JP2006040587A - Proton conductor and its manufacturing method - Google Patents

Proton conductor and its manufacturing method Download PDF

Info

Publication number
JP2006040587A
JP2006040587A JP2004214881A JP2004214881A JP2006040587A JP 2006040587 A JP2006040587 A JP 2006040587A JP 2004214881 A JP2004214881 A JP 2004214881A JP 2004214881 A JP2004214881 A JP 2004214881A JP 2006040587 A JP2006040587 A JP 2006040587A
Authority
JP
Japan
Prior art keywords
alpo
oxide
glass
component
proton conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004214881A
Other languages
Japanese (ja)
Other versions
JP3905899B2 (en
Inventor
Shoji Yamanaka
昭司 山中
Akira Kubo
章 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2004214881A priority Critical patent/JP3905899B2/en
Publication of JP2006040587A publication Critical patent/JP2006040587A/en
Application granted granted Critical
Publication of JP3905899B2 publication Critical patent/JP3905899B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To simply manufacture a proton conductor of a solid electrolyte having high heat resistance and high proton conductivity. <P>SOLUTION: The proton conductor is manufactured in processes (A) to (C). (A) is a process obtaining AlPO<SB>4</SB>-B<SB>2</SB>O<SB>3</SB>-R<SB>2</SB>glass having AlPO<SB>4</SB>, B<SB>2</SB>O<SB>3</SB>, and R<SB>2</SB>O (R is an alkali metal) as the main component. (B) is a process eluting at least a part of B<SB>2</SB>O<SB>3</SB>component and R<SB>2</SB>O component from the glass into water, a weak acidic aqueous solution, or a weak alkaline aqueous solution until the glass becomes an ion exchange meso pore porous body in a state that a part of the R<SB>2</SB>O component is left. (C) is a process exchanging at least a part of R ions of the R<SB>2</SB>O component of the meso pore porous body with protons. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は燃料電池のセパレーター、センサー、固体酸触媒などに用いられるプロトン伝導体とその製造方法に関する。   The present invention relates to a proton conductor used for a separator, a sensor, a solid acid catalyst and the like of a fuel cell and a method for producing the same.

燃料電池のセパレーターとして用いられるプロトン伝導性固体電解質には、パーフルオロスルフォン酸膜(例えば、デュポン社のNAFION(登録商標))などのフッ素系ポリマーがよく知られているが、有機ポリマーであるため、耐熱性と耐久性に問題がある。   Fluoropolymers such as perfluorosulfonic acid membranes (eg, DuPont NAFION (registered trademark)) are well known as proton conductive solid electrolytes used as fuel cell separators, but are organic polymers. There are problems with heat resistance and durability.

耐熱性に優れる無機固体電解質として、種々のリン酸塩が研究されているが、性能的には、改善の必要がある。
最近、ゾル−ゲル法で多孔質のSiO2−P25系ガラスが合成されており、高い伝導性が報告されているが、合成が複雑であり、製造に時間がかかる。
特開2002−226283号公報
Various phosphates have been studied as inorganic solid electrolytes having excellent heat resistance, but performance needs to be improved.
Recently, porous SiO 2 —P 2 O 5 -based glass has been synthesized by a sol-gel method, and high conductivity has been reported, but the synthesis is complicated and takes time to manufacture.
JP 2002-226283 A

高いプロトン伝導度を有する耐熱性の高い物質の開発には、プロトン濃度が高く、高いプロトン移動度を有する無機物質を開発することが必要である。
本発明の第1の目的は、耐熱性が高く、高いプロトン伝導度を有する固体電解質のプロトン伝導体を提供することである。
本発明の第2の目的は、そのようなプロトン伝導体の簡便な製造方法を提供することである。
In order to develop a material having high proton conductivity and high heat resistance, it is necessary to develop an inorganic material having a high proton concentration and high proton mobility.
A first object of the present invention is to provide a solid electrolyte proton conductor having high heat resistance and high proton conductivity.
The second object of the present invention is to provide a simple method for producing such a proton conductor.

本発明者らは、先に製造が簡単な分相ガラスを利用し、メソポア多孔体の合成に成功している(特許文献1参照。)。そして、そのメソポア多孔体の特性を研究している過程で、イオン交換によってプロトンをメソポア導入することにより、ガラスに高いプロトン伝導性を付与できることを見いだし、本発明をなしたものである。   The present inventors have succeeded in synthesizing a porous mesopore by using a phase-separated glass that is easy to produce (see Patent Document 1). In the course of studying the characteristics of the porous mesopores, the present inventors have found that high proton conductivity can be imparted to glass by introducing protons into the mesopores by ion exchange.

すなわち、本発明のプロトン伝導体は、AlPO4を主成分とし、孔径が2nm以上の細孔をもつAlPO4系イオン交換性メソポア多孔体であって、その細孔壁がプロトンとイオン交換されているものである。 That is, the proton conductor of the present invention is mainly composed of AlPO 4, pore size a AlPO 4 based ion exchange mesoporous material having a pore over 2 nm, the pores wall is a proton and ion exchange It is what.

本発明のプロトン伝導体製造方法は以下の工程(A)から(C)を含んでいる。
(A)AlPO4、B23及びR2O(Rはアルカリ金属)を主成分とするAlPO4−B23−R2Oガラスを得る工程、
(B)前記ガラスがR2O成分の一部分を残した状態のイオン交換性メソポア多孔体となるまで、前記ガラスからB23成分及びR2O成分の少なくとも一部分を水又は弱酸もしくは弱アルカリの水溶液に溶出させる工程、並びに
(C)前記メソポア多孔体のR2O成分のRイオンの少なくとも一部分をプロトンと交換させるイオン交換工程。
The proton conductor production method of the present invention includes the following steps (A) to (C).
(A) A step of obtaining an AlPO 4 —B 2 O 3 —R 2 O glass mainly composed of AlPO 4 , B 2 O 3 and R 2 O (R is an alkali metal),
(B) Until the glass becomes an ion-exchangeable mesopore porous body with a part of the R 2 O component remaining, at least a part of the B 2 O 3 component and the R 2 O component is removed from the glass with water, weak acid or weak alkali. And (C) an ion exchange step of exchanging at least a part of R ions of the R 2 O component of the mesopore porous body with protons.

AlPO4−B23−R2Oガラスの好ましい組成は、アルカリ金属RとしてNaを使用し、AlPO4をx、B23をy、R2Oをzとするとき、モル%で表してxが10〜50%、yが75〜15%、zが15〜40%である。 The preferred composition of the AlPO 4 —B 2 O 3 —R 2 O glass is as follows: Na is used as the alkali metal R, AlPO 4 is x, B 2 O 3 is y, and R 2 O is z. In this case, x is 10 to 50%, y is 75 to 15%, and z is 15 to 40%.

AlPO4−B23−R2Oガラスを得る工程では、アルカリ金属酸化物、アルカリ土類金属酸化物、III族酸化物、IV族酸化物、V族酸化物及びVI族酸化物からなる酸化物群のうちの1成分又は複数成分を修飾酸化物として、AlPO4−B23−R2Oガラスに対して0.5〜8モル%の範囲で添加するのが好ましい。 In the step of obtaining AlPO 4 —B 2 O 3 —R 2 O glass, the glass comprises an alkali metal oxide, an alkaline earth metal oxide, a group III oxide, a group IV oxide, a group V oxide, and a group VI oxide. It is preferable to add one or more components in the oxide group as a modified oxide in a range of 0.5 to 8 mol% with respect to the AlPO 4 —B 2 O 3 —R 2 O glass.

修飾酸化物を適度に添加することにより機械的強度が増大するだけでなく、耐水性の向上を図ることができ、高いプロトン伝導に必要なプロトン濃度が増大する。修飾酸化物濃度が0.5モル%より低い場合はその効果が現れにくく、逆に8モル%より多くなると
ガラス化範囲外となり、細孔容量が減少するため、伝導度が低下し、好ましくない。
By appropriately adding the modified oxide, not only the mechanical strength increases, but also the water resistance can be improved, and the proton concentration necessary for high proton conduction increases. When the concentration of the modified oxide is lower than 0.5 mol%, the effect is hardly exhibited. Conversely, when the concentration is higher than 8 mol%, it is outside the vitrification range, and the pore volume is decreased. .

修飾酸化物として使用するのに適する酸化物は、アルカリ金属酸化物としてはK2O、アルカリ土類金属酸化物としてはCaO、MgO及びBaO、III族酸化物としてはAl23、Y23及びGa23、IV族酸化物としてはTiO2、ZrO2、HfO2、SiO2、GeO2、SnO2及びPbO2、V族酸化物としてはV25、Nb25、P25、Sb25及びBi23、VI族酸化物としてはCr23、MoO3及びWO3を挙げることができる。 Suitable oxides for use as modified oxides are K 2 O for alkali metal oxides, CaO, MgO and BaO for alkaline earth metal oxides, Al 2 O 3 , Y 2 for group III oxides. O 3 and Ga 2 O 3 , TiO 2 , ZrO 2 , HfO 2 , SiO 2 , GeO 2 , SnO 2 and PbO 2 as group IV oxides, V 2 O 5 , Nb 2 O 5 as group V oxides P 2 O 5 , Sb 2 O 5 and Bi 2 O 3 , and Group VI oxides include Cr 2 O 3 , MoO 3 and WO 3 .

イオン交換工程はプロトンを提供するブレンステッド酸溶液中で行う。ブレンステッド酸には、塩酸、硫酸、硝酸などの無機酸のほか、酢酸などのブレンスデッド有機酸を用いることもできる。溶液は水を溶媒として用いる他に、アセトンやホルムアミド、アセトニトリル、テトラヒドロフラン、アルコールなどの有機溶媒を用いることができる。ブレンステッド酸性の水溶液でイオン交換を行うと、多孔質ガラスは一部溶液に溶解するため、細孔表面積の低下により、高い伝導度を有する多孔体が得られないことがあるが、有機溶媒を用いることにより、ガラスの溶解を抑制して、プロトンとのイオン交換を効率的に行うことができ、高いプロトン伝導度を有する多孔体が得られる。汎用溶媒のアセトンを用いるのが、便利であり、イオン交換は室温で数時間以内に完了する。   The ion exchange step is performed in a Bronsted acid solution that provides protons. As the Bronsted acid, in addition to inorganic acids such as hydrochloric acid, sulfuric acid, and nitric acid, Bronsted organic acids such as acetic acid can also be used. In addition to using water as a solvent, the solution can be an organic solvent such as acetone, formamide, acetonitrile, tetrahydrofuran, or alcohol. When ion exchange is performed with a Bronsted acidic aqueous solution, the porous glass partially dissolves in the solution. Therefore, a porous body having high conductivity may not be obtained due to a decrease in the pore surface area. By using it, dissolution of the glass can be suppressed, ion exchange with protons can be performed efficiently, and a porous body having high proton conductivity can be obtained. It is convenient to use the general-purpose solvent acetone, and the ion exchange is completed within a few hours at room temperature.

本発明のプロトン伝導体は、イオン交換性メソポア多孔体の細孔壁をプロトンとイオン交換するので、プロトンを高濃度で導入することができる。そして、2〜10nmの貫通した細孔直径を有するメソポア多孔体の細孔内壁近傍のプロトンは高い移動度を有し、高いプロトン濃度と相まって、高いプロトン伝導度を示す。   Since the proton conductor of the present invention ion-exchanges the pore walls of the ion-exchangeable mesopore porous body with protons, protons can be introduced at a high concentration. And the proton near the pore inner wall of the mesopore porous body having a through-pore diameter of 2 to 10 nm has a high mobility, and exhibits a high proton conductivity combined with a high proton concentration.

本発明の製造方法は、AlPO4−B23−R2Oを主成分とするガラスからR2O成分の一部分を残すようにB23成分及びR2O成分の少なくとも一部分を溶出させてイオン交換性メソポア多孔体とし、そのR2O成分のRイオンの少なくとも一部分をプロトンと交換させることにより製造するので、工程が簡便である。 In the production method of the present invention, at least a part of the B 2 O 3 component and the R 2 O component are eluted so as to leave a part of the R 2 O component from the glass mainly composed of AlPO 4 —B 2 O 3 —R 2 O. Therefore, the process is simple because it is produced by exchanging at least a part of R ions of the R 2 O component with protons.

AlPO4,B23及びR2Oを主成分とするガラスを生成し、これを出発物質として、熱処理による結晶化した後、又はそのような熱処理を行わずに非晶質のままで、熱水、例えば60〜150℃の水を用いてB23成分とR2O成分の一部又は大部分を溶出することにより、メソポア多孔体を合成する(特許文献1参照。)。AlPO4はAl23とP25から生成することができる。その際、Al23とP25のモル比(Al23/P25)比はほぼ1を中心に、0.6〜1.4の範囲で変化させることができる。 A glass mainly composed of AlPO 4 , B 2 O 3 and R 2 O is produced, and this is used as a starting material, after crystallization by heat treatment, or remains amorphous without such heat treatment, A mesopore porous body is synthesized by eluting part or most of the B 2 O 3 component and the R 2 O component using hot water, for example, water at 60 to 150 ° C. (see Patent Document 1). AlPO 4 can be produced from Al 2 O 3 and P 2 O 5 . At that time, the molar ratio (Al 2 O 3 / P 2 O 5 ) ratio between Al 2 O 3 and P 2 O 5 can be changed in the range of 0.6 to 1.4, centered at about 1.

Al23の原料としては、酸化アルミニウム、各種水酸化アルミニウム又はベーマイトを用いることができる。P25原料としては、リン酸、各種アルカリもしくはアンモニウムリン酸塩、又はこれらの混合物を用いることができる。B23の原料としては、ホウ酸又は各種アルカリホウ酸塩を用いることができる。R2Oの原料としては、各種炭酸塩又は炭酸水素塩を用いることができる。 As the raw material for Al 2 O 3 , aluminum oxide, various aluminum hydroxides, or boehmite can be used. As the P 2 O 5 raw material, phosphoric acid, various alkali or ammonium phosphates, or a mixture thereof can be used. As a raw material for B 2 O 3 , boric acid or various alkali borates can be used. As the raw material of R 2 O, various carbonates or hydrogen carbonates can be used.

少量添加する修飾酸化物についても、酸化物を直接添加するか、焼成により酸化物となる炭酸塩、アンモニウム塩、水酸化物又は硝酸塩を用いることもできる。
原料を所定の混合比となるように混合し、白金又は磁性ルツボを用いて、加熱分解後、溶融するまで焼成し、急冷して溶融ガラスを得る。
As for the modified oxide to be added in a small amount, a carbonate, ammonium salt, hydroxide or nitrate that becomes an oxide by firing can be added directly.
Raw materials are mixed so as to have a predetermined mixing ratio, and after pyrolysis using platinum or a magnetic crucible, they are fired until they are melted, and rapidly cooled to obtain molten glass.

ここで、ガラス化域の決定を行なうために種々の組成で溶融ガラスを作成した。リン酸二水素アンモニウム、ベーマイト、酸化ホウ素、炭酸ナトリウムを種々の比に混合し、これを1200〜1500℃で約1時間加熱し、完全に融解したのち、水中に投じて急冷した。合成した試料の酸化物モル組成とガラス化の状態を表1に示す。Al/Pは1となるように原料を混合し、調製した。
○は透明なガラス、△は一部失透したガラス、×は結晶化して上記の方法ではガラス化できなかったことを示す。
Here, molten glass was prepared with various compositions in order to determine the vitrification zone. Ammonium dihydrogen phosphate, boehmite, boron oxide and sodium carbonate were mixed in various ratios, heated at 1200 to 1500 ° C. for about 1 hour, completely melted, and then poured into water to quench. Table 1 shows the oxide molar composition and vitrification state of the synthesized samples. The raw materials were mixed and prepared so that Al / P was 1.
○ indicates transparent glass, Δ indicates partially devitrified glass, and x indicates crystallization and cannot be vitrified by the above method.

Figure 2006040587
Figure 2006040587

これらのデータを基に求めた、ガラス化範囲を図1に示す。図1の結果から、AlPO4−B23−Na2O系のガラスのガラス化する組成は、AlPO4をx,B23をy,Na2Oをzとするとき、モル%で表わしてxが10〜50%、yが75〜15%、zが15−40%である。 The vitrification range determined based on these data is shown in FIG. From the results of FIG. 1, the composition of vitrification of AlPO 4 —B 2 O 3 —Na 2 O glass is mol% when AlPO 4 is x, B 2 O 3 is y, and Na 2 O is z. X is 10 to 50%, y is 75 to 15%, and z is 15 to 40%.

この方法により得られる多孔質体の孔径分布をみるために、表1中の試料6のガラスを、熱処理を行なわず、非晶質のままで、蒸留水と共にオートクレーブに入れ、150℃で2時間処理した。得られた多孔質体を真空中、200℃で2時間乾燥し、窒素吸着曲線を測定した。図2に窒素吸着曲線から求めた細孔径分布を示す。オートクレーブ処理を行なう前のガラスの比表面積は無視できる程度に小さいが、オートクレーブ処理により、大部分のホウ酸成分とナトリウム成分が溶出し、比表面積が236m2/gで、細孔径5−10nmに主な分布を有するメソポア多孔質体が得られた。ガラスを結晶化した後に熱水中に保持してメソポア多孔質体とした場合も同様の細孔分布が得られた。 In order to observe the pore size distribution of the porous body obtained by this method, the glass of Sample 6 in Table 1 was not heat-treated and remained amorphous and was placed in an autoclave with distilled water at 150 ° C. for 2 hours. Processed. The obtained porous body was dried in vacuum at 200 ° C. for 2 hours, and a nitrogen adsorption curve was measured. FIG. 2 shows the pore size distribution obtained from the nitrogen adsorption curve. Although the specific surface area of the glass before the autoclave treatment is negligibly small, most of the boric acid component and sodium component are eluted by the autoclave treatment, the specific surface area is 236 m 2 / g, and the pore diameter is 5-10 nm. A mesoporous material having a main distribution was obtained. A similar pore distribution was obtained when the glass was crystallized and then retained in hot water to form a mesopore porous body.

多孔質化処理のために、上記のガラスを熱水中で処理すると、一部分又は大部分のR2O及びB23成分が溶出し、AlPO4を主成分とするメソポア多孔体が得られる。このとき、R2O成分の一部が残存するので、メソポア多孔体はイオン交換性を有する。このメソポア多孔体を塩酸、硫酸、酢酸又は硝酸などの酸で洗浄することにより、R2O成分のRイオンの一部がプロトン交換してプロトン伝導体となる。 When the above glass is treated in hot water for the porosification treatment, a part or most of the R 2 O and B 2 O 3 components are eluted, and a mesopore porous body mainly composed of AlPO 4 is obtained. . At this time, a part of the R 2 O component remains, so that the mesoporous material has ion exchange properties. By washing this mesoporous material with an acid such as hydrochloric acid, sulfuric acid, acetic acid or nitric acid, a part of R ions of the R 2 O component is proton-exchanged to become a proton conductor.

イオン交換はRイオンをプロトンと直接交換することもできるが、アンモニウムと交換後、プロトン体に変換することもできる。イオン交換は水溶液中だけでなく、アセトンやホルムアミド、アセトニトリル、テトラヒドロフラン、アルコールなどの有機溶媒を用いることもできる。   In the ion exchange, R ions can be directly exchanged with protons, but can also be converted into proton bodies after exchange with ammonium. The ion exchange can be performed not only in an aqueous solution but also using an organic solvent such as acetone, formamide, acetonitrile, tetrahydrofuran, or alcohol.

以下、本発明の詳細を実施例により説明する。
(実施例1)
ベーマイト(AlOOH)、リン酸2水素アンモニウム、酸化ホウ素及び炭酸ナトリウムを原料として、モル比がAlPO4:B23:Na2O=25:56:19となるように混合し、白金ルツボを用いて1300℃で溶融した。
Hereinafter, the details of the present invention will be described by way of examples.
Example 1
Using boehmite (AlOOH), ammonium dihydrogen phosphate, boron oxide and sodium carbonate as raw materials, the molar ratio is AlPO 4 : B 2 O 3 : Na 2 O = 25: 56: 19, and a platinum crucible is mixed. Used and melted at 1300 ° C.

その後、室温で急冷して透明なガラスを得た。これを90℃の温水中で約5時間処理した。この処理により、殆どのB23成分と約60%のNa2O成分が溶出して多孔体を得た。この多孔体は、200℃で真空排気後、液体窒素温度で窒素ガス吸着を測定すると、比表面積が330m2/g、細孔容量0.34ml/gのメソポア多孔体であった。
そのメソポア多孔体を0.1M濃度の塩酸水溶液中に約20時間室温で放置し、水洗することにより、残存するNaイオンの一部をプロトンと交換してプロトン伝導体であるプロトン交換メソポア多孔体を得た。
Then, it cooled rapidly at room temperature and obtained the transparent glass. This was treated in warm water at 90 ° C. for about 5 hours. By this treatment, most of the B 2 O 3 component and about 60% of the Na 2 O component were eluted to obtain a porous body. The porous body was a mesopore porous body having a specific surface area of 330 m 2 / g and a pore volume of 0.34 ml / g as measured by adsorption of nitrogen gas at a liquid nitrogen temperature after evacuation at 200 ° C.
The mesopore porous body is left in an aqueous 0.1M hydrochloric acid solution at room temperature for about 20 hours and washed with water, whereby a part of the remaining Na ions are exchanged with protons to be a proton exchange mesopore porous body that is a proton conductor. Got.

このプロトン交換メソポア多孔体を板状のペレットに成形し、インピーダンスアナライザー(ヒューレットパッカード社HP−6420)により、複素インピーダンスを測定し、Cole−Coleプロットから、イオン伝導度を測定した。Cole−Coleプロットでは、実数軸と円弧の切片から抵抗が求められる。この実施例では、図3に示されるように、その抵抗値は室温で600kΩであり、試料の形状を考慮すると、伝導度は2.2×10-6S/cmとなった。 This proton exchange mesopore porous body was formed into a plate-like pellet, the complex impedance was measured with an impedance analyzer (Hewlett-Packard Company HP-6420), and the ionic conductivity was measured from the Cole-Cole plot. In the Cole-Cole plot, the resistance is obtained from the real axis and the intercept of the arc. In this example, as shown in FIG. 3, the resistance value was 600 kΩ at room temperature, and the conductivity was 2.2 × 10 −6 S / cm considering the shape of the sample.

(実施例2)
ベーマイト(AlOOH)、リン酸2水素アンモニウム、酸化ホウ素、炭酸ナトリウム及び酸化ジルコニウムを原料として、モル比がAlPO4:B23:Na2O:ZrO2=25:56:19:2となるように混合し、白金ルツボを用いて1300℃で溶融した。実施例1と同様に温水処理により、メソポア多孔体を得た。そのメソポア多孔体は、実施例1と同様に測定すると、比表面積が340m2/g、細孔容積が0.43ml/g、細孔径分布のピークが6.6nmであった。これを0.1M濃度の塩酸水溶液中に約20時間室温で放置し、水洗して得たプロトン伝導体のプロトン伝導度は、実施例1と同様にインピーダンスアナライザーを用いて測定すると、室温での伝導度が3.9×10-5S/cmであった。
(Example 2)
Using boehmite (AlOOH), ammonium dihydrogen phosphate, boron oxide, sodium carbonate and zirconium oxide as a raw material, the molar ratio is AlPO 4 : B 2 O 3 : Na 2 O: ZrO 2 = 25: 56: 19: 2. And melted at 1300 ° C. using a platinum crucible. A mesoporous material was obtained by hot water treatment in the same manner as in Example 1. When the mesopore porous material was measured in the same manner as in Example 1, the specific surface area was 340 m 2 / g, the pore volume was 0.43 ml / g, and the peak of the pore size distribution was 6.6 nm. The proton conductivity of the proton conductor obtained by leaving it in a 0.1 M hydrochloric acid aqueous solution at room temperature for about 20 hours and washing with water was measured using an impedance analyzer in the same manner as in Example 1. The conductivity was 3.9 × 10 −5 S / cm.

(実施例3)
ベーマイト(AlOOH)、リン酸2水素アンモニウム、酸化ホウ素、炭酸ナトリウム及び酸化ジルコニウムを原料として、モル比がAlPO4:B23:Na2O:ZrO2:P25=25:56:19:2:10となるように混合し、白金ルツボを用いて1300℃で溶融した。実施例1と同様に温水で処理し、メソポア多孔体を得た。これをアセトンに濃塩酸を加えて調製した0.1M濃度の塩酸/アセトン溶液中に室温で20時間保持し、その後、アセトンで洗浄して、プロトン伝導体を得た。このプロトン伝導体のプロトン伝導度は、実施例1と同様にインピーダンスアナライザーを用いて測定すると、図3に示されるように、室温での抵抗値が4.4kΩであり、試料の形状を考慮すると、伝導度は4.8×10-4S/cmであった。
(Example 3)
Using boehmite (AlOOH), ammonium dihydrogen phosphate, boron oxide, sodium carbonate and zirconium oxide as a raw material, the molar ratio is AlPO 4 : B 2 O 3 : Na 2 O: ZrO 2 : P 2 O 5 = 25: 56: It mixed so that it might become 19: 2: 10, and it fuse | melted at 1300 degreeC using the platinum crucible. It processed with warm water like Example 1, and obtained the mesopore porous body. This was kept in a 0.1 M hydrochloric acid / acetone solution prepared by adding concentrated hydrochloric acid to acetone for 20 hours at room temperature, and then washed with acetone to obtain a proton conductor. The proton conductivity of this proton conductor is measured using an impedance analyzer in the same manner as in Example 1. As shown in FIG. 3, the resistance value at room temperature is 4.4 kΩ, and the shape of the sample is taken into consideration. The conductivity was 4.8 × 10 −4 S / cm.

(実施例4)
実施例3で合成した試料を用いて、水蒸気中、150℃まで、イオン伝導度を測定した。伝導度は、室温から60℃まで、温度と共に増大し、約1×10-3S/cmに達し、その後、ほぼ一定値を保持した。
Example 4
Using the sample synthesized in Example 3, ion conductivity was measured up to 150 ° C. in water vapor. The conductivity increased with temperature from room temperature to 60 ° C. and reached about 1 × 10 −3 S / cm, after which it remained almost constant.

本発明は燃料電池のセパレーター、センサー、センサー、固体酸触媒などに利用することができる。   The present invention can be used for fuel cell separators, sensors, sensors, solid acid catalysts, and the like.

一実施例におけるAlPO4−B23−Na2O系ガラスのガラス化範囲を示す図である。Is a diagram showing an AlPO 4 -B 2 O 3 -Na 2 vitrification range of O-based glass in one embodiment. 一実施例で得られた多孔質体の細孔径分布を示す図である。It is a figure which shows the pore size distribution of the porous body obtained by one Example. 実施例1によるプロトン伝導体の抵抗を求めるためのCole−Coleプロットを示す図であり、横軸は実数軸、縦軸は虚数軸である。It is a figure which shows the Cole-Cole plot for calculating | requiring the resistance of the proton conductor by Example 1, a horizontal axis is a real number axis, and a vertical axis | shaft is an imaginary number axis | shaft. 実施例3によるプロトン伝導体の抵抗を求めるためのCole−Coleプロットを示す図である。FIG. 6 is a diagram showing a Cole-Cole plot for determining the resistance of a proton conductor according to Example 3.

Claims (8)

AlPO4を主成分とし、孔径が2nm以上の細孔をもつAlPO4系イオン交換性メソポア多孔体であって、その細孔壁がプロトンとイオン交換されているプロトン伝導体。 A main component AlPO 4, pore size a AlPO 4 based ion exchange mesoporous material having a pore over 2 nm, the proton conductor thereof pore walls are proton and ion exchange. 以下の工程(A)から(C)を含むプロトン伝導体製造方法。
(A)AlPO4、B23及びR2O(Rはアルカリ金属)を主成分とするAlPO4−B23−R2Oガラスを得る工程、
(B)前記ガラスがR2O成分の一部分を残した状態のイオン交換性メソポア多孔体となるまで、前記ガラスからB23成分及びR2O成分の少なくとも一部分を水又は弱酸もしくは弱アルカリの水溶液に溶出させる工程、並びに
(C)前記メソポア多孔体のR2O成分のRイオンの少なくとも一部分をプロトンと交換させるイオン交換工程。
A proton conductor production method comprising the following steps (A) to (C).
(A) A step of obtaining an AlPO 4 —B 2 O 3 —R 2 O glass mainly composed of AlPO 4 , B 2 O 3 and R 2 O (R is an alkali metal),
(B) Until the glass becomes an ion-exchangeable mesopore porous body with a part of the R 2 O component remaining, at least a part of the B 2 O 3 component and the R 2 O component is removed from the glass with water, weak acid or weak alkali. And (C) an ion exchange step of exchanging at least a part of R ions of the R 2 O component of the mesopore porous body with protons.
AlPO4−B23−R2Oガラスの組成が、アルカリ金属RとしてNaを使用し、AlPO4をx、B23をy、R2Oをzとするとき、モル%で表してxが10〜50%、yが75〜15%、zが15〜40%である請求項2に記載のプロトン伝導体製造方法。 The composition of the AlPO 4 —B 2 O 3 —R 2 O glass is expressed in mol% when Na is used as the alkali metal R, AlPO 4 is x, B 2 O 3 is y, and R 2 O is z. The method for producing a proton conductor according to claim 2, wherein x is 10 to 50%, y is 75 to 15%, and z is 15 to 40%. AlPO4−B23−R2Oガラスを得る工程では、アルカリ金属酸化物、アルカリ土類金属酸化物、III族酸化物、IV族酸化物、V族酸化物及びVI族酸化物からなる酸化物群のうちの1成分又は複数成分を修飾酸化物として、0.5〜8モル%の範囲で添加する請求項2又は3に記載のプロトン伝導体製造方法。 In the step of obtaining AlPO 4 —B 2 O 3 —R 2 O glass, the glass comprises an alkali metal oxide, an alkaline earth metal oxide, a group III oxide, a group IV oxide, a group V oxide, and a group VI oxide. The method for producing a proton conductor according to claim 2 or 3, wherein one component or a plurality of components in the oxide group is added as a modified oxide in a range of 0.5 to 8 mol%. 前記修飾酸化物に含まれるアルカリ金属酸化物はK2Oであり、アルカリ土類金属酸化物はCaO、MgO及びBaOであり、III族酸化物はAl23、Y23及びGa23であり、IV族酸化物はTiO2、ZrO2、HfO2、SiO2、GeO2、SnO2及びPbO2であり、V族酸化物はV25、Nb25、P25、Sb25及びBi23であり、VI族酸化物はCr23、MoO3及びWO3である請求項4に記載のプロトン伝導体製造方法。 The alkali metal oxide contained in the modified oxide is K 2 O, the alkaline earth metal oxides are CaO, MgO and BaO, and the group III oxides are Al 2 O 3 , Y 2 O 3 and Ga 2. O 3 , group IV oxides are TiO 2 , ZrO 2 , HfO 2 , SiO 2 , GeO 2 , SnO 2 and PbO 2 , and group V oxides are V 2 O 5 , Nb 2 O 5 , P 2. 5. The method for producing a proton conductor according to claim 4, which is O 5 , Sb 2 O 5 and Bi 2 O 3 , and the Group VI oxides are Cr 2 O 3 , MoO 3 and WO 3 . 前記工程(C)のイオン交換工程はブレンステッド酸溶液中で行なう請求項2から5のいずれかに記載のプロトン伝導体製造方法。 6. The method for producing a proton conductor according to claim 2, wherein the ion exchange step of the step (C) is performed in a Bronsted acid solution. 前記工程(C)のイオン交換工程は有機溶媒中にブレンステッド酸を溶解した溶液中で行なう請求項6に記載のプロトン伝導体製造方法。 The method for producing a proton conductor according to claim 6, wherein the ion exchange step of the step (C) is performed in a solution in which Bronsted acid is dissolved in an organic solvent. 前記有機溶媒はアセトンである請求項7に記載のプロトン伝導体製造方法。
The method for producing a proton conductor according to claim 7, wherein the organic solvent is acetone.
JP2004214881A 2004-07-22 2004-07-22 Proton conductor manufacturing method Expired - Fee Related JP3905899B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004214881A JP3905899B2 (en) 2004-07-22 2004-07-22 Proton conductor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004214881A JP3905899B2 (en) 2004-07-22 2004-07-22 Proton conductor manufacturing method

Publications (2)

Publication Number Publication Date
JP2006040587A true JP2006040587A (en) 2006-02-09
JP3905899B2 JP3905899B2 (en) 2007-04-18

Family

ID=35905369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004214881A Expired - Fee Related JP3905899B2 (en) 2004-07-22 2004-07-22 Proton conductor manufacturing method

Country Status (1)

Country Link
JP (1) JP3905899B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013201115A (en) * 2012-02-22 2013-10-03 Kawazoe Frontier Technology Kk Proton conductive material, solid electrolyte film, and manufacturing method of proton conductive material
JP2016189241A (en) * 2015-03-30 2016-11-04 川副 博司 Proton conductive material, solid electrolyte membrane and method for manufacturing proton conductive material
JP2019087463A (en) * 2017-11-08 2019-06-06 国立大学法人広島大学 Proton conductor and production method thereof
JP2023065976A (en) * 2021-10-28 2023-05-15 日本碍子株式会社 Proton conductive material
JP2023065978A (en) * 2021-10-28 2023-05-15 日本碍子株式会社 Proton conductive material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013201115A (en) * 2012-02-22 2013-10-03 Kawazoe Frontier Technology Kk Proton conductive material, solid electrolyte film, and manufacturing method of proton conductive material
JP2016189241A (en) * 2015-03-30 2016-11-04 川副 博司 Proton conductive material, solid electrolyte membrane and method for manufacturing proton conductive material
JP2019087463A (en) * 2017-11-08 2019-06-06 国立大学法人広島大学 Proton conductor and production method thereof
JP6998586B2 (en) 2017-11-08 2022-02-10 国立大学法人広島大学 Proton conductor and its manufacturing method
JP2023065976A (en) * 2021-10-28 2023-05-15 日本碍子株式会社 Proton conductive material
JP2023065978A (en) * 2021-10-28 2023-05-15 日本碍子株式会社 Proton conductive material

Also Published As

Publication number Publication date
JP3905899B2 (en) 2007-04-18

Similar Documents

Publication Publication Date Title
Ma et al. Scandium-substituted Na3Zr2 (SiO4) 2 (PO4) prepared by a solution-assisted solid-state reaction method as sodium-ion conductors
Grady et al. Densification of a solid-state NASICON sodium-ion electrolyte below 400 C by cold sintering with a fused hydroxide solvent
Luo et al. Structure and properties of Fe2O3-doped 50Li2O-10B2O3-40P2O5 glass and glass-ceramic electrolytes
CN110204195A (en) A kind of ultra-thin glass and preparation method thereof
JP3905899B2 (en) Proton conductor manufacturing method
JP3604178B2 (en) Hydrogen ion conductor
CN102976607A (en) Single-mode chalcogenide glass optical fiber and preparation method thereof
JP4093549B2 (en) Method for producing glass body having high proton conductivity
CN109279787A (en) It is a kind of can fast ion exchange high lead glass
JP2013028506A (en) Cover glass for display
CN104118988A (en) Ultra-clear glass formula
CN105347674B (en) High heat conductance Nd-doped phosphate glass
CN102716701B (en) Method for preparing nickel-doped bismuth silicon oxide microspheres by ultrasonic spray
CN102476920A (en) Ferromagnetic nano micro-crystalline glass fiber prepared by sol-gel-fusing method
CN106977095A (en) A kind of anhydrous oxyhalide tellurite glass and preparation method thereof
CN103864295A (en) Preparation method of high silica glass
CN103274602B (en) BaO-Al2O3-SiO2 microcrystalline glass prepared by improved sol-gel technology and method
CN102351423B (en) Tellurite glass with low thermal expansion and high thermal stability and preparation method thereof
CN102910825B (en) A kind of solid fuel cell bismuthate barium crown sealed glass and preparation method thereof
JP7301284B2 (en) Aldehyde gas detection materials and nonanal gas detection materials
JP2023014591A (en) gas detection material
JP2002226283A (en) Porous compact and method for manufacturing the same
JP2019163198A (en) Method for producing porous glass member
CN110128006B (en) Environment-friendly high-refractive-index ultraviolet-transmitting glass and preparation method thereof
US20080248942A1 (en) Porous phosphorous glass compositions

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees