JP2006039622A - Curved surface reconstruction method for three-dimensional graphic, and curved surface reconstruction program for three-dimensional graphic - Google Patents

Curved surface reconstruction method for three-dimensional graphic, and curved surface reconstruction program for three-dimensional graphic Download PDF

Info

Publication number
JP2006039622A
JP2006039622A JP2004214138A JP2004214138A JP2006039622A JP 2006039622 A JP2006039622 A JP 2006039622A JP 2004214138 A JP2004214138 A JP 2004214138A JP 2004214138 A JP2004214138 A JP 2004214138A JP 2006039622 A JP2006039622 A JP 2006039622A
Authority
JP
Japan
Prior art keywords
curved surface
vector
normal
dimensional
signed distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004214138A
Other languages
Japanese (ja)
Other versions
JP4441611B2 (en
Inventor
Takeshi Masuda
健 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004214138A priority Critical patent/JP4441611B2/en
Publication of JP2006039622A publication Critical patent/JP2006039622A/en
Application granted granted Critical
Publication of JP4441611B2 publication Critical patent/JP4441611B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a curved surface reconstruction method for a three-dimensional graphic and a program therefor which can complement the defective part of a graphic from ambient data. <P>SOLUTION: This curved surface reconfiguration method comprises: an input process for inputting data obtained by discretely sampling a distance place with sign with normal information, which is configured of a distance with sign from a predetermined sample point 11 to an object surface 10 expressed with a vector p and a normal to a nearest point 12 in a three-dimensional space; and an approximation process for carrying out the local secondary approximation of the distance place with sign with normal information expressed with the components of a predetermined normal vector n, distance s with sign and symmetric matrix M to a normal vector n<SB>i</SB>in the neighborhood of the i-th sample point deviated only by a vector Δp<SB>i</SB>from the sample point 10 expressed with the vector p and a sample value s<SB>i</SB>of the distance with sign. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、形状モデルの欠損部分の補完を行う3次元図形の曲面再構成方法および3次元図形の曲面再構成プログラムに関する。   The present invention relates to a method for reconstructing a curved surface of a three-dimensional figure and a program for reconstructing a curved surface of a three-dimensional figure to complement a missing part of the shape model.

近年、コンピュータ・デバイス・センサの性能・小型化・低価格化の向上により、様々な物体形状の計測手段が提案されている。光学的計測手法には、受光センサのみ使用する受動的手法と、光などを投射してその応答を利用する能動的手法がある。   In recent years, various object shape measuring means have been proposed due to improvements in performance, miniaturization, and cost reduction of computers, devices, and sensors. The optical measurement method includes a passive method using only a light receiving sensor and an active method using light and the like to project the response.

グラフ曲面として記述できるようないわゆる2.5次元データの欠損を補完する一般的枠組みとしては、正則化によるエネルギー最小化がある。データへの当てはめと連続性をエネルギー関数の形で表し、両立の拘束がバランスをとって満たされるようにエネルギー関数を最小化することにより、連続したもっともらしい面を生成することができる。コンピュータビジョンでは、この枠組みの中で、ステレオなどによって得られた疎な形状を補完する手法が多く提案された(例えば、下記非特許文献1〜3参照。)。   As a general framework for complementing the so-called 2.5-dimensional data deficiency that can be described as a graph curved surface, there is energy minimization by regularization. By representing the fit and continuity to the data in the form of an energy function and minimizing the energy function so that the compatibility constraints are balanced, a continuous plausible surface can be generated. In computer vision, many methods for complementing the sparse shape obtained by stereo or the like in this framework have been proposed (for example, see Non-Patent Documents 1 to 3 below).

物体表面からの符号付距離をスカラ場として離散的に標本化した符号付距離場(SDF:Signed Distance Field)によって形状を記述する手法が提案されている。符号付距離場からは、距離0の等値面として滑らかな表面を再構成することができるので、複数の形状計測データの平均として全体形状モデルに統合する手法が多く提案されている(例えば、下記非特許文献4〜6参照。)。   There has been proposed a method of describing a shape by a signed distance field (SDF) obtained by discretely sampling a signed distance from the object surface as a scalar field. Since a smooth surface can be reconstructed from the signed distance field as an isosurface with a distance of 0, many methods have been proposed for integrating the entire shape model as an average of a plurality of shape measurement data (for example, Non-patent documents 4 to 6 below).

また、距離データの統合だけでなく、誤計測点の判定や、複数の距離データの同時位置合わせに、SDFが利用できることが示されている(例えば、下記非特許文献7参照。)。この手法では、何らかの方法でデータ形状が事前にある程度大まかに位置合わせされていることを仮定し、外れ値処理を伴うロバストな形状統合処理と、統合形状への位置合わせを、交互に繰り返すことにより、重ねてみないと分からないような微妙な誤計測点やデータ欠損部を判定しながら、SDFによって記述された統合形状モデルを自動的に生成することができる。SDFにより記述された統合形状からは、簡単な処理でポリゴンによる形状記述を再構成することができる。   Further, it has been shown that SDF can be used not only for integration of distance data but also for determination of erroneous measurement points and simultaneous alignment of a plurality of distance data (for example, see Non-Patent Document 7 below). In this method, assuming that the data shape is roughly aligned to some extent in advance by some method, robust shape integration processing with outlier processing and alignment to the integrated shape are repeated alternately. The integrated shape model described by the SDF can be automatically generated while determining subtle erroneous measurement points and data missing portions that cannot be understood unless they are overlapped. From the integrated shape described by SDF, the shape description by polygon can be reconstructed by simple processing.

複数の距離画像の統合手法として、ボクセルにobject(内部)、surface(表面)、space(外部)の3種のラベルを付ける手法が提案されている(例えば、下記非特許文献8参照。)。この手法では、表面を挟まずに内部と外部が接している部分として未計測部分を判定することができる。この手法を適用するには、対象物とセンサの位置関係だけでなく、光学的な特性が既知である必要がある。ボクセルによる形状記述は滑らかでないため、SDFを経由した曲面復元が提案され、同様の方法でボクセルをempty(外部)、near surface(表面)、unseen(内部)と分類することにより欠損部分を簡易に埋めることができることが示されている(例えば、下記非特許文献5参照。)。   As a method for integrating a plurality of distance images, there has been proposed a method of attaching three types of labels, object (inside), surface (surface), and space (outside), to a voxel (see, for example, Non-Patent Document 8 below). In this method, an unmeasured portion can be determined as a portion where the inside and the outside are in contact with each other without sandwiching the surface. In order to apply this method, not only the positional relationship between the object and the sensor but also the optical characteristics need to be known. Since the shape description by voxels is not smooth, surface restoration via SDF is proposed, and the missing part can be simplified by classifying voxels as empty (external), near surface (surface), and unsenen (internal) in the same way. It is shown that it can be filled (for example, refer to the following non-patent document 5).

粗やノイズの多い距離データから平滑な形状モデルの再構成を行うために、level−set methodを利用する手法が提案された(例えば、下記非特許文献9参照。)。level−set methodは、界面の空間中の伝搬を微分方程式で記述したもので、時間微分の項を利用して場の更新規則を作ることができ、曲率に依存した伝搬速度を設定することで、場の平滑化などを行うことができる。level−set methodを応用して、符号付距離場での面の滑らかな補完(例えば、下記非特許文献10参照。)や、複数距離データ統合時に生じる不整合の解決(例えば、下記非特許文献11参照。)が行われた。   In order to reconstruct a smooth shape model from coarse or noisy distance data, a method using a level-set method has been proposed (for example, see Non-Patent Document 9 below). The level-set method describes the propagation in the space of the interface with a differential equation. The field update rule can be created using the term of time differentiation, and the propagation speed depending on the curvature can be set. And smoothing of the field. Applying the level-set method, smooth interpolation of the surface in the signed distance field (for example, see Non-Patent Document 10 below) and resolution of mismatches occurring when integrating multiple distance data (for example, Non-Patent Document below) 11).

level−set methodは、level−setの伝搬速度として曲率依存の値を設定することが一般的なため、生成される場の勾配の大きさがSDFのように一定になるとは限らない。また、SDFの法線情報を利用することにより、曲面の曲率を求めることができる(例えば、下記非特許文献12参照。)。   Since the level-set method generally sets a curvature-dependent value as the propagation speed of the level-set, the magnitude of the generated field gradient is not always constant as in the SDF. Further, the curvature of the curved surface can be obtained by using the normal information of the SDF (see, for example, Non-Patent Document 12 below).

W.E.L.Grimson、“An implementation of a computational theory of visual surface interpolation”、“Computer Vision,Graphics,and Image Processing”、22号、1983年、p.39−69W. E. L. Grimsson, “An implementation of a computational theory of visual surface information”, “Computer Vision, Graphics, and Image Processing”, 22, 1983, p. 39-69 D.Terzopoulos、“The computation of visible−surface representations”、IEEE Trans.PAMI、1988年、第10巻、第4号、p.417−438D. Terzopoulos, “The computation of visible-surface representations”, IEEE Trans. PAMI, 1988, Vol. 10, No. 4, p. 417-438 R.Szeliski、“Fast surface interpolation using hierarchical basis functions”、IEEE Trans.PAMI、1990年、第12巻、第6号、p.513−528R. Szeliski, “Fast surface interpolation using hierarchical basis functions”, IEEE Trans. PAMI, 1990, Vol. 12, No. 6, p. 513-528 A.Hilton,A.J.Stoddart,J.Illingworth and T.Windeatt、“Reliable surface reconstruction from multiple range images”、Proc.ECCV96、1996年、p.117−126A. Hilton, A .; J. et al. Staudart, J .; Illingworth and T.W. Windeatt, “Reliable surface restructuring from multiple range images”, Proc. ECCV 96, 1996, p. 117-126 B.Curless and M.Levoy、“A volumetric method for building complex models from range images”,Proc.SIGGRAPH96、1996年、p.303−312B. Curless and M.M. Levoy, “A volumetric method for building complex models from range images”, Proc. SIGGRAPH 96, 1996, p. 303-312 M.D.Wheeler,Y.Sato and K.Ikeuchi、“Consensus surfaces for modeling 3D objects from multiple range images”、Proc.ICCV97、1997年、p.917−924M.M. D. Wheeler, Y .; Sato and K.M. Ikeuchi, “Consensus surfaces for modeling 3D objects from multiple range images”, Proc. ICCV97, 1997, p. 917-924 増田健著、「符号付距離場の一致による複数距離画像からの形状モデル生成」、情報処理学会論文誌:コンピュータビジョンとイメージメディア、2003年、p.30−40Takeshi Masuda, “Generating Shape Models from Multiple Distance Images by Matching Signed Distance Fields”, IPSJ Transactions on Computer Vision and Image Media, 2003, p. 30-40 Y.Sakaguchi,H.Kato,K.Sato and S.Inokuchi、“Acquisition of entire surface data based on fusion of range data”、Trans.IEICE、E−74、第10号、1991年、p.3417−3422Y. Sakaguchi, H .; Kato, K .; Sato and S. Inokuchi, “Acquisition of endurance surface data based on fusion of range data”, Trans. IEICE, E-74, No. 10, 1991, p. 3417-3422 R.T.Whitaker、“A level−set approach to 3d reconstruction from range data”,“International Journal of Computer Vision”、第29巻、第3号、1998年、p.203−231R. T.A. Whitaker, “A level-set approach to 3d reconstitution from range data”, “International Journal of Computer Vision”, Vol. 29, No. 3, 1998, p. 203-231 J.Davis,S.R.Marschner,M.Garr and M.Levoy、“Filling holes in complex surfaces using volumetric diffusion”、Proc.3DPVT2002、2002年、p.428−437J. et al. Davis, S.M. R. Marschner, M.M. Garr and M.M. Levoy, “Filling holes in complex surfaces using volumetric diffusion”, Proc. 3DPVT 2002, 2002, p. 428-437 R.Sagawa and K.Ikeuchi、“Taking consensus of signed distance field for complementing unobservable surface”、Proc.3DIM2003、2003年、p.410−417R. Sagawa and K.A. Ikeuchi, “Taking consensus of signed distance field for compiling unobservable surface”, Proc. 3DIM 2003, 2003, p. 410-417 T.Masuda、“Surface curvature estimation from the signed distance field”、Proc.3DIM2003、2003年、p.361−368T.A. Masuda, “Surface curvature estimation from the signed distance field”, Proc. 3DIM 2003, 2003, p. 361-368

センサには計測の原理や幾何的な配置から計測できる範囲が限定されており、一般に一度に対象物の全表面を計測することは難しい。例えば、表面が鏡面反射したり、黒い部分であったり、手前の部分に光路が遮られている場合には、投射した光の反射が戻って来ないので、能動的手法では計測できない。   A sensor has a limited range that can be measured from the principle of measurement and geometrical arrangement, and it is generally difficult to measure the entire surface of an object at once. For example, when the surface is specularly reflected, is a black portion, or the optical path is blocked by the front portion, the reflection of the projected light does not return, and therefore cannot be measured by the active method.

テクスチャがない均一な面は受動的手法では計測できない。撮像センサの焦点距離やセンサ間の間隔によって、計測可能な空間的範囲は限定される。センサは自由な空間にしか設置することができず、物体の周囲に存在する地面・台・壁面・他の物体だけでなく、対象物自体にも視点を制限されてしまう。また、一度に撮影できるのは、物体の手前の面だけである。   A uniform surface with no texture cannot be measured by passive methods. The measurable spatial range is limited by the focal length of the imaging sensor and the interval between the sensors. The sensor can be installed only in a free space, and the viewpoint is limited not only on the ground, platform, wall surface, and other objects existing around the object, but also on the object itself. Also, only the front side of the object can be photographed at one time.

このように視点の位置が制限されている場合には、単純な形状でも全面を計測するのに非常に多数の視点を要する場合がある。計測不可能であったり、計測するのに非常な労力を要したり、未計測のまま残されてしまったような欠損部分は、周囲のデータから補完することが実用上必要になる。   When the position of the viewpoint is limited in this way, a very large number of viewpoints may be required to measure the entire surface even with a simple shape. In practice, it is necessary to supplement missing portions that are impossible to measure, require a lot of labor to measure, or remain unmeasured.

この発明は、上述した従来技術による問題点を解消するため、図形の欠損部分を周囲のデータから補完することができる3次元図形の曲面再構成方法および3次元図形の曲面再構成プログラムを提供することを目的とする。   The present invention provides a method for reconstructing a curved surface of a three-dimensional figure and a program for reconstructing a curved surface of a three-dimensional figure, which can complement a missing part of the figure from surrounding data in order to solve the above-described problems caused by the prior art. For the purpose.

上述した課題を解決し、目的を達成するため、この発明にかかる3次元図形の曲面再構成方法は、3次元空間において、ベクトルpで表される所定のサンプル点から方向つき曲面である形状表面への符号付距離および最も近い点への法線により構成される、法線情報付符号付距離場が離散的にサンプルされたデータを入力し、前記ベクトルpで表されるサンプル点からベクトルΔpだけずれたi番目の近傍のサンプル点の法線ベクトルnと符号付距離のサンプル値sに、所定の法線ベクトルn、符号付距離sおよび対称行列Mの成分で表される法線情報付符号付距離場の局所2次近似を行うことを特徴とする。 In order to solve the above-described problems and achieve the object, a method for reconstructing a curved surface of a three-dimensional figure according to the present invention is a shaped surface that is a directional curved surface from a predetermined sample point represented by a vector p in a three-dimensional space. The data obtained by discretely sampling the signed distance field with normal information composed of the signed distance to and the normal to the nearest point is input, and the vector Δp from the sample point represented by the vector p i just shifted i th sample point of the normal vector n i and the signed distance of the sample values s i in the vicinity of, the law represented by components in a predetermined normal vector n, the signed distance s and symmetric matrix M A local quadratic approximation of a signed distance field with line information is performed.

この発明によれば、複数方向から計測した距離データを統合して得られる形状データに未計測のまま残された領域を、後処理として補完することができる。形状表現として法線情報付の符号付距離場を用い、局所的な二次関数近似を繰り返し行うことにより欠損部分を推定することができ、二次関数を当てはめることにより、補完するだけでなく曲面の曲率を求めることができる。   According to the present invention, it is possible to supplement a region left unmeasured in shape data obtained by integrating distance data measured from a plurality of directions as post-processing. Using a signed distance field with normal information as a shape representation, it is possible to estimate missing parts by iteratively performing a local quadratic function approximation. Can be obtained.

また、この発明にかかる3次元図形の曲面再構成プログラムは、上述した3次元図形の曲面再構成方法を、コンピュータに実行させることを特徴とする。   A three-dimensional figure curved surface reconstruction program according to the present invention causes a computer to execute the above-described three-dimensional figure curved surface reconstruction method.

この発明によれば、コンピュータを用いて上述した3次元図形の曲面再構成方法を実行できる。   According to the present invention, the above-described method for reconstructing a curved surface of a three-dimensional figure can be executed using a computer.

本発明にかかる3次元図形の曲面再構成方法および3次元図形の曲面再構成プログラムによれば、SDFの逐次的な局所二次関数の当てはめによる形状モデルの欠損部分の補完を行うことができるので、当てはめる二次関数モデルと、曲面曲率との関係を明らかにし、符号付距離だけでなく法線の場も含めて整合性のとれた、曲率が滑らかな場の補完を行うことを図ることができるという効果を奏する。   According to the method of reconstructing a curved surface of a three-dimensional figure and the program for reconstructing a curved surface of a three-dimensional figure according to the present invention, it is possible to complement a missing part of a shape model by applying a local quadratic function of SDF sequentially. To clarify the relationship between the fitted quadratic function model and the curvature of the curved surface, and to complement not only the signed distance but also the normal field with a smooth curvature. There is an effect that can be done.

以下に添付図面を参照して、この発明にかかる3次元図形の曲面再構成方法および3次元図形の曲面再構成プログラムの好適な実施の形態を詳細に説明する。まず、(符号付距離場)の説明でSDFの概略を説明し、(符号付距離場と曲面曲率)の説明でSDFと曲率の関係を説明し未計測部分の補完方法を導出する。(実験について)の説明で実験結果を示す。   Exemplary embodiments of a 3D graphic curved surface reconstruction method and a 3D graphic curved surface reconstruction program according to the present invention will be described below in detail with reference to the accompanying drawings. First, the outline of the SDF will be explained in the explanation of (signed distance field), the relationship between the SDF and the curvature will be explained in the explanation of (signed distance field and curved surface curvature), and a method for complementing the unmeasured part will be derived. Experimental results are shown in the explanation of (Experiment).

(実施の形態)
(符号付距離場)
まず定義について説明する。図1は符号付距離場(SDF)を記述するパラメータの概要を示す図である。物体表面10を向き付の曲面Sとみなすとき、一般の位置にある3次元空間中の任意のベクトルpで表されるサンプル点11から最も近い曲面上の点である最近点12は一意に決めることができる。例外は球の中心・円柱の軸・2平面からの等距離面のような、曲面上の複数の点から等距離にある点、一般的には表面のボロノイ境界上にある点である。サンプル点11から物体表面10に最も近い最近点12を次の式(1)で表す。
(Embodiment)
(Signed distance field)
First, the definition will be described. FIG. 1 is a diagram showing an outline of parameters describing a signed distance field (SDF). When the object surface 10 is regarded as an oriented curved surface S, the closest point 12 which is a point on the curved surface closest to the sample point 11 represented by an arbitrary vector p in a three-dimensional space at a general position is uniquely determined. be able to. An exception is a point that is equidistant from a plurality of points on a curved surface, such as the center of a sphere, the axis of a cylinder, or an equidistant surface from two planes, generally on a Voronoi boundary of the surface. The closest point 12 closest to the object surface 10 from the sample point 11 is expressed by the following equation (1).

曲面が微分可能であれば、最近点12、CP[p,S]での法線SN[p,S]の向きはp(ベクトル値。以降pと表記される文字はスカラ値ではなくベクトル値である。)への方向と一致する。法線の長さは次の式(2)で表し、 If the curved surface is differentiable, the direction of the normal SN [p, S] at the nearest point 12 and CP [p, S] is p (vector value. The character represented by p hereinafter is not a scalar value but a vector value. Is in the same direction as The length of the normal is expressed by the following formula (2):

物体の内から外へ向くようにとると、点pの符号付距離は次の(3)式で表されるスカラ場となり、 If the object is directed from the inside to the outside, the signed distance of the point p becomes a scalar field represented by the following equation (3):

そして次の(4)式のようになるので、 And as the following equation (4),

その勾配は法線が成すベクトル場である。点pにおけるSDFサンプルを次の(5)式で表す。 The gradient is a vector field formed by normals. The SDF sample at the point p is expressed by the following equation (5).

サンプル点11の近傍の点x(ベクトル値。以降座標以外の意味でをうをなくjxと表記される文字はスカラ値でなくベクトル値である。)での符号付距離は次の(6)式のように線形近似される。 The signed distance at a point x near the sample point 11 (vector value. Characters expressed as jx without meaning in the following coordinates are not scalar values but vector values) is (6) It is linearly approximated as

以後、一つの対象形状について述べていて混同の恐れのない限り、CP[p,S],SN[p,S],SD[p,S]をそれぞれc,n,s(いずれもベクトル値である。)と略記する。 Hereinafter, CP [p, S], SN [p, S], and SD [p, S] are respectively expressed as c, n, and s (both are vector values) unless one object shape is described and there is no fear of confusion. Abbreviated).

次に、SDF間の距離について説明する。サンプル点11の近傍で二つのデータ形状AとBのSDFが与えられているときに、その間の距離を、点pの近傍内で線形近似したSDFの差の二乗の積分で定義する(例えば、上記参考文献7参照。)。サンプル点11の近傍内でSDFが式(6)により線形近似されることを利用すると、SDF間の距離は、次の(7)式のように表される。   Next, the distance between SDFs will be described. When the SDFs of two data shapes A and B are given in the vicinity of the sample point 11, the distance between them is defined by the integral of the square of the difference of the SDF linearly approximated in the vicinity of the point p (for example, See Reference 7 above.) Using the fact that the SDF is linearly approximated by the equation (6) within the vicinity of the sample point 11, the distance between the SDFs is expressed as the following equation (7).

ここでwは近傍の形状と大きさによって決まるが、近傍を一辺の長さがδの立方体とした場合、w=δ/12になる。 Where w n is determined by the shape and size of the neighborhood, but if the length of one side in the vicinity is a cube [delta], becomes w n = δ 2/12.

次に、離散化について説明する。SDFは概念的には連続量であるが、計算を行うためには離散化を行わなくてはならない。対象曲面を包含できるような一辺の長さWの立方体をサンプル領域としてとり、その端点を次の(8)式のようにする。   Next, discretization will be described. SDF is conceptually a continuous quantity, but it must be discretized in order to perform calculations. A cube having a length W of one side that can include the target curved surface is taken as a sample region, and its end point is expressed by the following equation (8).

サンプル点11はサンプル領域内で等間隔の格子点上にとり、レベルlのサンプル間隔δはW=2δの関係を満たすようにとる。次の(9)式で整数座標を表すが、 The sample points 11 are set on lattice points at equal intervals in the sample region, and the sample interval δ of the level 1 is set so as to satisfy the relationship of W = 2 l δ. The following equation (9) expresses the integer coordinates,

この(9)式で指定されるサンプル点11の座標を式(10)でとる。 The coordinates of the sample point 11 designated by this equation (9) are taken by equation (10).

図2−1は、格子上にとられたサンプル点11において物体表面10のSDFをサンプリングする過程を示す2次元模式図である。図2−2は、サンプル点11から最近点12へのベクトルの概要を示す図である。最近点12がデータ形状の端にある場合は無効なサンプルとしている。   FIG. 2A is a two-dimensional schematic diagram illustrating a process of sampling the SDF of the object surface 10 at the sample points 11 taken on the lattice. FIG. 2-2 is a diagram showing an outline of a vector from the sample point 11 to the nearest point 12. If the nearest point 12 is at the end of the data shape, the sample is invalid.

全空間のSDFサンプルは巨大な記憶容量を必要とするため、データ形状からの絶対値距離が閾値(実装ではT=2δ)以内のものだけ保存している。また、最近点12がデータの計測領域の端にある場合は法線nがサンプル点11への向きと一致しないため有効なサンプルとしては採用していない。   Since the SDF sample of the entire space requires a huge storage capacity, only those whose absolute value distance from the data shape is within a threshold value (T = 2δ in implementation) are stored. In addition, when the nearest point 12 is at the end of the data measurement region, the normal line n does not coincide with the direction to the sample point 11, so that it is not adopted as an effective sample.

次に、曲面再構成について説明する。SDFとして生成された統合形状から、汎用的な3角パッチによる形状表現に変換する手法としては、Marching Cube法が多く用いられているが、本手法ではSDFに持たせている法線情報も有効に活用して曲面再構成を行う。図3−1〜3−4は、曲面再構成の過程を示す図である。サンプル点11は次の(11)式でとられている。   Next, curved surface reconstruction will be described. The Marching Cube method is often used as a method for converting the integrated shape generated as SDF into shape representation using a general-purpose triangular patch. In this method, the normal information given to SDF is also effective. Used to reconstruct curved surface. FIGS. 3-1 to 3-4 are diagrams illustrating the process of curved surface reconstruction. The sample point 11 is taken by the following equation (11).

従って、サンプル点11を頂点とする立方体領域の中心点はci=o+iδにある。それぞれの立方体領域について、頂点にあるサンプル点11のSDFを中心点に線形補外すると中心点での符号付距離を求めることができる。その平均値の符号により、立方体領域を物体の内外いずれに近似すべきかを判定することができる。   Therefore, the center point of the cubic region having the sample point 11 as a vertex is at ci = o + iδ. For each cubic region, the signed distance at the center point can be obtained by linearly extrapolating the SDF of the sample point 11 at the vertex to the center point. The sign of the average value can determine whether the cubic region should be approximated to the inside or outside of the object.

内外の立方体領域の境界は正方形の集合の多面体となるが(図3−1参照)、その構造を維持したまま、各頂点の座標値を、サンプル点11に対応した最近点12(CP)に置換することにより、滑らかな面が得られる(図3−2、3−3参照)。さらにサンプル点11の法線情報SNも追加すると、さらに滑らかに描画することができる(図3−4参照)。この手法はSDFに含まれる法線情報も有効に利用しており、通常のMarching Cube法のように頂点座標の補間や接続の不定性の問題は起こらない(例えば、上記非特許文献4〜6参照。)。 Although the boundary between the inner and outer cube regions is a polyhedron of a set of squares (see FIG. 3A), the coordinate value of each vertex is set to the nearest point 12 (CP p ) corresponding to the sample point 11 while maintaining the structure. By replacing with, a smooth surface can be obtained (see FIGS. 3-2 and 3-3). Furthermore, when normal information SN p of the sample point 11 is also added, it is possible to draw more smoothly (see FIG. 3-4). This method also effectively uses normal information contained in the SDF, and does not cause problems of vertex coordinate interpolation and connection indefiniteness as in the ordinary Marching Cube method (for example, Non-Patent Documents 4 to 6 above). reference.).

(符号付距離場と曲面曲率)
まず曲面曲率について説明する。SDFの法線情報を利用すると、曲面の曲率を求めることができる(たとえば、非特許文献12参照。)。図4はサンプル点11の近傍のSDFからの曲率の計算に用いられるパラメータの概要を示す図である。サンプル点11における最近点12と法線を、cとn(いずれもベクトル値。)とする。サンプル点11がp+Δpに変化したときに最近点12と法線がc+Δcとn+Δnに変化するとする。法線nの方向への射影行列を次の式(12)とすると、
(Signed distance field and curved surface curvature)
First, the curved surface curvature will be described. By using the normal information of SDF, the curvature of the curved surface can be obtained (for example, see Non-Patent Document 12). FIG. 4 is a diagram showing an outline of parameters used for calculating the curvature from the SDF in the vicinity of the sample point 11. Let c and n (both are vector values) be the nearest point 12 and the normal line at the sample point 11. Assume that the nearest point 12 and the normal change to c + Δc and n + Δn when the sample point 11 changes to p + Δp. If the projection matrix in the direction of the normal n is the following equation (12),

変位の接平面成分は次の式(13)のようになる。 The tangential plane component of the displacement is given by the following equation (13).

この変位の接平面成分の関係は、対称な行列Kを用いて次の式(14)で表される。 The relationship between the tangential plane components of the displacement is expressed by the following equation (14) using a symmetric matrix K.

行列Kは対称であるので、6つの独立成分k=(kxx,kyy,kzz,kyz,kzx,kxy)があり、実データの各近傍サンプルについて次の式(15)の方程式を立てることができる。 Since the matrix K is symmetric, six independent components k = (k xx, k yy , k zz, k yz, k zx, k xy) has, in the following for each neighborhood sample of the actual data to the equation of (15) An equation can be established.

方程式の数が変数より多いので、特異値分解を利用して対称行列Kの成分の最小自乗解を求めることができる。式(15)を解いて推定された結果は実対称なので、次の式(16)のように対角化できる。   Since there are more equations than variables, the least squares solution of the components of the symmetric matrix K can be obtained using singular value decomposition. Since the result estimated by solving the equation (15) is real symmetric, it can be diagonalized as the following equation (16).

ここでΔは実数固有値κ,κ,κの対角行列である次の式(17)は直交行列とする。 Here, Δ is a diagonal matrix of real eigenvalues κ 1 , κ 2 , and κ 3 , and the following equation (17) is an orthogonal matrix.

変移ΔとΔは接平面成分なので、次の式(18)を満たす固有ベクトルが存在する。 Since transition delta n c i and delta n n i is a tangent plane components, there are eigenvectors satisfying the following equation (18).

対応する固有値κは不定値をとり得るのでκ=0とおくことができ、行列Kは階数2の対称行列で表される。行列Kは曲面上の面素とガウス面上の面素の対応関係を与えており、固有値κ,κが主曲率、w,wが主方向となる。以上の計算は射影行列Pを掛ける事と等価であるので、曲率を表す行列Kの正規化された推定値は式(19)により求められる。 Since the corresponding eigenvalue κ 3 can take an indefinite value, κ 3 = 0 can be set, and the matrix K is represented by a symmetric matrix of rank 2. The matrix K gives the correspondence between the surface elements on the curved surface and the surface elements on the Gaussian surface, and the eigenvalues κ 1 and κ 2 are the main curvatures, and w 1 and w 2 are the main directions. Since the above calculation is equivalent to multiplying by the projection matrix P n , the normalized estimated value of the matrix K representing the curvature is obtained by Expression (19).

そして次の式(20)の関係が成り立つ。 And the relationship of following Formula (20) is formed.

ここで、||・||はフロベニウスノルムである。主方向が不要な場合はこの関係式を用いてKの正規化された推定値の成分から直接主曲率を求めることができる。以上の計算方法は、ΔとΔの組さえあれば適用可能である。 Here, || · || F is Frobenius norm. When the main direction is unnecessary, the main curvature can be obtained directly from the normalized estimated value component of K using this relational expression. The above calculation method is applicable as long as there is a set of Δ n c i and Δ n n i .

次に平行曲面について説明する。図5は平行曲面上の面要素におけるパラメータの概要を示す図である。最近点12の近傍での曲面上の面要素を次の式(21)で表す。ここで、wとwは主方向である。 Next, the parallel curved surface will be described. FIG. 5 is a diagram showing an outline of parameters in a plane element on a parallel curved surface. A surface element on the curved surface in the vicinity of the nearest point 12 is expressed by the following equation (21). Here, w 1 and w 2 is the main direction.

面要素上での点の変位に伴う法線の変化は、主曲率κとκを用いて次の式(22)で表される。 The change of the normal line accompanying the displacement of the point on the surface element is expressed by the following equation (22) using the main curvatures κ 1 and κ 2 .

曲面上での変位に伴って、最近点12から法線方向nに距離t離れた点c=c+tnについて生じる変化は次の式(23)で表される。 A change that occurs with respect to a point c t = c + tn that is a distance t away from the nearest point 12 in the normal direction n with the displacement on the curved surface is expressed by the following equation (23).

従って、曲面から距離t離れた平行な曲面の面積要素は次の式(24)で与えられる。 Accordingly, the area element of the parallel curved surface that is separated from the curved surface by the distance t is given by the following equation (24).

法線の変化は共通なので、平行曲面上での曲率は式(22)と(23)での係数の比から、次の式(25)で求められる。 Since the change of the normal line is common, the curvature on the parallel curved surface is obtained by the following equation (25) from the ratio of the coefficients in equations (22) and (23).

曲面上の単位面要素を挟む厚さ±Tの体積は、曲率半径がT以上である場合、次の式(26)で与えられる。 The volume of thickness ± T sandwiching the unit surface elements on the curved surface is given by the following equation (26) when the radius of curvature is T or more.

この計算結果は、曲面から一定幅内の空間内に均一な密度でサンプル点11が分布しているときに、曲面上の最近点12の面密度が、ガウス曲率に依存していることを示している。厚さをT=2δとし、この計算の仮定上で最も曲がっている状態であるK=±1/(2δ)の場合、単位面積当りのサンプル点11の個数が±1/3個変化する程度である。 This calculation result shows that the surface density of the nearest point 12 on the curved surface depends on the Gaussian curvature when the sample points 11 are distributed at a uniform density in a space within a certain width from the curved surface. ing. When the thickness is T = 2δ and K = ± 1 / (2δ) 2 , which is the most bent state on the assumption of this calculation, the number of sample points 11 per unit area changes by ± 1/3. Degree.

次に二次近似による符号付距離場の補完について説明する。ここまで、サンプル点11の近傍の点xでSDFが線形補間できることを示し、サンプル点11の近傍での最近点CP[x,S]と法線SN[x,S]の関係を線形近似することによって曲面の曲率を求めることができることを示した。欠損データの補完を行う場合、サンプル点11ではSDFの値が与えられておらず、周囲のSDFから推定する必要がある。符号付距離場が局所的にサンプル点11の変位Δpについて次の式(27)で表される二次式で近似できるとする。 Next, supplementation of the signed distance field by quadratic approximation will be described. Up to this point, it is shown that the SDF can be linearly interpolated at the point x in the vicinity of the sample point 11, and the relationship between the nearest point CP [x, S] and the normal SN [x, S] in the vicinity of the sample point 11 is linearly approximated. It was shown that the curvature of the curved surface can be obtained. When complementing missing data, the SDF value is not given at the sample point 11 and it is necessary to estimate from the surrounding SDF. Signed distance field is to be approximated by a quadratic expression represented by the following formula for the displacement Delta] p i of locally sample point 11 (27).

式(3)で表されるように、法線は符号付距離の勾配であるから、法線の変化は次の式(28)のように近似できる。 As represented by Expression (3), since the normal is the gradient of the signed distance, the change in the normal can be approximated as the following Expression (28).

法線の場はスカラ場の勾配なので渦無しであり、Mは対称行列である必要がある。サンプル点11についての二次近似パラメータM,n,sをまとめてQSDF(p)と記述する。二次近似の係数QSDF(p)について、実データに対して次の式(29)を最小にするように当てはめを行う。   Since the normal field is a gradient of the scalar field, there is no vortex and M must be a symmetric matrix. The secondary approximation parameters M, n, and s for the sample point 11 are collectively described as QSDF (p). The quadratic approximation coefficient QSDF (p) is applied to the actual data so as to minimize the following equation (29).

ここで、d(・)は式(7)で与えられるSDF間の距離であり、wは各サンプルについての重み係数、SDF[p,S]は曲面Sについてのpでのサンプル値、QSDF(p)はpに関して求められた局所二次近似モデルで推定したサンプル点11の近傍でのSDF値である。 Here, d 2 (·) is the distance between SDF given in equation (7), samples in w i is a weighting factor for each sample, SDF [p i, S] is p i on the curved surface S The value, QSDF (p), is the SDF value in the vicinity of the sample point 11 estimated by the local quadratic approximation model obtained for p.

式(15)と同様に、対称な行列Kの6つの独立成分・法線・符号付距離について、式(30)の方程式を立てることができる。ここで、wni=wである。左辺の行列を特異値分解して最小自乗解を求める。連立方程式の形にしてあるので、近傍が全て埋まっていない場合でも、非特許文献2のようにパターンを分類する必要がない。10個の変数があるので、解くにはサンプル点11を最低10必要とする。 Similar to equation (15), the equation of equation (30) can be established for six independent components, normals, and signed distances of the symmetric matrix K. Here, w ni = w i w n . Find the least squares solution by singular value decomposition of the left-hand side matrix. Since it is in the form of simultaneous equations, it is not necessary to classify the patterns as in Non-Patent Document 2, even when the entire neighborhood is not filled. Since there are 10 variables, at least 10 sample points 11 are required to solve.

式(1)から得られる次の式(31)の関係について、 About the relationship of the following formula | equation (31) obtained from Formula (1),

両辺をpで偏微分すると式(32)のようになる。 When both sides are partially differentiated by p, equation (32) is obtained.

式(5)から次の式(33)が求められ、 The following equation (33) is obtained from equation (5),

式(17)から次の式(34)が求められ、 From the equation (17), the following equation (34) is obtained,

また次の式(35)の通りであるから、 Moreover, since it is as the following formula (35),

次の式(36)のように表すことができる。 It can be expressed as the following formula (36).

式(7)の固有展開と式(14)の平行曲面上の曲率を用いると、次の式(37)のように表される。 Using the intrinsic expansion of equation (7) and the curvature on the parallel curved surface of equation (14), the following equation (37) is obtained.

すなわちMは階数2の対称行列で、その固有値は式(14)で与えられる平行曲面上の曲率であり、符号付距離sを用いて曲面の曲率κ,κを求めることができる。このようにして求めた曲面曲率を用いて重み係数を次の式(38)で定めている。ただし、w(Δp)は近傍のとりかたで決まる重みとする。 In other words, M is a symmetric matrix of rank 2, and its eigenvalue is the curvature on the parallel curved surface given by equation (14), and the curvatures κ 1 and κ 2 of the curved surface can be obtained using the signed distance s. The weighting coefficient is determined by the following equation (38) using the curved surface curvature thus obtained. However, w (Δp i ) is a weight determined by the way of neighborhood.

式(30)を解いて求めた係数を式(39)のようにあらわす。 A coefficient obtained by solving Expression (30) is expressed as Expression (39).

以降、便宜上それぞれM(^)、n(^)、s(^)という表記と併用する。これらの係数を上述の条件を満たすように正規化する。まず法線の大きさを次の式(40)のように正規化する。 Henceforth, it uses together with the notation of M (^), n (^), and s (^) for convenience, respectively. These coefficients are normalized so as to satisfy the above conditions. First, the size of the normal is normalized as in the following formula (40).

次に二次形式の行列Mの固有ベクトルが法線と一致するように射影して式(41)のようにする。 Next, projection is performed so that the eigenvectors of the matrix M in the quadratic form coincide with the normal line, and the equation (41) is obtained.

最後に正規化した法線と二次形式を用いて符号付距離を調整して式(42)のようにする。 Finally, the signed distance is adjusted using the normalized normal line and the quadratic form as shown in Equation (42).

以上の計算により、中央のサンプル点11でのSDFのサンプルがなくても、近傍のSDFからQSDF(p)を推定することができるため、SDFの欠損値の補完を行うことができる。空間の各位置で局所的に二次近似しようとしていることから、三次微分、すなわち曲率の変化が小さくなるような場が推定されていることになる。   According to the above calculation, even if there is no SDF sample at the central sample point 11, QSDF (p) can be estimated from the neighboring SDF, so that the missing value of SDF can be complemented. Since the second-order approximation is attempted locally at each position in the space, a third derivative, that is, a field where the change in curvature is small is estimated.

式(30)の左辺行列の一般逆行列を求めると、M,n,sの係数は、右辺のデータn,sに対して3次元線形フィルタを掛けることによって得られることがわかる。すなわち、M(^)の係数はnに対する一次微分とsに対する二次微分の和、n(^)はnの平均とsの一次微分の和、s(^)はnの線形補外とsの平滑化の和として求められる。正規化の影響をとりあえず考慮しなければ、データn,dの誤差がQSDFの推定値に及ぼす影響はその線形結合の程度である。 When the general inverse matrix of the left-side matrix of Equation (30) is obtained, it can be seen that the coefficients of M, n, and s are obtained by applying a three-dimensional linear filter to the data n i and s i on the right side. That, M of the second derivative with respect to the first-order derivative and s i are coefficients (^) for n i sum, n (^) is the sum of the first derivative of the mean and s i of n i, s (^) is the n i It is obtained as the sum of linear extrapolation and s i smoothing. If the influence of normalization is not taken into account for the time being, the influence of the error of the data n i and d i on the estimated value of the QSDF is the degree of the linear combination.

(実験について)
次に、SDFを用いて未計測部分の補完を行うアルゴリズムを提案する。光造形などの現場では、既に対話的な3次元形状編集ツールが使用されており、平面で埋めたり一定の厚みで表面を残すような操作は量が少なければあまり困難ではないため、今回対象とするのは、曲面として欠損している部分とする。
(About experiment)
Next, an algorithm for complementing unmeasured parts using SDF is proposed. At sites such as stereolithography, interactive 3D shape editing tools are already used, and operations such as filling with a flat surface or leaving the surface with a certain thickness are not difficult if the amount is small. The part that is missing as a curved surface is used.

SDFを用いて行った誤計測点除去、統合、位置合わせによれば、スカラ場の符号付距離だけでなく、その勾配のベクトル場である法線も用いることで、局所線形近似していた。本実施の形態の手法では微分連続性も保つように補完を行うために、二次近似を利用する。二次近似を求めることにより、曲面曲率といった微分幾何学的特徴量も得られる。また、線形近似では解消できていなかったような不整合も整えることができる。アルゴリズムは次の通りである。   According to the erroneous measurement point removal, integration, and alignment performed using SDF, local linear approximation is performed by using not only the signed distance of the scalar field but also the normal that is the vector field of the gradient. In the method of the present embodiment, quadratic approximation is used to perform complementation so as to maintain differential continuity. By obtaining a quadratic approximation, a differential geometric feature such as a curved surface curvature can also be obtained. Inconsistencies that could not be resolved by linear approximation can also be corrected. The algorithm is as follows.

Step1:入力SDF:orgに初期SDFを読み込む。
Step2:出力SDF:ext←org
Step3:extを拡張する。
Step4:extの各サンプル点で近傍のorgまたはextからQSDFを計算し、extを更新する。
Step5:Step3に戻って必要な回数繰り返す。
Step6:extが結果となる。
Step 1: Input initial SDF into input SDF: org.
Step 2: Output SDF: ext ← org
Step 3: Extends ext.
Step 4: QSDF is calculated from neighboring org or ext at each sample point of ext, and ext is updated.
Step 5: Return to Step 3 and repeat as many times as necessary.
Step 6: ext is the result.

orgは初期化した後には変化しない。Step3では、extを近傍のマスクで膨張させた領域を設定している。Step4では、同一サンプル点について、orgとextの両方にサンプルがある場合は、orgを優先することで、extが初期値から離れていかないように抑制している。QSDFを計算して距離|d|がT以上になるサンプルは除去して、計算対象が全空間に及んでしまわないように抑制している。   org does not change after initialization. In Step 3, a region where ext is expanded with a neighboring mask is set. In Step 4, if there are samples in both org and ext for the same sample point, org is given priority so that ext is not deviated from the initial value. A sample whose distance | d | is equal to or greater than T is calculated by calculating the QSDF, and is suppressed so that the calculation object does not reach the entire space.

データへの適用結果について説明する。図6−1は初期状態における本実施の形態の楕円体への適用結果を示す図である。図6−2は10回繰り返し後における本実施の形態の楕円体への適用結果を示す図である。図6−3は20回繰り返し後における本実施の形態の楕円体への適用結果を示す図である。図6−4は50回の繰り返し後における本実施の形態の楕円体への適用結果を示す図である。図6−5はサンプル点数、当てはめ誤差および初期状態を1とした場合の平均曲率の変化を示す図である。   The application result to data will be described. FIG. 6A is a diagram illustrating a result of application of the present embodiment to the ellipsoid in the initial state. FIG. 6B is a diagram illustrating a result of application of the present embodiment to the ellipsoid after 10 repetitions. FIG. 6-3 is a diagram illustrating a result of application of the present embodiment to the ellipsoid after 20 repetitions. FIG. 6-4 is a diagram illustrating a result of application of the present embodiment to the ellipsoid after 50 repetitions. FIG. 6-5 is a diagram showing a change in average curvature when the number of sample points, fitting error, and initial state is 1.

初期状態として楕円体の半分が与えられ、繰り返しの途中の状態を表示している。全体の形状が楕円体なのは明らかであるが、大局的な形状の知識を用いずに、局所演算の繰り返しだけで、欠損部分が埋められて滑らかな面が生成されていることがわかる。この実験ではw(Δp)は標準偏差δのガウス分布とし、次の式(43)のような近傍範囲(33近傍)を用いている。 Half of the ellipsoid is given as the initial state, and the state during the repetition is displayed. It is clear that the overall shape is an ellipsoid, but it can be seen that a smooth surface is generated by filling in the missing portion only by repeating the local calculation without using knowledge of the global shape. In this experiment, w (Δp i ) is a Gaussian distribution with a standard deviation δ, and a neighborhood range (near 33) as shown in the following equation (43) is used.

繰り返し数とともに、サンプル点数と当てはめ誤差の変化をプロットすると、最初はどちらも増加するが、約40回の繰り返しで穴が塞がると減少傾向にあることが観察される。曲率の平均はおおよそ単調に減少する。 When plotting the number of sample points and the change in fit error with the number of iterations, it is observed that both initially increase, but tend to decrease as the hole fills in about 40 iterations. The average curvature decreases roughly monotonically.

図7−1〜7−4は本実施の形態における手法を、埴輪の馬を計測した距離データから生成したモデルに適用した結果を示す図である。生成に当たっては上述の非特許文献7の手法を用い、手法中の補外処理はあえて掛けていない。脚部の間に計測が困難な部分が残っていたが、本手法の20回の繰り返しにより、連続な面で補完されていることがわかる。誤差や曲率は楕円体の場合程単純な挙動は示さなかった。サンプル点は補完処理により248kから282kに増加し、計算時間は1.7GHzの単一CPUで約1時間半であった。   FIGS. 7-1 to 7-4 are diagrams showing the results of applying the method of the present embodiment to a model generated from distance data obtained by measuring a horse with a heel. In the generation, the above-described method of Non-Patent Document 7 is used, and extrapolation processing in the method is not performed. Although it was difficult to measure between the legs, it was found that the method was complemented with a continuous surface by repeating the method 20 times. The error and curvature were not as simple as the ellipsoid. The sample point increased from 248k to 282k by the complementary processing, and the calculation time was about 1 hour and a half with a single CPU of 1.7 GHz.

SDFの逐次的な局所二次関数当てはめによる形状モデルの欠損部分の補完を行った。当てはめる二次関数モデルと、曲面曲率との関係を明らかにし、符号付距離だけでなく法線の場も含めて整合性のとれた、曲率が滑らかな場の補完を行うことができた。ロバスト統計と組み合わせて極端な外れ値を除去することも可能である。また、本手法は多重解像度処理へ拡張することが可能であり、局所性のレベルを複数設定することで、より安定で高速な処理が行えることが期待できる。   The missing part of the shape model was complemented by SDF sequential local quadratic function fitting. The relationship between the quadratic function model to be applied and the curvature of the surface was clarified, and it was possible to complement not only the signed distance but also the field of smooth curvature, including the normal field. It is also possible to remove extreme outliers in combination with robust statistics. In addition, this method can be extended to multi-resolution processing, and it can be expected that more stable and high-speed processing can be performed by setting a plurality of locality levels.

以上のように、本発明にかかる3次元図形の曲面再構成方法および3次元図形の曲面再構成プログラムは、形状モデルの欠損部分の補完に有用であり、特に、レーザー・符号化光源・カメラを組み合わせた三次元形状計測システムなどにおける、計測が困難な部分が生ずる場合の補完処理に適している。   As described above, the method of reconstructing a curved surface of a three-dimensional figure and the program for reconstructing a curved surface of a three-dimensional figure according to the present invention are useful for complementing a missing part of a shape model. It is suitable for complementary processing when a portion that is difficult to measure occurs in a combined three-dimensional shape measurement system or the like.

符号付距離場(SDF)を記述するパラメータの概要を示す図である。It is a figure which shows the outline | summary of the parameter which describes a signed distance field (SDF). 格子上にとられたサンプル点においてデータ形状SのSDFをサンプリングする過程を示す2次元模式図である。It is a two-dimensional schematic diagram showing the process of sampling the SDF of the data shape S at the sample points taken on the lattice. サンプル点から最近点へのベクトルの概要を示す図である。It is a figure which shows the outline | summary of the vector from a sample point to the nearest point. 曲面再構成の過程を示す図である。It is a figure which shows the process of curved surface reconstruction. 曲面再構成の過程を示す図である。It is a figure which shows the process of curved surface reconstruction. 曲面再構成の過程を示す図である。It is a figure which shows the process of curved surface reconstruction. 曲面再構成の過程を示す図である。It is a figure which shows the process of curved surface reconstruction. サンプル点の近傍のSDFからの曲率の計算に用いられるパラメータの概要を示す図である。It is a figure which shows the outline | summary of the parameter used for calculation of the curvature from SDF of the vicinity of a sample point. 平行曲面上の面要素におけるパラメータの概要を示す図である。It is a figure which shows the outline | summary of the parameter in the surface element on a parallel curved surface. 初期状態における本実施の形態の楕円体への適用結果を示す図である。It is a figure which shows the application result to the ellipsoid of this Embodiment in an initial state. 10回繰り返し後における本実施の形態の楕円体への適用結果を示す図である。It is a figure which shows the application result to the ellipsoid of this Embodiment after repeating 10 times. 20回繰り返し後における本実施の形態の楕円体への適用結果を示す図である。It is a figure which shows the application result to the ellipsoid of this Embodiment after repeating 20 times. 50回の繰り返し後における本実施の形態の楕円体への適用結果を示す図である。It is a figure which shows the application result to the ellipsoid of this Embodiment after 50 repetitions. サンプル点数、当てはめ誤差および初期状態を1とした場合の平均曲率の変化を示す図である。It is a figure which shows the change of the average curvature when a sample score, fitting error, and an initial state are set to 1. 本実施の形態における手法を、埴輪の馬を計測した距離データから生成したモデルに適用した結果を示す図である。It is a figure which shows the result of applying the method in this Embodiment to the model produced | generated from the distance data which measured the horse of the Minowa. 本実施の形態における手法を、埴輪の馬を計測した距離データから生成したモデルに適用した結果を示す図である。It is a figure which shows the result of applying the method in this Embodiment to the model produced | generated from the distance data which measured the horse of the Minowa. 本実施の形態における手法を、埴輪の馬を計測した距離データから生成したモデルに適用した結果を示す図である。It is a figure which shows the result of applying the method in this Embodiment to the model produced | generated from the distance data which measured the horse of the Minowa. 本実施の形態における手法を、埴輪の馬を計測した距離データから生成したモデルに適用した結果を示す図である。It is a figure which shows the result of applying the method in this Embodiment to the model produced | generated from the distance data which measured the horse of the Minowa.

符号の説明Explanation of symbols

10 物体表面
11 サンプル点
12 最近点

10 Object surface 11 Sample point 12 Nearest point

Claims (6)

3次元空間において、ベクトルpで表される所定のサンプル点から方向つき曲面である形状表面への符号付距離および最も近い点への法線により構成される、法線情報付符号付距離場が離散的にサンプルされたデータを入力する入力工程と、
前記ベクトルpで表されるサンプル点からベクトルΔpだけずれたi番目の近傍のサンプル点の法線ベクトルnと符号付距離のサンプル値sに、所定の法線ベクトルn、符号付距離sおよび対称行列Mの成分で表される法線情報付符号付距離場の局所2次近似を行う近似工程と、
を含むことを特徴とする3次元図形の曲面再構成方法。
In a three-dimensional space, a signed distance field with normal information is formed by a signed distance from a predetermined sample point represented by a vector p to a shape surface that is a directional curved surface and a normal to the nearest point. An input process for inputting discrete sampled data;
Wherein the sample points represented by the vector p in the vector Delta] p i shifted by the i-th normal vector n i and the signed distance of the sample points in the vicinity of the sample values s i, a predetermined normal vector n, the distance signed an approximation step for performing local quadratic approximation of a signed distance field with normal information represented by components of s and symmetric matrix M;
A method for reconstructing a curved surface of a three-dimensional figure.
前記近似工程は、i番目の近傍の符号付距離の重み係数をw、法線成分の重み係数をwniとして、次の線形連立方程式の最小二乗解を求めることにより局所2次近似を行うことを特徴とする3次元図形の曲面再構成方法。
In the approximating step, local quadratic approximation is performed by obtaining a least squares solution of the following linear simultaneous equations with a weighting factor of a signed distance of the i-th neighborhood as w i and a weighting factor of a normal component as w ni. A method for reconstructing a curved surface of a three-dimensional figure.
前記サンプルされたデータは、3次元空間における図形のデータであり、前記近似工程は、前記局所2次近似を当てはめることにより、前記3次元空間における図形のデータの補完データを作成し、該補完データを用いて前記3次元空間における図形の描画を行うことを特徴とする請求項1または2に記載の3次元図形の曲面再構成方法。   The sampled data is graphic data in a three-dimensional space, and the approximation step creates complementary data of graphic data in the three-dimensional space by applying the local quadratic approximation, and the complementary data 3. The method of reconstructing a curved surface of a three-dimensional figure according to claim 1 or 2, wherein the figure is drawn in the three-dimensional space by using. 3次元空間において、ベクトルpで表される所定のサンプル点から方向つき曲面である形状表面への符号付距離および最も近い点への法線により構成される、法線情報付符号付距離場が離散的にサンプルされたデータを入力させる入力工程と、
前記ベクトルpで表されるサンプル点からベクトルΔpだけずれたi番目の近傍のサンプル点の法線ベクトルnと符号付距離のサンプル値sに、所定の法線ベクトルn、符号付距離sおよび対称行列Mの成分で表される法線情報付符号付距離場の局所2次近似を行う近似工程と、
をコンピュータに実行させることを特徴とする3次元図形の曲面再構成プログラム。
In a three-dimensional space, a signed distance field with normal information is formed by a signed distance from a predetermined sample point represented by a vector p to a shape surface that is a directional curved surface and a normal to the nearest point. An input process for inputting discrete sampled data;
Wherein the sample points represented by the vector p in the vector Delta] p i shifted by the i-th normal vector n i and the signed distance of the sample points in the vicinity of the sample values s i, a predetermined normal vector n, the distance signed an approximation step for performing local quadratic approximation of a signed distance field with normal information represented by components of s and symmetric matrix M;
A program for reconstructing a curved surface of a three-dimensional figure, wherein the computer is executed.
前記近似工程は、i番目の近傍の符号付距離の重み係数をw、法線成分の重み係数をwniとして、次の線形連立方程式の最小二乗解を求めることにより局所2次近似を行うことを特徴とする請求項4に記載の3次元図形の曲面再構成プログラム。
In the approximating step, local quadratic approximation is performed by obtaining a least squares solution of the following linear simultaneous equations with a weighting factor of a signed distance of the i-th neighborhood as w i and a weighting factor of a normal component as w ni. The three-dimensional figure curved surface reconstruction program according to claim 4.
前記サンプルされたデータは、3次元空間における図形のデータであり、前記近似工程は、前記局所2次近似を当てはめることにより、前記3次元空間における図形のデータの補完データを作成し、該補完データを用いて前記3次元空間における図形の描画を行うことを特徴とする請求項4または5に記載の3次元図形の曲面再構成プログラム。
The sampled data is graphic data in a three-dimensional space, and the approximation step creates complementary data of graphic data in the three-dimensional space by applying the local quadratic approximation, and the complementary data 6. The computer program for reconstructing a curved surface of a three-dimensional figure according to claim 4 or 5, wherein the figure is drawn in the three-dimensional space by using.
JP2004214138A 2004-07-22 2004-07-22 3D graphic curved surface reconstruction device and 3D graphic curved surface reconstruction program Expired - Fee Related JP4441611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004214138A JP4441611B2 (en) 2004-07-22 2004-07-22 3D graphic curved surface reconstruction device and 3D graphic curved surface reconstruction program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004214138A JP4441611B2 (en) 2004-07-22 2004-07-22 3D graphic curved surface reconstruction device and 3D graphic curved surface reconstruction program

Publications (2)

Publication Number Publication Date
JP2006039622A true JP2006039622A (en) 2006-02-09
JP4441611B2 JP4441611B2 (en) 2010-03-31

Family

ID=35904597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004214138A Expired - Fee Related JP4441611B2 (en) 2004-07-22 2004-07-22 3D graphic curved surface reconstruction device and 3D graphic curved surface reconstruction program

Country Status (1)

Country Link
JP (1) JP4441611B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010256138A (en) * 2009-04-23 2010-11-11 Canon Inc Imaging apparatus and method for controlling the same
CN104408773A (en) * 2014-12-02 2015-03-11 北京大学工学院南京研究院 Method for interpolating structured grid non-matching interface
JP2017509035A (en) * 2014-01-03 2017-03-30 インテル・コーポレーション Real-time 3D reconstruction using depth camera
CN112419502A (en) * 2020-11-23 2021-02-26 苏州千机智能技术有限公司 Blade curved surface reconstruction method of engine blade disc
JP2022526082A (en) * 2019-03-08 2022-05-23 エクソキャド ゲーエムベーハー Modeling of denture parts tailored to the patient

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101828785B1 (en) * 2017-03-20 2018-02-13 주식회사 에이치비티 Method of and system for producing customized shoe using 3d scanner
CN111473756B (en) * 2020-04-03 2021-07-06 上海嘉奥信息科技发展有限公司 Surface curve measuring method, system and medium based on Unity3D model

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010256138A (en) * 2009-04-23 2010-11-11 Canon Inc Imaging apparatus and method for controlling the same
JP2017509035A (en) * 2014-01-03 2017-03-30 インテル・コーポレーション Real-time 3D reconstruction using depth camera
US10178366B2 (en) 2014-01-03 2019-01-08 Intel Corporation Real-time 3D reconstruction with a depth camera
CN104408773A (en) * 2014-12-02 2015-03-11 北京大学工学院南京研究院 Method for interpolating structured grid non-matching interface
CN104408773B (en) * 2014-12-02 2017-02-22 北京大学工学院南京研究院 Method for interpolating structured grid non-matching interface
JP2022526082A (en) * 2019-03-08 2022-05-23 エクソキャド ゲーエムベーハー Modeling of denture parts tailored to the patient
JP7423649B2 (en) 2019-03-08 2024-01-29 エクソキャド ゲーエムベーハー Modeling of denture parts tailored to the patient
CN112419502A (en) * 2020-11-23 2021-02-26 苏州千机智能技术有限公司 Blade curved surface reconstruction method of engine blade disc

Also Published As

Publication number Publication date
JP4441611B2 (en) 2010-03-31

Similar Documents

Publication Publication Date Title
Schnabel et al. Completion and reconstruction with primitive shapes
US10013801B2 (en) Texturing a 3D modeled object
US8711143B2 (en) System and method for interactive image-based modeling of curved surfaces using single-view and multi-view feature curves
EP2874118B1 (en) Computing camera parameters
Pottmann et al. Industrial geometry: recent advances and applications in CAD
Zaharescu et al. Topology-adaptive mesh deformation for surface evolution, morphing, and multiview reconstruction
US20080100621A1 (en) System and method for coronary segmentation and visualization
EP4092558A1 (en) Parameterization of cad model
US11790605B2 (en) 3D reconstruction with smooth maps
Yoshihara et al. Topologically robust B-spline surface reconstruction from point clouds using level set methods and iterative geometric fitting algorithms
US11657195B2 (en) Processing a 3D signal of a shape attribute over a real object
JP5220144B2 (en) A method for reconstructing the surface of specular objects from low-density reflection response
Campos et al. Splat-based surface reconstruction from defect-laden point sets
Alliez et al. CGAL: the computational geometry algorithms library
Sagawa et al. Hole filling of a 3D model by flipping signs of a signed distance field in adaptive resolution
Tubic et al. A volumetric approach for interactive 3D modeling
JP4441611B2 (en) 3D graphic curved surface reconstruction device and 3D graphic curved surface reconstruction program
Masuda Filling the signed distance field by fitting local quadrics
Söderkvist Introductory overview of surface reconstruction methods
Sagawa et al. Taking consensus of signed distance field for complementing unobservable surface
Zhang et al. Model reconstruction from cloud data
Clémot et al. Neural skeleton: Implicit neural representation away from the surface
Koo et al. Shape from projections via differentiable forward projector for computed tomography
Lu et al. Surface reconstruction via cooperative evolutions
JP2006277712A (en) Fitting device, method and program for three-dimensional model

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees