JP2006038810A - Device and method for measuring performance of optical system - Google Patents

Device and method for measuring performance of optical system Download PDF

Info

Publication number
JP2006038810A
JP2006038810A JP2004223331A JP2004223331A JP2006038810A JP 2006038810 A JP2006038810 A JP 2006038810A JP 2004223331 A JP2004223331 A JP 2004223331A JP 2004223331 A JP2004223331 A JP 2004223331A JP 2006038810 A JP2006038810 A JP 2006038810A
Authority
JP
Japan
Prior art keywords
optical system
light receiving
measured
target
performance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004223331A
Other languages
Japanese (ja)
Inventor
Toshiyuki Mizuno
利幸 水野
Hiroyuki Hatakeyama
弘至 畠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004223331A priority Critical patent/JP2006038810A/en
Publication of JP2006038810A publication Critical patent/JP2006038810A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high precision device and a method for measuring the characteristics of an optical system for use in a projection lens or an imaging lens. <P>SOLUTION: In the device and the method for performing the magnification projection of a target (slit), disposed on the focal plane of the optical system to be measured by an illumination means and for measuring the performance, by receiving the intensity distribution of the projected image by a light receiving means disposed at a mechanism capable of performing the longitudinal and lateral scanning in a plain at the evaluation distance; the light receiving means can be rotated in a vertical plane about a horizontal normal axis, receives the light output distribution of the target image according to the measurement purpose, in a state in which it is inclined to the emission pupil direction of the optical system to be measured, and measures the performance of the optical system, by performing the correction according to the inclination angle and the processing according to the measurement purpose by a calculation means. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は投射レンズや撮影レンズとして用いられる光学系の性能、具体的にはMTF(Modulation Transfer Function)について、ターゲット(スリット)像を受光手段上に拡大投影し、前記、受光手段出力より光学系を測定評価する光学系性能測定装置及びその方法に関する。   In the present invention, the performance of an optical system used as a projection lens or a photographing lens, specifically, an MTF (Modulation Transfer Function), a target (slit) image is enlarged and projected onto a light receiving means, and the optical system is output from the light receiving means output. The present invention relates to an optical system performance measuring apparatus and method for measuring and evaluating the above.

図7は従来の撮影レンズや投射レンズの光学性能測定装置の構成例を示しており、共軸レンズについて測定する例で、スリット像をライン状に並んだCCD面に結像させその強度分布よりMTFを求めるものである。   FIG. 7 shows a configuration example of a conventional optical performance measuring device for a photographic lens and a projection lens. In the example of measuring a coaxial lens, a slit image is formed on a CCD surface arranged in a line shape, and the intensity distribution is obtained. MTF is required.

70は被測定光学系、71は光源部でランプとコンデンサーレンズ等から成る。72はターゲット(チャート)部で測定目的に応じた幅のスリットが測定画角毎に刻まれており、被測定光学系70とターゲット72との間隔は調整可能となっている。73は受光手段であり決められた距離に配置され評価面内を走査可能となっており、例えば73aの如くに設定され軸外MTFの測定に用いる。受光手段73には図示しないCCDラインセンサーが組み込まれている。その外、図示しない受光手段73の移動手段、演算処理手段等から構成されている。   Reference numeral 70 denotes an optical system to be measured, and reference numeral 71 denotes a light source unit which includes a lamp and a condenser lens. Reference numeral 72 denotes a target (chart) portion, in which slits having a width corresponding to the measurement purpose are engraved for each measurement angle of view, and the distance between the optical system 70 to be measured and the target 72 can be adjusted. A light receiving unit 73 is arranged at a predetermined distance and can scan the evaluation surface. For example, the light receiving unit 73 is set as 73a and is used for measuring the off-axis MTF. The light receiving means 73 incorporates a CCD line sensor (not shown). In addition, it is composed of a moving means of the light receiving means 73 (not shown), an arithmetic processing means and the like.

測定は次の如く行われる。光源部71により照明されたターゲット72のスリットは被測定光学系により拡大投影され、その投影像強度分布を受光手段73に組み込まれたラインセンサーからの出力が得られる。スリット像の強度分布はLSF(Lin Spread Function)とよばれ、出力形態は図8に示す様な分布となる。LSFはスリットや投影倍率を加味して演算手段によりMTFを求めることになる。一般的には離散的な周波数に対するフーリエ変換を行い、スリット幅から得られる理想的フーリエ像との比により周波数毎のMTFが求められることになる。   The measurement is performed as follows. The slit of the target 72 illuminated by the light source unit 71 is enlarged and projected by the measured optical system, and an output from the line sensor in which the projected image intensity distribution is incorporated in the light receiving means 73 is obtained. The intensity distribution of the slit image is called LSF (Lin Spread Function), and the output form is as shown in FIG. For LSF, the MTF is obtained by the calculation means in consideration of the slit and the projection magnification. In general, Fourier transform is performed on discrete frequencies, and the MTF for each frequency is obtained based on the ratio to the ideal Fourier image obtained from the slit width.

以上の説明は光軸上であり、軸外の測定は受光手段73を測定面内で移動させ目的の角度θ1位置73aに設定し、軸上と同様な方法で測定値を得る。
特開2001−255462号公報 特開2000−89227号公報
The above description is on the optical axis, and for off-axis measurement, the light receiving means 73 is moved within the measurement plane to set the target angle θ1 position 73a, and the measurement value is obtained in the same manner as on the axis.
JP 2001-255462 A JP 2000-89227 A

以上説明した従来の光学系性能測定装置及びその方法においては被測定レンズ光軸に対して受光素子が垂直に近い角度に設定する場合は問題ないが、図7に示す受光手段73aの位置での角度θ1がさらに大きくなると、センサーの感度低下、クロストーク、スミアー、カバーガラスの反射光増加などの強度分布に影響を及ぼす特性によりスリット像の強度分布すなわちLSFは垂直に入射した場合に比べて正確に測定されないことになる。   In the conventional optical system performance measuring apparatus and method described above, there is no problem when the light receiving element is set at an angle close to perpendicular to the optical axis of the lens to be measured, but at the position of the light receiving means 73a shown in FIG. When the angle θ1 is further increased, the intensity distribution of the slit image, that is, the LSF is more accurate than the case of normal incidence due to characteristics that affect the intensity distribution such as sensor sensitivity reduction, crosstalk, smear, and increased reflected light of the cover glass. Will not be measured.

従来型の広角撮影レンズはもちろん、特に近年薄型のリアプロジェクター装置や大広角レンズを備えたフロントプロジェクターなどが普及しその光軸上からの投影角度は60度を超えるものが多くなっている。   In addition to conventional wide-angle photographing lenses, in particular, thin rear projector devices and front projectors equipped with large wide-angle lenses have recently become widespread, and the projection angle from the optical axis has increased over 60 degrees.

図9はスリット像をラインセンサー上に結ばせ、図7における受光手段73の傾き角度を変え投影像の強度分布がどの様に変化するかを示すものである。図9において添付数字は受光手段へ垂直入射に対する斜め入射の傾き角度を示すものであり、投影像は角度が大きくなると垂直入射の形状とは異なって測定されてしまう事になるので測定されるMTF値も精度の悪いものとなる。   FIG. 9 shows how the intensity distribution of the projection image changes by connecting the slit image on the line sensor and changing the tilt angle of the light receiving means 73 in FIG. In FIG. 9, the attached numbers indicate the inclination angle of the oblique incidence with respect to the normal incidence to the light receiving means, and the projected image is measured differently from the shape of the normal incidence when the angle is increased. The value is also inaccurate.

また、MTFの評価においては色温度の設定、すなわち光源と受光素子の波長毎の強度分布を、例えば撮影レンズで日中の時間であれば太陽光スペクトル分布とフィルム又はCCDの分光感度に合わせる必要がある。しかしながら、その実現は技術的に困難であったので、測定に用いる照明系スペクトル分布による測定評価に留まっており、実際の性能とは異なることがあった。   Also, in the MTF evaluation, the color temperature setting, that is, the intensity distribution for each wavelength of the light source and the light receiving element must be matched with the sunlight spectrum distribution and the spectral sensitivity of the film or CCD if it is daytime with the taking lens, for example. There is. However, since it was technically difficult to achieve this, it was limited to measurement evaluation based on the illumination system spectral distribution used for measurement, and it was sometimes different from the actual performance.

更に、MTF測定においては被測定光学系光軸と投影評価面とを垂直に、且つ、ターゲット面と投影評価面を平行に設定しなければならない。被測定光学系光軸と投影評価面の垂直、ターゲット面と投影評価面との平行が崩れている場合は正常な性能であっても、製作、組み立て誤差が大きくなったように非対称な測定値、いわゆる片ボケと測定されてしまう。あるいは、近年、自由曲面を用いた軸外し光学系は光学系中心軸と投影画面中心での垂線方向が合わない光学系でプロジェクターレンズなどに使われている。例えば特許文献1や2などで公開されているものである。前記の様な光学系においては従来のMTF測定方法において用いられる手法、例えばターゲット面よりのスリット像が受光手段に結像され、その面上に配置された反射鏡で反射されたスリット像が被測定光学系の中心に戻れば測定光学系光軸と投影評価面の垂直が保たれると言う手法が取ることができない。   Further, in the MTF measurement, the optical system optical axis to be measured and the projection evaluation surface must be set perpendicular to each other, and the target surface and the projection evaluation surface must be set in parallel. If the optical axis of the optical system to be measured is perpendicular to the projection evaluation surface, and the parallelism between the target surface and the projection evaluation surface is broken, even if the performance is normal, the measurement value is asymmetrical as if manufacturing and assembly errors have increased. It will be measured as a so-called single blur. In recent years, an off-axis optical system using a free-form surface is an optical system in which the perpendicular direction between the central axis of the optical system and the center of the projection screen does not match, and is used for a projector lens or the like. For example, those disclosed in Patent Documents 1 and 2 are disclosed. In the optical system as described above, a method used in the conventional MTF measurement method, for example, a slit image from the target surface is formed on the light receiving means, and the slit image reflected by the reflecting mirror disposed on the surface is covered. If it returns to the center of the measurement optical system, a method that the optical axis of the measurement optical system is perpendicular to the projection evaluation surface cannot be taken.

更にまた、PCで作成された像をLCD等の光変調素子に表示した光学性能を含んだ投影像の解像力やシャープネスなどの評価(MTF測定)は主観評価に頼り、特に数値での絶対評価測定などは行われていないのが現状であった。   Furthermore, the evaluation (MTF measurement) of the resolving power and sharpness of the projected image including the optical performance in which the image created by the PC is displayed on a light modulation element such as an LCD relies on subjective evaluation, especially the absolute evaluation measurement with numerical values. The current situation is that no.

以上に述べた課題のほかに投影評価面全体を走査して測定するために、測定に時間がかかるといった課題があった。   In addition to the problems described above, there is a problem that the measurement takes time because the entire projection evaluation surface is scanned and measured.

本発明は以上に述べた課題を解決するために、請求項1においては被測定光学系の焦点面に配置したターゲットを照明手段により拡大投影し、評価距離の面内において縦横に走査できる機構に配置した受光手段で投影像強度分布を受光し、性能を測定する装置において、前記、受光手段は垂直面内及び水平垂直軸周りに回転が可能な手段と、前記、被測定光学系の射出瞳方向に傾けた状態を設ける手段と、測定目的に応じたターゲット像の出力分布を受光する手段と、演算手段により傾き角による補正と測定目的に応じた処理を行う手段を設けている。   In order to solve the above-described problems, the present invention provides a mechanism in which a target placed on a focal plane of an optical system to be measured is enlarged and projected by an illuminating unit, and can be scanned vertically and horizontally within an evaluation distance plane. In the apparatus for receiving the projected image intensity distribution by the arranged light receiving means and measuring the performance, the light receiving means can rotate in the vertical plane and around the horizontal vertical axis, and the exit pupil of the optical system to be measured. Means for providing a state tilted in the direction, means for receiving the output distribution of the target image according to the measurement purpose, and means for performing correction according to the tilt angle by the arithmetic means and processing according to the measurement purpose are provided.

請求項2においては、受光手段に用いられる受光素子は波長域が異なる複数の波長で受光する手段を有し、それぞれの受光強度から評価目的の光源の色に対するウエート割合に応じた補正を行う手段と、ホワイトバランス処理を行った後に光学系性能を演算処理する手段を有している。   The light-receiving element used in the light-receiving means has means for receiving light at a plurality of wavelengths having different wavelength ranges, and means for correcting according to the weight ratio with respect to the color of the light source for evaluation from each received light intensity And means for calculating the optical system performance after performing the white balance processing.

請求項3においては、被測定光学系の焦点面に配置したターゲットを照明手段により拡大投影し、評価距離の面内において縦横に走査できる機構に配置した受光手段で投影像強度分布を受光し、性能を測定する装置において、前記、評価投影面とターゲット面との平行度と被測定光学系光軸とを合わせる為に、被測定光学系とは異なる光軸調整のための投影光学系手段を有している。   In claim 3, the target arranged on the focal plane of the optical system to be measured is enlarged and projected by the illuminating means, and the projected image intensity distribution is received by the light receiving means arranged in a mechanism capable of scanning vertically and horizontally within the plane of the evaluation distance, In the apparatus for measuring performance, in order to match the parallelism between the evaluation projection surface and the target surface and the optical axis of the optical system to be measured, projection optical system means for adjusting the optical axis different from the optical system to be measured is provided. Have.

請求項4においては前記、光軸調整のための投影光学系手段にはレーザー光源と回折格子チャートを用いる手段と、回折格子の対称な広がりが投影評価面での左右又は上下の中心からの乖離差を測定する手段を有し、その乖離量を無くすために投影系全体を調整する手段を有している。   According to a fourth aspect of the present invention, the projection optical system means for adjusting the optical axis is a means using a laser light source and a diffraction grating chart, and the symmetrical spread of the diffraction grating is deviated from the left and right or upper and lower centers on the projection evaluation plane. It has means for measuring the difference, and means for adjusting the whole projection system in order to eliminate the deviation amount.

請求項5においては被測定光学系の焦点面に配置したターゲットを照明手段により拡大投影し、評価距離の面内において縦横に走査できる機構に配置した受光手段で投影像強度分布を受光し、性能を測定する装置において、被測定光学系と焦点面に配置したターゲットを照明する手段は一体で構成される手段を有し、投影評価面とターゲット間の距離が設定可能な手段と上下左右移動手段と水平垂直面で使用可能手段を有している。   According to a fifth aspect of the present invention, the target arranged on the focal plane of the optical system to be measured is enlarged and projected by the illuminating means, and the projected image intensity distribution is received by the light receiving means arranged in a mechanism capable of scanning vertically and horizontally within the plane of the evaluation distance. In the apparatus for measuring the optical system, the optical system to be measured and the means for illuminating the target arranged on the focal plane have means configured integrally, a means for setting the distance between the projection evaluation surface and the target, and an up / down / left / right moving means And has usable means in horizontal and vertical planes.

請求項6においては被測定光学系の焦点面に配置したターゲットを照明手段により拡大投影し、評価距離の面内において縦横に走査できる機構に配置した受光手段で投影像強度分布を受光し、性能を測定する装置において、ターゲット像をLCD等の光変調素子にPCで作成表示する手段を有し、その投影画像強度分布を前記受光手段と演算処理装置により光学性能を測定評価する手段を有している。   According to a sixth aspect of the present invention, the target arranged on the focal plane of the optical system to be measured is enlarged and projected by the illumination means, and the projected image intensity distribution is received by the light receiving means arranged in a mechanism capable of scanning vertically and horizontally within the plane of the evaluation distance. A device for creating and displaying a target image on a light modulation element such as an LCD with a PC, and a means for measuring and evaluating the optical performance of the projected image intensity distribution by the light receiving means and the arithmetic processing unit. ing.

請求項7においては被測定光学系の焦点面に配置したターゲットを照明手段により拡大投影し、評価距離の面内において縦横に走査できる機構に配置した受光手段で投影像強度分布を受光し、性能を測定する装置において、前記、受光手段を複数備える手段を有している。   According to a seventh aspect of the present invention, the target placed on the focal plane of the optical system to be measured is enlarged and projected by the illuminating means, and the projected image intensity distribution is received by the light receiving means arranged in a mechanism capable of scanning vertically and horizontally within the plane of the evaluation distance. In the apparatus which measures this, it has a means provided with two or more said light-receiving means.

(作用)
請求項1においては被測定光学系の焦点面に配置したターゲットを照明手段により拡大投影し、評価距離の面内において縦横に走査できる機構に配置した受光手段で投影像強度分布を受光し、性能を測定する装置において、前記、受光手段は垂直面内及び水平垂直軸周りに回転が可能な手段と、前記、被測定光学系の射出瞳方向に傾ける手段と、測定目的に応じたターゲット像の出力分布を受光する手段と、演算手段により傾き角による補正と測定目的に応じた処理を行う手段を設けている。
(Function)
According to the first aspect of the present invention, the target arranged on the focal plane of the optical system to be measured is enlarged and projected by the illuminating means, and the projected image intensity distribution is received by the light receiving means arranged in the mechanism capable of scanning vertically and horizontally within the plane of the evaluation distance. The light receiving means is a means capable of rotating in a vertical plane and around a horizontal vertical axis, a means for tilting in the exit pupil direction of the optical system under measurement, and a target image corresponding to the measurement purpose. Means for receiving the output distribution and means for performing correction according to the inclination angle by the arithmetic means and processing according to the measurement purpose are provided.

従って、受光手段では投射画角によらず常に正対したターゲット像が到達するので、正確なターゲット像の出力分布が得られ、受光手段が傾くことによるスリット像の広がりは演算手段で補正する手段を設けているので正確な測定値を得ることができる。   Therefore, the light receiving means always reaches a target image that is directly opposed regardless of the projection angle of view, so that an accurate output distribution of the target image is obtained, and the spread of the slit image due to the inclination of the light receiving means is corrected by the calculating means. Therefore, an accurate measurement value can be obtained.

請求項2においては、受光手段に用いられる受光素子は波長域が異なる複数の波長で受光する手段と、それぞれの受光強度から評価目的の光源の色に対するウエート割合に応じた補正を行う手段と光学系性能を演算処理する手段を有しているので、実際に使用する照明光源における光学系の測定値が得られる。   According to a second aspect of the present invention, the light receiving element used in the light receiving means receives light at a plurality of wavelengths having different wavelength ranges, means for correcting according to the weight ratio with respect to the color of the light source to be evaluated from each received light intensity, and optical Since the system performance calculation means is provided, the measured value of the optical system in the illumination light source actually used can be obtained.

請求項3、および請求項4においては、被測定光学系の焦点面に配置したターゲットを照明手段により拡大投影し、評価距離の面内において縦横に走査できる機構に配置した受光手段で投影像強度分布を受光し、性能を測定する装置において、前記、評価投影面とターゲット面との平行度と被測定光学系光軸とを合わせる為に、被測定光学系とは異なる光軸調整のための投影光学系手段を有しているので、評価投影面とターゲット面との平行度と被測定光学系光軸とを合わせる操作が、軸外し光学系などの測定においても可能となる。   According to another aspect of the present invention, the target image arranged on the focal plane of the optical system to be measured is enlarged and projected by the illuminating means, and the projected image intensity is obtained by the light receiving means arranged on the mechanism capable of scanning vertically and horizontally within the evaluation distance plane. In an apparatus for receiving the distribution and measuring the performance, in order to match the parallelism between the evaluation projection surface and the target surface and the optical axis of the optical system to be measured, the optical axis is different from that of the optical system to be measured. Since the projection optical system means is provided, the operation of matching the parallelism between the evaluation projection surface and the target surface and the optical axis of the optical system to be measured can be performed in the measurement of the off-axis optical system or the like.

請求項5においては被測定光学系の焦点面に配置したターゲットを照明手段により拡大投影し、評価距離の面内において縦横に走査できる機構に配置した受光手段で投影像強度分布を受光し、性能を測定する装置において、被測定光学系と焦点面に配置したターゲットを照明する手段は一体で構成される手段を有し、投影評価面とターゲット間の距離が設定可能な手段と、上下左右移動手段と水平垂直面で使用可能手段を有しているので、投影評価面と被測定光学系光軸の垂直度の調整を簡単に行うことができるほか、受光手段のセンサー上に投影像の焦点を合わせることやディフォーカス特性などを測定可能となる。更に、評価画面位置が大きく移動する投射光学系やシフト光学系などの評価において、上下(縦)又は左右(横)に大きくシフト投影する場合に場所的な制約から性能を測定できない事が発生する事もある。例えば、上下に画面を移動させる測定に際して、その余裕がなく左右には余裕がある場合、簡単に90度回転させることが簡単に可能で、大きく重い走査装置を移動しなくても済むことになる。   According to a fifth aspect of the present invention, the target arranged on the focal plane of the optical system to be measured is enlarged and projected by the illuminating means, and the projected image intensity distribution is received by the light receiving means arranged in a mechanism capable of scanning vertically and horizontally within the plane of the evaluation distance. In the apparatus for measuring the optical system, the means for illuminating the optical system to be measured and the target arranged on the focal plane has means configured integrally, a means for setting the distance between the projection evaluation surface and the target, and vertical and horizontal movement Since it is possible to easily adjust the verticality of the projection evaluation surface and the optical axis of the optical system to be measured, the projection image can be focused on the sensor of the light receiving means. And defocus characteristics can be measured. Furthermore, in the evaluation of a projection optical system or a shift optical system in which the position of the evaluation screen moves greatly, performance may not be able to be measured due to local restrictions when projecting a large shift vertically (vertically) or horizontally (horizontal). There is also a thing. For example, when the screen is moved up and down, if there is no margin and there is a margin on the left and right, it can be easily rotated 90 degrees, and it is not necessary to move a large and heavy scanning device. .

請求項6においては被測定光学系の焦点面に配置したターゲットを照明手段により拡大投影し、評価距離の面内において縦横に走査できる機構に配置した受光手段で投影像強度分布を受光し、性能を測定する装置において、ターゲット像をLCD等の光変調素子にPCで作成表示する手段を有し、その投影画像強度分布を前記受光手段と演算処理装置により光学性能を測定評価する手段を有しているので、実際の使用条件での測定が可能となるほか、従来の主観評価に頼った測定が定量化することが可能となる。   According to a sixth aspect of the present invention, the target arranged on the focal plane of the optical system to be measured is enlarged and projected by the illumination means, and the projected image intensity distribution is received by the light receiving means arranged in a mechanism capable of scanning vertically and horizontally within the plane of the evaluation distance. A device for creating and displaying a target image on a light modulation element such as an LCD with a PC, and a means for measuring and evaluating the optical performance of the projected image intensity distribution by the light receiving means and the arithmetic processing unit. Therefore, in addition to being able to perform measurement under actual use conditions, it is possible to quantify measurement that relies on conventional subjective evaluation.

請求項7においては被測定光学系の焦点面に配置したターゲットを照明手段により拡大投影し、評価距離の面内において縦横に走査できる機構に配置した受光手段で投影像強度分布を受光し、性能を測定する装置において、前記、受光手段を複数備える手段を有しているので、走査範囲を受光手段毎に決め効率よく測定できる他、従来の測定時間と同じ時間を費やすのであれば、数多い測定点のデータも得られので、被測定光学系の詳細なデータが得られる事となる。   According to a seventh aspect of the present invention, the target placed on the focal plane of the optical system to be measured is enlarged and projected by the illuminating means, and the projected image intensity distribution is received by the light receiving means arranged in a mechanism capable of scanning vertically and horizontally within the plane of the evaluation distance. In the apparatus for measuring the above-mentioned, since it has means including a plurality of light receiving means, the scanning range can be determined for each light receiving means and the measurement can be performed efficiently. Since point data is also obtained, detailed data of the optical system to be measured can be obtained.

以上説明した本発明の光学系性能測定装置及びその方法においては光軸上からの投影角度や撮影角度が大きくなった場合や、使用される照明光源に合わせた測定、光軸あわせを正確に行う事ができるので被検光学系の正確な性能測定を効率よく行う事ができる。   In the optical system performance measuring apparatus and method according to the present invention described above, when the projection angle or photographing angle from the optical axis is increased, measurement according to the illumination light source used, and optical axis alignment are accurately performed. Therefore, accurate performance measurement of the optical system to be tested can be performed efficiently.

また、プロジェクター光学系の性能が使用状態において絶対的な数値データとして得られるので評価が正確に行われることとなる。   Further, since the performance of the projector optical system can be obtained as absolute numerical data in the usage state, the evaluation is accurately performed.

(実施例1)
図により本発明の実施例について説明する。図1は本発明の第1の実施例で軸外し光学系を用い、上側に偏った形態で投影するフロントプロジュクターについてMTFを測定する装置の全体構成の概略を示す図である。図2は被検光学系側より受光手段側を見た場合の概略図である。
Example 1
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an outline of the overall configuration of an apparatus for measuring MTF for a front projector that uses an off-axis optical system in the first embodiment of the present invention and projects in an upwardly biased form. FIG. 2 is a schematic view when the light receiving means side is viewed from the test optical system side.

構成は次の様になっている。10は被測定光学系、20は投影部でランプとコンデンサー等から成る光源部21、あおり調整部22、シフト調整部23、被検物取り付け部24、測定目的により交換できるターゲット(チャート)部25、焦点調整機構26などからなる。30はPC(システムコントロール・演算装置)、31はPC表示部、40は移動積載台である。50は走査部で受光部60、が3個(60a、60b、60c)配置され、それぞれに受光素子であるカラーラインセンサー61(61a、61b、61c)が組み込まれている。走査部50には縦移動ガイド51、横移動ガイド52が設けられている。   The configuration is as follows. Reference numeral 10 denotes an optical system to be measured, 20 denotes a projection unit, a light source unit 21 including a lamp and a condenser, a tilt adjustment unit 22, a shift adjustment unit 23, a test object mounting unit 24, and a target (chart) unit 25 that can be replaced depending on the measurement purpose. The focus adjustment mechanism 26 is included. Reference numeral 30 denotes a PC (system control / arithmetic unit), 31 denotes a PC display unit, and 40 denotes a movable loading table. Reference numeral 50 denotes a scanning unit, in which three light receiving units 60 (60a, 60b, 60c) are arranged, and color line sensors 61 (61a, 61b, 61c) as light receiving elements are respectively incorporated therein. The scanning unit 50 is provided with a vertical movement guide 51 and a horizontal movement guide 52.

構成各部の機能は次のようになっている。投影部20は縦横に回転可能な形態となっている他、あおり調整部22、シフト調整部23により走査部に対する傾き角を調整可能となっている。ターゲット部25には測定画面サイズに応じた幅のスリットが測定画角毎に刻まれている。更に、ターゲット部25と被測定光学系10との間隔は調整可能で焦点調整機構26を介して、PC(システムコントロール・演算装置)30のコントロールにより調整可能となっている。   The function of each component is as follows. The projection unit 20 can be rotated vertically and horizontally, and the tilt angle with respect to the scanning unit can be adjusted by the tilt adjustment unit 22 and the shift adjustment unit 23. In the target unit 25, a slit having a width corresponding to the measurement screen size is engraved for each measurement angle of view. Further, the distance between the target unit 25 and the optical system 10 to be measured can be adjusted, and can be adjusted by the control of a PC (system control / arithmetic unit) 30 via the focus adjustment mechanism 26.

更にまた、図3は図1に示す投影部20を上から見た図で、光源部21を取り外した後にレーザー光源照明系27を挿入したものである。使用しない時は収納部にスライドして戻すことになる。なお、29はレーザー光源で固定してある。   Further, FIG. 3 is a view of the projection unit 20 shown in FIG. 1 as viewed from above, in which the laser light source illumination system 27 is inserted after the light source unit 21 is removed. When not in use, it will slide back into the storage. Reference numeral 29 is fixed by a laser light source.

図1で示したターゲット(チャート)部25には取り外し可能なターゲットが挿入されるが光軸合わせ操作には回折格子28を取り付ける形態となっている。   A detachable target is inserted into the target (chart) portion 25 shown in FIG. 1, but a diffraction grating 28 is attached to the optical axis alignment operation.

移動積載台40は投影部20を積載したまま上下可動で、PC30などを積載する。更に、被測定光学系10と走査部50との距離を設定可能になっている。   The movable loading table 40 is movable up and down with the projection unit 20 loaded, and loads the PC 30 and the like. Furthermore, the distance between the measured optical system 10 and the scanning unit 50 can be set.

受光部60の前面に組み込まれた受光素子であるカラーラインセンサー61の仕様は7×10μmの画素が4096個並んだラインセンサー3本が水平に配置されたものを用いた。3本は図示しないが赤色(R)、緑色(G)、青色(B)、に感度を持っている。   The specification of the color line sensor 61, which is a light receiving element incorporated in the front surface of the light receiving unit 60, is a type in which three line sensors in which 4096 pixels of 7 × 10 μm are arranged are arranged horizontally. Although three are not shown, they have sensitivity to red (R), green (G), and blue (B).

受光部60は走査部50に設けられた縦移動ガイド51a、51b、51c、横移動ガイド52a、52bに沿って図示しないモータにより移動可能となっている他、水平軸、垂直軸回りと垂直面内で別のモータにより回転可能となっている。それぞれのモータはPC30によりコントロールされる。なお、受光部が回転してもカラーラインセンサー61の中心付近は被検光学系10との距離が変動しない構造となっている。   The light receiving section 60 can be moved by a motor (not shown) along the longitudinal movement guides 51a, 51b, 51c and the lateral movement guides 52a, 52b provided in the scanning section 50, and the horizontal plane, the vertical axis and the vertical plane. It can be rotated by another motor. Each motor is controlled by the PC 30. Note that the distance between the center of the color line sensor 61 and the optical system 10 to be measured does not vary even when the light receiving portion rotates.

次いで測定方法について図を用いて説明する。図5は本実施例における測定手順を説明する図である。   Next, the measurement method will be described with reference to the drawings. FIG. 5 is a diagram for explaining the measurement procedure in this embodiment.

ステップ1は測定条件の設定である。各部作動部のスイッチを入れ、PCに被検レンズの焦点距離や投影倍率測定用ターゲット情報をメモリーより選択し、利用可能にする。   Step 1 is setting measurement conditions. The switch of each part operation part is turned on, and the focal length of the test lens and the target information for measuring the projection magnification are selected from the memory and made available to the PC.

ステップ2は測定距離の設定である。走査部50は通常固定されているので測定条件によりカラーラインセンサー61との距離を移動積載台40の移動により設定する。   Step 2 is a measurement distance setting. Since the scanning unit 50 is normally fixed, the distance from the color line sensor 61 is set by the movement of the movable loading table 40 according to the measurement conditions.

ステップ3は光軸調整準備の段階である。投影部20内にある照明光学系を取り外した後にレーザー照明光源を挿入する、更に、ターゲット位置に円形回折格子28を配置し、レーザー照明光源の電源を入れる。回折格子を通ったレーザー光は図3の矢印線の如く中心軸周りに多数の同心円を描くので光軸合わせに利用できる。なお回折格子は円形に限らず縦横になっている矩形のものでも可能である。また、被検物取り付け部24とターゲット(チャート)部25の平行度と同心度は別の方法で設定してある。   Step 3 is a stage for optical axis adjustment preparation. After the illumination optical system in the projection unit 20 is removed, the laser illumination light source is inserted. Further, the circular diffraction grating 28 is arranged at the target position, and the laser illumination light source is turned on. The laser beam that has passed through the diffraction grating draws many concentric circles around the central axis as shown by the arrow in FIG. Note that the diffraction grating is not limited to a circular shape but may be a rectangular shape that is vertically and horizontally. Further, the parallelism and concentricity of the test object mounting portion 24 and the target (chart) portion 25 are set by another method.

ステップ4は水平光軸合わせである。ステップ5と合わせて被検光学系の光軸と受光部60が走査する評価面が直交した状態に設定するものである。まず受光部60を回折像中心に配置し、残りの2つを水平面内に任意の等間隔で配置する。その際、外側に配置された受光部の中心を同位相の回折像が投影されていれば調整は完了する。異なっている場合は投影部のシフト調整部23を作動させ同じ間隔になるよう調整する。この時、中心も移動するので再度受光部60の設定位置を調整する。このことを繰り返し行うことにより水平面内の傾きが調整完了となる。   Step 4 is horizontal optical axis alignment. In combination with step 5, the optical axis of the test optical system and the evaluation surface scanned by the light receiving unit 60 are set to be orthogonal to each other. First, the light receiving unit 60 is arranged at the center of the diffraction image, and the remaining two are arranged at an equal interval in the horizontal plane. At this time, the adjustment is completed if a diffraction image having the same phase is projected on the center of the light receiving unit arranged outside. If they are different from each other, the shift adjusting unit 23 of the projection unit is operated to adjust the same interval. At this time, since the center also moves, the setting position of the light receiving unit 60 is adjusted again. By repeating this, the inclination in the horizontal plane is completed.

ステップ5は垂直光軸合わせである。受光部60を回折像中心に配置し、残りの2つを垂直面内に任意の等間隔で配置する。設定方法はステップ4と同じように調整部22を作動させながら垂直に対し行えばよい。なお、光軸調整には被検レンズ取り付け部に対して光軸が合うように調整された専用の工具レンズを用いても良いが、時間的、コスト的に不利なので本実施例では回折格子の方法を用いた。   Step 5 is vertical optical axis alignment. The light receiving unit 60 is arranged at the center of the diffraction image, and the remaining two are arranged at arbitrary equal intervals in the vertical plane. The setting method may be performed with respect to the vertical while operating the adjusting unit 22 in the same manner as in Step 4. For adjustment of the optical axis, a dedicated tool lens adjusted so that the optical axis is aligned with the lens mounting portion to be examined may be used, but this is disadvantageous in terms of time and cost. The method was used.

ステップ6は投影準備である。投影部20内にあるレーザー照明光源を退避させ、光源部21を装着し、ターゲット位置にある円形回折格子28を取り外し、ターゲット25を挿入する。更に被検光学系を被検物取り付け部24に取り付ける。   Step 6 is a projection preparation. The laser illumination light source in the projection unit 20 is retracted, the light source unit 21 is mounted, the circular diffraction grating 28 at the target position is removed, and the target 25 is inserted. Further, the test optical system is attached to the test object mounting portion 24.

ステップ7は受光部角度合わせである。受光部を被検光学系の入射瞳方向に予めPCに記憶されている数値に基づき、サーボモーターの回転で受光素子中心を回転中心として傾ける。なお、入射角度が小さければ後の処理を省略するために傾きを与えなくてもよい。   Step 7 is the angle adjustment of the light receiving part. The light receiving unit is tilted around the center of the light receiving element by the rotation of the servo motor based on the numerical value stored in the PC in the entrance pupil direction of the test optical system. In addition, if the incident angle is small, it is not necessary to give an inclination in order to omit the subsequent processing.

ステップ8は明るさ調整と焦点合わせである。光源部21のスイッチを入れターゲットを照明し評価画面中心に配置した受光部60のほぼ中心に投影する。この時スリット像は水平(又は垂直)になっているので、ラインセンサーを直交させるため、必要に応じて受光部61を評価面内で回転させ位置を合わせる。PC表示部31にはスリット像強度分布が表示されるのでラインセンサーの飽和点より余裕を見た下のレベルになる明るさに図示しない手段で調整する。更にPC30よりターゲットの焦点調整機構を作動させ被検光学系との間隔を変えながらPC表示部31のスリット像強度分布が高くなり、且つ、幅の狭くなる位置を決める。焦点が合うに連れてスリット像強度分布は高くなるが、最高値は常に飽和点より余裕を見た8〜7割程度に抑えるのがよい。焦点位置はR、G、B各色で異なるが通常はG色によるスリット像で焦点位置を決める。   Step 8 is brightness adjustment and focusing. The light source unit 21 is switched on to illuminate the target and project it to the center of the light receiving unit 60 arranged at the center of the evaluation screen. At this time, since the slit image is horizontal (or vertical), in order to make the line sensors orthogonal, the light receiving unit 61 is rotated in the evaluation plane as necessary to align the position. Since the slit image intensity distribution is displayed on the PC display unit 31, the brightness is adjusted to a level lower than the saturation point of the line sensor by a means not shown. Further, the focus adjustment mechanism of the target is operated from the PC 30, and the position where the slit image intensity distribution of the PC display unit 31 becomes high and the width becomes narrow is determined while changing the distance from the test optical system. Although the slit image intensity distribution increases as the focus is adjusted, the maximum value should always be suppressed to about 80 to 70% with a margin from the saturation point. Although the focal position differs for each of R, G, and B colors, the focal position is usually determined by a slit image of G color.

ステップ9は投影画像取り込みである。投影されたスリットに直交する強度分布を像のRGB各色に対する測定値として複数回にわたり取り込み、平均値をPC上のメモリーに記録する。   Step 9 is capturing a projected image. The intensity distribution orthogonal to the projected slit is taken in multiple times as measured values for each RGB color of the image, and the average value is recorded in the memory on the PC.

ステップ10は投影画像の補正である。取り込んだデータは明るさレベルを別途決められているテーブルに基づきリニアリティーの補正と最高明るさレベルを決められた一定値に正規化する。次いで投影距離による拡大倍率、又は別途測定された拡大倍率分の補正を行う。更に、受光部を傾けた角度θに比例してスリット像幅が小さくなっているので、測定されたスリット像幅相当のセンサー素子間距離をcosθで除算することにより補正する。この時、評価面に対し斜め方向すなわち評価面に対し上下、左右に傾きがある場合は両方の角度分に応じ二回の除算を行う。   Step 10 is correction of the projected image. The captured data is normalized to a fixed value with a linearity correction and a maximum brightness level based on a table whose brightness level is separately determined. Next, correction is performed for the enlargement magnification based on the projection distance or the enlargement magnification measured separately. Further, since the slit image width is reduced in proportion to the angle θ at which the light receiving unit is tilted, the distance between the sensor elements corresponding to the measured slit image width is corrected by dividing by cos θ. At this time, if there is an inclination in the oblique direction with respect to the evaluation surface, that is, up and down and left and right with respect to the evaluation surface, division is performed twice according to both angles.

ステップ11は光源色の補正である。測定に使用している色温度(相対分光強度分布)と実際に使用する色温度についてRGB各センサーの強度比として予め求めてあるテーブルに基づき評価目的の光源の色に対するウエート割合に応じた補正を行う。次いで、RGBの強度分布をNTSC輝度変換方式により輝度値に変換しメモリーに保存される。変換方法は目的により任意に選択可能であり、RGB毎に保存してもよい。   Step 11 is correction of the light source color. Correction according to the weight ratio for the color of the light source to be evaluated based on a table obtained in advance as the intensity ratio of each RGB sensor for the color temperature (relative spectral intensity distribution) used for measurement and the color temperature actually used Do. Next, the RGB intensity distribution is converted into a luminance value by the NTSC luminance conversion method and stored in the memory. The conversion method can be arbitrarily selected depending on the purpose, and may be stored for each RGB.

ステップ12はMTF演算である。投影スリット像の強度分布はLSFとよばれ、出力形態は図8に示す様な分布となる。横軸が受光素子ピッチから求められる投影像の大きさで縦軸が正規化された出力値である。LSFはステップ11に示すスリットや投影倍率の補正計算を経て演算手段によりMTFを求めることになる。一般的には離散的な周波数に対するフーリエ変換を行い、スリット幅から得られる理想的フーリエ像との比により周波数毎のMTFが求められることになる。   Step 12 is an MTF calculation. The intensity distribution of the projected slit image is called LSF, and the output form is as shown in FIG. The horizontal axis represents the size of the projected image obtained from the light receiving element pitch, and the vertical axis represents the normalized output value. The LSF obtains the MTF by the calculation means through the slit and projection magnification correction calculation shown in Step 11. In general, Fourier transform is performed on discrete frequencies, and the MTF for each frequency is obtained based on the ratio to the ideal Fourier image obtained from the slit width.

ステップ13は受光部の移動である。ステップ9でスリット画像がメモリーに蓄えられることが終了した後、受光部は決められた次の位置に移動する。3個備えられた受光部はPCへの予めの移動情報に基づきステップ7、ステップ9を交互に行い、次の測定点へと評価画面内を移動し、被測定光学系の射出瞳に正対させる操作を行う。その後、ステップ10からステップ12を瞬時に実行する。   Step 13 is the movement of the light receiving unit. After the slit image is completely stored in the memory in step 9, the light receiving unit moves to the determined next position. The three light receiving units alternately perform step 7 and step 9 based on the movement information to the PC in advance, move to the next measurement point in the evaluation screen, and face the exit pupil of the optical system to be measured. Perform the operation. Thereafter, Step 10 to Step 12 are executed instantaneously.

受光部は3個配置されているので、上述の様に個々にステップ毎に行うのではなくPCより制御された移動と画像取り込みを並列的に行い、3個配置し移動距離を短縮した効果と重なり測定時間が大幅に短縮できる。   Since the three light receiving units are arranged, the movement controlled by the PC and the image capturing are performed in parallel instead of individually performing each step as described above, and the effect of shortening the moving distance by arranging three light receiving units is provided. Overlap measurement time can be greatly reduced.

ステップ14は測定データの表示である。PC内の演算手段によりMTFを求めた結果は例えば図9の様な周波数特性値などとして表示され、必要に応じてプリントなども可能となっている。   Step 14 is a display of measurement data. The result of obtaining the MTF by the calculation means in the PC is displayed as a frequency characteristic value as shown in FIG. 9, for example, and can be printed if necessary.

ステップ15は測定条件の変更である。必要な測定条件、例えば、測定スリットの縦横変換、評価画面のシフト量の変更、開口絞りの変更などを行いステップ7からステップ14を繰り返すこととなる。なお、評価画面のシフト量変更で図1に示す測定範囲より大きな角度、例えばθ2などの大きな角度で測定する場合は投影部20を90度回転し水平方向に展開して同じように測定すればよい。
以上で測定は終了ステップとなる。
Step 15 is to change the measurement conditions. Steps 7 to 14 are repeated by performing necessary measurement conditions such as vertical / horizontal conversion of the measurement slit, changing the shift amount of the evaluation screen, changing the aperture stop, and the like. Note that when changing the shift amount of the evaluation screen and measuring at an angle larger than the measurement range shown in FIG. 1, for example, a large angle such as θ2, the projection unit 20 is rotated 90 degrees and expanded in the horizontal direction and measured in the same way. Good.
The measurement is the end step.

(実施例2)
図により本発明の第2の実施例について説明する。図4は本発明の第2の実施例で全体構成の概略を示す図である。被検光学系は第1の実施例と同じ軸外し光学系を用い、上側に偏った形態で投影するフロントプロジュクター画像についてターゲット(スリット)像をLCD等の光変調素子にPCで作成表示し、その投影画像強度分布を演算処理装置により光学性能を測定する例を示す。
(Example 2)
A second embodiment of the present invention will be described with reference to the drawings. FIG. 4 is a diagram showing an outline of the entire configuration in the second embodiment of the present invention. The test optical system uses the same off-axis optical system as in the first example, and a target (slit) image is created and displayed on a light modulator such as an LCD on a PC for the front projector image projected in an upwardly biased form. An example of measuring the optical performance of the projected image intensity distribution using an arithmetic processing unit will be described.

構成は第1の実施例で述べた投影部20を取り去り被検プロジュクター70を配置したものであり、50の走査部、30のPC(システムコントロール・演算装置)部など同じものである。   The configuration is such that the projection unit 20 described in the first embodiment is removed and a test projector 70 is arranged, and the same is the case with 50 scanning units and 30 PC (system control / arithmetic unit) units.

測定方法は第1の実施例で述べた方法とほぼ動じであるが、ステップ3からステップ7までの光軸合わせに関する操作は光学系がプロジェクターに組み込まれているため、従来の方法で行うことになる。またMTFの算出も第1の実施例で述べた方法であると投射光学系に対しては相対的なものに留まるが、プロジェクター総合のMTF評価値としては十分な絶対値がもとめられる。   The measurement method is almost the same as the method described in the first embodiment. However, the operations related to optical axis alignment from step 3 to step 7 are performed by the conventional method because the optical system is incorporated in the projector. Become. The calculation of the MTF is also relative to the projection optical system when the method described in the first embodiment is used, but a sufficient absolute value can be obtained as the MTF evaluation value for the projector as a whole.

本発明の第1の実施例における全体構成の概略を示す図である。It is a figure which shows the outline of the whole structure in the 1st Example of this invention. 被検光学系側より見た場合の走査部の全体構成の概略を示す図である。It is a figure which shows the outline of the whole structure of the scanning part at the time of seeing from the test optical system side. 投影部を光軸調整用に変更した構成を示す図である。It is a figure which shows the structure which changed the projection part for optical axis adjustment. 本発明の第2の実施例における全体構成の概略を示す図である。It is a figure which shows the outline of the whole structure in the 2nd Example of this invention. 測定方法を表すステップ図である。It is a step figure showing a measuring method. MTFの周波数特性を表す例の図である。It is a figure of the example showing the frequency characteristic of MTF. 従来の実施例における全体構成の概略を示す図である。It is a figure which shows the outline of the whole structure in the conventional Example. 線像強度分布(LSF)の例を示す図である。It is a figure which shows the example of a line image intensity distribution (LSF). 受光素子への入射角によるLSFの変化の例を示す図。The figure which shows the example of the change of LSF by the incident angle to a light receiving element.

符号の説明Explanation of symbols

10 被測定光学系
20 投影部
21 光源部
25 ターゲット(チャート)部
30 PC(システムコントロール・演算装置)
40 移動積載台
50 走査部
51 縦移動ガイド
52 横移動ガイド
60 受光部
61 カラーラインセンサー
70 共軸レンズ
80 フロントプロジェクター
DESCRIPTION OF SYMBOLS 10 Optical system to be measured 20 Projection unit 21 Light source unit 25 Target (chart) unit 30 PC (system control / arithmetic unit)
40 Moving platform 50 Scanning section 51 Vertical movement guide 52 Horizontal movement guide 60 Light receiving section 61 Color line sensor 70 Coaxial lens 80 Front projector

Claims (7)

被測定光学系の焦点面に配置したターゲット(スリット)を照明手段により拡大投影し、評価距離の面内において縦横に走査できる機構に配置した受光手段で投影像強度分布を受光し性能を測定する装置において、前記受光手段は垂直面内及び水平垂直軸周りに回転が可能で、前記、被測定光学系の射出瞳方向に傾けた状態で、測定目的に応じたターゲット像の出力分布を受光し、演算手段により傾き角による補正と測定目的に応じた処理を行うことにより光学系の性能を測定する光学系性能測定装置及びその方法。   The target (slit) placed on the focal plane of the optical system to be measured is enlarged and projected by the illumination means, and the projected image intensity distribution is received by the light receiving means placed in a mechanism that can scan vertically and horizontally within the plane of the evaluation distance, and the performance is measured. In the apparatus, the light receiving means can rotate in a vertical plane and around a horizontal / vertical axis, and receives an output distribution of a target image corresponding to a measurement purpose in a state tilted in the exit pupil direction of the optical system to be measured. An optical system performance measuring apparatus and method for measuring the performance of an optical system by performing correction according to an inclination angle and processing according to a measurement purpose by an arithmetic means. 前記、受光手段に用いられる受光素子は波長域が異なる複数の波長で受光され、それぞれの受光強度は評価目的の光源の色に対するウエート割合に応じた補正を行った後に光学系性能を演算処理する、請求項1に記載される光学系性能測定装置及びその方法。   The light receiving element used in the light receiving means receives light at a plurality of wavelengths having different wavelength ranges, and each received light intensity is corrected according to the weight ratio with respect to the color of the light source to be evaluated, and then the optical system performance is calculated. The optical system performance measuring apparatus and method according to claim 1. 被測定光学系の焦点面に配置したターゲット(スリット)を照明手段により拡大投影し、評価距離の面内において縦横に走査できる機構に配置した受光手段で投影像強度分布を受光し、性能を測定する装置において、前記、評価投影面とターゲット面との平行度を合わせる為に、被測定光学系とは異なる光軸調整のための投影光学系を備えていることを特徴とする光学系性能測定装置及びその方法。   The target (slit) placed on the focal plane of the optical system to be measured is enlarged and projected by the illumination means, and the projected image intensity distribution is received by the light receiving means placed in a mechanism that can scan vertically and horizontally within the plane of the evaluation distance, and the performance is measured. An optical system performance measurement comprising a projection optical system for adjusting an optical axis different from the optical system to be measured in order to match the parallelism between the evaluation projection surface and the target surface Apparatus and method thereof. 請求項3に記載の光軸調整のための投影光学系手段はレーザー光源と回折格子チャートを用い、回折格子の対称な広がりが投影評価面での左右又は上下の中心からの乖離差を測定し、その乖離量を無くすために投影系全体を調整する手段を有する光学系性能測定装置及びその方法。   The projection optical system means for adjusting the optical axis according to claim 3 uses a laser light source and a diffraction grating chart, and the symmetrical spread of the diffraction grating measures the difference between the left and right or upper and lower centers on the projection evaluation surface. An optical system performance measuring apparatus having a means for adjusting the whole projection system in order to eliminate the deviation, and a method therefor. 被測定光学系の焦点面に配置したターゲットを照明手段により拡大投影し、評価距離の面内において縦横に走査できる機構に配置した受光手段で投影像強度分布を受光し、性能を測定する装置において、被測定光学系と焦点面に配置したターゲットを照明する手段は一体で構成され、投影評価面とターゲット間の距離が設定可能で上下左右移動と水平垂直面で使用可能な請求項1、及び、請求項3、請求項4に記載される光学系性能測定装置及びその方法。   In an apparatus for measuring performance by enlarging and projecting a target placed on the focal plane of an optical system to be measured by an illuminating means, and receiving a projected image intensity distribution by a light receiving means arranged in a mechanism capable of longitudinal and lateral scanning within the plane of the evaluation distance. And the means for illuminating the optical system to be measured and the target disposed on the focal plane are configured integrally, and the distance between the projection evaluation surface and the target can be set, and can be used in vertical and horizontal movements and horizontal and vertical planes. An optical system performance measuring apparatus and a method thereof according to claim 3 and claim 4. 被測定光学系の焦点面に配置したターゲットを照明手段により拡大投影し、評価距離の面内において縦横に走査できる機構に配置した受光手段で投影像強度分布を受光し、性能を測定する装置において、ターゲット像をLCD等の光変調素子にPCで作成表示し、その投影画像強度分布を前記受光手段と演算処理装置により光学性能を測定評価する光学系性能測定装置及びその方法。   In an apparatus for measuring performance by enlarging and projecting a target placed on the focal plane of an optical system to be measured by an illuminating means, and receiving a projected image intensity distribution by a light receiving means arranged in a mechanism capable of longitudinal and lateral scanning within the plane of the evaluation distance. An optical system performance measuring apparatus and method for creating and displaying a target image on a light modulation element such as an LCD by a PC, and measuring and evaluating the optical performance of the projected image intensity distribution by the light receiving means and the arithmetic processing unit. 被測定光学系の焦点面に配置したターゲット(スリット)を照明手段により拡大投影し、評価距離の面内において縦横に走査できる機構に配置した受光手段で投影像強度分布を受光し、性能を測定する装置において、前記、受光手段を複数備えたことを特徴とする請求項1、請求項3、請求項5、請求項6記載の光学系性能測定装置及びその方法。   The target (slit) placed on the focal plane of the optical system to be measured is enlarged and projected by the illumination means, and the projected image intensity distribution is received by the light receiving means placed in a mechanism that can scan vertically and horizontally within the plane of the evaluation distance, and the performance is measured. 7. The optical system performance measuring apparatus and method according to claim 1, 3, 5, and 6, wherein said apparatus comprises a plurality of said light receiving means.
JP2004223331A 2004-07-30 2004-07-30 Device and method for measuring performance of optical system Withdrawn JP2006038810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004223331A JP2006038810A (en) 2004-07-30 2004-07-30 Device and method for measuring performance of optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004223331A JP2006038810A (en) 2004-07-30 2004-07-30 Device and method for measuring performance of optical system

Publications (1)

Publication Number Publication Date
JP2006038810A true JP2006038810A (en) 2006-02-09

Family

ID=35903945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004223331A Withdrawn JP2006038810A (en) 2004-07-30 2004-07-30 Device and method for measuring performance of optical system

Country Status (1)

Country Link
JP (1) JP2006038810A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007093243A (en) * 2005-09-27 2007-04-12 Nikon Corp Inspection device
KR101298146B1 (en) 2012-10-22 2013-08-20 광전자정밀주식회사 Measuring device for optical characteristics of projector
KR101343598B1 (en) * 2013-07-18 2013-12-19 에이티시스템 주식회사 Inspeting method of led flash module
KR20190118316A (en) * 2018-04-10 2019-10-18 한국광기술원 Apparatus for measuring performance of illumination
CN113639966A (en) * 2021-08-04 2021-11-12 孝感华中精密仪器有限公司 Device for detecting consistency of optical axes of continuous zooming television under high-temperature and low-temperature conditions
CN114252241A (en) * 2020-09-25 2022-03-29 全欧光学检测仪器有限公司 MTF test equipment and application thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007093243A (en) * 2005-09-27 2007-04-12 Nikon Corp Inspection device
KR101298146B1 (en) 2012-10-22 2013-08-20 광전자정밀주식회사 Measuring device for optical characteristics of projector
KR101343598B1 (en) * 2013-07-18 2013-12-19 에이티시스템 주식회사 Inspeting method of led flash module
KR20190118316A (en) * 2018-04-10 2019-10-18 한국광기술원 Apparatus for measuring performance of illumination
KR102074574B1 (en) 2018-04-10 2020-02-06 한국광기술원 Apparatus for measuring performance of illumination
CN114252241A (en) * 2020-09-25 2022-03-29 全欧光学检测仪器有限公司 MTF test equipment and application thereof
CN113639966A (en) * 2021-08-04 2021-11-12 孝感华中精密仪器有限公司 Device for detecting consistency of optical axes of continuous zooming television under high-temperature and low-temperature conditions
CN113639966B (en) * 2021-08-04 2024-01-12 孝感华中精密仪器有限公司 Device for detecting consistency of optical axes of continuous zooming televisions under high and low temperature conditions

Similar Documents

Publication Publication Date Title
KR101257586B1 (en) Optical axis adjusting apparatus, optical axis adjusting method, and projection type display apparatus
US10365468B2 (en) Autofocus imaging
WO2015012279A1 (en) Image processing device, image processing method, microscope system, and image processing program
TWI484283B (en) Image measurement method, image measurement apparatus and image inspection apparatus
JP3893922B2 (en) Lens evaluation method and lens evaluation apparatus
JP2010271246A (en) Method and device for color luminance measurement
JP2006350078A (en) Three-dimensional shape measuring device and three-dimensional shape measuring method
WO2016157291A1 (en) Measuring head and eccentricity measuring device provided with same
JP5007070B2 (en) Exposure equipment
JP2006171024A (en) Multi-point fluorescence spectrophotometry microscope and multi-point fluorescence spectrophotometry method
JP2008051576A (en) Shape-measuring apparatus and shape-measuring method
JP2006038810A (en) Device and method for measuring performance of optical system
JP2009109315A (en) Light measuring device and scanning optical system
JP2007158700A (en) Color fidelity camera
CN114460020B (en) Hyperspectral scanning system and method based on digital micro-reflector
JP2012181139A (en) Lens inspection device
JP2007158701A (en) Color fidelity camera
JP3573631B2 (en) Microscope photometer
JP2004093890A (en) Projection image display device
US11758122B1 (en) Lens and camera testing method, apparatus, and system
CN112782082B (en) Calibration device and method for line scanning imaging
JP3586592B2 (en) Image reading apparatus, default value adjustment method for image reading apparatus, and chart document
CN216132666U (en) Calibration device and electronic equipment
JP4518975B2 (en) Display quality measuring device for image display device
JP2006250675A (en) Mach-zehnder interferometer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071002