JP2006038747A - Residual capacity detection method for battery and discharge method for battery - Google Patents

Residual capacity detection method for battery and discharge method for battery Download PDF

Info

Publication number
JP2006038747A
JP2006038747A JP2004221694A JP2004221694A JP2006038747A JP 2006038747 A JP2006038747 A JP 2006038747A JP 2004221694 A JP2004221694 A JP 2004221694A JP 2004221694 A JP2004221694 A JP 2004221694A JP 2006038747 A JP2006038747 A JP 2006038747A
Authority
JP
Japan
Prior art keywords
battery
capacity
remaining capacity
temperature
remaining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004221694A
Other languages
Japanese (ja)
Other versions
JP4514541B2 (en
Inventor
Kozo Oi
耕三 大井
Mikitaka Tamai
幹隆 玉井
Masao Yamaguchi
昌男 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004221694A priority Critical patent/JP4514541B2/en
Publication of JP2006038747A publication Critical patent/JP2006038747A/en
Application granted granted Critical
Publication of JP4514541B2 publication Critical patent/JP4514541B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To accurately detect residual capacity when the temperature of a battery is low. <P>SOLUTION: This residual capacity detection method is a method for correcting a residual capacity of a battery detected from an integration value of its discharge current to a low capacity previously set for the residual capacity when a battery voltage falls to a set voltage. If the temperature of the battery is lower than a lowest temperature and the residual capacity of the battery is larger than a determination capacity when the battery voltage falls to the set voltage, the residual capacity is not corrected to the low capacity. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は放電電流を積算して残容量を検出する方法に関し、とくに、電池の放電が進行して電池の電圧が設定電圧まで低下すると、残容量を特定の容量に修正する残容量の検出方法に関する。   The present invention relates to a method for detecting a remaining capacity by integrating a discharge current, and more particularly, a remaining capacity detecting method for correcting a remaining capacity to a specific capacity when the battery discharge progresses and the battery voltage drops to a set voltage. About.

電池の残容量は、満充電した状態から放電容量を減算して検出される。放電容量は放電電流を積算して演算される。電池の残容量は、電流と時間の積、すなわちAhで表示され、または、満充電した容量(Ah)を100%として、満充電容量に対する比率(%)で表すことができる。いずれの状態で残容量を表示するにしても、満充電された状態から放電した容量を減算して検出される。ただ、放電電流の積算値で検出される残容量は、常に電池の正しい残容量に一致するとはかぎらない。放電電流の大きさや温度が残容量検出の誤差の原因となるからである。誤差を少なくするために、電池の電圧を検出し、電池電圧が特定の設定された電圧になると、残容量を特定の容量に修正する方法が開発されている(特許文献1参照)。
特開平5−87896号公報
The remaining capacity of the battery is detected by subtracting the discharge capacity from the fully charged state. The discharge capacity is calculated by integrating the discharge current. The remaining capacity of the battery is expressed by the product of current and time, that is, Ah, or can be expressed as a ratio (%) to the fully charged capacity, where the fully charged capacity (Ah) is 100%. Whichever state is displayed, the remaining capacity is detected by subtracting the discharged capacity from the fully charged state. However, the remaining capacity detected by the integrated value of the discharge current does not always match the correct remaining capacity of the battery. This is because the magnitude and temperature of the discharge current cause an error in detecting the remaining capacity. In order to reduce the error, a method has been developed in which the battery voltage is detected and when the battery voltage reaches a specific set voltage, the remaining capacity is corrected to a specific capacity (see Patent Document 1).
JP-A-5-87896

特許文献1には、電池の電圧を検出し、検出された電圧が設定電圧になると、残容量を修正する方法が記載される。しかしながら、この公報に記載される方法では、つねに残容量を正しいように修正できない欠点がある。とくに、電池温度が低いときに、残容量を正確に修正できない欠点がある。   Patent Document 1 describes a method of correcting a remaining capacity when a voltage of a battery is detected and the detected voltage becomes a set voltage. However, the method described in this publication has a drawback that the remaining capacity cannot always be corrected correctly. In particular, there is a drawback that the remaining capacity cannot be corrected accurately when the battery temperature is low.

図1は、−10℃の電池の放電を開始して、電池電圧が低下する特性を示している。ただし、この図に示す方法は、放電される電池の電圧が3.1Vまで低下すると、放電電流を積算して検出した残容量には関係なく、電池の残容量を10%に修正する方法である。この図に示すように、低温の電池は、放電を開始すると電池電圧が急激に低下する。電池電圧が3.1Vまで低下すると、残容量を10%に補正する。その後、電池電圧は多少上昇するが、残容量は10%に修正されているので、その後放電電流の積算値で残容量を次第に減少させる。したがって、検出される電池の残容量は実線Aで示すようになる。しかしながら、この電池は満充電された状態から放電を開始したので、正しい残容量の値は、図の実線Aで示すようには変化しない。このため、特許文献1に記載される方法は、温度が低いときに、残容量を正確に検出できない欠点がある。   FIG. 1 shows the characteristic that the battery voltage starts decreasing after the battery of −10 ° C. starts discharging. However, the method shown in this figure is a method of correcting the remaining battery capacity to 10% regardless of the remaining capacity detected by integrating the discharge current when the voltage of the discharged battery drops to 3.1V. is there. As shown in this figure, the battery voltage of a low-temperature battery rapidly decreases when discharging starts. When the battery voltage drops to 3.1V, the remaining capacity is corrected to 10%. Thereafter, the battery voltage rises slightly, but the remaining capacity is corrected to 10%, and thereafter the remaining capacity is gradually reduced by the integrated value of the discharge current. Therefore, the remaining battery capacity detected is indicated by a solid line A. However, since the battery starts discharging from a fully charged state, the correct remaining capacity value does not change as shown by the solid line A in the figure. For this reason, the method described in Patent Document 1 has a drawback that the remaining capacity cannot be accurately detected when the temperature is low.

本発明は、この欠点を解決することを目的に開発されたものである。本発明の重要な目的は、電池温度が低い状態においても、残容量を正確に検出できる電池の残容量検出方法を提供することにある。
また、本発明の別の目的は、電池温度が低い状態においても、残容量に応じた適切な最大の放電電流に制限する電池の放電方法を提供することにある。
The present invention has been developed for the purpose of solving this drawback. An important object of the present invention is to provide a battery remaining capacity detection method capable of accurately detecting the remaining capacity even when the battery temperature is low.
Another object of the present invention is to provide a battery discharge method that limits the discharge current to an appropriate maximum discharge current according to the remaining capacity even when the battery temperature is low.

本発明の電池の残容量検出方法は、電池の放電電流を積算して電池の放電容量を検出し、検出した放電容量を減算して残容量を演算すると共に、電池電圧を検出し、検出された電池電圧が設定電圧まで低下すると残容量を予め特定している低容量に補正する。さらに、本発明の残容量検出方法は、電池温度を検出して、電池温度が最低温度よりも低く、かつ、電池の残容量が特定容量よりも大容量な判定容量よりも大きいときは、電池の電圧が設定電圧まで低下しても残容量を低容量とせず、放電容量を減算して検出した残容量とする。電池温度が最低温度よりも低く、かつ電池の残容量が判定容量よりも小さいときに、電池の電圧が設定電圧まで低下すると、電池の残容量を低容量に補正する。   The battery remaining capacity detection method of the present invention detects the battery discharge capacity by integrating the battery discharge current, calculates the remaining capacity by subtracting the detected discharge capacity, and detects the battery voltage. When the battery voltage drops to the set voltage, the remaining capacity is corrected to a specified low capacity. Furthermore, the remaining capacity detection method of the present invention detects the battery temperature, and when the battery temperature is lower than the minimum temperature and the remaining capacity of the battery is larger than the determination capacity larger than the specific capacity, the battery Even if the voltage drops to the set voltage, the remaining capacity is not reduced, but the remaining capacity is detected by subtracting the discharge capacity. When the battery temperature is lower than the minimum temperature and the remaining capacity of the battery is smaller than the determination capacity, if the battery voltage decreases to the set voltage, the remaining capacity of the battery is corrected to a lower capacity.

残容量が検出される電池は、リチウムイオン二次電池、ニッケルカドミウム電池、ニッケル水素電池のいずれかである。
電池の電圧が設定電圧まで低下するときに補正する低容量は、たとえば5〜20%とする。
残容量を比較して残容量を補正するかどうかを判定する判定容量は、たとえば30〜50%すとる。
また、残容量を低容量に補正するかどうかを判定する電池の最低温度は、−5℃〜5℃とする。
The battery whose remaining capacity is detected is any one of a lithium ion secondary battery, a nickel cadmium battery, and a nickel metal hydride battery.
The low capacity to be corrected when the battery voltage drops to the set voltage is, for example, 5 to 20%.
The determination capacity for determining whether to correct the remaining capacity by comparing the remaining capacity is, for example, 30 to 50%.
Further, the minimum temperature of the battery for determining whether or not the remaining capacity is corrected to a low capacity is set to −5 ° C. to 5 ° C.

本発明の請求項6の残容量検出方法は、電池の残容量によって最大放電電流を変化させると共に、残容量が大きいときの最大放電電流を残容量が小さいときに比較して大きく設定する。この方法は、とくに電池温度が最低温度よりも低いときに、電池の残容量によって最大放電電流を変化させると共に、残容量が大きいときの最大放電電流を残容量が小さいときに比較して大きく設定して電池を保護しながら最大大電流で放電できる。   According to the remaining capacity detection method of the present invention, the maximum discharge current is changed according to the remaining capacity of the battery, and the maximum discharge current when the remaining capacity is large is set larger than when the remaining capacity is small. In this method, especially when the battery temperature is lower than the minimum temperature, the maximum discharge current is changed depending on the remaining capacity of the battery, and the maximum discharge current when the remaining capacity is large is set larger than when the remaining capacity is small. The battery can be discharged at maximum current while protecting it.

また、本発明の請求項8の電池の放電方法は、電池の放電電流を積算して放電容量を検出し、検出した放電容量を減算して残容量を演算して電池の残容量検出し、電池温度が最低温度よりも低いときに、電池の残容量によって最大放電電流を変化させると共に、残容量が大きいときの最大放電電流を残容量が小さいときに比較して大きく設定する。   The battery discharge method according to claim 8 of the present invention detects the discharge capacity by integrating the discharge current of the battery, calculates the remaining capacity by subtracting the detected discharge capacity, detects the remaining capacity of the battery, When the battery temperature is lower than the minimum temperature, the maximum discharge current is changed according to the remaining capacity of the battery, and the maximum discharge current when the remaining capacity is large is set larger than when the remaining capacity is small.

本発明の電池の残容量検出方法は、電池温度が低い状態において残容量を正確に検出できる特徴がある。それは、電池電圧が設定電圧まで低下しても、電池温度が最低温度よりも低く、かつ、電池の残容量が判定容量よりも大きいときは、残容量を低容量に補正しないので、電池温度が低下して実質的に放電できる容量が低下するときに、残容量を間違った値に補正するのを解消できるからである。   The battery remaining capacity detection method of the present invention is characterized in that the remaining capacity can be accurately detected when the battery temperature is low. Even if the battery voltage drops to the set voltage, if the battery temperature is lower than the minimum temperature and the remaining capacity of the battery is larger than the judgment capacity, the remaining capacity is not corrected to a lower capacity. This is because it is possible to eliminate correcting the remaining capacity to an incorrect value when the capacity that can be substantially discharged is lowered.

また、本発明の電池の放電方法は、電池温度が最低温度よりも低いときに、電池の残容量によって最大放電電流を変化させると共に、残容量が大きいときの最大放電電流を残容量が小さいときに比較して大きく設定している。従って、低温時において残容量が大きい場合に、不必要に、放電電流を制限することがない。   The battery discharge method of the present invention changes the maximum discharge current according to the remaining capacity of the battery when the battery temperature is lower than the minimum temperature, and the maximum discharge current when the remaining capacity is large when the remaining capacity is small. It is set larger than Therefore, the discharge current is not unnecessarily limited when the remaining capacity is large at low temperatures.

以下、本発明の実施例を図面に基づいて説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための電池の残容量検出方法と放電方法を例示するものであって、本発明は残容量検出方法と放電方法を以下の方法に特定しない。   Embodiments of the present invention will be described below with reference to the drawings. However, the examples shown below exemplify the remaining capacity detecting method and discharging method of the battery for embodying the technical idea of the present invention, and the present invention describes the remaining capacity detecting method and discharging method as follows. Not specific to the method.

図2に示す残容量検出装置1はパック電池2に内蔵される。このパック電池2は、残容量検出装置1と二次電池3を内蔵している。残容量検出装置1は、検出した二次電池3の残容量を、接続機器通信端子4を介して、パック電池2の接続機器(図示せず)に伝送する。また、残容量検出装置1は、検出した残容量から、パック電池2を放電できる最大電流値を示す最大制限電流値を示す信号を、接続機器通信端子4を介して接続機器に出力する。   The remaining capacity detection device 1 shown in FIG. The battery pack 2 includes a remaining capacity detection device 1 and a secondary battery 3. The remaining capacity detection device 1 transmits the detected remaining capacity of the secondary battery 3 to a connected device (not shown) of the battery pack 2 via the connected device communication terminal 4. Further, the remaining capacity detection device 1 outputs a signal indicating a maximum limit current value indicating a maximum current value that can discharge the battery pack 2 from the detected remaining capacity to the connected device via the connected device communication terminal 4.

パック電池の接続機器はアシスト自転車である。アシスト自転車に装着されたパック電池は、アシスト自転車のモーターを駆動して自転車を走行させる。この用途に使用されるパック電池は、自転車を走行させる駆動力により、パック電池の放電電流が変化する。モーターが自転車を強い力で駆動するとき、モーターに放電される電流は大きくなる。パック電池を保護するために、電池の最大放電電流を制限している。電池の最大放電電流を制限する信号は、パック電池から接続機器であるアシスト自転車に伝送される。接続機器であるアシスト自転車は、パック電池から入力される最大制限電流値に基づいて、放電電流をコントロールする。すなわち、放電電流を最大制限電流値よりも小さくして、最大の放電電流を最大制限電流値に制限する。接続機器であるアシスト自転車は、パック電池から入力される残容量を表示し、また、残容量に基づいて使用時間や走行可能距離等を表示する。ただし、残容量を演算するパック電池は、必ずしもアシスト自転車に装着されるとはかぎらない。パック電池は、自動車、電動バイク、電動自転車等の車両に装着でき、あるいは車両以外の電気機器に装着することができる。   The battery pack connection device is an assist bicycle. The battery pack attached to the assist bicycle drives the bicycle by driving the assist bicycle motor. In the battery pack used for this purpose, the discharge current of the battery pack changes due to the driving force for running the bicycle. When the motor drives the bicycle with a strong force, the current discharged to the motor increases. In order to protect the battery pack, the maximum discharge current of the battery is limited. A signal that limits the maximum discharge current of the battery is transmitted from the battery pack to the assist bicycle that is the connected device. The assist bicycle as a connected device controls the discharge current based on the maximum current limit value input from the battery pack. That is, the discharge current is made smaller than the maximum limit current value, and the maximum discharge current is limited to the maximum limit current value. The assist bicycle as the connected device displays the remaining capacity input from the battery pack, and displays the usage time, the travelable distance, and the like based on the remaining capacity. However, the battery pack for calculating the remaining capacity is not always attached to the assist bicycle. The battery pack can be attached to a vehicle such as an automobile, an electric motorcycle, or an electric bicycle, or can be attached to an electric device other than the vehicle.

残容量検出装置1は、電池の電圧を検出する電圧検出部5と、電池の温度を検出する温度検出部6と、電池に流れる電流を検出する電流検出部7と、電圧検出部5と温度検出部6と電流検出部7から入力される信号を演算して電池の残容量を検出すると共に、残容量や電池温度からパック電池2の最大制限電流値を検出する残容量演算部8と、演算された残容量や最大制限電流値を接続機器に伝送する通信処理部9とを備えている。通信処理部9は接続機器通信端子4に接続している。通信処理部9は、接続機器通信端子4を介して接続機器に接続されて、残容量や最大制限電流値を示す信号を接続機器に伝送する。   The remaining capacity detection device 1 includes a voltage detection unit 5 that detects the voltage of the battery, a temperature detection unit 6 that detects the temperature of the battery, a current detection unit 7 that detects a current flowing through the battery, a voltage detection unit 5 and a temperature. A signal input from the detection unit 6 and the current detection unit 7 is calculated to detect the remaining capacity of the battery, and a remaining capacity calculation unit 8 to detect the maximum limit current value of the battery pack 2 from the remaining capacity and the battery temperature; And a communication processing unit 9 for transmitting the calculated remaining capacity and the maximum limit current value to the connected device. The communication processing unit 9 is connected to the connected device communication terminal 4. The communication processing unit 9 is connected to the connection device via the connection device communication terminal 4 and transmits a signal indicating the remaining capacity and the maximum limit current value to the connection device.

電池は、リチウムイオン二次電池である。ただし、電池はニッケルカドミウム電池やニッケル水素電池とすることもできる。また、電池はひとつ又は複数を直列、または並列に接続している。   The battery is a lithium ion secondary battery. However, the battery may be a nickel cadmium battery or a nickel metal hydride battery. In addition, one or a plurality of batteries are connected in series or in parallel.

電圧検出部5は、パック電池2に内蔵される二次電池3の電圧を検出する。図のパック電池2は、複数の二次電池3を直列に接続しているので、電圧検出部5は直列に接続している電池のトータル電圧を検出している。電圧検出部5は、検出した電圧をアナログ信号として残容量演算部8に出力し、あるいはA/Dコンバータでアナログ信号をデジタル信号に変換して残容量演算部8に出力する。電圧検出部5は、一定のサンプリング周期で、あるいは連続的に電池電圧を検出して、検出した電圧を残容量演算部8に出力する。   The voltage detector 5 detects the voltage of the secondary battery 3 built in the battery pack 2. Since the battery pack 2 shown in the figure has a plurality of secondary batteries 3 connected in series, the voltage detector 5 detects the total voltage of the batteries connected in series. The voltage detector 5 outputs the detected voltage as an analog signal to the remaining capacity calculator 8 or converts the analog signal into a digital signal by an A / D converter and outputs the digital signal to the remaining capacity calculator 8. The voltage detection unit 5 detects the battery voltage at a constant sampling period or continuously, and outputs the detected voltage to the remaining capacity calculation unit 8.

温度検出部6は、パック電池2に内蔵される電池の温度を検出する温度センサー10を備える。温度センサー10は、電池の表面に接触し、あるいは熱伝導材を介して電池に接触し、あるいはまた電池の表面に接近して電池に熱結合されて電池温度を検出する。温度センサー10はサーミスタである。ただし、温度センサー10には、PTCやバリスタ等、温度を電気抵抗に変換できる全ての素子を使用できる。また、温度センサー10には、電池から放射される赤外線を検出して電池に非接触な状態で温度を検出できる素子も使用できる。温度検出部6も、検出した電池温度をアナログ信号で残容量演算部8に出力し、あるいはA/Dコンバータでアナログ信号をデジタル信号に変換して残容量演算部8に出力する。温度検出部6は一定のサンプリング周期で、あるいは連続的に電池温度を検出して、検出した電池温度を残容量演算部8に出力する。   The temperature detection unit 6 includes a temperature sensor 10 that detects the temperature of the battery built in the battery pack 2. The temperature sensor 10 is in contact with the surface of the battery, or in contact with the battery via a heat conductive material, or is close to the surface of the battery and thermally coupled to the battery to detect the battery temperature. The temperature sensor 10 is a thermistor. However, all elements capable of converting temperature into electrical resistance, such as PTC and varistors, can be used for the temperature sensor 10. The temperature sensor 10 can also be an element that can detect the infrared rays emitted from the battery and detect the temperature without contacting the battery. The temperature detector 6 also outputs the detected battery temperature as an analog signal to the remaining capacity calculator 8, or converts the analog signal into a digital signal using an A / D converter and outputs the digital signal to the remaining capacity calculator 8. The temperature detector 6 detects the battery temperature at a constant sampling period or continuously, and outputs the detected battery temperature to the remaining capacity calculator 8.

電流検出部7は、電池と直列に抵抗素子を接続し、この抵抗素子の両端に誘導される電圧を検出して、電池に流れる放電電流を検出する。抵抗素子は低抵抗な抵抗器である。ただ抵抗素子には、トランジスターやFET等の半導体も使用できる。電池の充電電流と放電電流は電流が流れる方向が逆であるから、抵抗素子に誘導される正負の極性が反転する。したがって、抵抗素子の極性で放電電流と判定して、抵抗素子に誘導される電圧で電流を検出できる。電流が抵抗素子に誘導される電圧に比例するからである。この電流検出部7は電池の放電電流を正確に検出できる。ただし、電流検出部7には、リード線に流れる電流で外部に漏れる磁束を検出して電流を検出する構造とすることもできる。電流検出部7も、検出した放電電流をアナログ信号で残容量演算部8に出力し、あるいはA/Dコンバータでアナログ信号をデジタル信号に変換して残容量演算部8に出力する。電流検出部7は、一定のサンプリング周期で、あるいは連続的に放電電流を検出して、検出した放電電流を残容量演算部8に出力する。   The current detection unit 7 connects a resistance element in series with the battery, detects a voltage induced at both ends of the resistance element, and detects a discharge current flowing through the battery. The resistance element is a low-resistance resistor. However, semiconductors such as transistors and FETs can also be used for the resistance elements. Since the charging current and discharging current of the battery have opposite directions of current flow, the positive and negative polarities induced in the resistance element are reversed. Therefore, it is possible to determine the discharge current based on the polarity of the resistance element and detect the current based on the voltage induced in the resistance element. This is because the current is proportional to the voltage induced in the resistance element. This current detector 7 can accurately detect the discharge current of the battery. However, the current detection unit 7 may be configured to detect a current by detecting a magnetic flux leaking to the outside by a current flowing through the lead wire. The current detection unit 7 also outputs the detected discharge current as an analog signal to the remaining capacity calculation unit 8, or converts the analog signal into a digital signal by an A / D converter and outputs it to the remaining capacity calculation unit 8. The current detection unit 7 detects the discharge current at a constant sampling period or continuously, and outputs the detected discharge current to the remaining capacity calculation unit 8.

電圧検出部5と温度検出部6と電流検出部7から、一定のサンプリング周期でデジタル値の信号を残容量演算部8に出力する装置は、各々の検出部から残容量演算部8にデジタル信号を出力するタイミングをずらせて、順番にデジタル信号を残容量演算部8に出力する。   A device that outputs a digital value signal from the voltage detection unit 5, the temperature detection unit 6, and the current detection unit 7 to the remaining capacity calculation unit 8 at a constant sampling period is a digital signal from each detection unit to the remaining capacity calculation unit 8. The digital signal is output to the remaining capacity calculation unit 8 in order.

残容量演算部8は、電池の放電電流を積算して放電容量を検出し、検出した放電容量を減算して電池の残容量を演算する。たとえば、満充電容量を1000mAhとする電池が500mAh放電されると、残容量は50%となる。したがって、満充電された電池が放電されるにしたがって、残容量は図3の実線Bで示すように次第に低下する。さらに、残容量演算部8は、電池の電圧で放電容量から検出した残容量を補正する。たとえば、図3に示すように、電圧検出部5から入力される電池電圧が設定電圧まで低下すると、残容量を予め特定している低容量に補正する。設定電圧と低容量は、残容量演算部8に接続しているメモリ11に記憶している。図3は、リチウムイオン二次電池の特性を示し、設定電圧を3.1V/セル、低容量を10%としている。したがって、放電している電池の電圧が設定電圧の3.1V/セルまで低下すると、放電電流を演算して検出された電池の残容量を10%と補正する。   The remaining capacity calculation unit 8 integrates the discharge current of the battery to detect the discharge capacity, and subtracts the detected discharge capacity to calculate the remaining capacity of the battery. For example, when a battery having a full charge capacity of 1000 mAh is discharged by 500 mAh, the remaining capacity is 50%. Therefore, as the fully charged battery is discharged, the remaining capacity gradually decreases as shown by the solid line B in FIG. Further, the remaining capacity calculation unit 8 corrects the remaining capacity detected from the discharge capacity with the voltage of the battery. For example, as shown in FIG. 3, when the battery voltage input from the voltage detection unit 5 drops to the set voltage, the remaining capacity is corrected to a low capacity that is specified in advance. The set voltage and the low capacity are stored in the memory 11 connected to the remaining capacity calculation unit 8. FIG. 3 shows the characteristics of the lithium ion secondary battery, where the set voltage is 3.1 V / cell and the low capacity is 10%. Accordingly, when the voltage of the discharged battery is reduced to the set voltage of 3.1 V / cell, the remaining battery capacity detected by calculating the discharge current is corrected to 10%.

放電している電池の電圧が設定電圧になるときに、残容量を低容量に補正する方法は、電池温度が非常に低いときに、残容量の補正が不正確になる。図1はその具体例を示している。この図は、温度が−10℃である満充電された電池の放電特性を示している。この図に示すように、極低温の電池が、放電されると、放電を開始して短時間に電圧が急激に低下する。この図は、電池電圧が3Vまで低下している。このように電池電圧が設定電圧よりも低くなるときに、残容量を低容量の10%に補正すると、正しい残容量を検出できなくなる。   In the method of correcting the remaining capacity to a low capacity when the voltage of the discharged battery reaches the set voltage, the correction of the remaining capacity becomes inaccurate when the battery temperature is very low. FIG. 1 shows a specific example thereof. This figure shows the discharge characteristics of a fully charged battery having a temperature of −10 ° C. As shown in this figure, when a cryogenic battery is discharged, the discharge starts and the voltage rapidly decreases in a short time. In this figure, the battery voltage has dropped to 3V. Thus, when the battery voltage becomes lower than the set voltage, if the remaining capacity is corrected to 10% of the low capacity, the correct remaining capacity cannot be detected.

残容量演算部8は、以上の弊害を防止するために、電池の電圧が設定電圧に低下するときに、電池温度と残容量から、残容量を補正するかどうかを判定する。電池の電圧が設定電圧である3.1V/セルまで低下しても、電池温度が予め設定している最低温度の0℃よりも低いときは、電池の残容量が予め設定している判定容量の40%よりも小さいときに限って残容量を低容量に補正し、残容量が判定容量の40%よりも大きいときは、残容量を低容量に補正しない。すなわち、放電電流から検出した残容量を正しいとする。   The remaining capacity calculation unit 8 determines whether or not to correct the remaining capacity from the battery temperature and the remaining capacity when the battery voltage drops to the set voltage in order to prevent the above-described adverse effects. Even if the battery voltage drops to the set voltage of 3.1 V / cell, if the battery temperature is lower than the preset minimum temperature of 0 ° C., the remaining capacity of the battery is set in advance. Only when the remaining capacity is smaller than 40%, the remaining capacity is corrected to a low capacity, and when the remaining capacity is larger than 40% of the determination capacity, the remaining capacity is not corrected to a low capacity. That is, it is assumed that the remaining capacity detected from the discharge current is correct.

メモリ11は、最低温度と判定容量を記憶している。低容量に補正するかどうかを判定する電池の最低温度は、−5℃〜5℃の範囲に設定することができる。最低温度は高すぎても低すぎても、残容量を正確に補正できなくなる。また、判定容量は30〜50%の範囲に設定することができるが、この判定容量も大きすぎても小さすぎても、残容量を正確に補正できなくなる。したがって、最低温度と判定容量は、電池のタイプや大きさを考慮して、残容量をもっとも正確に補正できる値に設定される。   The memory 11 stores a minimum temperature and a determination capacity. The minimum battery temperature for determining whether or not to correct to a low capacity can be set in the range of -5 ° C to 5 ° C. If the minimum temperature is too high or too low, the remaining capacity cannot be corrected accurately. The determination capacity can be set in a range of 30 to 50%. However, if the determination capacity is too large or too small, the remaining capacity cannot be accurately corrected. Therefore, the minimum temperature and the determination capacity are set to values that can correct the remaining capacity most accurately in consideration of the type and size of the battery.

残容量演算部8は、電池電圧が設定電圧よりも低くなるとき、電池温度が最低温度よりも高いときは、電池の残容量に関係なく、残容量を低容量に補正する。図3においては、電池の放電を開始した最初に電池電圧が設定電圧よりも低くなるが、この時の電池温度は最低温度の0℃よりも低いが、放電電流から検出した残容量が判定容量の40%よりも大きいので、残容量を低容量の10%には補正しない。電池の放電が進行して、放電容量が1400mAhから1600mAhとなる間において、電池電圧が設定電圧の3.1V/セルに低下するときは、電池の温度が最低温度の0℃よりも高いので、残容量を低容量の10%に補正する。図では、このときに電池の温度が最低温度の0℃よりも高くなっているが、このときの電池温度が仮に最低温度の0℃よりも低くても、電池の残容量が判定容量の40%よりも低くなっているので、残容量は低容量の10%に補正される。   The remaining capacity calculation unit 8 corrects the remaining capacity to a lower capacity regardless of the remaining capacity of the battery when the battery voltage is lower than the set voltage and the battery temperature is higher than the minimum temperature. In FIG. 3, the battery voltage becomes lower than the set voltage at the beginning of the discharge of the battery. At this time, the battery temperature is lower than the minimum temperature of 0 ° C., but the remaining capacity detected from the discharge current is the judgment capacity. Therefore, the remaining capacity is not corrected to 10% of the low capacity. When the battery voltage decreases to the set voltage of 3.1 V / cell while the discharge of the battery progresses and the discharge capacity becomes 1400 mAh to 1600 mAh, the temperature of the battery is higher than the minimum temperature of 0 ° C. The remaining capacity is corrected to 10% of the low capacity. In the figure, the temperature of the battery is higher than the minimum temperature of 0 ° C. at this time. However, even if the battery temperature at this time is lower than the minimum temperature of 0 ° C., the remaining capacity of the battery is 40% of the determination capacity. Therefore, the remaining capacity is corrected to 10% of the low capacity.

すなわち、放電している電池の電圧が設定電圧まで低下するとき、電池の温度が最低温度よりも低いときには、放電電流から検出した残容量が判定容量よりも小さいときにかぎって、残容量を低容量に補正し、残容量が判定容量よりも大きいときは、残容量を低容量に補正しない。また、電池の電圧が設定電圧まで低下するときに、電池温度が設定温度よりも高いときは、残容量に関係なく低容量に補正する。   That is, when the discharged battery voltage drops to the set voltage, when the battery temperature is lower than the minimum temperature, the remaining capacity is reduced only when the remaining capacity detected from the discharge current is smaller than the judgment capacity. When the remaining capacity is larger than the determination capacity, the remaining capacity is not corrected to a lower capacity. When the battery voltage drops to the set voltage and the battery temperature is higher than the set temperature, the battery is corrected to a low capacity regardless of the remaining capacity.

残容量演算部8が、放電する電池の電圧が設定電圧よりも低くなったときに、残容量を低容量に補正するフローチャートを図4に示す。この図のフローチャートは、以下のステップで残容量を補正する。
[n=1のステップ]
このステップにおいて、残容量演算部8は、電池電圧が設定電圧よりも低いかどうかを判定する。電池電圧が設定電圧よりも低くない場合は、このステップをループする。
[n=2のステップ]
電池電圧が設定電圧よりも低くなると、このステップで電池温度が最低温度よりも低いかどうかを判定し、電池温度が最低温度よりも低いと、次のn=3のステップに進み、電池温度が設定温度よりも高いと、n=4のステップにジャンプして残用量を低容量に補正する。
[n=3のステップ]
電池電圧が設定電圧よりも低く、かつ電池温度が最低温度よりも低いと、このステップで、電池の残容量が判定容量よりも小さいかどうかを判定し、残容量が判定容量よりも小さいと、n=4のステップで残容量を低容量に補正し、判定容量よりも大きいと、残容量を低容量に補正することなく、n=1のステップにジャンプする。
[n=4のステップ]
電池電圧が設定電圧よりも低くなって電池温度が最低温度よりも高い電池と、電池電圧が設定電圧よりも低くなって、電池温度が最低温度よりも低く、かつ残容量が判定容量よりも小さい電池の残容量が、このステップで低容量に補正される。
FIG. 4 shows a flowchart in which the remaining capacity calculation unit 8 corrects the remaining capacity to a low capacity when the voltage of the battery to be discharged becomes lower than the set voltage. In the flowchart of this figure, the remaining capacity is corrected by the following steps.
[Step of n = 1]
In this step, the remaining capacity calculation unit 8 determines whether or not the battery voltage is lower than the set voltage. If the battery voltage is not lower than the set voltage, this step is looped.
[Step of n = 2]
When the battery voltage becomes lower than the set voltage, it is determined in this step whether or not the battery temperature is lower than the minimum temperature. If it is higher than the set temperature, jump to the step of n = 4 and correct the remaining dose to a low volume.
[Step n = 3]
When the battery voltage is lower than the set voltage and the battery temperature is lower than the minimum temperature, in this step, it is determined whether or not the remaining capacity of the battery is smaller than the judgment capacity, and if the remaining capacity is smaller than the judgment capacity, In step n = 4, the remaining capacity is corrected to a low capacity. If the remaining capacity is larger than the determination capacity, the process jumps to the step n = 1 without correcting the remaining capacity to a low capacity.
[Step n = 4]
The battery voltage is lower than the set voltage and the battery temperature is higher than the minimum temperature, the battery voltage is lower than the set voltage, the battery temperature is lower than the minimum temperature, and the remaining capacity is smaller than the judgment capacity The remaining battery capacity is corrected to a low capacity in this step.

さらに、残容量演算部8は、検出した電池の残容量によって、パック電池2の最大の放電電流を示す信号である最大放電電流信号を接続機器に伝送する。接続機器は、パック電池2を放電させる最大電流をこの最大放電電流信号で特定される電流に設定して、この電流よりも小さい電流でパック電池2を放電するように制御する。パック電池2の最大放電電流は、電池の残容量に基づいて残容量演算部8で演算される。残容量演算部8は、図5に示すように、電池の残容量によって最大放電電流を変化させる。最大放電電流は、残容量が大きいときに大きく、残容量が小さいときに小さくなるように、すなわち、残容量が大きいときの最大放電電流を残容量が小さいときに比較して大きくするように設定している。すなわち、パック電池2は、残容量から最大放電電流を特定する関数やテーブルをメモリ11に記憶させている。図5に示す関数は、残容量によって最大放電電流を直線的に変化させる一次関数である。メモリ11は、残容量によって最大放電電流を段階的に変化させる関数として記憶することもでき、また、残容量に対する最大放電電流をテーブルとして記憶する。残容量演算部8は残容量が検出されると、この残容量からメモリ11の記憶される関数やテーブルでもって、パック電池2の最大放電電流を検出して、設定機器に最大放電電流信号を出力する。   Further, the remaining capacity calculation unit 8 transmits a maximum discharge current signal, which is a signal indicating the maximum discharge current of the battery pack 2, to the connected device according to the detected remaining capacity of the battery. The connected device sets the maximum current for discharging the battery pack 2 to a current specified by the maximum discharge current signal, and controls the battery pack 2 to be discharged with a current smaller than this current. The maximum discharge current of the battery pack 2 is calculated by the remaining capacity calculation unit 8 based on the remaining capacity of the battery. As shown in FIG. 5, the remaining capacity calculation unit 8 changes the maximum discharge current according to the remaining capacity of the battery. The maximum discharge current is set to be large when the remaining capacity is large and small when the remaining capacity is small, that is, the maximum discharge current when the remaining capacity is large is set to be larger than that when the remaining capacity is small. is doing. That is, the battery pack 2 stores a function or table for specifying the maximum discharge current from the remaining capacity in the memory 11. The function shown in FIG. 5 is a linear function that linearly changes the maximum discharge current according to the remaining capacity. The memory 11 can also store the maximum discharge current in a stepwise manner according to the remaining capacity, and stores the maximum discharge current with respect to the remaining capacity as a table. When the remaining capacity is detected, the remaining capacity calculation unit 8 detects the maximum discharge current of the battery pack 2 from the remaining capacity using a function or table stored in the memory 11 and outputs a maximum discharge current signal to the setting device. Output.

また、このように最大放電電流を規制する方法は、特に、低温時に有効である。すなわち、一般的に電池は、低温での放電時は、常温に比べると電池電圧が低下する傾向にあり、低温で放電電流が大きい場合には、放電停止電圧(例えば、2.7V/セル)を下回ってしまうことがある。実際には、電池残容量があるのに電池が使用できなくなる。そこで従来、例えば電動アシスト自転車においては、低温の場合には、その温度に応じて本体側に電流を制限する情報(制限電流値など)を伝達して、本体側で電流を制限し(図5での従来の電流値)、放電停止電圧を下回らないようにしていた。この従来の場合、温度のみによって電流が制限されるので、電池残容量が満充電状態に近い状態にも関わらず、電動アシスト自転車のアシスト力は一定のレベルに制限されるという欠点があった。一方、上記のように、残容量によって、最大放電電流を制限する方法は有用であり、特に、電池温度を検出して、低温時に利用することは有用である。低温時としては、例えば、判定する電池の最低温度は、上述の実施例と同様に、−5℃〜5℃の範囲に設定することができる。このような最低温度以下の時に、図5に示す関数にて、最大放電電流を制限する。従って、電池残容量が十分ある状態では、制限電流値を多少大きくしても放電停止電圧を下回ることはなく、不必要に放電電流を制限することがなく、放電電流を最大限に引き出すことが可能となる。例えば、電動アシスト自転車の場合、電池残容量が十分ある状態では、従来よりも制限電流値を大きくすることができアシスト力を大きくすることができる。   In addition, such a method of regulating the maximum discharge current is particularly effective at low temperatures. That is, in general, when a battery is discharged at a low temperature, the battery voltage tends to be lower than that at room temperature. When the discharge current is large at a low temperature, the discharge stop voltage (for example, 2.7 V / cell) May fall below. Actually, the battery cannot be used even though the remaining battery capacity is present. Therefore, conventionally, for example, in a power-assisted bicycle, when the temperature is low, information (limit current value or the like) for limiting the current is transmitted to the main body according to the temperature, and the current is limited on the main body (FIG. 5). In the conventional current value in the above, the discharge stop voltage was not reduced below. In this conventional case, since the current is limited only by the temperature, there is a drawback in that the assist force of the electrically assisted bicycle is limited to a certain level regardless of the state where the remaining battery capacity is almost fully charged. On the other hand, as described above, a method of limiting the maximum discharge current based on the remaining capacity is useful. In particular, it is useful to detect the battery temperature and use it at a low temperature. As the low temperature, for example, the minimum battery temperature to be determined can be set in the range of −5 ° C. to 5 ° C. as in the above-described embodiment. When the temperature is lower than the minimum temperature, the maximum discharge current is limited by the function shown in FIG. Therefore, in a state where the remaining battery capacity is sufficient, even if the limit current value is slightly increased, the discharge stop voltage is not lowered, and the discharge current is not unnecessarily limited, and the discharge current can be maximized. It becomes possible. For example, in the case of a battery-assisted bicycle, when the remaining battery capacity is sufficient, the limit current value can be increased and the assist force can be increased.

低温のリチウムイオン二次電池を放電する電圧特性を示すグラフである。It is a graph which shows the voltage characteristic which discharges a low-temperature lithium ion secondary battery. 本発明の残容量検出方法に使用する残容量演算装置を内蔵するパック電池のブロック図である。It is a block diagram of the battery pack incorporating the remaining capacity calculation device used for the remaining capacity detection method of the present invention. 本発明の実施例にかかる方法で放電される電池の残容量を補正する特性を示すグラフである。6 is a graph showing characteristics for correcting a remaining capacity of a battery discharged by a method according to an embodiment of the present invention. 図3の残容量演算装置が残容量を演算する工程を示すフローチャート図である。It is a flowchart figure which shows the process in which the remaining capacity calculating apparatus of FIG. 3 calculates remaining capacity. 残容量によって最大放電電流を変化させる特性を示すグラフである。It is a graph which shows the characteristic which changes the maximum discharge current with remaining capacity.

符号の説明Explanation of symbols

1…残容量検出装置
2…パック電池
3…二次電池
4…接続機器通信端子
5…電圧検出部
6…温度検出部
7…電流検出部
8…残容量演算部
9…通信処理部
10…温度センサー
11…メモリ
DESCRIPTION OF SYMBOLS 1 ... Remaining capacity detection apparatus 2 ... Pack battery 3 ... Secondary battery 4 ... Connection apparatus communication terminal 5 ... Voltage detection part 6 ... Temperature detection part 7 ... Current detection part 8 ... Remaining capacity calculation part 9 ... Communication processing part 10 ... Temperature Sensor 11 ... Memory

Claims (8)

電池の放電電流を積算して放電容量を検出し、検出した放電容量を減算して残容量を演算すると共に、電池電圧を検出し、検出された電池電圧が設定電圧まで低下すると残容量を予め特定している低容量に補正する電池の残容量検出方法であって、
電池温度を検出し、電池温度が最低温度よりも低く、かつ、電池の残容量が特定容量よりも大容量な判定容量よりも大きいときは、電池の電圧が設定電圧まで低下しても残容量を低容量とせずに、放電容量を減算して検出した残容量とし、電池温度が最低温度よりも低く、かつ電池の残容量が判定容量よりも小さいときに、電池の電圧が設定電圧まで低下すると、電池の残容量を低容量に補正することを特徴とする電池の残容量検出方法。
The battery discharge current is integrated by integrating the discharge current of the battery, the remaining capacity is calculated by subtracting the detected discharge capacity, the battery voltage is detected, and when the detected battery voltage drops to the set voltage, the remaining capacity is A battery remaining capacity detection method for correcting to a specified low capacity,
If the battery temperature is detected, the battery temperature is lower than the minimum temperature, and the remaining battery capacity is greater than the judgment capacity that is larger than the specified capacity, the remaining capacity is maintained even if the battery voltage drops to the set voltage. The battery capacity is reduced to the set voltage when the battery temperature is lower than the minimum temperature and the remaining battery capacity is lower than the judgment capacity. Then, the remaining capacity detection method of a battery characterized by correct | amending the remaining capacity of a battery to low capacity.
電池が、リチウムイオン二次電池、ニッケルカドミウム電池、ニッケル水素電池のいずれかである請求項1に記載される電池の残容量検出方法。   The battery remaining capacity detection method according to claim 1, wherein the battery is any one of a lithium ion secondary battery, a nickel cadmium battery, and a nickel metal hydride battery. 低容量が5〜20%である請求項1に記載される電池の残容量検出方法。   The battery remaining capacity detection method according to claim 1, wherein the low capacity is 5 to 20%. 判定容量が30〜50%である請求項1に記載される電池の残容量検出方法。   The battery remaining capacity detection method according to claim 1, wherein the determination capacity is 30 to 50%. 最低温度が−5℃〜5℃である請求項1に記載される電池の残容量検出方法。   The battery remaining capacity detection method according to claim 1, wherein the minimum temperature is -5C to 5C. 電池の残容量によって最大放電電流を変化させると共に、残容量が大きいときの最大放電電流を残容量が小さいときに比較して大きく設定している請求項1に記載される電池の残容量検出方法。   The method for detecting the remaining capacity of a battery according to claim 1, wherein the maximum discharging current is changed according to the remaining capacity of the battery, and the maximum discharging current when the remaining capacity is large is set larger than when the remaining capacity is small. . 電池温度が最低温度よりも低いときに、電池の残容量によって最大放電電流を変化させると共に、残容量が大きいときの最大放電電流を残容量が小さいときに比較して大きく設定している請求項6に記載される電池の残容量検出方法。   The maximum discharge current is changed according to the remaining capacity of the battery when the battery temperature is lower than the minimum temperature, and the maximum discharge current when the remaining capacity is large is set larger than that when the remaining capacity is small. 6. The battery remaining capacity detection method described in 6. 電池の放電電流を積算して放電容量を検出し、検出した放電容量を減算して残容量を演算して電池の残容量を検出し、電池温度が最低温度よりも低いときに、電池の残容量によって最大放電電流を変化させると共に、残容量が大きいときの最大放電電流を残容量が小さいときに比較して大きく設定することを特徴とする電池の放電方法。   The discharge capacity of the battery is integrated to detect the discharge capacity, and the remaining capacity is calculated by subtracting the detected discharge capacity to detect the remaining capacity of the battery.When the battery temperature is lower than the minimum temperature, the remaining battery capacity is A method for discharging a battery, wherein the maximum discharge current is changed depending on the capacity, and the maximum discharge current when the remaining capacity is large is set larger than when the remaining capacity is small.
JP2004221694A 2004-07-29 2004-07-29 Battery remaining capacity detection method Expired - Fee Related JP4514541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004221694A JP4514541B2 (en) 2004-07-29 2004-07-29 Battery remaining capacity detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004221694A JP4514541B2 (en) 2004-07-29 2004-07-29 Battery remaining capacity detection method

Publications (2)

Publication Number Publication Date
JP2006038747A true JP2006038747A (en) 2006-02-09
JP4514541B2 JP4514541B2 (en) 2010-07-28

Family

ID=35903889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004221694A Expired - Fee Related JP4514541B2 (en) 2004-07-29 2004-07-29 Battery remaining capacity detection method

Country Status (1)

Country Link
JP (1) JP4514541B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010164322A (en) * 2009-01-13 2010-07-29 Sanyo Electric Co Ltd Method and device for detecting remaining capacity of battery, and secondary battery system
CN103135058A (en) * 2011-11-29 2013-06-05 联想(北京)有限公司 Method and electronic device for displaying battery remaining electricity quantity
CN104849669A (en) * 2015-04-17 2015-08-19 惠州Tcl移动通信有限公司 Discharging method and system of non-removable battery of mobile terminal
CN105247379A (en) * 2013-05-03 2016-01-13 力博特公司 System and method for ups battery monitoring and data analysis
TWI614512B (en) * 2016-07-14 2018-02-11 神基科技股份有限公司 Gauging method for battery discharge-capacity corresponding to temperature and electronic device using the same
US10020548B2 (en) 2016-08-08 2018-07-10 Getac Technology Corporation Gauging method for battery discharge-capacity corresponding to temperature and electronic device using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10213638A (en) * 1997-01-30 1998-08-11 Sanyo Electric Co Ltd Method for detecting remaining capacity of secondary battery
JPH114545A (en) * 1997-06-10 1999-01-06 Toyota Autom Loom Works Ltd Output restricting device for battery
JP2002328154A (en) * 2001-05-01 2002-11-15 Honda Motor Co Ltd Remaining capacity detector for electric storage device
JP2004032977A (en) * 2002-06-26 2004-01-29 Hyundai Motor Co Ltd Method of calculating maximum charging and discharging current values of hybrid electric vehicle battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10213638A (en) * 1997-01-30 1998-08-11 Sanyo Electric Co Ltd Method for detecting remaining capacity of secondary battery
JPH114545A (en) * 1997-06-10 1999-01-06 Toyota Autom Loom Works Ltd Output restricting device for battery
JP2002328154A (en) * 2001-05-01 2002-11-15 Honda Motor Co Ltd Remaining capacity detector for electric storage device
JP2004032977A (en) * 2002-06-26 2004-01-29 Hyundai Motor Co Ltd Method of calculating maximum charging and discharging current values of hybrid electric vehicle battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010164322A (en) * 2009-01-13 2010-07-29 Sanyo Electric Co Ltd Method and device for detecting remaining capacity of battery, and secondary battery system
CN103135058A (en) * 2011-11-29 2013-06-05 联想(北京)有限公司 Method and electronic device for displaying battery remaining electricity quantity
CN105247379A (en) * 2013-05-03 2016-01-13 力博特公司 System and method for ups battery monitoring and data analysis
US10852357B2 (en) 2013-05-03 2020-12-01 Vertiv Corporation System and method for UPS battery monitoring and data analysis
CN104849669A (en) * 2015-04-17 2015-08-19 惠州Tcl移动通信有限公司 Discharging method and system of non-removable battery of mobile terminal
CN104849669B (en) * 2015-04-17 2018-06-19 惠州Tcl移动通信有限公司 A kind of charging method and system of the non-dismountable battery of mobile terminal
TWI614512B (en) * 2016-07-14 2018-02-11 神基科技股份有限公司 Gauging method for battery discharge-capacity corresponding to temperature and electronic device using the same
US10020548B2 (en) 2016-08-08 2018-07-10 Getac Technology Corporation Gauging method for battery discharge-capacity corresponding to temperature and electronic device using the same

Also Published As

Publication number Publication date
JP4514541B2 (en) 2010-07-28

Similar Documents

Publication Publication Date Title
JP4910423B2 (en) Battery pack, electronic device, and battery remaining amount detection method
US9172261B2 (en) Battery pack, method of charging secondary battery and battery charger
JP4692674B2 (en) Charger
KR20060052273A (en) Method for controlling secondary battery electric power and power supply unit
JP4311168B2 (en) Battery pack and remaining battery charge calculation method
JP5125303B2 (en) Battery pack, electronic device, and method for deriving remaining capacity display
JP5091805B2 (en) Degradation judgment circuit, battery system, and degradation judgment method
CN112534283B (en) Battery management system, battery management method, battery pack, and electric vehicle
JP2009264779A (en) Battery state detection circuit, battery pack, and charging system
JP2008021417A (en) Battery pack and detecting method
JP2009133676A (en) Battery pack and charge/discharge method
JP3925507B2 (en) Secondary battery charging method and battery pack
JP2009052975A (en) Circuit for calculating residual battery capacity, and battery pack using the same
JP4514541B2 (en) Battery remaining capacity detection method
JP5030665B2 (en) Battery remaining capacity detection method
JP3774995B2 (en) Lithium ion secondary battery charging method and charging device therefor
JP2006170867A (en) Calculation method of remaining capacity of battery
JP2008275524A (en) Battery pack and residual capacity computing method
JP2006177764A (en) Learning capacity correcting method of battery
JP4660367B2 (en) Rechargeable battery remaining capacity detection method
JP2007322353A (en) Battery capacity determining device, method, and battery pack using the same
JP2004014462A (en) Remaining capacity measurement device of secondary battery
JP2005039875A (en) Method for charging secondary battery and apparatus for charging using the same
JP4306900B2 (en) Rechargeable battery charging method
JP2002236155A (en) Remaining capacity operation method of battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100511

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees