電解質膜1に直接塗着させた。   Water was first added to the catalyst-carrying particles, and then an ethanol dispersion of hydrogen ion conductive polymer electrolyte (Flemion manufactured by Asahi Glass Co., Ltd.) was mixed and stirred to coat the surface of the catalyst-carrying particles with the electrolyte. Here, as the hydrogen ion conductive polymer, an ethanol dispersion of 9% by weight perfluorocarbon sulfonic acid was used. Further, the introduction amount of the hydrogen ion conductive polymer electrolyte was added so that both the cathode and the anode ink were 80% by weight with respect to the weight of the carbon carrying the catalyst. Then, the catalyst ink was directly applied to the polymer electrolyte membrane 1 by a spraying process of spraying the catalyst ink into the air.

次に、電極のガス拡散層となるカーボン不織布に対して撥水処理を施した。外寸16cm×20cm、厚み270μmの導電性カーボン粒子のカーボン不織布(東レ製、TGP−H−90)を、フッ素樹脂含有の水性ディスパージョン(ダイキン工業製、ネオフロンND1)に含浸した後、これを乾燥し、350℃で30分加熱することで、撥水性を与えた。   Next, a water repellent treatment was applied to the carbon nonwoven fabric that will be the gas diffusion layer of the electrode. After impregnating a carbon nonwoven fabric (TGP-H-90, manufactured by Toray Industries, Inc., conductive carbon particles) having an outer size of 16 cm × 20 cm and a thickness of 270 μm into an aqueous dispersion containing fluororesin (manufactured by Daikin Industries, NEOFLON ND1), It was dried and heated at 350 ° C. for 30 minutes to give water repellency.

さらに、このカーボン不織布の一方の面に、導電性カーボン粉末とPTFE微粉末を分散させた水溶液とを混合したインクを、スクリーン印刷法を用いて塗布することで撥水カーボン層を形成した。このカーボン不織布を撥水層の塗布した面が触媒層の側に接するようにホットプレスで接合し、これをMEAとした。尚、ホットプレスの条件としては圧力10kgfcm−2、温度120℃で1分間行った。 Furthermore, a water-repellent carbon layer was formed on one surface of the carbon nonwoven fabric by applying an ink obtained by mixing a conductive carbon powder and an aqueous solution in which PTFE fine powder was dispersed using a screen printing method. This carbon nonwoven fabric was joined by hot pressing so that the surface coated with the water repellent layer was in contact with the catalyst layer side, and this was used as MEA. The hot pressing was performed at a pressure of 10 kgfcm −2 and a temperature of 120 ° C. for 1 minute.

さらに、前記MEAを樹脂含浸黒鉛板から構成したセパレータ2枚で挟み合わせ、これを単電池とした。   Further, the MEA was sandwiched between two separators composed of a resin-impregnated graphite plate, and this was used as a unit cell.

燃料電池は70℃に保持し、アノードおよびカソードにはそれぞれ露点が64℃および70℃となるように加温、加湿した水素ガスおよび空気を供給し、燃料ガス利用率は70%、酸化ガス利用率は40%に設定した。   The fuel cell is maintained at 70 ° C., and heated and humidified hydrogen gas and air are supplied to the anode and cathode so that the dew points are 64 ° C. and 70 ° C., respectively. The rate was set at 40%.

(実施例2)
実施例1と同様の補強材5に対して、補強材の物理的表面処理として酸素プラズマ処理を施した。プラズマエッチング装置(SAMCO、BP−1)を使用し、酸素圧力20Pa、出力150Wで1分間行った。その他、高分子電解質膜の作製条件は実施例1と同様である。
(Example 2)
The same reinforcing material 5 as in Example 1 was subjected to oxygen plasma treatment as a physical surface treatment of the reinforcing material. A plasma etching apparatus (SAMCO, BP-1) was used, and the process was performed for 1 minute at an oxygen pressure of 20 Pa and an output of 150 W. Other conditions for producing the polymer electrolyte membrane are the same as in Example 1.

(比較例1)
実施例1に対して、補強材5である多孔シートに物理的表面処理を施さず使用した。その他、高分子電解質膜の作製条件は実施例1と同様である。
(Comparative Example 1)
In contrast to Example 1, the porous sheet as the reinforcing material 5 was used without being subjected to physical surface treatment. Other conditions for producing the polymer electrolyte membrane are the same as in Example 1.

(表1)に補強材5の表面粗さを示す。表面処理後の補強材表面の凹凸を表面粗さ計(ミツトヨ、サーフテストSV−9634)により測定し、算術平均粗さ(Ra)を算出比較した。(表1)より、物理的処理を施していない比較例1の補強材5の表面粗さ0.9μmに対して、サンドブラスト処理を施した実施例1の補強材では2.3μm、酸素プラズマ処理を施した実施例2の補強材5では、2.5μmとなった。いずれの物理的表面処理においても、補強材5の表面粗さは増加し、高分子電解質層3との接触面積が増加した。   Table 1 shows the surface roughness of the reinforcing material 5. The unevenness of the surface of the reinforcing material after the surface treatment was measured with a surface roughness meter (Mitutoyo, Surf Test SV-9634), and the arithmetic average roughness (Ra) was calculated and compared. (Table 1) shows that the surface roughness of the reinforcing material 5 of Comparative Example 1 that is not subjected to physical treatment is 0.9 μm, whereas the reinforcing material of Example 1 that has been sandblasted is 2.3 μm, oxygen plasma treatment. In the reinforcing material 5 of Example 2 subjected to the above, the thickness was 2.5 μm. In any physical surface treatment, the surface roughness of the reinforcing material 5 increased and the contact area with the polymer electrolyte layer 3 increased.

Figure 2006040631
又、(表2)に引張弾性率および寸法変化率を併せて示す。まず、高分子電解質膜1を幅、長さともに100mmに切り出し、標線間距離25mm、チェック間距離50mmとなるようにし、試験速度50mm/分にて引張試験を行い、得られた変位と荷重のチャートから初期10%の歪の傾きを求め、その傾きより引張弾性率を求めた。引張弾性率の増加は高分子電解質膜の機械的強度の増加を意味する。
Figure 2006040631
Table 2 also shows the tensile modulus and dimensional change rate. First, the polymer electrolyte membrane 1 is cut out to 100 mm in both width and length, the distance between marked lines is 25 mm, the distance between checks is 50 mm, a tensile test is performed at a test speed of 50 mm / min, and the obtained displacement and load are obtained. The initial 10% strain slope was determined from the chart, and the tensile modulus was determined from the slope. An increase in tensile modulus means an increase in the mechanical strength of the polymer electrolyte membrane.

次に、寸法変化率については、以下のように算出した。高分子電解質膜1を燃料電池実運転時のスタック部分の温度と等しい70℃の温水に12時間浸漬した。温水浸漬前後の寸法を測定し、寸法変化率を測定した。寸法変化率が小さいということは、燃料電池実運転時の寸法安定性に富み、耐久性の向上が見込まれる。   Next, the dimensional change rate was calculated as follows. The polymer electrolyte membrane 1 was immersed for 12 hours in warm water at 70 ° C., which is equal to the temperature of the stack portion during actual operation of the fuel cell. The dimensions before and after immersion in hot water were measured, and the dimensional change rate was measured. A small dimensional change rate is rich in dimensional stability during actual operation of the fuel cell and is expected to improve durability.

Figure 2006040631
(表2)より実施例1および2ともに、比較例1に対して、引張弾性率は大きく、寸法変化率は小さく算出された。これより、補強材表面処理によるアンカー効果により、高分子電解質との結着性が向上していることが分かる。また、表面処理の方法によらず、アンカー効果による結着性の向上は確認された。
Figure 2006040631
From Table 2, in both Examples 1 and 2, the tensile modulus was large and the dimensional change rate was small compared to Comparative Example 1. From this, it can be seen that the binding effect with the polymer electrolyte is improved by the anchor effect by the reinforcing material surface treatment. Further, it was confirmed that the binding property was improved by the anchor effect regardless of the surface treatment method.

表面処理の燃料電池実運転に与える影響を図4に示す。家庭用燃料電池として使用した場合、起動時間は1日あたり約12時間程度と推定される。そこで、本実験では、起動時間および停止時間をそれぞれ30分として、それを繰り返し、起動時の電池電圧の変化および停止時の水素ガス透過量を測定した。   FIG. 4 shows the effect of surface treatment on actual fuel cell operation. When used as a household fuel cell, the startup time is estimated to be about 12 hours per day. Therefore, in this experiment, the start time and the stop time were set to 30 minutes, respectively, and this was repeated, and the change in the battery voltage at the start and the hydrogen gas permeation amount at the stop were measured.

尚、水素ガス透過量は、電池運転停止時のカソード排ガス中に含まれる水素ガス量をガスクロマトグラフィーにより検出した。物理的処理を施した補強材5である多孔シートを使用した実施例1においては、起動停止を繰り返しても、電池電圧の低下およびガス透過量の増加が小さく、高分子電解質膜1の劣化が進行していないことが示唆された。   As for the hydrogen gas permeation amount, the amount of hydrogen gas contained in the cathode exhaust gas when the battery operation was stopped was detected by gas chromatography. In Example 1 using the porous sheet, which is the reinforcing material 5 subjected to physical treatment, even if the start and stop are repeated, the decrease in the battery voltage and the increase in the gas permeation amount are small, and the polymer electrolyte membrane 1 is not deteriorated. It was suggested that it was not progressing.

以上より、補強材5に対する物理的表面処理は、補強材5と高分子電解質の接触面積を増加し、この補強材5表面の凹凸にイオン交換樹脂が含浸することにより、イオン伝導性高分子電解質との結着性を増加させ、高分子電解質膜に要求させる機械的強度および寸法安定性を向上させることが示唆された。又、この寸法安定性の向上は、高分子電解質膜の燃料電池実運転においても、耐久性の向上に繋がることが確認された。   As described above, the physical surface treatment for the reinforcing material 5 increases the contact area between the reinforcing material 5 and the polymer electrolyte, and the ion-exchange resin is impregnated into the irregularities on the surface of the reinforcing material 5, whereby the ion conductive polymer electrolyte is obtained. It was suggested that the mechanical strength and dimensional stability required for the polymer electrolyte membrane were improved by increasing the binding property with the polymer electrolyte membrane. Moreover, it was confirmed that this improvement in dimensional stability leads to improvement in durability even in actual operation of the polymer electrolyte membrane fuel cell.

(実施例3)
実施例1に対して、補強材5の表面5aの表面粗さが異なるように物理的処理を施した。表面処理方法としては、エア−ブラスト処理を選択した。表面粗さを変化させるために、研削材である炭化ケイ素アルミナの粒径を粒度分布として2.5〜3.5μm、4.7〜5.9μm、5.9〜7.1μm、7.1〜8.9μmの4種類を選択して使用した。
(Example 3)
The physical treatment was applied to Example 1 so that the surface roughness of the surface 5a of the reinforcing material 5 was different. Air-blast treatment was selected as the surface treatment method. In order to change the surface roughness, the particle size distribution of the particle size distribution of silicon carbide alumina as an abrasive is 2.5 to 3.5 μm, 4.7 to 5.9 μm, 5.9 to 7.1 μm, 7.1 Four types of ˜8.9 μm were selected and used.

その他の高分子電解質膜の作製方法は実施例1と同様である。   Other methods for producing the polymer electrolyte membrane are the same as in Example 1.

図5は、実施例3において作製された補強材5のRaを横軸に、実施例1と同様の起動停止試験を行った際の1000時間目のガス透過量を縦軸にとった図である。尚、上記各粒度分布幅の研削材によって作製された4種類の異なるRaの補強材についてガス透過量の測定を行いプロットしているため、図5には計16種類の異なるRa値でのデータが示されている。   FIG. 5 is a graph in which Ra of the reinforcing material 5 produced in Example 3 is taken on the horizontal axis, and the gas permeation amount at 1000 hours when the same start / stop test as in Example 1 is conducted is taken on the vertical axis. is there. In addition, since the gas permeation amount was measured and plotted for four types of different reinforcing materials of Ra produced by the abrasives having the respective particle size distribution widths, FIG. 5 shows data with a total of 16 types of different Ra values. It is shown.

図5の結果から、表面処理により賦与された表面凹凸5bが、Raにして5μmより大きくなると、ガス透過量が100ppmから200ppmへと急に増加しており、5μmを越える凹凸5bは、起動停止を繰り返すうちに、高分子電解質膜1の劣化を進行させていることが分かる。   From the result of FIG. 5, when the surface unevenness 5b imparted by the surface treatment is larger than 5 μm in Ra, the gas permeation amount suddenly increases from 100 ppm to 200 ppm, and the unevenness 5b exceeding 5 μm starts and stops. It can be seen that the deterioration of the polymer electrolyte membrane 1 is advancing while repeating the above.

又、補強材自体(物理的表面処理を行わない場合)の表面粗さは、本実施例3における材料においては、0.1μm以上、1μm未満である。ここで、図5の白丸は比較例1(Raが0.9μm)における1000時間目の水素リーク量を示している(図4参照)。図5からRaが1μm未満の場合、高分子電解質膜が劣化しており、アンカー効果が生じていないことが分かる。   Further, the surface roughness of the reinforcing material itself (when physical surface treatment is not performed) is 0.1 μm or more and less than 1 μm in the material of the third embodiment. Here, the white circles in FIG. 5 indicate the hydrogen leak amount at 1000 hours in Comparative Example 1 (Ra is 0.9 μm) (see FIG. 4). FIG. 5 shows that when Ra is less than 1 μm, the polymer electrolyte membrane is deteriorated and the anchor effect does not occur.

以上より、補強材5に物理的処理により賦与される表面凹凸5bは、Raにして1μm以上、5μm以下であることが望ましい。   From the above, it is desirable that the surface unevenness 5b imparted to the reinforcing material 5 by physical treatment is 1 μm or more and 5 μm or less in terms of Ra.

(実施例4)
実施例1に対して、物理的表面処理を施した、貫通孔4の直径及び平均断面積の異なる多孔シートを補強材5として使用した。貫通孔4の直径及び平均断面積は、(表3)に示す様に8通りに変化させた。又、いずれの多孔シートにおいても、多孔の中心間距離を調整して、実施例1と等しい開口率58%となるようにした。物理的表面処理および高分子電解質膜の作製方法は実施例1と同様である。
Example 4
A porous sheet having a diameter and a mean cross-sectional area of the through-hole 4 subjected to physical surface treatment as compared with Example 1 was used as the reinforcing material 5. The diameter and average cross-sectional area of the through-hole 4 were changed in eight ways as shown in (Table 3). In any porous sheet, the distance between the centers of the pores was adjusted so that the aperture ratio was 58%, which was the same as in Example 1. The physical surface treatment and the method for producing the polymer electrolyte membrane are the same as in Example 1.

Figure 2006040631
(表3)に機械的強度の指標である引張弾性率および実運転時の内部電気抵抗を示す。内部電気抵抗は、主に高分子電解質膜のイオン伝導性に依存する。イオン伝導性が低いほど、抵抗値は大きくなり、電池電圧の低下につながる。平均断面積が0.03mmより小さい場合は電気抵抗が上昇し、1mmより大きい場合は引張弾性率が減少していることが分かる。また、0.03mmより小さい、平均断面積が0.0254mm(貫通孔直径180μm)の場合の貫通孔数は、実施例1の0.126mmの孔数の5倍必要であり、生産時間も5倍長くなる。
Figure 2006040631
Table 3 shows the tensile modulus as an index of mechanical strength and the internal electrical resistance during actual operation. The internal electrical resistance mainly depends on the ionic conductivity of the polymer electrolyte membrane. The lower the ionic conductivity, the higher the resistance value, leading to a decrease in battery voltage. The average cross-sectional area 0.03 mm 2 electrical resistance increases if less, it can be seen that 1 mm 2 greater than the tensile modulus of elasticity is decreased. Further, the number of through holes in the case where the average cross-sectional area is smaller than 0.03 mm 2 and the average cross-sectional area is 0.0254 mm 2 (through hole diameter 180 μm) is required to be five times the number of holes of 0.126 mm 2 in Example 1, and production Time is also 5 times longer.

以上より、平均断面積が0.03mm以上、1mm以下であることが望ましい。 From the above, the average cross-sectional area 0.03 mm 2 or more is desirably 1 mm 2 or less.

なお、本実施例では、引張弾性率が50kgfmm−2以下、内部抵抗が100mΩcm−2以上のものについて判定を否としている。これは、引張弾性率が判定値以下の場合には、起動停止運転耐久時において、高分子電解質膜が膨潤、収縮を起こし、内部電気抵抗値が判定値以上の場合には、電池電圧の低下が生じるためである。尚、この判定値は作製する燃料電池によって適宜変更を行っても良い。 In the present embodiment, the determination is rejected for those having a tensile elastic modulus of 50 kgfmm −2 or less and an internal resistance of 100 mΩcm −2 or more. This is because the polymer electrolyte membrane swells and contracts during start-stop operation durability when the tensile modulus is less than or equal to the judgment value, and the battery voltage decreases when the internal electrical resistance value is greater than or equal to the judgment value. This is because. Note that this determination value may be appropriately changed depending on the fuel cell to be manufactured.

(実施例5)
実施例1に対して、物理的表面処理を施した、厚みの異なる多孔シートを補強材5として使用した。補強材5の厚さを(表4)のように7通りに変化させた。物理的表面処理方法および高分子電解質膜の作製方法は実施例1と同様である。
(Example 5)
A porous sheet having a different thickness and subjected to a physical surface treatment as compared with Example 1 was used as the reinforcing material 5. The thickness of the reinforcing material 5 was changed in seven ways as shown in (Table 4). The physical surface treatment method and the method for producing the polymer electrolyte membrane are the same as in Example 1.

Figure 2006040631
(表4)に引張弾性率および実運転時の内部電気抵抗値を示す。厚さが10μmより薄くなると引張強度が減少し、20μmより厚くなると内部電気抵抗が上昇していることが分かる。
Figure 2006040631
Table 4 shows the tensile modulus and the internal electrical resistance value during actual operation. It can be seen that the tensile strength decreases when the thickness is less than 10 μm, and the internal electrical resistance increases when the thickness is greater than 20 μm.

以上より、補強材5として使用する多孔シートの厚さは10μm以上、20μm以下であることが望ましい。   From the above, it is desirable that the thickness of the porous sheet used as the reinforcing material 5 is 10 μm or more and 20 μm or less.

(実施例6)
実施例1に対して、物理的表面処理を施した、表面に対する開口率の異なる多孔シートを補強材5として使用した。開口率を(表5)のように7通りに変化させた。尚、物理的表面処理方および高分子電解質膜の作製方法は実施例1と同様である。
(Example 6)
For Example 1, a porous sheet having been subjected to a physical surface treatment and having a different opening ratio with respect to the surface was used as the reinforcing material 5. The aperture ratio was changed in seven ways as shown in Table 5. The physical surface treatment and the method for producing the polymer electrolyte membrane are the same as in Example 1.

Figure 2006040631
(表5)に引張弾性率および実運転時の内部電気抵抗値を示す。開口率が80%以上になると、引張弾性率が減少し、開口率が30%以下になると内部電気抵抗が上昇していることがわかる。
Figure 2006040631
Table 5 shows the tensile modulus and the internal electrical resistance value during actual operation. It can be seen that when the aperture ratio is 80% or more, the tensile elastic modulus is decreased, and when the aperture ratio is 30% or less, the internal electrical resistance is increased.

以上より、補強材5として使用する多孔シートの開口率は30%以上、80%以下であることが望ましい。   From the above, it is desirable that the aperture ratio of the porous sheet used as the reinforcing material 5 is 30% or more and 80% or less.

(実施例7)
補強材の貫通孔の平均断面積を0.03mm、厚さを10μm、開口率を30%(上記実施例4〜6における各項目の下限値)としたときに、算術平均粗さ(Ra)を(表6)に示す様に変化させ、そのときの引張弾性率および、1000時間目のガス透過量を示した。
(Example 7)
When the average cross-sectional area of the through holes of the reinforcing material is 0.03 mm 2 , the thickness is 10 μm, and the aperture ratio is 30% (the lower limit value of each item in Examples 4 to 6), the arithmetic average roughness (Ra ) Was changed as shown in (Table 6), and the tensile modulus at that time and the gas permeation amount at 1000 hours were shown.

Figure 2006040631
又、補強材の貫通孔の平均断面積を1mm、厚さを20μm、開口率を80%(上記実施例4〜6における各項目の上限値)としたときに、算術平均粗さ(Ra)を(表7)に示す様に変化させ、そのときの引張弾性率および、1000時間目のガス透過量を示した。
Figure 2006040631
Further, when the average cross-sectional area of the through holes of the reinforcing material is 1 mm 2 , the thickness is 20 μm, and the aperture ratio is 80% (the upper limit value of each item in Examples 4 to 6), the arithmetic average roughness (Ra ) Was changed as shown in Table 7, and the tensile modulus at that time and the gas permeation amount at 1000 hours were shown.

Figure 2006040631
上記(表6)及び(表7)の結果からも、(実施例3)と同様に補強材5に物理的処理により賦与される表面の凹凸5bは、Raにして1μm以上、5μm以下であることが望ましいことが分かる。
Figure 2006040631
From the results of the above (Table 6) and (Table 7), as in (Example 3), the surface irregularities 5b imparted to the reinforcing material 5 by physical treatment are 1 μm or more and 5 μm or less in terms of Ra. It turns out that is desirable.

(実施例8)
補強材の算術平均粗さ(Ra)を1μm、厚さを10μm、開口率を30%(上記実施例3、5、6における各項目の下限値)としたときに、貫通孔の平均断面積を(表8)に示す様に変化させ、そのときの引張弾性率及び、実運転時の内部電気抵抗値を示した。
(Example 8)
When the arithmetic mean roughness (Ra) of the reinforcing material is 1 μm, the thickness is 10 μm, and the aperture ratio is 30% (the lower limit value of each item in Examples 3, 5 and 6 above), the average cross-sectional area of the through holes Were changed as shown in (Table 8), and the tensile modulus at that time and the internal electrical resistance value during actual operation were shown.

Figure 2006040631
又、補強材の算術平均粗さ(Ra)を5μm、厚さを20μm、開口率を80%(上記実施例3、5、6における各項目の上限値)としたときに、貫通孔の平均断面積を(表9)に示す様に変化させ、そのときの引張弾性率及び、実運転時の内部電気抵抗値を示した。
Figure 2006040631
Further, when the arithmetic average roughness (Ra) of the reinforcing material is 5 μm, the thickness is 20 μm, and the aperture ratio is 80% (upper limit value of each item in Examples 3, 5, and 6), the average of the through holes The cross-sectional area was changed as shown in (Table 9), and the tensile modulus at that time and the internal electrical resistance value during actual operation were shown.

Figure 2006040631
上記(表8)および(表9)の結果からも(実施例4)と同様に、補強材の貫通孔の平均断面積は0.03mm以上、1mm以下が望ましいことが分かる。
Figure 2006040631
The Like the (Table 8) and from (Table 9) results (Example 4), the average cross-sectional area of the through holes of the reinforcing member is 0.03 mm 2 or more, it can be seen 1 mm 2 or less.

(実施例9)
補強材5の算術平均粗さ(Ra)を1μm、貫通孔の平均断面積を0.03mm、開口率を30%(上記実施例3、4、6における各項目の下限値)としたときに、厚みを(表10)に示す様に変化させ、そのときの引張弾性率及び、実運転時の内部電気抵抗値を示した。
Example 9
When the arithmetic mean roughness (Ra) of the reinforcing material 5 is 1 μm, the average cross-sectional area of the through-hole is 0.03 mm 2 , and the aperture ratio is 30% (the lower limit value of each item in Examples 3, 4, and 6). The thickness was changed as shown in (Table 10), and the tensile modulus at that time and the internal electrical resistance value during actual operation were shown.

Figure 2006040631
又、補強材5の算術平均粗さ(Ra)を5μm、貫通孔の平均断面積を1mm、開口率を80%(上記実施例3、4、6における各項目の上限値)としたときに、厚みを(表11)に示す様に変化させ、そのときの引張弾性率及び、実運転時の内部電気抵抗値を示した。
Figure 2006040631
Further, when the arithmetic average roughness (Ra) of the reinforcing material 5 is 5 μm, the average cross-sectional area of the through-hole is 1 mm 2 , and the opening ratio is 80% (upper limit values of the respective items in Examples 3, 4, and 6). The thickness was changed as shown in (Table 11), and the tensile modulus at that time and the internal electrical resistance value during actual operation were shown.

Figure 2006040631
上記(表10)および(表11)の結果からも(実施例5)と同様に、補強材5の厚みは、10μm以上、20μm以下が望ましいことが分かる。
Figure 2006040631
From the results of the above (Table 10) and (Table 11), it can be seen that the thickness of the reinforcing member 5 is desirably 10 μm or more and 20 μm or less, as in (Example 5).

(実施例10)
補強材の算術平均粗さ(Ra)を1μm、貫通孔の平均断面積を0.03mm、厚さを10μm、(上記実施例3、4、5における各項目の下限値)としたときに、開口率を(表12)に示す様に変化させ、そのときの引張弾性率及び、実運転時の内部電気抵抗値を示した。
(Example 10)
When the arithmetic mean roughness (Ra) of the reinforcing material is 1 μm, the average cross-sectional area of the through holes is 0.03 mm 2 , and the thickness is 10 μm (the lower limit value of each item in Examples 3, 4, and 5). The aperture ratio was changed as shown in (Table 12), and the tensile modulus at that time and the internal electrical resistance value during actual operation were shown.

Figure 2006040631
又、補強材の算術平均粗さ(Ra)を5μm、貫通孔の平均断面積を1mm、厚さを20μm(上記実施例3、4、5における各項目の上限値)としたときに、開口率(表13)に示す様に変化させ、そのときの引張弾性率及び、実運転時の内部電気抵抗値を示した。
Figure 2006040631
Further, when the arithmetic mean roughness (Ra) of the reinforcing material is 5 μm, the average cross-sectional area of the through holes is 1 mm 2 , and the thickness is 20 μm (upper limit value of each item in Examples 3, 4, and 5), It changed as shown to an opening rate (Table 13), and showed the tensile elasticity modulus at that time, and the internal electrical resistance value at the time of an actual operation.

Figure 2006040631
上記(表12)および(表13)の結果からも(実施例6)と同様に、補強材5の貫通孔の開口率は、30%以上、80%以下が望ましいことが分かる。
Figure 2006040631
From the results of (Table 12) and (Table 13), it can be seen that the aperture ratio of the through holes of the reinforcing member 5 is desirably 30% or more and 80% or less, as in (Example 6).

(実施例11)
実施例1と同様の物理的表面処理を施した多孔シートを補強材5として2枚作製した。物理的表面処理を施した補強材をPET基材上に配置し、イオン伝導性高分子電解質エタノール分散液を、ダイコート法で総厚み21μmとなるように塗工し80℃で乾燥させた。得られた膜を前記基材から剥離し、表裏を反転させ、別途用意したPET基材上に配置した。同様に前記分散液をダイコート法で総厚み25μmとなるように塗工、80℃での乾燥を行った。その上に前記物理的表面処理を施した多孔シートを配置した。この際、1枚目と2枚目の貫通孔の中心が重なるように配置した。さらに前記分散液をダイコート法で46μmとなるように塗工し80℃で乾燥させた。この高分子電解質膜は、図6に示すような積層構造となっている。
(Example 11)
Two porous sheets subjected to the same physical surface treatment as in Example 1 were produced as reinforcing materials 5. A reinforcing material subjected to a physical surface treatment was placed on a PET substrate, and an ion conductive polymer electrolyte ethanol dispersion was applied by a die coating method to a total thickness of 21 μm and dried at 80 ° C. The obtained film was peeled from the base material, the front and back sides were reversed, and placed on a separately prepared PET base material. Similarly, the dispersion was applied by a die coating method to a total thickness of 25 μm and dried at 80 ° C. A porous sheet subjected to the physical surface treatment was disposed thereon. At this time, the first and second through holes were arranged so that the centers of the through holes overlap. Further, the dispersion was applied by a die coating method to 46 μm and dried at 80 ° C. This polymer electrolyte membrane has a laminated structure as shown in FIG.

(実施例12)
実施例11と同様に、物理的表面処理を施した補強材5を2枚作製した。ただし、実施例11に対して、1枚目と2枚目の貫通孔の中心が重ならないように配置した。それ以外の高分子電解質膜の作製方法は実施例11と同様であった。この高分子電解質膜は、図7に示すような積層構造となっている。
(Example 12)
In the same manner as in Example 11, two reinforcing materials 5 subjected to physical surface treatment were produced. However, with respect to Example 11, the first and second through holes were arranged so that the centers of the through holes did not overlap. The other production methods of the polymer electrolyte membrane were the same as in Example 11. This polymer electrolyte membrane has a laminated structure as shown in FIG.

(表14)に引張弾性率および起動停止試験1000時間目のガス透過量を示す。   Table 14 shows the tensile elastic modulus and the gas permeation amount at 1000 hours after the start / stop test.

Figure 2006040631
ガス透過量には変化はないものの、引張弾性率では、貫通孔の中心をずらして積層した方が高い値を示した。中心位置、つまり孔が重なり、垂直方向に、補強材が存在せず高分子電解質のみからなる場合、起動停止にともなうクリープ等に対する機械的強度の低下が進行していると考えられる。
Figure 2006040631
Although there was no change in the gas permeation amount, the tensile modulus showed a higher value when the center of the through hole was shifted and laminated. In the case where the center position, that is, the holes are overlapped and the reinforcing material is not present in the vertical direction and only the polymer electrolyte is present, it is considered that the decrease in mechanical strength against creep or the like accompanying the start / stop is progressing.

以上より、物理的表面処理を施した補強材層と高分子電解質層が積層する場合は、貫通孔の位置が厚さ方向で連続ではない方が機械的強度が増加するためより望ましい。   As described above, when the reinforcing material layer subjected to physical surface treatment and the polymer electrolyte layer are laminated, it is more preferable that the positions of the through holes are not continuous in the thickness direction because the mechanical strength increases.

本発明にかかる高分子電解質膜及びそれを用いた高分子電解質形燃料電池は、機械的強度及び寸法安定性が、より向上する効果を有し、家庭用燃料電池コージェネレーションシステムの燃料電池等として有用である。   The polymer electrolyte membrane according to the present invention and the polymer electrolyte fuel cell using the same have an effect of further improving mechanical strength and dimensional stability, and can be used as a fuel cell for a household fuel cell cogeneration system. Useful.

(a)本発明にかかる実施の形態1における高分子電解質膜の斜視図(b)本発明にかかる実施の形態1における高分子電解質膜の断面図(A) Perspective view of the polymer electrolyte membrane according to the first embodiment of the present invention (b) Cross-sectional view of the polymer electrolyte membrane according to the first embodiment of the present invention (a)本発明にかかる実施の形態1における高分子電解質膜の高分子電解質層と補強剤層の境界部分の拡大断面図(b)凹凸が高分子電解質層で覆われていない高分子電解質膜の高分子電解質層と補強剤層の境界部分の拡大断面図(A) Enlarged sectional view of the boundary portion between the polymer electrolyte layer and the reinforcing agent layer of the polymer electrolyte membrane according to the first embodiment of the present invention (b) The polymer electrolyte membrane in which the irregularities are not covered with the polymer electrolyte layer Enlarged sectional view of the boundary between the polymer electrolyte layer and the reinforcing agent layer 本発明にかかる実施の形態1における高分子電解質膜の変形例の断面模式図Sectional schematic diagram of the modification of the polymer electrolyte membrane in Embodiment 1 concerning this invention 本発明にかかる実施例1及び比較例1における高分子電解質膜を用いた単電池の性能曲線のグラフを示す図The figure which shows the graph of the performance curve of the cell using the polymer electrolyte membrane in Example 1 and Comparative Example 1 concerning this invention 本発明にかかる実施例3における高分子電解質膜を用いた単電池の算術平均粗さに対する起動停止繰返し運転1000時間目の水素リーク量のグラフを示した図The figure which showed the graph of the amount of hydrogen leaks of the 1000-hour start-stop repetition operation with respect to the arithmetic mean roughness of the cell using the polymer electrolyte membrane in Example 3 concerning this invention 本発明にかかる実施例11における高分子電解質膜の断面模式図Sectional schematic diagram of the polymer electrolyte membrane in Example 11 according to the present invention 本発明にかかる実施例12における高分子電解質膜の断面模式図Sectional schematic diagram of the polymer electrolyte membrane in Example 12 according to the present invention

符号の説明Explanation of symbols

1 高分子電解質膜
2 補強材層
3 高分子電解質層
4 貫通孔
5 補強材
5a 表面
5b 凹凸
DESCRIPTION OF SYMBOLS 1 Polymer electrolyte membrane 2 Reinforcement material layer 3 Polymer electrolyte layer 4 Through-hole 5 Reinforcement material 5a Surface 5b Concavity and convexity

Claims (11)

第1のイオン交換樹脂と補強材とを有し、少なくとも一方の表面に凹凸が形成された補強材層と、
前記凹凸が形成された表面に、前記凹凸を覆うように形成された、第2のイオン交換樹脂を有するイオン交換樹脂層とを備えた、高分子電解質膜。
A reinforcing material layer having a first ion exchange resin and a reinforcing material, wherein at least one surface has irregularities formed thereon;
A polymer electrolyte membrane comprising an ion exchange resin layer having a second ion exchange resin, which is formed so as to cover the irregularities on a surface where the irregularities are formed.
前記補強材は、前記表面と実質上垂直方向に形成された複数の貫通孔を有しており、前記第1のイオン交換樹脂は、前記貫通孔に充填されている、請求項1記載の高分子電解質膜。   The high reinforcing material according to claim 1, wherein the reinforcing material has a plurality of through holes formed in a direction substantially perpendicular to the surface, and the first ion exchange resin is filled in the through holes. Molecular electrolyte membrane. 前記第1のイオン交換樹脂と、前記第2のイオン交換樹脂は、同一のイオン交換樹脂である、請求項1記載の高分子電解質膜。   The polymer electrolyte membrane according to claim 1, wherein the first ion exchange resin and the second ion exchange resin are the same ion exchange resin. 前記凹凸は、ブラスト処理、プラズマエッチング処理、コロナ放電処理、及びフレーム処理から選択される1種類以上の物理的表面処理によって形成された凹凸である、請求項1記載の高分子電解質膜。   The polymer electrolyte membrane according to claim 1, wherein the irregularities are irregularities formed by one or more physical surface treatments selected from blasting, plasma etching, corona discharge treatment, and flame treatment. 前記凹凸が形成された表面の算術平均粗さ(Ra)は、1μm以上、5μm以下である、請求項1記載の高分子電解質膜。   2. The polymer electrolyte membrane according to claim 1, wherein an arithmetic average roughness (Ra) of the surface on which the unevenness is formed is 1 μm or more and 5 μm or less. 前記補強材層の厚さは、10μm以上、20μm以下である、請求項1記載の高分子電解質膜。   The polymer electrolyte membrane according to claim 1, wherein the reinforcing material layer has a thickness of 10 μm or more and 20 μm or less. 前記表面に対する前記貫通孔による開口率は、30%以上、80%以下である、請求項2記載の高分子電解質膜。   3. The polymer electrolyte membrane according to claim 2, wherein an opening ratio of the through holes with respect to the surface is 30% or more and 80% or less. 前記貫通孔の1個あたりの平均断面積は、0.03mm以上、1mm以下である、請求項2記載の高分子電解質膜。 The average cross-sectional area per through-hole, 0.03 mm 2 or more and 1 mm 2 or less, according to claim 2 polymer electrolyte membrane according. 前記補強材層は、両面に前記凹凸を有しており、
前記補強材層の両面に前記イオン交換樹脂層が形成されており、
前記補強材層、及び前記イオン交換樹脂層は3層以上、7層以下積層されている、請求項1記載の高分子電解質膜。
The reinforcing material layer has the irregularities on both sides,
The ion exchange resin layer is formed on both sides of the reinforcing material layer,
The polymer electrolyte membrane according to claim 1, wherein the reinforcing material layer and the ion exchange resin layer are laminated in a range of 3 to 7 layers.
前記補強材層、及び前記イオン交換樹脂層は、複数層積層されており、
少なくとも前記補強材層は2層以上であり、
隣り合う前記補強材層の各々に形成されている複数の貫通孔は、中心が一致しないように形成されている、請求項2記載の高分子電解質膜。
The reinforcing material layer and the ion exchange resin layer are laminated in a plurality of layers,
At least the reinforcing material layer is two or more layers,
The polymer electrolyte membrane according to claim 2, wherein the plurality of through holes formed in each of the adjacent reinforcing material layers are formed so that the centers do not coincide with each other.
請求項1〜10のいずれかに記載の高分子電解質膜と、
前記高分子電解質膜の両面に形成された一対のガス拡散電極と、
前記一対のガス拡散電極を両側から挟むように設けられた一対のセパレータと有する、積層された複数の単電池を備えた、高分子電解質形燃料電池。
A polymer electrolyte membrane according to any one of claims 1 to 10,
A pair of gas diffusion electrodes formed on both sides of the polymer electrolyte membrane;
A polymer electrolyte fuel cell comprising a plurality of stacked unit cells having a pair of separators provided so as to sandwich the pair of gas diffusion electrodes from both sides.
JP2004216025A 2004-07-23 2004-07-23 Polymer electrolyte membrane and polymer electrolyte fuel cell Pending JP2006040631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004216025A JP2006040631A (en) 2004-07-23 2004-07-23 Polymer electrolyte membrane and polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004216025A JP2006040631A (en) 2004-07-23 2004-07-23 Polymer electrolyte membrane and polymer electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JP2006040631A true JP2006040631A (en) 2006-02-09

Family

ID=35905406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004216025A Pending JP2006040631A (en) 2004-07-23 2004-07-23 Polymer electrolyte membrane and polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP2006040631A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006172776A (en) * 2004-12-14 2006-06-29 Tokai Carbon Co Ltd Separator material for fuel cell, and its manufacturing method
JP2009238448A (en) * 2008-03-26 2009-10-15 Teijin Dupont Films Japan Ltd Biaxially oriented laminated film for solid polymer electrolyte membrane reinforcement, and solid polymer electrolyte membrane reinforcing member formed therewith
JP2013520779A (en) * 2010-02-26 2013-06-06 ジョンソン、マッセイ、フュエル、セルズ、リミテッド Membrane

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006172776A (en) * 2004-12-14 2006-06-29 Tokai Carbon Co Ltd Separator material for fuel cell, and its manufacturing method
JP4650673B2 (en) * 2004-12-14 2011-03-16 東海カーボン株式会社 Separator material for fuel cell and manufacturing method thereof
JP2009238448A (en) * 2008-03-26 2009-10-15 Teijin Dupont Films Japan Ltd Biaxially oriented laminated film for solid polymer electrolyte membrane reinforcement, and solid polymer electrolyte membrane reinforcing member formed therewith
JP2013520779A (en) * 2010-02-26 2013-06-06 ジョンソン、マッセイ、フュエル、セルズ、リミテッド Membrane

Similar Documents

Publication Publication Date Title
JP4702053B2 (en) Solid polymer electrolyte membrane, membrane electrode assembly for solid polymer fuel cell, and method for producing solid polymer electrolyte membrane
CN100511787C (en) Gas diffusion layer and fuel cell using same
JP5061454B2 (en) Fuel cell
JP5196717B2 (en) Catalyst layer transfer sheet, method for producing catalyst layer-electrolyte membrane laminate, method for producing electrode-electrolyte membrane assembly, and method for producing fuel cell
WO2006043394A1 (en) Membrane electrode assembly, method for producing same and polymer electrolyte fuel cell
EP2461401A1 (en) Gas diffusion layer member for solid polymer fuel cells, and solid polymer fuel cell
JP4959945B2 (en) Polymer electrolyte fuel cell
JP2009181936A (en) Separator for fuel cell and fuel cell
JP4506796B2 (en) Electrolyte membrane-electrode assembly and method for producing electrolyte membrane
JP2007103241A (en) Fuel cell
JP2005108770A (en) Manufacturing method of electrolyte membrane electrode joint body
JP2010102879A (en) Gas diffusion layer for fuel cell and its manufacturing method
US10186720B2 (en) Membrane-seal assembly
JP4843928B2 (en) Solid polymer electrolyte membrane, membrane electrode assembly for solid polymer fuel cell, and method for producing solid polymer electrolyte membrane
JP2006040631A (en) Polymer electrolyte membrane and polymer electrolyte fuel cell
JP2009277370A (en) Membrane electrode assembly
JP2007227008A (en) Porous carbon electrode base and fuel cell using same
JP2007149454A (en) Gas diffusion layer, gas diffusion electrode, membrane electrode assembly and polymer electrolyte fuel cell
JP2006147522A (en) Manufacturing method for membrane electrode assembly, fuel cell and manufacturing method for conductive particle layer
CN114583185A (en) Method of manufacturing power generation module
JP2001243963A (en) Cell for fuel cell and fuel cell having the same
JP2011049179A (en) Membrane-electrode assembly for polymer electrolyte fuel cell and gas diffusion electrode substrate
JP2007005122A (en) Manufacturing method of fuel cell and manufacturing method of diffusion layer for fuel cell
JP2013109950A (en) Manufacturing method for membrane electrode assembly for polymer electrolyte fuel cell and membrane electrode assembly for polymer electrolyte fuel cell
JP2004152744A (en) Gas diffusion layer and polyelectrolyte fuel cell using it