JP2006038595A - Grain moisture measuring device of grain drier - Google Patents

Grain moisture measuring device of grain drier Download PDF

Info

Publication number
JP2006038595A
JP2006038595A JP2004217806A JP2004217806A JP2006038595A JP 2006038595 A JP2006038595 A JP 2006038595A JP 2004217806 A JP2004217806 A JP 2004217806A JP 2004217806 A JP2004217806 A JP 2004217806A JP 2006038595 A JP2006038595 A JP 2006038595A
Authority
JP
Japan
Prior art keywords
grain
compression
moisture
small
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004217806A
Other languages
Japanese (ja)
Inventor
Sadakazu Fujioka
定和 藤岡
Shinji Ninomiya
伸治 二宮
Takashi Nagai
永井  隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Original Assignee
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd, Iseki Agricultural Machinery Mfg Co Ltd filed Critical Iseki and Co Ltd
Priority to JP2004217806A priority Critical patent/JP2006038595A/en
Publication of JP2006038595A publication Critical patent/JP2006038595A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a grain moisture measuring device of a grain drier capable of performing proper moisture measurement in a compression condition corresponding to the grain size without requiring a troublesome switching operation on the grain size. <P>SOLUTION: This grain moisture measuring device 1 comprises a grain supply part 12 for a single grain, a compression measuring part 13 for measuring the moisture value of the compressed grain, a data processing part 21 or the like. The compression measuring part has a constitution wherein at least one roll electrode 13 is formed to have large and small circumferential surface diameters, so that large and small compression intervals can be selected according to the rotation angle position. The grain supply part 12 is equipped mutually adjacently with large and small selection recessed parts 31a having the diameter size capable of selecting and holding the grain according to the size of the received grain, and is also equipped with a successive transfer means for transferring successively the large or small held grain to a sending-out position by a moving operation of the large and small selection recessed parts 31a. The device is constituted so that the transfer operation of the successive transfer means and the compression operation of the compression rolls 13 are controlled sequentially in accordance with a timing of each large or small size. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、籾、大豆等の収穫穀粒を所定水分値まで加熱乾燥処理する穀粒乾燥機に設けられて乾燥過程にある1粒ずつの穀粒水分を測定する穀粒乾燥機の穀粒水分測定装置に関するものである。   The present invention provides a kernel of a grain dryer that is provided in a grain dryer that heat-drys harvested grains such as straw and soybeans to a predetermined moisture value and measures the moisture content of each grain in the drying process. The present invention relates to a moisture measuring device.

穀粒乾燥機の循環穀粒の乾燥度合いを測定するために、例えば、特許文献1に示す穀粒水分測定装置が、従来、知られている。この穀粒水分測定装置は、穀粒乾燥機の循環昇降部等の循環経路上に設けられ、循環穀粒の一部を測定試料として穀粒を1粒ずつ移送する穀粒供給部と、受けた穀粒を圧縮する平行配置の2つの圧縮ロールによる1対の圧縮ロール電極を備え、角度位置により異なるロール半径に形成して圧縮間隙が変化するように構成して投入タイミングの選択により、また、特許文献2(第13図)に示すように、大小の半径のロールを左右に隣接配置してその左右のロールの選択により、圧縮間隙の距離を選択可能に構成した例である。   In order to measure the drying degree of the circulating grain of a grain dryer, for example, a grain moisture measuring device shown in Patent Document 1 is conventionally known. This grain moisture measuring device is provided on a circulation path such as a circulation raising and lowering part of a grain dryer, and receives a grain supply unit for transferring a grain one by one using a part of the circulating grain as a measurement sample, A pair of compression roll electrodes with two compression rolls arranged in parallel to compress the cereal grains, and formed so that the compression gap changes by forming different roll radii depending on the angular position, and by selecting the input timing, In this example, as shown in Patent Document 2 (FIG. 13), rolls having large and small radii are arranged adjacent to each other on the left and right, and the distance between the compression gaps can be selected by selecting the left and right rolls.

これらは、投入タイミングの選択、または、左右のロールの選択によって圧縮条件を変更できることから、穀粒の水分値や生育不揃いにより、電極間に繰り込まれずにその入口部で停留したり、時には、弾かれて散逸し、迅速かつ正確な水分測定が困難となる事態に対しても、適宜、計測条件を切替えて対応することができる。   These can change the compression conditions by selecting the input timing or by selecting the left and right rolls, so due to the moisture value of the grain and uneven growth, it is not retained between the electrodes and stops at the inlet, The measurement conditions can be appropriately switched to cope with a situation where it is bounced and dissipated and it becomes difficult to measure moisture quickly and accurately.

しかし、計測条件の変更は、取扱う穀粒の大きさに合わせてタイミング設定を切替え操作し、または、圧縮ロールへの穀粒供給口を切替え操作する煩わしさを免れえない上に、穀粒の生育条件等による粒径差がある場合においても、切替え操作した計測条件で一律に処理されることから、計測精度上の問題を内包するものであった。
特開昭60−95351号公報 特開2003−107027号公報
However, the change of the measurement condition is unavoidable for the troublesome operation of switching the timing setting according to the size of the grain to be handled or switching the grain supply port to the compression roll. Even in the case where there is a difference in particle size due to growth conditions, etc., since the processing is uniformly performed under the switched measurement conditions, there is a problem in measurement accuracy.
JP-A-60-95351 JP 2003-107027 A

解決しようとする問題点は、穀粒の粒径についての煩わしい切替操作を要することなく、粒径に応じた圧縮条件によって適切な水分測定を可能とする穀粒乾燥機の穀粒水分測定装置を提供することにある。   The problem to be solved is a grain moisture measuring device of a grain dryer that enables appropriate moisture measurement according to the compression condition according to the grain size without requiring troublesome switching operation about the grain size of the grain. It is to provide.

請求項1に係る発明は、穀粒を1粒ずつ送出する穀粒供給部と、この穀粒供給部から受けた穀粒を圧縮する2つの対向圧縮ロールを1対の電極として圧縮穀粒の水分値を計測する圧縮計測部と、その計測値の換算処理および平均処理に基づいて穀粒水分値を算出するデータ処理部とからなり、上記圧縮計測部は、少なくとも一方のロール電極を大小の周面半径に形成してその回動角度位置により大小の圧縮間隙を選択可能に構成した穀粒乾燥機の穀粒水分測定装置において、上記穀粒供給部は、受けた穀粒の粒径に応じて選別保持可能な径寸法の大小の選別凹部を互いに隣接して備えるとともに、これら大小の選別凹部の移動動作によって大小の保持穀粒を送出位置まで順次移送する順次移送手段を備え、この順次移送手段の移送動作と、圧縮ロールの圧縮動作をそれぞれの大小のタイミングに合わせて連動制御することを特徴とする。
穀粒供給部の選別凹部により粒径に応じて大小の穀粒が選別保持され、これが順次移送手段により送出位置まで順次移送され、連動動作する圧縮ロールの大小の圧縮間隙と対応して供給されることにより、粒径と対応する圧縮処理により穀粒の水分値が計測される。
The invention according to claim 1 includes a grain supply unit that sends out grains one by one, and two opposed compression rolls that compress the grains received from the grain supply unit, as a pair of electrodes. The compression measurement unit that measures the moisture value and the data processing unit that calculates the grain moisture value based on the conversion process and the average process of the measurement value. The compression measurement unit has at least one roll electrode of a large or small size. In the grain moisture measuring device of the grain dryer which is formed on the peripheral surface radius and is configured so that a large and small compression gap can be selected according to the rotation angle position thereof, the grain supply unit is configured to adjust the grain size of the received grain. In accordance with this, the large and small sorting recesses having diameters that can be sorted and held are provided adjacent to each other, and further equipped with sequential transfer means for sequentially transferring the large and small held grains to the delivery position by the movement operation of these large and small sorting recesses. Transfer operation of the transfer means and pressure Characterized by interlock control combined compression operation of the roll to the timing of the respective large and small.
Large and small grains are sorted and held in accordance with the particle size by the sorting recess of the grain supply unit, which are sequentially transferred to the delivery position by the transfer means, and are supplied corresponding to the large and small compression gaps of the interlocking operating compression roll. Thus, the moisture value of the grain is measured by the compression treatment corresponding to the particle size.

請求項2に係る発明は、請求項1の構成において、前記穀粒供給部は、大小の断面形状の周面溝を互いに隣接して螺旋状に備えて回動動作する略水平配置の溝付ロールと、その周面溝内の穀粒を所定距離で受けることにより穀粒を選別保持しつつ移送を案内する平板状の側受板とを備えて構成したことを特徴とする。上記溝付ロールは、周面溝による選別凹部を備え、側受板と共同動作する順次移送手段として機能する。すなわち、小径の穀粒は大なる周面溝内を通過して脱落し、大径の穀粒は小なる周面溝を飛び越えるように通過する。   According to a second aspect of the present invention, in the configuration of the first aspect, the grain supply section is provided with a substantially horizontally arranged groove that rotates with a circumferential groove having a large and small cross-sectional shape adjacent to each other in a spiral shape. It is characterized by comprising a roll and a flat side receiving plate that guides the transfer while selecting and holding the grains by receiving the grains in the circumferential groove at a predetermined distance. The grooved roll has a sorting recess formed by a circumferential groove and functions as a sequential transfer means that operates in cooperation with the side receiving plate. That is, the small-diameter grain passes through the large circumferential groove and drops, and the large-diameter grain passes so as to jump over the small circumferential groove.

請求項3に係る発明は、請求項1の構成において、前記穀粒供給部は、穀粒を排出可能に保持しうる大小の受座を互いに隣接して同一円周上に備える回転板を傾斜して構成したことを特徴とする。
上記回転板は、傾斜する大小の受座による選別凹部を備え、その回動動作により順次移送手段として機能し、大小の受座によりそれぞれに適合する粒径の穀粒が選別保持されて順次移送される。
The invention according to claim 3 is the configuration according to claim 1, wherein the grain supply unit inclines a rotating plate that is adjacent to each other on the same circumference with large and small seats that can hold the grain so as to be discharged. It is characterized by comprising.
The rotating plate is provided with a sorting recess by tilting large and small receiving seats, and functions as a transfer means sequentially by its rotating operation, and grains of suitable particle sizes are sorted and held by the large and small receiving seats and sequentially transferred. Is done.

請求項4に係る発明は、穀粒を1粒ずつ順次移送する穀粒供給部と、この穀粒供給部から穀粒を受ける2つの対向圧縮ロールを1対の電極として圧縮穀粒の水分値を計測する圧縮計測部と、その計測値の換算処理および平均処理に基づいて穀粒水分値を算出するデータ処理部とからなる穀粒乾燥機の穀粒水分測定装置において、上記圧縮計測部は、少なくとも一方のロール電極に圧縮作用深さが異なる表面形状を形成してその回動角度位置により作用深さを選択可能に構成したことを特徴とする。
上記圧縮計測部は、穀粒を圧縮してその水分値を計測するとともに、圧縮計測時のロール電極の角度位置と対応して表面形状が特定され、対応する圧縮作用深さ、すなわち穀粒を偏平程度に応じた穀粒内部の水分値が得られる。
The invention which concerns on Claim 4 uses the grain supply part which transfers a grain one by one, and two opposing compression rolls which receive a grain from this grain supply part as a pair of electrodes, and the moisture value of the compressed grain In the grain moisture measuring device of the grain dryer, comprising the compression measuring unit for measuring the value and the data processing unit for calculating the grain moisture value based on the conversion process and the average process of the measured value, the compression measuring unit is A surface shape having a different compression action depth is formed on at least one roll electrode, and the action depth can be selected according to the rotation angle position.
The compression measurement unit compresses the grain and measures its moisture value, and the surface shape is specified corresponding to the angular position of the roll electrode during the compression measurement, and the corresponding compression action depth, i.e., the grain, is measured. The moisture value inside the grain according to the degree of flatness is obtained.

請求項5に係る発明は、穀粒を1粒ずつ順次移送する穀粒供給部と、この穀粒供給部から穀粒を受ける2つの対向圧縮ロールを1対の電極として圧縮穀粒の水分値を計測する圧縮計測部と、その計測値の換算処理および平均処理に基づいて穀粒水分値を算出するデータ処理部とからなる穀粒乾燥機の穀粒水分測定装置において、上記圧縮計測部は、少なくとも一方のロール電極の断面形状を多角形に形成し、その各辺を2つ以上の異なる中心距離に配置してその回動角度位置により中心距離を選択可能に構成することを特徴とする。
上記圧縮計測部のロール電極により、2つ以上の異なる中心距離による圧縮条件と対応する深さ位置の水分値が計測される。
The invention according to claim 5 is a moisture supply value of the compressed grain using a grain supply unit that sequentially transfers the grain one by one and two opposing compression rolls that receive the grain from the grain supply unit as a pair of electrodes. In the grain moisture measuring device of the grain dryer, comprising the compression measuring unit for measuring the value and the data processing unit for calculating the grain moisture value based on the conversion process and the average process of the measured value, the compression measuring unit is The cross-sectional shape of at least one of the roll electrodes is formed in a polygonal shape, each side thereof is arranged at two or more different center distances, and the center distance can be selected by the rotation angle position. .
The roll electrode of the compression measurement unit measures the moisture value at the depth position corresponding to the compression condition by two or more different center distances.

請求項1の穀粒水分測定装置は、穀粒供給部の選別凹部により粒径に応じて大小の穀粒が選別保持され、これが順次移送手段により送出位置まで順次移送され、連動動作する圧縮ロールの大小の圧縮間隙と対応して供給されることにより、粒径と対応する圧縮処理により穀粒の水分値が計測される。したがって、上記穀粒水分測定装置は、穀粒の粒径に応じた圧縮条件による計測処理ができるので、取扱い穀粒の大小による切替操作を要することなく、幅広い粒径の穀粒について水分測定精度を確保することができる。   In the grain moisture measuring device according to claim 1, a large and small grain is sorted and held in accordance with the particle size by the sorting recess of the grain supply unit, which is sequentially transferred to a delivery position by a transfer means, and is operated in conjunction with the compression roll. The water content of the grain is measured by the compression process corresponding to the particle size. Therefore, the above-mentioned grain moisture measuring device can perform measurement processing under compression conditions according to the grain size of the grain, so that it does not require a switching operation depending on the size of the handled grain, and moisture measurement accuracy for grains having a wide range of grain sizes. Can be secured.

請求項2の上記溝付ロールは、周面溝による選別凹部を備え、側受板と共同動作する順次移送手段として機能する。すなわち、小径の穀粒は大なる周面溝内を通過して脱落し、大径の穀粒は小なる周面溝を飛び越えるように通過することから、穀粒は粒径に応じた周面溝内に選別保持されつつ側受板に沿って移送され、溝付ロールの所定の位置から圧縮計測部にその間隙と対応して順次供給されて所期の目的が達成される。   The grooved roll according to a second aspect of the present invention includes a sorting concave portion formed by a circumferential groove and functions as a sequential transfer unit that operates in cooperation with the side receiving plate. That is, the small-diameter grain passes through the large circumferential groove and drops, and the large-diameter grain passes so as to jump over the small circumferential groove. While being sorted and held in the groove, it is transferred along the side receiving plate, and is sequentially supplied from a predetermined position of the grooved roll to the compression measuring unit corresponding to the gap, thereby achieving the intended purpose.

請求項3の穀粒水分測定装置の上記回転板は、傾斜する大小の受座による選別凹部を備え、その回動動作により順次移送手段として機能し、大小の受座によりそれぞれに適合する粒径の穀粒が選別保持されて順次移送され、回転板の所定の位置から圧縮計測部の大小の間隙と対応して順次供給されることにより所期の目的が達成される。   The rotary plate of the grain moisture measuring device according to claim 3 is provided with a sorting concave portion by tilting large and small receiving seats, and functions as a transfer means sequentially by its rotating operation, and a particle size adapted to each by the large and small receiving seats. The grains are sorted and held, sequentially transferred, and sequentially supplied from a predetermined position of the rotating plate corresponding to the large and small gaps of the compression measuring unit, thereby achieving the intended purpose.

請求項4の圧縮計測部は、穀粒を圧縮してその水分値を計測するとともに、圧縮計測時のロール電極の角度位置と対応して表面形状が特定され、対応する圧縮作用深さに応じた穀粒内部の水分値が得られるので、圧縮作用深さ別に水分値を平均処理することにより、穀粒内部の異なる深さ位置について水分値を得ることができる。したがって、上記穀粒水分測定装置により、穀粒表面からの深さ位置による内部水分勾配に基づいて高精度の乾燥制御が可能となる。   The compression measurement unit of claim 4 compresses the grain and measures its moisture value, and the surface shape is specified corresponding to the angular position of the roll electrode at the time of compression measurement, and according to the corresponding compression action depth. Since the moisture value inside the grain is obtained, the moisture value can be obtained at different depth positions inside the grain by averaging the moisture value for each compression action depth. Therefore, the above grain moisture measuring device enables highly accurate drying control based on the internal moisture gradient depending on the depth position from the grain surface.

請求項5の圧縮計測部のロール電極により、2つ以上の異なる中心距離による圧縮条件と対応する深さ位置の水分値が計測されるので、その圧縮条件別に平均処理することにより、穀粒内部の異なる深さ位置について水分値を得ることができる。したがって、上記穀粒水分測定装置により、穀粒の表面からの深さによる内部水分勾配に基づいて高精度の乾燥制御が可能となる。   Since the moisture value of the depth position corresponding to the compression condition by two or more different center distances is measured by the roll electrode of the compression measurement unit according to claim 5, the inside of the grain is averaged by the compression condition Moisture values can be obtained for different depth positions. Therefore, the above-mentioned grain moisture measuring device enables highly accurate drying control based on the internal moisture gradient depending on the depth from the grain surface.

本発明の実施の形態について、以下に図面に基づいて詳細に説明する。
本発明の穀粒水分測定装置1は、図1の縦断側面図により示す循環型の穀粒乾燥機2のバケットエレベータによる循環昇降部3等の循環経路上に設けられ、加熱バーナ4、遠赤外放射加熱部5、吸引部6等の運転を制御するシステムの一部を構成する。
穀粒水分測定装置1は、図2の基本構成の斜視図および図3の拡大断面図に示すように、循環穀粒中からその一部を測定試料Gとして受ける穀粒投入部11、穀粒投入部11から1粒ずつ穀粒Gを送る穀粒供給部12、1粒ずつ導入された穀粒Gを受けて圧縮する1対の圧縮ロール電極13a,13b等から構成される。すなわち、バケットエレベータ形態の循環昇降部のケースに穀粒水分測定装置1を装着し、所定の測定時間間隔で測定装置1各部が起動するが、バケットエレベータに掬われた穀粒の一部の溢出分を受けて測定装置1内部にいたる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
The grain moisture measuring device 1 of the present invention is provided on a circulation path such as a circulation raising / lowering unit 3 by a bucket elevator of a circulation type grain dryer 2 shown by a longitudinal side view of FIG. It constitutes a part of a system that controls the operation of the external radiation heating unit 5, the suction unit 6, and the like.
As shown in the perspective view of the basic configuration of FIG. 2 and the enlarged cross-sectional view of FIG. 3, the grain moisture measuring device 1 is a grain input unit 11 that receives a part of the circulating grain as a measurement sample G, the grain It consists of a pair of compression roll electrodes 13a, 13b, etc. that receive and compress the grain G introduced one by one, the grain supply unit 12 that sends the grain G one by one from the input unit 11. That is, the grain moisture measuring device 1 is attached to the case of the circulating elevator unit in the bucket elevator form, and each part of the measuring device 1 is activated at a predetermined measurement time interval, but a part of the grain swollen by the bucket elevator After receiving the minute, the measurement apparatus 1 is reached.

穀粒水分測定装置1の制御系の構成は、図4に示すように、各機器をマイコン制御する制御処理部21を中心に、1対の圧縮ロール電極13a,13bの駆動モータ13mと印加電圧回路22を制御し、計測された電気抵抗を変換回路23を介して入力するほか、圧縮ロール電極13a,13bの近傍に設けた近傍温度検出手段24、穀粒投入部11等に設けた穀物温度検出手段25、圧縮ロール電極13a,13bの角度位置を検出する電極回転検出手段26の信号を入力とし、また、出力回路27cを介して表示部27にデータ出力するように構成する。   As shown in FIG. 4, the control system of the grain moisture measuring device 1 has a control motor 21 that controls each device by a microcomputer and a drive motor 13 m for a pair of compression roll electrodes 13 a and 13 b and an applied voltage. In addition to controlling the circuit 22 and inputting the measured electrical resistance via the conversion circuit 23, the vicinity temperature detection means 24 provided in the vicinity of the compression roll electrodes 13a and 13b, the grain temperature provided in the grain input unit 11 and the like The detection unit 25 and the electrode rotation detection unit 26 that detects the angular positions of the compression roll electrodes 13a and 13b are input, and the data is output to the display unit 27 via the output circuit 27c.

上記圧縮ロール電極13a,13bは、圧縮計測部を構成し、図5の拡大側面図に示すように、少なくとも一方のロール電極13aを角度範囲別に大小の周面半径r1、r2に形成し、1粒ずつ供給された穀粒Gを取り込む電極間隙Mを回動角度位置に応じて大小に交互に変化可能に構成する。図5では0度〜180度の間の半径r1に対して180度〜360度の間の半径r2が径大に形成されている。圧縮ロール電極13aには、角度位置を検出する角度センサを設けて電極回転検出手段26を形成する。電極回転検出手段26は、リードスイッチ、フォトスイッチ等、接触式であれば、軸回転部をリミットスイッチで検出するようにして、この圧縮計測部により、ロール電極の回動角度位置により大小の圧縮間隙を選択可能に構成することができる。   The compression roll electrodes 13a and 13b constitute a compression measurement unit, and as shown in the enlarged side view of FIG. 5, at least one roll electrode 13a is formed with large and small peripheral radii r1 and r2 for each angle range. The electrode gap M for taking in the grain G supplied grain by grain is configured to be able to change alternately in size depending on the rotational angle position. In FIG. 5, a radius r2 between 180 degrees and 360 degrees is formed larger than a radius r1 between 0 degrees and 180 degrees. The compression roll electrode 13a is provided with an angle sensor for detecting an angular position to form an electrode rotation detection means 26. If the electrode rotation detection means 26 is a contact type, such as a reed switch or a photo switch, the shaft rotation part is detected by a limit switch, and this compression measurement part makes a large or small compression depending on the rotation angle position of the roll electrode. The gap can be configured to be selectable.

また、穀粒供給部は、例えば、図6の斜視図に示すように、大小の断面形状の周面溝31a、31bを互いに隣接して螺旋状に備えて回動動作する略水平配置の溝付ロール31と、その周面溝内の穀粒を所定距離で受けることにより穀粒を選別保持しつつ移送を案内する平板状の側受板32とを備えて構成する。   In addition, as shown in the perspective view of FIG. 6, for example, the grain supply unit is a substantially horizontally disposed groove that rotates in a spiral manner with circumferential grooves 31 a and 31 b having large and small cross-sectional shapes adjacent to each other. It comprises an attaching roll 31 and a flat side receiving plate 32 that guides the transfer while selecting and holding the grains by receiving the grains in the circumferential groove at a predetermined distance.

上記溝付ロール31は、周面溝31a,31bによる選別凹部を備え、側受板32との共同動作による順次移送手段が構成されることにより、小径の穀粒は大なる周面溝内を通過して脱落し、大径の穀粒は小なる周面溝を飛び越えるように通過することから、穀粒は粒径に応じた周面溝内に選別保持されつつ側受板32に沿って移送され、溝付ロール31の所定の位置から圧縮計測部にその間隙と対応して順次供給される。万一、小粒のものが移送されて大粒用の電極間隙13a,13bで計測された場合は、穀物種類設定によってデータを除外することができる。   The grooved roll 31 is provided with sorting recesses by the circumferential grooves 31a and 31b, and the sequential transfer means by the joint operation with the side receiving plate 32 is configured, so that the small-diameter grains can pass through the large circumferential groove. Passing through and dropping off, the large-diameter grain passes over the smaller circumferential groove, so that the grain is sorted and held in the circumferential groove according to the particle size, along the side receiving plate 32. It is transferred and sequentially supplied from a predetermined position of the grooved roll 31 to the compression measuring unit corresponding to the gap. If small particles are transferred and measured by the large electrode gaps 13a and 13b, the data can be excluded by setting the grain type.

上記周面溝31a,31bは、夫々位相をずらせてロール31周面に螺旋条に成形されており、例えば溝31a側が溝31bに比較して深く溝幅も広く形成されている。穀粒は溝付ロール31と接し、又は僅かな間隙をおいて接近配置される側受板32によって受けられ溝付ロール31の回転イによって溝に嵌まった穀粒が軸方向に移送される構成である。ここで溝付ロール31には大小2条の螺旋溝が位相をずらせて形成されていて、側受板32終端から脱する瞬間穀粒は下方に落下し、大粒の溝31aから脱した後、小粒の溝31bの穀粒が側受板32終端から脱して下方に落下するようになっていて、溝31a,溝31b,溝31a…の順に穀粒が落下排出される。従って、前記のように180度範囲で半径を異ならせたロール電極13をこれらの穀粒落下に対応すべく連動制御することによって、例えば大粒が図5における角度90度位置の半径r1部分に対応して落下し、小粒が同じく角度270度位置の半径r2部分に対応して落下すべく伝動構成するものである。   The circumferential grooves 31a and 31b are formed in spirals on the circumferential surface of the roll 31 with their phases shifted, and for example, the groove 31a side is formed deeper and wider than the groove 31b. The grain contacts with the grooved roll 31 or is received by the side receiving plate 32 that is arranged close to the grooved roll 31, and the grain fitted in the groove is transferred in the axial direction by the rotation of the grooved roll 31. It is a configuration. Here, the grooved roll 31 is formed with two large and small spiral grooves that are out of phase, and the instantaneous grain released from the end of the side receiving plate 32 falls downward, after being removed from the large groove 31a, The grain in the small groove 31b is detached from the end of the side receiving plate 32 and falls downward, and the grain is dropped and discharged in the order of the groove 31a, the groove 31b, the groove 31a,. Therefore, by controlling the roll electrode 13 having a different radius in the range of 180 degrees as described above to cope with the fall of these grains, for example, the large grain corresponds to the radius r1 portion at the 90 degree angle in FIG. Then, the small particles are transmitted and configured so as to drop corresponding to the radius r2 portion at the same angle of 270 degrees.

穀粒供給部12により、連動動作する圧縮ロール13a,13bの大小の圧縮間隙と対応して供給されることにより、図7(a)(b)の大小の圧縮間隙タイミングで、粒径と対応する圧縮条件で穀粒の水分値が計測される。したがって、上記穀粒水分測定装置1は、穀粒の粒径に応じた圧縮条件による計測処理ができるので、取扱い穀粒の大小による切替操作を要することなく、幅広い粒径の穀粒について水分測定精度を確保することができる。   Corresponding to the particle size at the timing of the large and small compression gaps in FIGS. 7A and 7B by being supplied by the grain supply unit 12 corresponding to the large and small compression gaps of the compression rolls 13a and 13b operating in conjunction with each other. The moisture content of the grain is measured under compression conditions. Therefore, since the said grain moisture measuring device 1 can perform the measurement process by the compression conditions according to the grain size of a grain, it does not require the switching operation by the size of the handling grain, and it measures moisture about the grain of a wide grain size. Accuracy can be ensured.

なお、圧縮ロール13a,13bによる穀粒圧縮には、いわゆる穀粒圧砕を伴うもよく、また該圧砕に至らずに穀粒を偏平化させるものでもよい。圧砕を必要とする穀粒(例えば籾、麦等)であるときは圧砕が可能な圧縮間隙に調整し、圧縮ロール13a、13bに一定の周速差を生じるように伝動構成する。一方偏平で足りる穀粒の場合(高水分小麦、大豆など)は適宜の圧縮間隙に調整しておき、同じ周速に設定しておくものである。   The grain compression by the compression rolls 13a and 13b may be accompanied by so-called grain crushing, or may flatten the grain without reaching the crushing. When the grains require crushing (for example, straw, wheat, etc.), the transmission gap is adjusted so that crushing is possible, and the transmission rolls 13a and 13b are configured to generate a constant peripheral speed difference. On the other hand, in the case of a grain that is flat and sufficient (high moisture wheat, soybean, etc.), it is adjusted to an appropriate compression gap and set to the same peripheral speed.

このように、穀粒供給部12は、受けた穀粒Gの粒径に応じて選別保持可能な径寸法の大小の選別凹部21a,21bを互いに隣接して備えるとともに、これら大小の選別凹部21a,21bの移動動作によって大小の保持穀粒を送出位置まで順次移送する順次移送手段を備え、この順次移送手段の移送動作と、圧縮ロールの圧縮動作をそれぞれの大小のタイミングに合わせて連動制御するように構成することにより、穀粒の粒径についての煩わしい切替操作を要することなく、粒径に応じた圧縮条件によって適切な水分測定が可能となる。   As described above, the grain supply unit 12 includes the large and small sorting recesses 21a and 21b having a diameter that can be sorted and held in accordance with the grain size of the received grain G, and the large and small sorting recesses 21a. , 21b is provided with sequential transfer means for sequentially transferring large and small retained grains to the delivery position, and the transfer operation of the sequential transfer means and the compression operation of the compression roll are interlocked and controlled in accordance with the respective large and small timings. By comprising in this way, an appropriate water | moisture content measurement is attained by the compression conditions according to a particle size, without requiring the troublesome switching operation about the particle size of a grain.

また、図8の斜視図(a)と側面図(b)に示す別例の穀粒供給部は、穀粒Gを排出可能に保持しうる大小の受座33a,33bを互いに隣接して同一円周上に備える回転板33を傾斜して構成する。上記回転板33は、傾斜する大小の受座33a,33bによる選別凹部を備え、傾斜下部の起立壁33r、落下防止壁33u、脱落粒案内壁33S,中心の駆動モータ33m、上部の送出部33eの飛散防止壁33g等を組み付けることにより、その回動動作により順次移送手段として機能し、大小の受座33a,33bによりそれぞれに適合する粒径の穀粒Gが選別保持されて順次移送され、送出部33eから圧縮計測部にその大小の間隙と対応して順次送出される。   Moreover, the grain supply part of another example shown in the perspective view (a) and the side view (b) of FIG. 8 has the same large and small receiving seats 33a and 33b that can hold the grain G so as to be discharged. The rotating plate 33 provided on the circumference is configured to be inclined. The rotating plate 33 is provided with sorting recesses by slanting large and small seats 33a, 33b, a standing wall 33r, a fall prevention wall 33u, a dropout guide wall 33S, a central drive motor 33m, and an upper delivery part 33e. By assembling the anti-scattering wall 33g, etc., it functions as a transfer means by its rotating operation, and the grains G having the appropriate particle sizes are sorted and held by the large and small receiving seats 33a, 33b and sequentially transferred, It is sequentially sent from the sending unit 33e to the compression measuring unit corresponding to the large and small gaps.

上記同様にして、図9の穀粒供給部は、外周に大中小の切欠34a,34b,34cによる選別凹部を備えた回転板34により順次移送手段を構成した例であり、切欠の大きさに応じて穀粒G1,G2,G3を選別することができる。   In the same manner as described above, the grain supply unit in FIG. 9 is an example in which the transfer means is sequentially configured by the rotating plate 34 provided with the selection recesses by the large, medium, and small cutouts 34a, 34b, and 34c on the outer periphery. The grains G1, G2, G3 can be selected accordingly.

次に、穀粒の深さ方向の水分値勾配を計測する例を説明する。図10は、圧縮計測部の少なくとも一方のロール電極41に表面の凹凸粗さの異なる凹凸周面41a,41b,41cを形成し、その回動角度位置により表面の凹凸粗さを選択可能に構成することにより、その表面粗さに応じて穀粒内部の対応する深さ位置について水分値を得ることができる。各凹凸周面41a,41b,41cは、表面の凹凸深さがそれぞれ異なり、深さ寸法が最大のものは穀粒の表層部の水分情報を計測でき、浅くなるにつれて穀粒の中間深さから全体までに及ぶ水分情報を計測することができる。具体的な電極構成は、従来どおりの電極製作方法で表面凹凸深さが異なるものを製作し、3分割したものを組み合わせて接合する。凹凸形状は、典型的なものとしてJISローレット加工によるものがあり、凹凸深さはそのモジュールに対応する。分割数は3分割に限定されず、必要に応じて決定することができる。   Next, an example of measuring the moisture value gradient in the depth direction of the grain will be described. FIG. 10 shows a structure in which concave / convex circumferential surfaces 41a, 41b and 41c having different surface irregularities are formed on at least one roll electrode 41 of the compression measuring unit, and the irregularities on the surface can be selected depending on the rotation angle position thereof. By doing, a moisture value can be obtained about the corresponding depth position inside a grain according to the surface roughness. As for each uneven | corrugated surrounding surface 41a, 41b, 41c, the unevenness | corrugation depth of a surface differs, respectively, and the thing with the largest depth dimension can measure the moisture information of the surface layer part of a grain, and from the intermediate depth of a grain as it becomes shallow Moisture information can be measured throughout. As a specific electrode configuration, those having different surface unevenness depths are manufactured by a conventional electrode manufacturing method, and the three parts are combined and joined. The concavo-convex shape is typically JIS knurled, and the concavo-convex depth corresponds to the module. The number of divisions is not limited to three divisions, and can be determined as necessary.

水分測定は、図11のフローチャートに示すように、測定開始に際して測定粒数等の設定、モータ稼動等の初期処理(S1〜S4)の後、測定値について必要な換算処理等を所定回数繰り返す(S5〜S12)。水分値の換算は、M=β1・Er+β0+κTによって得ることができる。β1、β0は、圧縮ロール電極13a,13bの仕様によって決定される。所定数のデータ測定後は、各測定部位別に測定値を平均演算(S13)することにより、ばらつき、水分分布を算出して表示する(S14〜S16)。水分値がM1,M2の2点測定の場合は、勾配S=M1−M2、S<α1であれば表面乾燥状態、α1<S<α2であれば水分平衡状態、S>α2であれば表面湿潤状態のように判定評価することができる。   In the moisture measurement, as shown in the flowchart of FIG. 11, after the initial setting (S1 to S4) such as setting the number of particles to be measured and the motor operation at the start of measurement, necessary conversion processing for the measured value is repeated a predetermined number of times ( S5 to S12). The conversion of the moisture value can be obtained by M = β1 · Er + β0 + κT. β1 and β0 are determined by the specifications of the compression roll electrodes 13a and 13b. After measuring a predetermined number of data, the measurement values are averaged (S13) for each measurement site, thereby calculating and displaying variations and moisture distribution (S14 to S16). In the case of two-point measurement of moisture values M1 and M2, the surface is dry if the gradient S = M1-M2, S <α1, the water equilibrium state if α1 <S <α2, and the surface if S> α2. Judgment evaluation can be performed like a wet state.

このように、上記ロール電極により、凹凸周面41a,41b,41cの表面粗さに応じた穀粒内部の異なる深さ位置について水分値を得ることができる。したがって、上記穀粒水分測定装置により、穀粒の表面からの深さによる内部水分勾配に基づいて高精度の乾燥制御が可能となる。   As described above, the roll electrode can obtain moisture values at different depth positions inside the grain according to the surface roughness of the concave and convex peripheral surfaces 41a, 41b, and 41c. Therefore, the above-mentioned grain moisture measuring device enables highly accurate drying control based on the internal moisture gradient depending on the depth from the grain surface.

また、別のロール電極例として、上述の表面粗さに代えて異なる周面半径に形成することにより、電極間隙寸法と対応して内部水分勾配を得ることができる。この場合は、例えば、収穫前の降雨等による穀粒(豆類)の表面が内部に比較して水分が高い場合や、乾燥中の表層水分低下の場合に、粒内に突起部を貫入することなく、電極間隙を広くとることと相まって、粒表層の水分情報をより正確に捉えることができる。周面半径は、2段階のほかに、3段階以上に構成しても、単粒搬送能力を増強することにより、各段階の間隙に数的に均等的に穀粒が把持されるようになるので、各設定間隙における水分測定信号を測定することができる。   As another example of the roll electrode, an internal moisture gradient can be obtained in correspondence with the electrode gap size by forming a different peripheral radius instead of the above-described surface roughness. In this case, for example, when the surface of the grain (beans) due to rainfall before harvesting has a higher water content compared to the inside, or when the surface layer moisture drops during drying, the protrusions penetrate into the grain. In addition, coupled with wide electrode gaps, it is possible to capture moisture information on the grain surface layer more accurately. Even if the peripheral surface radius is composed of three or more stages in addition to two stages, the grains are gripped numerically and evenly in the gaps of the respective stages by enhancing the single grain conveying ability. Therefore, the moisture measurement signal in each setting gap can be measured.

上記圧縮計測部は、穀粒を圧縮してその水分値を計測するとともに、圧縮計測時のロール電極の角度位置と対応して表面形状が特定され、対応する圧縮作用深さ、すなわち穀粒を偏平程度に応じた穀粒内部の水分値が得られる。
すなわち、圧縮測定部に供給される穀粒は、所定の圧縮作用を受けて、主としてその表層部、表層部及び中間部…を偏平化させることにより、圧縮力を増加させることでより内部の水分情報を得ることができ、全体として水分勾配の把握を行なうことができる。
The compression measurement unit compresses the grain and measures its moisture value, and the surface shape is specified corresponding to the angular position of the roll electrode during the compression measurement, and the corresponding compression action depth, i.e., the grain, is measured. The moisture value inside the grain according to the degree of flatness is obtained.
That is, the grain supplied to the compression measuring unit is subjected to a predetermined compression action, and mainly flattenes the surface layer portion, the surface layer portion, the intermediate portion, and so on, thereby increasing the compressive force to increase the moisture content inside. Information can be obtained, and the moisture gradient can be grasped as a whole.

さらに別のロール電極例として、図12の動作図に示すように、少なくとも一方のロール電極42bの断面形状を多角形に形成し、その各辺を2つの異なる中心距離に配置してその回動角度位置により中心距離を選択可能に構成することにより、多角形の各辺の中心距離寸法と対応して内部水分勾配を得ることができる。   As another example of the roll electrode, as shown in the operation diagram of FIG. 12, the cross-sectional shape of at least one roll electrode 42b is formed in a polygonal shape, and its sides are arranged at two different center distances. By configuring the center distance to be selectable according to the angular position, an internal moisture gradient can be obtained corresponding to the center distance dimension of each side of the polygon.

この場合は、各辺ごとの圧縮条件の差により、それぞれの信号を個別処理し、異なる電極間隙で測定した電気信号を統計的に対比して粒内の水分分布を検出することができる。特に、水分勾配が穀粒処理に重要な大粒の豆類や酒米に対して、測定粒に電極半径方向の力を加えることが容易になることで、電極間に圧砕把持しやすく、しかも、接触面積の増大化も合わせて達成でき、結果としてコンパクトで測定精度の高いものになる。また、大粒の大豆の計測には、図13の動作図に示すように、両方のロール電極42a、42bの断面形状を多角形に形成することにより、偏平状態で把持しやすく、精度の高い水分分布の検出ができる。この場合は、双方を等速回転であることが望ましい。   In this case, according to the difference in compression conditions for each side, each signal can be individually processed, and the electrical signal measured at different electrode gaps can be compared statistically to detect the moisture distribution in the grains. In particular, it is easy to apply force in the radial direction of the electrode to the measured grain for large beans and sake rice whose moisture gradient is important for grain processing. An increase in area can also be achieved, resulting in a compact and high measurement accuracy. For measuring large soybeans, as shown in the operation diagram of FIG. 13, by forming the cross-sectional shape of both roll electrodes 42a and 42b into polygons, it is easy to grip in a flat state and has high moisture content. Distribution can be detected. In this case, it is desirable that both of them rotate at a constant speed.

例えば、図14に示す多角形ロール電極43のように、6角形の各辺44a、44b、44cの中心距離L1、L2、L3(L1>L2>L3)による3段階の圧縮条件を設定することにより、対応する深さ位置の水分値が計測されるので、その圧縮条件別に平均処理することにより、穀粒内部の異なる深さ位置について水分値を得ることができる。したがって、上記穀粒水分測定装置により、穀粒の表面からの深さによる内部水分勾配に基づいて高精度の乾燥制御が可能となる。特に、粒の表層部水分情報を収集する場合は、L3に相当する対辺は通常の回転電極に施されるローレット等の凹凸加工は施さないほうが望ましく、もし、施すとしても、表皮厚さ分を貫入する程度の凹凸加工でよい。   For example, like the polygonal roll electrode 43 shown in FIG. 14, three-stage compression conditions are set according to the center distances L1, L2, and L3 (L1> L2> L3) of the hexagonal sides 44a, 44b, and 44c. Thus, the moisture value at the corresponding depth position is measured, so that the moisture value can be obtained for different depth positions inside the grain by performing an average process for each compression condition. Therefore, the above-mentioned grain moisture measuring device enables highly accurate drying control based on the internal moisture gradient depending on the depth from the grain surface. In particular, when collecting moisture information on the surface layer of the grain, it is desirable not to perform uneven processing such as knurling that is applied to an ordinary rotating electrode on the opposite side corresponding to L3. It is sufficient to have an uneven surface that penetrates.

その理由は、表面突起は粒内へ電極部位をできる限り圧入して平均的水分を検出するべく構成するものであって、本案の趣旨では、可能な限り表面の凹凸加工をしないことで、表層を破らないで粒を扁平させることで、表層部の水分情報が確実に収集できる効果を持つ。   The reason is that the surface protrusion is configured to detect the average moisture by pressing the electrode part into the grain as much as possible, and in the spirit of the present plan, the surface layer is not processed as much as possible. By flattening the grains without breaking, the moisture information of the surface layer can be collected reliably.

例えば、収穫前の降雨等による穀粒(豆類)の表面が内部に比較して水分が高い場合や、乾燥中の表層水分低下の場合に、粒内に突起部を貫入することなく、電極間隙を広くとることと相まって、粒表層の水分情報をより正確に捉えることができる。   For example, when the surface of the grain (beans) due to rainfall before harvesting is higher in moisture than the inside, or when the surface layer moisture drops during drying, the gap between the electrodes does not penetrate into the grain. Combined with taking a wide range, moisture information on the surface of the grain can be captured more accurately.

水分値がM1、M2、M3の3点測定の場合は、k1+k2=1とすると勾配はS=k1(M1−M2)+k2(M2−M3)により算出される。S<α1であれば表面乾燥状態、α1<S<α2であれば水分平衡状態、S>α2であれば表面湿潤状態のように判定評価することができる。   In the case of three-point measurement of moisture values M1, M2, and M3, if k1 + k2 = 1, the gradient is calculated by S = k1 (M1-M2) + k2 (M2-M3). If S <α1, the surface dry state can be determined, if α1 <S <α2, the water equilibrium state can be determined, and if S> α2, the surface wet state can be evaluated.

従来の穀粒や豆類単粒水分計は、1粒内の平均水分値を求めるものであったが、粒内の水分分布を検出することができず、表面が濡れているのか、乾いているのかが簡易に評価できず、その結果、穀粒の脱穀処理や乾燥調整処理の適正化制御ができなかったが、本発明により、そのような問題を解決することができる。   Conventional grain and bean single grain moisture meters were used to determine the average moisture value in one grain, but the moisture distribution in the grain could not be detected and the surface was wet or dry. However, as a result, it was not possible to properly control the threshing process and the drying adjustment process of the grain, but the present invention can solve such a problem.

次に、水分値算出のデータ処理について説明する。
水分検出装置を有し、水分設定値とその検出水分により表示および乾燥自動停止を行う乾燥機において、例えば、図15の入出力構成図に示す乾燥制御システムにおいて、一定粒数の一粒水分値を水分計1により測定し、制御部51により平均水分値を算出するときに、予め設定している水分値以下の粒をカットして基準水分を算出し、その基準水分を基に平均水分算出に使用する有効範囲を求めるための上下限水分値を設定して平均水分算出を行うように構成する。
Next, data processing for moisture value calculation will be described.
In a dryer having a moisture detection device and performing display and automatic drying stop by the moisture setting value and the detected moisture, for example, in the drying control system shown in the input / output configuration diagram of FIG. When the moisture content is measured by the moisture meter 1 and the average moisture value is calculated by the control unit 51, the reference moisture is calculated by cutting the grains below the preset moisture value, and the average moisture is calculated based on the reference moisture. The upper and lower limit moisture values for obtaining the effective range to be used are set to calculate the average moisture.

すなわち、所定粒数を一粒ごとに該当する水分ブロックに格納し、その後、平均水分を求める方法において、所定水分(11.2%)以下のブロックをカットし、残りのデータから上下限処理により、平均水分値を求める場合に、上下限処理の基準がメジアン値の場合は、残りの粒数の半分の粒数プラス1粒(100−カット数)/2+1)を上位ブロックからサーチし、該当ブロックを基準に上下限処理し、平均水分値を求めるように構成する。   That is, a predetermined number of grains is stored in a corresponding moisture block for each grain, and thereafter, in a method for obtaining an average moisture, a block having a predetermined moisture (11.2%) or less is cut, and upper and lower limit processing is performed from the remaining data. When calculating the average moisture value, if the upper and lower limit processing standard is the median value, search the upper block for the number of grains that is half of the remaining number of grains plus one grain (100-cut number) / 2 + 1). The upper and lower limits are processed based on the block, and the average moisture value is obtained.

その具体的な処理は、図16のフローチャートに示すように、乾燥運転の初期処理(S1)の後、乾燥または停止(S4)までの間において、低水分カット処理による一連の処理(S3)を所定回数繰り返す(S2)ことによって行われる。メジアン値の場合は、上位ブロックから(100−カット数)/2+1)の水分ブロックの水分値を上下限処理の基準とする。また、単純平均水分値の場合は、上位ブロックから低水分ブロックまでの水分値と粒数から求めた水分値を上下限処理の基準とする。   As shown in the flowchart of FIG. 16, the specific process is a series of processes (S3) by the low moisture cut process after the initial process (S1) of the drying operation until the drying or stop (S4). It is performed by repeating a predetermined number of times (S2). In the case of the median value, the moisture value of the moisture block of (100−number of cuts) / 2 + 1) from the upper block is used as the reference for the upper and lower limit processing. In the case of a simple average moisture value, the moisture value obtained from the moisture value from the upper block to the low moisture block and the number of grains is used as the reference for the upper and lower limit processing.

上記処理により、基準水分が求まれば、予め予定している上下限の有効範囲(検出例の±M)以外の水分粒をカットして残りの粒で平均水分値を算出することにより、上下限処理を行うための基準水分は平均水分算出を行う有効粒(整粒米)の中心に近い値とすることができ、実際の水分値と計算値の誤差を小さくすることができる。   If the reference moisture is obtained by the above processing, the moisture content other than the upper and lower effective ranges (± M in the detection example) scheduled in advance is cut, and the average moisture value is calculated with the remaining particles. The reference moisture for performing the lower limit treatment can be a value close to the center of the effective grain (sized rice) for calculating the average moisture, and the error between the actual moisture value and the calculated value can be reduced.

したがって、図17の全データ分布図の例に示すように、水分サンプルに合わない疑わしいデータを削除し、カットされたデータが少々多くなっても、基準値(メジアン)を適正にとらえ、整粒の水分算出精度を向上させ、穀物性状の適応性を向上、水分停止精度を向上することができる。例えば、気象条件等により不稔粒の割合が非常に多い場合に、水分サンプルとしてデータを取り込むと低水分側に算出され、結果として未乾燥となり、また、上下限処理の基準が単純平均値では、分布形状(二山、片寄り、裾野が広い)により算出精度が低下することがあるが、そのような事態を回避することができる。   Therefore, as shown in the example of the entire data distribution diagram of FIG. 17, even if the suspicious data that does not fit the moisture sample is deleted, the reference value (median) is properly captured and the sizing The moisture calculation accuracy can be improved, the adaptability of grain properties can be improved, and the moisture stopping accuracy can be improved. For example, when the proportion of sterile particles is very large due to weather conditions, etc., if data is taken in as a moisture sample, it will be calculated on the low moisture side, resulting in undried, and the upper and lower limit treatment criteria are simple average values In some cases, the calculation accuracy may be lowered due to the distribution shape (double mountain, side deviation, wide base), but such a situation can be avoided.

また、図18の系統図に示す入出力制御構成により、水分センサ1の計測に基づいて制御部61が遠赤外線乾燥機の運転制御をする場合に、図19のフローチャートに示すように、冷却運転時の乾燥の進み具合を考慮して、乾燥中の測定水分値の補正を行う時に、乾燥開始時の張込量設定の値に応じて水分補正量を変更設定する(S)ように構成する。   Further, when the control unit 61 controls the operation of the far-infrared dryer based on the measurement of the moisture sensor 1 by the input / output control configuration shown in the system diagram of FIG. 18, as shown in the flowchart of FIG. Considering the degree of progress of drying at the time, when correcting the measured moisture value during drying, the moisture correction amount is changed and set in accordance with the setting value of the tension amount at the start of drying (S). .

本発明の穀粒水分測定装置の適用対象となる穀粒乾燥機の縦断側面図である。It is a vertical side view of the grain dryer used as the application object of the grain moisture measuring device of the present invention. 穀粒水分測定装置の基本構成の斜視図である。It is a perspective view of the basic composition of a grain moisture measuring device. 穀粒水分測定装置の拡大断面である。It is an expanded section of a grain moisture measuring device. 穀粒水分測定装置の制御系の入出力構成図である。It is an input-output block diagram of the control system of a grain moisture measuring device. 圧縮ロール電極の拡大側面図である。It is an enlarged side view of a compression roll electrode. 穀粒供給部の斜視図である。It is a perspective view of a grain supply part. 圧縮ロールのの大小の圧縮間隙タイミング(a)(b)である。The compression gap timings (a) and (b) of the compression roll. 別例の穀粒供給部である。It is a grain supply part of another example. 他の穀粒供給部である。It is another grain supply unit. 圧縮計測部の構成例である。It is a structural example of a compression measurement part. 水分測定のフローチャートである。It is a flowchart of a moisture measurement. 別のロール電極による計測時の動作図である。It is an operation | movement figure at the time of the measurement by another roll electrode. 大粒の大豆の計測時の動作図である。It is an operation | movement figure at the time of measurement of a large grain soybean. 多角形ロール電極の拡大図である。It is an enlarged view of a polygonal roll electrode. 乾燥制御システムの入出力構成図である。It is an input-output block diagram of a drying control system. 乾燥制御システムのフローチャートである。It is a flowchart of a drying control system. 全データ分布図の例である。It is an example of all the data distribution maps. 遠赤外線乾燥機の運転制御系統図である。It is an operation control system diagram of a far-infrared dryer. 運転制御のフローチャートである。It is a flowchart of operation control.

符号の説明Explanation of symbols

1 穀粒水分測定装置
2 穀粒乾燥機
3 循環昇降部
4 加熱バーナ
5 遠赤外放射加熱部
6 吸引部
11 穀粒投入部
12 穀粒供給部
13a,13b 圧縮ロール電極(圧縮計測部)
21 制御処理部
31a 周面溝(順次移送手段)
31 溝付ロール
32 側受板(順次移送手段)
33 回転板(順次移送手段)
33a,33b 受座(順次移送手段)
34 回転板(順次移送手段)
34a,34b,34c 切欠(順次移送手段)
41 ロール電極
41a,41b,41c 凹凸周面
42 ロール電極
G 穀粒(測定試料)
G1,G2,G3 穀粒
L1 中心距離
r1 周面半径
DESCRIPTION OF SYMBOLS 1 Grain moisture measuring device 2 Grain dryer 3 Circulation raising / lowering part 4 Heating burner 5 Far-infrared radiation heating part 6 Suction part 11 Grain input part 12 Grain supply part 13a, 13b Compression roll electrode (compression measurement part)
21 Control processing part 31a Circumferential groove (sequential transfer means)
31 Grooved roll 32 Side receiving plate (Sequential transfer means)
33 Rotating plate (Sequential transfer means)
33a, 33b seat (sequential transfer means)
34 Rotating plate (Sequential transfer means)
34a, 34b, 34c Notch (sequential transfer means)
41 roll electrode 41a, 41b, 41c uneven surface 42 roll electrode G grain (measurement sample)
G1, G2, G3 kernel L1 center distance r1 circumference radius

Claims (5)

穀粒を1粒ずつ送出する穀粒供給部と、この穀粒供給部から受けた穀粒を圧縮する2つの対向圧縮ロールを1対の電極として圧縮穀粒の水分値を計測する圧縮計測部と、その計測値の換算処理および平均処理に基づいて穀粒水分値を算出するデータ処理部とからなり、上記圧縮計測部は、少なくとも一方のロール電極を大小の周面半径に形成してその回動角度位置により大小の圧縮間隙を選択可能に構成した穀粒乾燥機の穀粒水分測定装置において、
上記穀粒供給部は、受けた穀粒の粒径に応じて選別保持可能な径寸法の大小の選別凹部を互いに隣接して備えるとともに、これら大小の選別凹部の移動動作によって大小の保持穀粒を送出位置まで順次移送する順次移送手段を備え、この順次移送手段の移送動作と、圧縮ロールの圧縮動作をそれぞれの大小のタイミングに合わせて連動制御することを特徴とする穀粒乾燥機の穀粒水分測定装置。
A grain supply unit that sends out one grain at a time, and a compression measurement unit that measures the moisture value of the compressed grain using two opposed compression rolls that compress the grain received from the grain supply unit as a pair of electrodes And a data processing unit that calculates the grain moisture value based on the conversion process and the average process of the measurement value, the compression measurement unit is formed by forming at least one roll electrode with a large and small peripheral radius In the grain moisture measuring device of the grain dryer configured to be able to select a large and small compression gap by the rotation angle position,
The grain supply unit is provided with large and small sorting recesses having diameters that can be sorted and held according to the grain size of the received grains, and the large and small holding grains are moved by moving the large and small sorting recesses. Grain transfer machine, comprising a sequential transfer means for sequentially transferring the squeeze to a delivery position, wherein the transfer operation of the sequential transfer means and the compression operation of the compression roll are interlocked and controlled in accordance with the respective large and small timings. Grain moisture measuring device.
前記穀粒供給部は、大小の断面形状の周面溝を互いに隣接して螺旋状に備えて回動動作する略水平配置の溝付ロールと、その周面溝内の穀粒を所定距離で受けることにより穀粒を選別保持しつつ移送を案内する平板状の側受板とを備えて構成したことを特徴とする請求項1記載の穀粒乾燥機の穀粒水分測定装置。   The grain supply unit is provided with a substantially horizontal grooved roll that rotates with a circumferential groove having a large and small cross-sectional shape adjacent to each other in a spiral shape, and the grains in the circumferential groove at a predetermined distance. 2. A grain moisture measuring device for a grain dryer according to claim 1, wherein the grain moisture measuring apparatus is provided with a flat side receiving plate that guides the transfer while receiving and sorting the grains. 前記穀粒供給部は、穀粒を排出可能に保持しうる大小の受座を互いに隣接して同一円周上に備える回転板を傾斜して構成したことを特徴とする請求項1記載の穀粒乾燥機の穀粒水分測定装置。   The grain according to claim 1, wherein the grain supply unit is configured by tilting a rotating plate having large and small receiving seats that can hold the grain so that they can be discharged on the same circumference. Grain moisture measuring device for grain dryer. 穀粒を1粒ずつ順次移送する穀粒供給部と、この穀粒供給部から穀粒を受ける2つの対向圧縮ロールを1対の電極として圧縮穀粒の水分値を計測する圧縮計測部と、その計測値の換算処理および平均処理に基づいて穀粒水分値を算出するデータ処理部とからなる穀粒乾燥機の穀粒水分測定装置において、
上記圧縮計測部は、少なくとも一方のロール電極に圧縮作用深さが異なる表面形状を形成してその回動角度位置により作用深さを選択可能に構成したことを特徴とする穀粒乾燥機の穀粒水分測定装置。
A grain supply unit that sequentially transfers the grains one by one, and a compression measurement unit that measures the moisture value of the compressed grain using two opposing compression rolls that receive the grains from the grain supply unit as a pair of electrodes, In the grain moisture measuring device of the grain dryer consisting of the data processing unit that calculates the grain moisture value based on the conversion process and the average process of the measurement value,
The above-mentioned compression measuring section is configured such that a surface shape having different compression action depths is formed on at least one of the roll electrodes, and the action depth can be selected according to the rotation angle position thereof. Grain moisture measuring device.
穀粒を1粒ずつ順次移送する穀粒供給部と、この穀粒供給部から穀粒を受ける2つの対向圧縮ロールを1対の電極として圧縮穀粒の水分値を計測する圧縮計測部と、その計測値の換算処理および平均処理に基づいて穀粒水分値を算出するデータ処理部とからなる穀粒乾燥機の穀粒水分測定装置において、
上記圧縮計測部は、少なくとも一方のロール電極の断面形状を多角形に形成し、その各辺を2つ以上の異なる中心距離に配置してその回動角度位置により中心距離を選択可能に構成することを特徴とする穀粒乾燥機の穀粒水分測定装置。
A grain supply unit that sequentially transfers the grains one by one, and a compression measurement unit that measures the moisture value of the compressed grain using two opposing compression rolls that receive the grains from the grain supply unit as a pair of electrodes, In the grain moisture measuring device of the grain dryer consisting of the data processing unit that calculates the grain moisture value based on the conversion process and the average process of the measurement value,
The compression measurement unit is configured such that at least one roll electrode has a polygonal cross-sectional shape, each side thereof is arranged at two or more different center distances, and the center distance can be selected according to the rotation angle position. A grain moisture measuring device for a grain dryer.
JP2004217806A 2004-07-26 2004-07-26 Grain moisture measuring device of grain drier Withdrawn JP2006038595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004217806A JP2006038595A (en) 2004-07-26 2004-07-26 Grain moisture measuring device of grain drier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004217806A JP2006038595A (en) 2004-07-26 2004-07-26 Grain moisture measuring device of grain drier

Publications (1)

Publication Number Publication Date
JP2006038595A true JP2006038595A (en) 2006-02-09

Family

ID=35903747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004217806A Withdrawn JP2006038595A (en) 2004-07-26 2004-07-26 Grain moisture measuring device of grain drier

Country Status (1)

Country Link
JP (1) JP2006038595A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012122836A (en) * 2010-12-08 2012-06-28 Yamamoto Seisakusho Inc Moisture measurement apparatus
WO2020045507A1 (en) * 2018-08-31 2020-03-05 静岡製機株式会社 Water content measuring device, and cereal dryer
JPWO2020179061A1 (en) * 2019-03-07 2020-09-10
JPWO2020179060A1 (en) * 2019-03-07 2020-09-10
JP7413909B2 (en) 2020-04-21 2024-01-16 株式会社サタケ Moisture meter

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012122836A (en) * 2010-12-08 2012-06-28 Yamamoto Seisakusho Inc Moisture measurement apparatus
WO2020045507A1 (en) * 2018-08-31 2020-03-05 静岡製機株式会社 Water content measuring device, and cereal dryer
JP2020034254A (en) * 2018-08-31 2020-03-05 静岡製機株式会社 Moisture measuring device, and grain dryer
CN111133303A (en) * 2018-08-31 2020-05-08 静冈制机株式会社 Moisture measuring device and grain drier
KR20200085264A (en) * 2018-08-31 2020-07-14 시즈오카 세이키 가부시키가이샤 Moisture measuring device and grain dryer
CN111133303B (en) * 2018-08-31 2021-04-27 静冈制机株式会社 Moisture measuring device and grain drier
KR102212414B1 (en) 2018-08-31 2021-02-04 시즈오카 세이키 가부시키가이샤 Moisture measuring device and grain dryer
WO2020179061A1 (en) * 2019-03-07 2020-09-10 静岡製機株式会社 Moisture measurement device
WO2020179060A1 (en) * 2019-03-07 2020-09-10 静岡製機株式会社 Moisture measuring device
JPWO2020179060A1 (en) * 2019-03-07 2020-09-10
JPWO2020179061A1 (en) * 2019-03-07 2020-09-10
KR20210119520A (en) * 2019-03-07 2021-10-05 시즈오카 세이키 가부시키가이샤 moisture measuring device
CN113518916A (en) * 2019-03-07 2021-10-19 静冈制机株式会社 Moisture detection device
CN113518915A (en) * 2019-03-07 2021-10-19 静冈制机株式会社 Moisture detection device
JP7162806B2 (en) 2019-03-07 2022-10-31 静岡製機株式会社 Moisture measuring device and moisture measuring method
JP7162805B2 (en) 2019-03-07 2022-10-31 静岡製機株式会社 Moisture measuring device and moisture measuring method
KR102667621B1 (en) * 2019-03-07 2024-05-22 시즈오카 세이키 가부시키가이샤 Moisture measuring device
JP7413909B2 (en) 2020-04-21 2024-01-16 株式会社サタケ Moisture meter

Similar Documents

Publication Publication Date Title
Martin et al. Development of a single-kernel wheat characterization system
CN103072072B (en) Ginding process and lapping device
JP2006038595A (en) Grain moisture measuring device of grain drier
US10278406B2 (en) Method for producing roasted coffee beans in relation to carbon monoxide generated
AU769353B2 (en) Milling device
TWI768012B (en) Chuck stage particle detection device
JP6099525B2 (en) Pellet particle size measurement method
JP7162806B2 (en) Moisture measuring device and moisture measuring method
TWI302201B (en) Inspecting method and adjusting method of pressure of probe
JP7162805B2 (en) Moisture measuring device and moisture measuring method
Haraszi et al. Rheological hardness index for assessing hardness of hexaploids and durums
KR102529817B1 (en) Appartus of treating substrate having oxide film
JP2005077212A (en) Cereal moisture measuring instrument
JP2005326331A (en) Grain moisture measuring instrument of grain drying machine
KR102388270B1 (en) Ring mil apparatus
JP4143380B2 (en) Grain characteristic measurement method and apparatus
JPH0886730A (en) Device and method for discriminating material
EP0527191B1 (en) Device for singulating particles including a rapid, single kernel grain characterization system
Aghayeghazvini et al. Determining percentage of broken rice by using image analysis
KR102075098B1 (en) Manufacturing system for secondary battery electrode with scratch tester
JP6745525B2 (en) Single grain moisture meter
JP2021173565A (en) Moisture meter
JP2015049082A (en) Electrode roll structure for single grain moisture measurement of grains
US20230416021A1 (en) Apparatus for stacking taco shells
JP4110311B2 (en) Detection method of sized cocoon area by moisture meter

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071002