JP2006038503A - Instrument for measuring electric wave absorption characteristic - Google Patents

Instrument for measuring electric wave absorption characteristic Download PDF

Info

Publication number
JP2006038503A
JP2006038503A JP2004215307A JP2004215307A JP2006038503A JP 2006038503 A JP2006038503 A JP 2006038503A JP 2004215307 A JP2004215307 A JP 2004215307A JP 2004215307 A JP2004215307 A JP 2004215307A JP 2006038503 A JP2006038503 A JP 2006038503A
Authority
JP
Japan
Prior art keywords
radio wave
antenna
antennas
intensity distribution
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004215307A
Other languages
Japanese (ja)
Inventor
Koji Inoue
浩司 井上
Chitayoshi Manabe
知多佳 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2004215307A priority Critical patent/JP2006038503A/en
Publication of JP2006038503A publication Critical patent/JP2006038503A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To confirm shifts in positioning correspondence with respect to a measured object of a transmission antenna and a reception antenna to facilitate positioning for each of the antennas, in electric wave absorption characteristic measurement. <P>SOLUTION: In this electric wave absorption characteristic measuring instrument, the antenna for emitting an electric wave out of the transmission antenna 1 and the reception antenna 2 is selectively switched by switches 21, 22, and an intensity distribution of the received electric wave on an installed face 4 of the measured object when the electric wave is emitted from the each antenna is measured based on a received signal by each of a plurality of flat antenna elements 3 arrayed on the installed face 4. Both measured results of the intensity distributions measured as to respective cases where the electric waves are emitted respectively form the two antennas are compared to correct the positional shifts in the respective antennas. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は,送信アンテナからの電波を電波吸収特性の被測定物に照射し,その反射電波を受信アンテナに入射させて測定信号を得るために用いる電波吸収特性測定装置に関するものである。   The present invention relates to a radio wave absorption characteristic measuring apparatus used for obtaining a measurement signal by irradiating a measurement object having radio wave absorption characteristics with a radio wave from a transmission antenna and making the reflected radio wave incident on a reception antenna.

携帯電話機や無線LAN,ETC(自動料金収受システム)等の無線通信機器が普及し,電波の利用が広がるにつれて電波吸収体の需要も増大してきている。このような電波吸収体は,電波がほぼ垂直入射される状況のみならず,電波の入射角が大きい状況で利用される場面が増え,これに伴い,電波吸収体の電波吸収特性測定において,入射角依存性評価が要求されている。
図4は,前記入射角依存性評価のための電波吸収特性測定方法を模式的に表した図である。
図4に示すように,所定の位置に配置した被測定物11(電波吸収体)に対して送信アンテナ1からの電波を照射し,その反射電波を受信アンテナ2に入射させて測定信号を得る。その際,送信アンテナ1及び受信アンテナ2各々を,被測定物11の測定部11aを中心として,その測定部11a表面の垂線14の方向に対する両側各々に対称な角度(図中,角度a,b等)で回動させることにより,被測定物11への電波の入射角を変更し,その変更ごとに測定信号(受信アンテナ2による受信信号)を得る。これにより,被測定物11への電波の入射角度と測定信号の減衰レベルとの関係から,被測定物11の電波吸収特性の入射角依存性を評価することができる。例えば,電波を全反射する金属板等の電波吸収特性が既知である参照面(被測定物の設置面等)について予め電波の入射角度と測定信号の減衰レベルとの関係を参照データとして測定して記憶しておき,これと被測定物11についての測定信号との比較によって被測定物11の電波吸収特性の入射角度依存性を評価できる。
一般に,送信アンテナ1に対する高周波の基準信号の出力及び受信アンテナ2により受信された測定信号の入力,並びにその測定信号の信号強度や位相の測定は,ベクトルネットワークアナライザにより行われる。
また,図4に示す測定を実現する測定装置の具体例として,例えば,特許文献1の図26には,アーチ状のアンテナ支持具に送信アンテナと受信アンテナとを移動可能に取り付ける構成を有するものが示されている。
同じく,特許文献1の図27には,左右対称となる位置に配置された対となる送信アンテナと受信アンテナとを複数組設け,信号線切換機により測定信号の入力経路を切り替える構成を有するものが示されている。
2002−111277号公報
As wireless communication devices such as mobile phones, wireless LANs, and ETCs (automatic toll collection systems) become widespread and the use of radio waves spreads, the demand for radio wave absorbers has increased. Such radio wave absorbers are used not only in situations where radio waves are incident almost vertically but also in situations where the radio wave has a large incident angle. Angular dependency evaluation is required.
FIG. 4 is a diagram schematically showing a radio wave absorption characteristic measuring method for the incidence angle dependency evaluation.
As shown in FIG. 4, the measurement object 11 (radio wave absorber) placed at a predetermined position is irradiated with radio waves from the transmission antenna 1 and the reflected radio waves are incident on the reception antenna 2 to obtain a measurement signal. . At that time, each of the transmitting antenna 1 and the receiving antenna 2 is symmetric with respect to the direction of the perpendicular 14 on the surface of the measuring portion 11a with respect to the measuring portion 11a of the device under test 11 (angles a and b in the figure). Etc.), the incident angle of the radio wave to the device under test 11 is changed, and a measurement signal (received signal by the receiving antenna 2) is obtained for each change. Thereby, the incident angle dependence of the radio wave absorption characteristic of the DUT 11 can be evaluated from the relationship between the incident angle of the radio wave to the DUT 11 and the attenuation level of the measurement signal. For example, for a reference surface (such as the installation surface of an object to be measured) that has a known radio wave absorption characteristic such as a metal plate that totally reflects radio waves, the relationship between the incident angle of the radio wave and the attenuation level of the measurement signal is measured in advance as reference data. The incident angle dependence of the radio wave absorption characteristics of the device under test 11 can be evaluated by comparing this with the measurement signal for the device under test 11.
In general, the output of a high-frequency reference signal to the transmission antenna 1 and the input of the measurement signal received by the reception antenna 2 and the measurement of the signal strength and phase of the measurement signal are performed by a vector network analyzer.
Further, as a specific example of the measuring apparatus that realizes the measurement shown in FIG. 4, for example, FIG. 26 of Patent Document 1 has a configuration in which a transmitting antenna and a receiving antenna are movably attached to an arched antenna support. It is shown.
Similarly, FIG. 27 of Patent Document 1 has a configuration in which a plurality of pairs of transmitting antennas and receiving antennas arranged at symmetrical positions are provided, and the input path of the measurement signal is switched by a signal line switching device. It is shown.
No. 2002-111277

しかしながら,電波吸収特性の測定では,被測定物11表面に対する送信アンテナ1による電波の照射エリア(以下,送信アンテナ対応エリアC1という)と,被測定物11表面のエリアであって受信アンテナ2が受信可能な電波が反射されるエリア,即ち,受信アンテナ2から電波を照射したときの被測定物11表面における電波の照射エリア(以下,受信アンテナ対応エリアC2という)とにずれがある場合,そのずれの分だけ受信アンテナによる受信電波の強度が下がるため,その測定信号に被測定物の電波吸収特性が正確に反映されず,測定精度が悪化するという問題点があった。
図3は,送信アンテナと受信アンテナの被測定物に対する電波照射エリアの対応関係(前記送信アンテナ対応エリアC1と前記受信アンテナ対応エリアC2とのずれ)を模式的に表したものである。
一般に,送信アンテナ1或いは受信アンテナ2がホーンアンテナである場合,これを被測定物11に対して垂直方向にその正面方向を対向させて配置すると,被測定物11表面における電波照射エリア(前記送信アンテナ対応エリアC1や前記受信アンテナ対応エリアC1)は,若干扁平した楕円形を形成する(不図示)。このような送信アンテナ1及び受信アンテナ2各々を,被測定物11の垂線方向に対して両側対称な斜め方向にその正面方向を対向させて配置すると,図3に示すように,前記送信アンテナ対応エリアC1及び前記受信アンテナ対応エリアC2は,長く伸びた楕円を形成する。そして,図3に示すように,各エリアC1,C2にずれが生じると,送信アンテナC1から送信される電波(前記送信アンテナ対応エリアC1に到達する電波)のうちの一部の反射電波が受信アンテナ2に到達せず,被測定物11の電波吸収率が,実際よりも高い値として測定されてしまう。
このような問題を回避するためには,被測定物11に対する各アンテナ1,2の位置決め精度や各アンテナ1,2の電波出射(入射)方向の精度を向上させることが考えられる。しかし,その場合,各アンテナ1,2の支持機構の剛性を高める必要があるとともに極めて高精度の位置決め機構等が必要となり,装置が大型化,高重量化,複雑化及び高コスト化するという問題点があった。さらに,前記送信アンテナ対応エリアC1や前記受信エリア対応エリアC2は目視確認できないため,それらのずれが生じていることを認識できず,測定データの信頼性確保が難しいという問題点もあった。
従って,本発明は上記事情に鑑みてなされたものであり,その目的とするところは,シンプルな構成により,電波吸収特性測定における送信アンテナと受信アンテナの被測定物に対する位置決めの対応関係,即ち,前記送信アンテナ対応エリアC1と前記受信アンテナ対応エリアC2とのずれを確認でき,各アンテナの位置決めを容易化できる電波吸収特性測定装置を提供することにある。
However, in the measurement of the radio wave absorption characteristics, the receiving antenna 2 receives the radio wave irradiation area (hereinafter referred to as a transmitting antenna corresponding area C1) to the surface of the object 11 to be measured and the area of the surface of the object 11 to be measured. If there is a deviation in the area where the possible radio wave is reflected, that is, the radio wave irradiation area on the surface of the DUT 11 when the radio wave is irradiated from the receiving antenna 2 (hereinafter referred to as a receiving antenna corresponding area C2) As a result, the intensity of the radio wave received by the receiving antenna decreases, and the radio wave absorption characteristics of the object to be measured are not accurately reflected in the measurement signal, resulting in a problem that the measurement accuracy deteriorates.
FIG. 3 schematically shows the correspondence relationship of the radio wave irradiation area with respect to the measured object of the transmitting antenna and the receiving antenna (shift between the transmitting antenna corresponding area C1 and the receiving antenna corresponding area C2).
In general, when the transmitting antenna 1 or the receiving antenna 2 is a horn antenna, when the transmitting antenna 1 or the receiving antenna 2 is arranged so that the front direction is opposed to the device under test 11 in the vertical direction, the radio wave irradiation area on the surface of the device under test 11 (the transmission The antenna corresponding area C1 and the receiving antenna corresponding area C1) form a slightly flat elliptical shape (not shown). When each of the transmitting antenna 1 and the receiving antenna 2 is arranged with its front direction facing in an oblique direction that is symmetrical on both sides with respect to the normal direction of the device under test 11, as shown in FIG. The area C1 and the reception antenna corresponding area C2 form an elongated ellipse. Then, as shown in FIG. 3, when the areas C1 and C2 are displaced, a part of the reflected radio waves received from the radio wave transmitted from the transmission antenna C1 (the radio wave reaching the transmission antenna corresponding area C1) is received. Without reaching the antenna 2, the radio wave absorptivity of the DUT 11 is measured as a value higher than the actual value.
In order to avoid such a problem, it is conceivable to improve the positioning accuracy of the antennas 1 and 2 with respect to the object to be measured 11 and the accuracy of the radio wave emission (incident) direction of the antennas 1 and 2. However, in that case, it is necessary to increase the rigidity of the support mechanism of each antenna 1 and 2 and also requires an extremely high-precision positioning mechanism, which increases the size, weight, complexity, and cost of the device. There was a point. Furthermore, since the transmitting antenna corresponding area C1 and the receiving area corresponding area C2 cannot be visually confirmed, it is difficult to recognize the occurrence of a shift between them, and it is difficult to ensure the reliability of measurement data.
Accordingly, the present invention has been made in view of the above circumstances, and the object of the present invention is to have a simple configuration and a correspondence relationship between positioning of a transmitting antenna and a receiving antenna with respect to an object to be measured in radio wave absorption characteristic measurement, that is, An object of the present invention is to provide a radio wave absorption characteristic measuring apparatus that can confirm a deviation between the transmitting antenna corresponding area C1 and the receiving antenna corresponding area C2 and facilitate positioning of each antenna.

上記目的を達成するために本発明は,2つのアンテナ各々を位置調節し,一方のアンテナからの電波を被測定物に照射させ,その反射電波を他方のアンテナに入射させて測定信号を得る電波吸収特性測定装置に適用されるものであり,前記2つのアンテナのいずれから電波を出射させるかを切り替え可能とし,前記被測定物が測定位置に配置されたときのその測定面を含む平面若しくはその近傍の平面(以下,特定平面という)における受信電波の強度分布を測定する機能を備えたものである。
これにより,前記2つのアンテナ各々(いずれか)から電波を照射した場合の各々について,前記被測定物を設置しない状態で前記特定平面における受信電波の強度分布を測定することが可能となる。そして,その強度分布は,前記2つのアンテナ各々に対応する電波の照射エリア(前記送信アンテナ対応エリアC1と前記受信アンテナ対応エリアC2)を表す(相対的に強度が高い部分が各エリアC1,C2に相当する)ことになり,送信アンテナと受信アンテナの被測定物に対する位置決めの対応関係,即ち,前記送信アンテナ対応エリアC1と前記受信アンテナ対応エリアC2とのずれを確認することが可能となる。
より具体的な構成としては,平面状に配列された複数の平面アンテナ素子を前記特定平面に配置した状態で,その平面アンテナ素子各々による受信信号に基づいて,複数の前記平面アンテナ素子の受信面における受信電波の強度分布を測定することが考えられる。
これにより,前記特定平面を物理的に走査して電波の強度分布を測定するよりも,よりシンプルな構成によって実現できる。
さらに,前記2つのアンテナの一方又は両方の位置及や向きを調節可能とし,前記2つのアンテナ各々から電波が出射された各々の場合について測定した強度分布の両測定結果を比較可能に出力,例えば,表示手段や紙等の記録媒体に各強度分布を画像として視認可能かつ対比可能に出力すれば,各アンテナの位置ずれの状況を一見して把握でき,その状況を確認しながらその位置ずれを補正するよう各アンテナの位置や向きを容易に調節できる。
これに対し,前記2つのアンテナの一方又は両方の位置及や向きを調節可能とし,前記2つのアンテナ各々から電波が出射された各々の場合について測定した強度分布の両測定結果を比較し,その比較結果に基づいて前記2つのアンテナの一方又は両方の位置や向きを,アクチュエータ等を通じて自動調節する機能を設ければ,利用者の手間が省けてより好適である。
In order to achieve the above object, the present invention adjusts the position of each of the two antennas, irradiates the object to be measured with the radio wave from one antenna, and enters the reflected radio wave into the other antenna to obtain a measurement signal. The present invention is applied to an absorption characteristic measuring apparatus, and can switch between which of the two antennas emits radio waves, and a plane including the measurement surface when the object to be measured is arranged at a measurement position or It has a function of measuring the intensity distribution of received radio waves in a nearby plane (hereinafter referred to as a specific plane).
Thus, for each of the cases where radio waves are irradiated from each of the two antennas (any one), it is possible to measure the intensity distribution of the received radio waves on the specific plane without installing the object to be measured. The intensity distribution represents the radio wave irradiation area (the transmitting antenna corresponding area C1 and the receiving antenna corresponding area C2) corresponding to each of the two antennas (the relatively high intensity portions are the areas C1, C2). Accordingly, it is possible to confirm the correspondence relationship between the positioning of the transmitting antenna and the receiving antenna with respect to the object to be measured, that is, the shift between the transmitting antenna corresponding area C1 and the receiving antenna corresponding area C2.
More specifically, a plurality of planar antenna elements arranged in a plane are arranged on the specific plane, and reception surfaces of the plurality of planar antenna elements are based on reception signals from the planar antenna elements. It is conceivable to measure the intensity distribution of the received radio wave at.
This can be realized with a simpler configuration than when the specific plane is physically scanned to measure the radio wave intensity distribution.
Further, the position and orientation of one or both of the two antennas can be adjusted, and both measurement results of the intensity distribution measured for each case where radio waves are emitted from each of the two antennas can be compared, for example, , If each intensity distribution is output as a visible and comparable image on a recording medium such as display means or paper, it is possible to grasp the position of each antenna at a glance and check the position while checking the position. The position and orientation of each antenna can be easily adjusted to correct.
On the other hand, the position and orientation of one or both of the two antennas can be adjusted, and both measurement results of the intensity distribution measured for each case where radio waves are emitted from each of the two antennas are compared. If a function for automatically adjusting the position and orientation of one or both of the two antennas through an actuator or the like based on the comparison result is provided, it is more preferable because it saves the user's trouble.

また,複数の前記平面アンテナ素子を用いる場合,その各々の受信信号を順次切り替えて選択し,その順次選択される信号の強度各々に基づいて,複数の前記平面アンテナ素子の受信面における受信電波の強度分布を測定することが考えられる。
これにより,前記平面アンテナ素子の受信電波を測定する手段が1入力のもので対応でき(複数入力を並行入力(多入力)できるものである必要がない),構成がシンプルとなる。
さらにこの場合,被測定物の測定の際に用いられるベクトルネットワークアナライザ,即ち,前記2つのアンテナのうちの一方のアンテナに電波を出射させる基準信号を出力するとともに他方のアンテナにより受信された測定信号を入力して信号変化を測定するベクトルネットワークアナライザ(通常は1入力)に,順次選択した信号を入力させることにより,電波分布測定と被測定物の測定とに前記ベクトルネットワークアナライザを兼用することが可能となる。
When a plurality of planar antenna elements are used, each received signal is sequentially switched and selected, and based on each of the sequentially selected signal strengths, the received radio wave on the receiving surface of the plurality of planar antenna elements is selected. It is conceivable to measure the intensity distribution.
As a result, the means for measuring the received radio wave of the planar antenna element can cope with one input (it is not necessary to be able to input a plurality of inputs in parallel (multiple inputs)), and the configuration becomes simple.
Further, in this case, a vector network analyzer used in measuring the object to be measured, that is, a reference signal for outputting a radio wave to one of the two antennas and a measurement signal received by the other antenna The vector network analyzer (usually one input) that inputs the signal and inputs the selected signals in sequence, so that the vector network analyzer can be used for both the radio wave distribution measurement and the measurement of the object to be measured. It becomes possible.

本発明によれば,電波吸収特性測定装置における2つのアンテナのいずれから電波を出射させるかを切り替え,被測定物が測定位置に配置されたときのその測定面を含む平面若しくはその近傍の平面(前記特定平面)における受信電波の強度分布を測定できるので,前記2つのアンテナ各々に対応する電波の照射エリア,即ち,前記送信アンテナ対応エリアC1と前記受信アンテナ対応エリアC2とのずれを確認することが可能となる。その結果,容易に各アンテナの位置決めを行うことが可能となる。しかも,問題となる位置ずれが発生しない程に各アンテナの支持機構の剛性を高めたり,極めて高精度の位置決め機構を設けたりする必要がなく,装置をシンプルな構成にできる。
例えば,平面状に配列された複数の平面アンテナ素子を前記特定平面に配置した状態で,その平面アンテナ素子各々による受信信号に基づいて,その受信面における受信電波の強度分布を測定すれば,前記特定平面を物理的に走査して電波の強度分布を測定するよりも,よりシンプルな構成によって実現できる。
According to the present invention, it is switched between which of the two antennas in the radio wave absorption characteristic measuring apparatus the radio wave is emitted, and the plane including the measurement surface when the object to be measured is arranged at the measurement position or a plane in the vicinity thereof ( Since it is possible to measure the intensity distribution of received radio waves in the specific plane), it is possible to confirm the deviation between the radio wave irradiation areas corresponding to the two antennas, that is, the transmission antenna corresponding area C1 and the receiving antenna corresponding area C2. Is possible. As a result, each antenna can be easily positioned. In addition, it is not necessary to increase the rigidity of the support mechanism of each antenna or to provide an extremely high-precision positioning mechanism to the extent that no problematic positional deviation occurs, and the apparatus can be configured simply.
For example, in a state where a plurality of planar antenna elements arranged in a plane are arranged on the specific plane, if the intensity distribution of the received radio wave on the receiving surface is measured based on the received signal by each of the planar antenna elements, This can be achieved with a simpler configuration than measuring the intensity distribution of radio waves by physically scanning a specific plane.

以下添付図面を参照しながら,本発明の実施の形態について説明し,本発明の理解に供する。尚,以下の実施の形態は,本発明を具体化した一例であって,本発明の技術的範囲を限定する性格のものではない。
ここに,図1は本発明の実施形態に係る電波吸収特性測定装置Xの概略構成を表した図,図2は電波吸収特性測定装置Xにより測定した被測定物の設置面における電波強度分布を画像出力した結果の画面例を表す図,図3は送信アンテナと受信アンテナの被測定物に対する電波照射エリアの対応関係を模式的に表した図,図4は電波吸収特性測定方法を模式的に表した図である。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings so that the present invention can be understood. The following embodiment is an example embodying the present invention, and does not limit the technical scope of the present invention.
Here, FIG. 1 is a diagram showing a schematic configuration of a radio wave absorption characteristic measuring apparatus X according to an embodiment of the present invention, and FIG. 2 shows a radio wave intensity distribution on an installation surface of an object measured by the radio wave absorption characteristic measuring apparatus X. Fig. 3 is a diagram showing a screen example of the result of image output. Fig. 3 is a diagram schematically showing the correspondence of the radio wave irradiation area to the measured object of the transmitting antenna and the receiving antenna. Fig. 4 is a schematic diagram of the method for measuring the radio wave absorption characteristics. FIG.

以下,図1の構成図を用いて,本発明の実施形態に係る電波吸収特性測定装置X(以下,測定装置Xという)について説明する。
測定装置Xは,送信アンテナ1及び受信アンテナ2の2つのアンテナ各々を,その角度を調節可能なフレキシブル支持部10a,10b(アンテナ位置調節手段の一例)で支持するとともに,そのフレキシブル支持部10a,10b各々の位置を不図示のリンク機構により,被測定物の設置台4の中心における垂線に対して両側に対称な位置に位置決めする位置決め機構により支持する。この位置決め機構及び前記フレキシブル支持部10a,10bの調節により,2つのアンテナ1,2の位置及び方向を調節し,前記送信アンテナ1から前記設置台4或いはその上に載置された被測定物に照射さされる電波の入射角を変更でき,さらに,その入射と対称な方向への反射電波を受信可能な位置及び方向に前記受信アンテナ2の位置を調節できる。
また,前記測定装置Xは,前記送信アンテナ1に対し,高周波の基準信号を出力して電波を出射させるとともに,その電波を前記設置台4に載置された被測定物に照射させた後の反射波を,前記受信アンテナ2を介して測定信号として入力し,電波(前記基準信号)がその進行経路において変位した場合の信号強度,位相等を測定するベクトルネットワークアナライザ7と,その測定結果に基づいて被測定物の電波吸収特性を評価(測定)するパーソナルコンピュータ等の計算機8とを備えている。この計算機8は,予めインストールされた所定の演算プログラムを実行することにより,被測定物の電波吸収特性を評価(測定)する。
Hereinafter, a radio wave absorption characteristic measuring apparatus X (hereinafter referred to as a measuring apparatus X) according to an embodiment of the present invention will be described with reference to the configuration diagram of FIG.
The measuring device X supports each of the two antennas of the transmitting antenna 1 and the receiving antenna 2 with flexible support portions 10a and 10b (an example of antenna position adjusting means) whose angles can be adjusted, and the flexible support portions 10a, 10b, Each position of 10b is supported by a positioning mechanism that positions the object to be measured symmetrically on both sides with respect to a perpendicular line at the center of the mounting base 4 of the object to be measured by a link mechanism (not shown). By adjusting the positioning mechanism and the flexible support portions 10a and 10b, the positions and directions of the two antennas 1 and 2 are adjusted, and the installation antenna 4 or the object to be measured placed thereon is adjusted from the transmission antenna 1. The incident angle of the radiated radio wave can be changed, and the position of the receiving antenna 2 can be adjusted to a position and direction in which the reflected radio wave can be received in a direction symmetrical to the incident.
The measuring apparatus X outputs a high-frequency reference signal to the transmitting antenna 1 to emit a radio wave, and irradiates the object to be measured placed on the installation table 4 with the radio wave. A vector network analyzer 7 that inputs a reflected wave as a measurement signal via the receiving antenna 2 and measures the signal intensity, phase, etc. when the radio wave (the reference signal) is displaced in its traveling path, and the measurement result And a computer 8 such as a personal computer for evaluating (measuring) the radio wave absorption characteristics of the object to be measured. The computer 8 evaluates (measures) the radio wave absorption characteristics of the object to be measured by executing a predetermined arithmetic program installed in advance.

本実施の形態では,被測定物として厚みのごく薄い板状の被測定物を想定している。従って,前記設置台4の表面(被測定物の設置面)は,前記設置台4上(測定位置)に配置された被測定物の測定面を含む平面に対してごく近傍の平面である(特定平面の一例)。
前記測定装置Xは,被測定物の前記設置台4の表面(特定平面の一例)に二次元に配列され,パッチアンテナ等からなる複数の平面アンテナ素子3と,前記ベクトルネットワークアナライザ7の前記基準信号の出力端に接続され,前記2つのアンテナ(送信アンテナ1,受信アンテナ2)のいずれから電波を出射させるかを切り替え可能とする出力側スイッチ21,22(電波出力切替手段の一例)とを具備している。
また,前記測定装置Xは,複数の前記平面アンテナ素子3各々の受信信号をマイクロストリップ線路等の線路5を介して入力し,そのいずれかを選択して前記ベクトルネットワークアナライザ7の入力端側へ出力するマルチプレクサ6と,該マルチプレクサ6の出力信号(前記平面アンテナ素子3いずれかの受信信号)と,前記受信アンテナ2による受信信号(測定信号)とのいずれの信号を前記ベクトルネットワークアナライザ7の測定信号入力端に入力させるかを切り替える入力側スイッチ23とを具備している。
前記平面アンテナ素子3各々は,被測定物とほぼ同じかそれ以上の面積のプリント基板上にパターン加工により形成したものである。
例えば,プリント基板上の約40cm四方のエリアに,中心間隔を約5cmとして8行8列の前記平面アンテナ素子3を形成したもの等である。より狭い間隔でより多数の前記平面アンテナ素子3を配置すれば,より高い分解能で後述する電界強度分布の測定を行うことが可能となる。
ここで,前記平面アンテナ素子3は,測定する電波の周波数に対する利得を最適化したものとすると,測定周波数に応じてその寸法が定まる。即ち,測定周波数が高くなるほど電波の波長が短くなり,前記平面アンテナ素子3の寸法は小さくなる。このため,測定周波数によって前記平面アンテナ素子3の寸法が定まってしまうようにもみえる。しかし,受信電波の電界強度の分布(信号強度の分布)は,その絶対値ではなく,相対的な分布を測定できればよいので,測定周波数に対する最適化よりも,必要な電界強度分布のエリア分解能の確保と,前記平面アンテナ素子3の数が増えるとその信号数が増えて処理負荷が高くなり過ぎる弊害とのバランスを主観点として前記平面アンテナ素子3の寸法を定めればよい。
In the present embodiment, an extremely thin plate-shaped object to be measured is assumed as the object to be measured. Therefore, the surface of the installation table 4 (installation surface of the object to be measured) is a plane very close to a plane including the measurement surface of the object to be measured arranged on the installation table 4 (measurement position) ( An example of a specific plane).
The measuring device X includes a plurality of planar antenna elements 3 that are two-dimensionally arranged on the surface (an example of a specific plane) of the installation table 4 of the object to be measured, and are composed of patch antennas, and the reference of the vector network analyzer 7. Output-side switches 21 and 22 (an example of radio wave output switching means) connected to the signal output end and capable of switching which of the two antennas (transmitting antenna 1 and receiving antenna 2) emit radio waves. It has.
In addition, the measurement apparatus X inputs the received signals of each of the plurality of planar antenna elements 3 via a line 5 such as a microstrip line and selects one of them to the input end side of the vector network analyzer 7. The vector network analyzer 7 measures any one of the multiplexer 6 to be output, the output signal of the multiplexer 6 (the reception signal of one of the planar antenna elements 3), and the reception signal (measurement signal) of the reception antenna 2. And an input side switch 23 for switching whether to input to the signal input terminal.
Each of the planar antenna elements 3 is formed by pattern processing on a printed board having an area substantially the same as or larger than the object to be measured.
For example, the planar antenna element 3 of 8 rows and 8 columns is formed in an area of about 40 cm square on a printed circuit board with a center interval of about 5 cm. If a larger number of the planar antenna elements 3 are arranged at a narrower interval, it becomes possible to measure the electric field intensity distribution described later with higher resolution.
Here, if the gain of the planar antenna element 3 with respect to the frequency of the radio wave to be measured is optimized, the dimension is determined according to the measurement frequency. That is, the higher the measurement frequency, the shorter the wavelength of the radio wave, and the smaller the size of the planar antenna element 3. For this reason, it seems that the dimension of the planar antenna element 3 is determined by the measurement frequency. However, the distribution of the electric field strength of the received radio wave (signal strength distribution) is not an absolute value, but only a relative distribution can be measured. The dimensions of the planar antenna element 3 may be determined based on a balance between securing and the adverse effect of increasing the number of signals and increasing the processing load when the number of planar antenna elements 3 increases.

以上のような測定装置Xにより,前記送信アンテナ1と前記受信アンテナ2との被測定物に対する位置決めの対応関係,即ち,前記送信アンテナ対応エリアC1と前記受信アンテナ対応エリアC2とのずれを確認することができる。以下,そのことについて説明する。
なお,以下に説明する位置ずれ確認のための測定は,全て,前記設置台4に被測定物を載置しない状態で行う。
まず,被測定物の測定の前に(或いは,後に),前記2つのアンテナ1,2の一方を前記ベクトルネットワークアナライザ7の出力端(基準信号出力端)に接続するよう,前記出力側スイッチ21,22を切り替えるとともに,前記マルチプレクサ6の出力を前記ベクトルネットワークアナライザ7の入力端(測定信号入力端)に接続するよう,前記入力側スイッチ23を切り替える。この切替は,例えば,前記計算機8を操作することにより,前記コントローラ9を介して各スイッチ21〜23に切替信号を出力することにより行う。
次に,前記マルチプレクサ6により,前記平面アンテナ素子3各々の受信信号のいずれを前記ベクトルネットワークアナライザ7に入力させるかを順次切り替えて選択し(信号切替手段の一例),その切り替え(選択)ごとに,前記ベクトルネットワークアナライザ7によって前記基準信号を出力するとともに,前記平面アンテナ素子3による受信信号を入力し,その受信信号の強度を順次測定する。前記マルチプレクサ6による前記平面アンテナ素子3の順次切り替えは,例えば,前記計算機8により,前記コントローラ9を介して前記マルチプレクサ6に対して切り替え信号を逐次出力すること等により行う。
さらに,前記計算機8により,前記マルチプレクサ6に対する切り替え信号を出力するごとに,前記ベクトルネットワークアナライザ7に対して切り替え完了信号を出力し,この信号を受けるごとに,前記ベクトルネットワークアナライザ7は,前記基準信号の出力と入力信号に基づく信号強度測定とを行う。この信号強度の測定結果は,前記計算機8に転送する。
そして,前記計算機8では,前記ベクトルネットワークアナライザ7によって測定された前記平面アンテナ素子3各々の受信信号の信号強度と,前記平面アンテナ素子3各々の配置位置とにより,複数の前記平面アンテナ素子3全体の受信面(即ち,被測定物の設置面(特定平面の一例))における受信電波の強度分布(電界強度分布)を求める(強度分布測定手段の一例)。
さらに,前記計算機8は,以上の処理を,前記2つのアンテナ1,2各々について実行した後,前記2つのアンテナ1,2各々から電波が出射された各場合における前記強度分布の両測定結果を,画像化して並べて(比較可能に)画面出力する(強度分布比較出力手段の一例)。例えば,前記平面アンテナ素子3各々の受信信号強度を対数強度に換算(デシベル換算)し,その強度に応じた色でグラフィック表示を行う。
With the measuring device X as described above, the correspondence relationship between the transmitting antenna 1 and the receiving antenna 2 relative to the object to be measured, that is, the shift between the transmitting antenna corresponding area C1 and the receiving antenna corresponding area C2 is confirmed. be able to. This will be described below.
In addition, all the measurements for confirming the positional deviation described below are performed in a state where the object to be measured is not placed on the installation table 4.
First, before (or after) the measurement of the device under test, the output-side switch 21 is connected so that one of the two antennas 1 and 2 is connected to the output end (reference signal output end) of the vector network analyzer 7. , 22 and the input side switch 23 is switched so that the output of the multiplexer 6 is connected to the input terminal (measurement signal input terminal) of the vector network analyzer 7. This switching is performed, for example, by operating the computer 8 and outputting a switching signal to each of the switches 21 to 23 via the controller 9.
Next, the multiplexer 6 sequentially switches and selects which received signal of each of the planar antenna elements 3 is input to the vector network analyzer 7 (an example of signal switching means). The vector network analyzer 7 outputs the reference signal, receives a received signal from the planar antenna element 3, and sequentially measures the intensity of the received signal. The sequential switching of the planar antenna element 3 by the multiplexer 6 is performed by, for example, sequentially outputting a switching signal to the multiplexer 6 via the controller 9 by the computer 8.
Further, every time the computer 8 outputs a switching signal to the multiplexer 6, a switching completion signal is output to the vector network analyzer 7, and each time the signal is received, the vector network analyzer 7 Perform signal output and signal strength measurement based on the input signal. The measurement result of the signal strength is transferred to the computer 8.
Then, in the computer 8, a plurality of the planar antenna elements 3 as a whole are determined based on the signal strength of the received signal of each planar antenna element 3 measured by the vector network analyzer 7 and the arrangement position of each planar antenna element 3. The received radio wave intensity distribution (electric field intensity distribution) on the receiving surface (that is, the installation surface of the object to be measured (an example of a specific plane)) is determined (an example of an intensity distribution measuring unit).
Further, the computer 8 executes the above processing for each of the two antennas 1 and 2 and then calculates both measurement results of the intensity distribution in each case where radio waves are emitted from the two antennas 1 and 2. , Image and arrange (comparable) screen output (an example of intensity distribution comparison output means). For example, the received signal intensity of each of the planar antenna elements 3 is converted into logarithmic intensity (decibel conversion), and graphic display is performed with a color corresponding to the intensity.

図2は,前記計算機8の画面に出力された,前記送信アンテナ1と前記受信アンテナ2の各々を用いた場合における前記強度分布の画像の画面出力例を表す。この例は,2.4GHz帯の電波に対して利得を最適化した前記平面アンテナ素子3を用いて,6GHz帯の電波を観測した結果を表すものである。
図2に示すように,前記送信アンテナ1と前記受信アンテナ2の各々を用いた場合について,前記平面アンテナ素子3各々の配置位置に対応した座標表示を行うとともに,被測定物の設置面の各座標における電界強度(信号強度)の分布を,色分け等により画像化したものを並べて表示する。
このように表示される前記2つのアンテナ1,2各々についての電界強度分布は,前記2つのアンテナ1,2各々に対応する電波の照射エリア(前記送信アンテナ対応エリアC1と前記受信アンテナ対応エリアC2)を表す。従って,利用者は,前記送信アンテナ1と前記受信アンテナ2の被測定物に対する位置決めの対応関係のずれを,一目瞭然に確認することが可能となる。
図2に示すような前記電界強度分布の比較出力を参照すれば,前記2つのアンテナ1,2のずれを確認できるので,そのずれがなくなるよう,前記2つのアンテナ1,2の一方又は両方の位置や方向を微調整することが容易となる。
FIG. 2 shows a screen output example of the image of the intensity distribution when each of the transmitting antenna 1 and the receiving antenna 2 is used, which is output to the screen of the computer 8. This example represents the result of observation of radio waves in the 6 GHz band using the planar antenna element 3 with the gain optimized for the radio waves in the 2.4 GHz band.
As shown in FIG. 2, when each of the transmitting antenna 1 and the receiving antenna 2 is used, coordinate display corresponding to the arrangement position of each of the planar antenna elements 3 is performed, and each of the installation surfaces of the object to be measured is displayed. The distribution of the electric field strength (signal strength) at the coordinates imaged by color coding or the like is displayed side by side.
The electric field intensity distribution for each of the two antennas 1 and 2 displayed in this way is a radio wave irradiation area corresponding to each of the two antennas 1 and 2 (the transmitting antenna corresponding area C1 and the receiving antenna corresponding area C2). ). Therefore, the user can check at a glance the deviation of the correspondence relationship between the positioning of the transmitting antenna 1 and the receiving antenna 2 with respect to the object to be measured.
Referring to the comparison output of the electric field intensity distribution as shown in FIG. 2, since the deviation between the two antennas 1 and 2 can be confirmed, one or both of the two antennas 1 and 2 are eliminated so as to eliminate the deviation. It becomes easy to finely adjust the position and direction.

ここで,前記測定装置Xは,2つのアンテナ1,2の一方(図1では,前記送信アンテナ1)の前記フレキシブル支持部10a(又は10b)は,外部からの制御信号に従って駆動する駆動機構(不図示)と,前記計算機8からアンテナ方向調節用の設定信号を受け,その設定信号に従った制御信号を前記フレキシブル支持部10aに対して出力するコントローラ9とを具備している。
そして,前記測定装置Xでは,前記計算機8により,前記2つのアンテナ1,2各々から電波が出射された各場合における前記電界強度分布(強度分布測定手段による測定結果)を比較し,電波照射エリアのずれ(相対的に信号強度が高いエリアのずれ)に対応した偏差量を前記コントローラ9に出力する。これに対し,前記コントローラ9は,前記偏差量を修正する方向に一方のアンテナ(例えば,前記送信アンテナ1)の前記フレキシブル支持部10aを駆動させる。
これにより,2つのアンテナ1,2の電波照射エリアのずれ,即ち,前記送信アンテナ対応エリアC1と前記受信アンテナ対応エリアC2とのずれが修正されるように,一方のアンテナ1の向きが自動調節される(アンテナ位置自動調節手段の一例)。
なお,前記偏差量としては,例えば,前記2つのアンテナ1,2を用いた各々の場合について,前記電界強度分布における最も信号強度(電界強度)の高いエリアの中心や受信を求め,その中心や重心のx方向及びy方向の各々におけるずれ量を用いることが考えられる。或いは,前記各々の場合について,前記電界強度分布においてその信号強度が予め設定された設定強度を超えるエリア各々を求め,両エリアの重なり合わない領域の面積が最小となるように一方のエリアをx方向及びy方向にシフトさせたときのそのシフト量を用いること等も考えられる。
Here, the measurement apparatus X includes a driving mechanism (or a driving mechanism) that drives the flexible support portion 10a (or 10b) of one of the two antennas 1 and 2 (in FIG. 1, the transmission antenna 1) according to an external control signal. And a controller 9 that receives a setting signal for adjusting the antenna direction from the computer 8 and outputs a control signal according to the setting signal to the flexible support portion 10a.
In the measuring apparatus X, the electric field intensity distribution (measurement result by the intensity distribution measuring means) in each case where radio waves are emitted from the two antennas 1 and 2 by the computer 8 is compared, and the radio wave irradiation area A deviation amount corresponding to a deviation (an area deviation having a relatively high signal intensity) is output to the controller 9. On the other hand, the controller 9 drives the flexible support portion 10a of one antenna (for example, the transmission antenna 1) in a direction to correct the deviation amount.
As a result, the orientation of one antenna 1 is automatically adjusted so that the deviation between the radio wave irradiation areas of the two antennas 1 and 2, that is, the deviation between the transmission antenna corresponding area C 1 and the reception antenna corresponding area C 2 is corrected. (An example of antenna position automatic adjustment means).
As the deviation amount, for example, for each case where the two antennas 1 and 2 are used, the center or reception of the area having the highest signal strength (electric field strength) in the electric field strength distribution is obtained. It is conceivable to use a deviation amount of the center of gravity in each of the x direction and the y direction. Alternatively, in each of the above cases, each area in which the signal intensity exceeds a preset set intensity in the electric field intensity distribution is obtained, and one area is set to x so that the area of the non-overlapping area of both areas is minimized. It is also conceivable to use the shift amount when shifted in the direction and the y direction.

また,前記測定装置Xでは,前記マルチプレクサ6により,複数の前記平面アンテナ素子3の受信信号を順次切り替えて選択し,その順次選択される信号の強度各々に基づいて前記電界強度分布を測定するので,その測定に,被測定物の測定に用いる1入力の前記ベクトルネットワークアナライザ7を兼用することが可能となり,シンプルな構成で電界強度分布測定を実現できる。
また,使用する電波がTM波(進行方向に対して磁界が横向き)とTE波(進行方向に対して電界が横向き)との両方が考えられる場合,その切り替え時に,前記平面アンテナ素子3が形成された基板(前記設置台4)を90°回転させることによって対応できる。
その他,TM波に対応する前記平面アンテナ素子と,TE波に対応する前記平面アンテナ素子との両方を基板上にパターン印刷しておき,使用する電波の種類に応じていずれのアンテナ素子を用いるかを電気的に切り替える構成としてもよい。
In the measuring apparatus X, the multiplexer 6 sequentially switches and selects the received signals of the plurality of planar antenna elements 3, and measures the electric field strength distribution based on each of the sequentially selected signal strengths. In this measurement, the one-input vector network analyzer 7 used for measuring the object to be measured can also be used, and the electric field strength distribution measurement can be realized with a simple configuration.
Further, when the radio wave to be used is considered to be both a TM wave (a magnetic field is transverse to the traveling direction) and a TE wave (an electric field is transverse to the traveling direction), the planar antenna element 3 is formed at the time of switching. This can be dealt with by rotating the substrate (the mounting table 4) 90 °.
In addition, both the planar antenna element corresponding to the TM wave and the planar antenna element corresponding to the TE wave are pattern printed on the substrate, and which antenna element is used according to the type of radio wave to be used. It is good also as a structure which switches electrically.

以上のようにしてアンテナの位置ずれ確認のための測定及び位置ずれ調整が終了すると,前記送信アンテナ1を前記ベクトルネットワークアナライザ7の出力端(基準信号出力端)に接続するよう,前記出力側スイッチ21,22を切り替えるとともに,前記受信アンテナ2を前記ベクトルネットワークアナライザ7の入力端(測定信号入力端)に接続するよう,前記入力側スイッチ23を切り替えた後,被測定物の電波吸収特性の測定を行う。
その際,前記マルチプレクサ6の操作により,全ての前記平面アンテナ素子3の給電ポートを開放する。これにより,前記平面アンテナ素子3が形成された基板の表面(前記設置台4の表面)は,電波反射特性としては,金属板とほぼ同等とみなすことができ,被測定物についての測定信号と対比する参照データを得るための参照面として用いることができる。
When the measurement and the positional deviation adjustment for checking the positional deviation of the antenna are completed as described above, the output side switch is connected to connect the transmitting antenna 1 to the output end (reference signal output end) of the vector network analyzer 7. 21 and 22 and switching the input side switch 23 so that the receiving antenna 2 is connected to the input end (measurement signal input end) of the vector network analyzer 7, and then measuring the radio wave absorption characteristics of the object to be measured. I do.
At that time, the operation of the multiplexer 6 opens all the feeding ports of the planar antenna elements 3. As a result, the surface of the substrate on which the planar antenna element 3 is formed (the surface of the installation table 4) can be regarded as substantially equivalent to a metal plate in terms of radio wave reflection characteristics, and the measurement signal for the object to be measured It can be used as a reference plane for obtaining reference data for comparison.

図1に示す構成では,前記2つのアンテナ1,2のいずれから電波を出射させるかを切り替え可能とするために前記出力側スイッチ21,22を設けたが,単に,信号線に設けられた着脱可能なコネクタを抜き差しすることによって切り替えるものであってもかまわない。
また,図1に示す構成では,アンテナの位置ずれの自動調整は,前記送信アンテナ1の向きのみを調節するものであるが,これに限るものでなく,前記受信アンテナ2のみ,或いは両方のアンテナ1,2の向きや,場合によってはその位置を調節するよう構成したものも考えられる。
また,図1に示す構成では,複数配列された前記平面アンテナ素子3による受信信号により,前記電界強度分布を測定するものであったが,1又は複数の平面アンテナ素子を,アクチュエータで駆動されるX−Yステージにより前記設置台4の表面で走査させ,その位置を変えるごとに受信信号の信号強度を測定し,その測定結果から前記設置台4表面の電界強度分布を測定する構成も考えられる。このような構成は,前記測定装置Xに比べ,装置が複雑になり,駆動部(走査部)が存在する分だけ耐久性の面で劣るが,実現は可能である。
In the configuration shown in FIG. 1, the output side switches 21 and 22 are provided in order to switch which of the two antennas 1 and 2 emits radio waves. It does not matter even if it is switched by inserting and removing possible connectors.
Further, in the configuration shown in FIG. 1, the automatic adjustment of the antenna misalignment is to adjust only the direction of the transmitting antenna 1, but is not limited to this, only the receiving antenna 2 or both antennas. A configuration in which the direction of 1 or 2 or the position thereof is adjusted in some cases is also conceivable.
Further, in the configuration shown in FIG. 1, the electric field strength distribution is measured by the received signals from the plurality of planar antenna elements 3 arranged. However, one or a plurality of planar antenna elements are driven by an actuator. A configuration is also conceivable in which the surface of the installation table 4 is scanned by an XY stage, the signal intensity of the received signal is measured each time the position is changed, and the electric field strength distribution on the surface of the installation table 4 is measured from the measurement result. . Such a configuration is more complicated than the measurement apparatus X and is inferior in terms of durability by the presence of the drive unit (scanning unit), but can be realized.

ところで,前述の実施形態では,厚みのごく薄い板状の被測定物を対象としているため,固定された前記設置台4の表面は,測定位置(前記設置台4上)に配置された被測定物の測定面を含む平面の近傍の平面であった。
しかし,被測定物の厚みが大きい場合,前記設置台4上に配置した被測定物の測定面と固定された前記設置台4の表面との位置の差異が大きくなり,アンテナの正確な位置合わせができなくなる。
このような場合,例えば,前記設置台4を昇降させる昇降機構(設置台の移動機構)を設けたものが考えられる。これにより,電波吸収特性の測定は,前記昇降機構により所定の基準位置に位置決めした前記設置台4上に被測定物を配置(載置)した状態で行い,一方,アンテナの位置合わせは,前記昇降機構により,前記設置台4を前記基準位置から被測定物の厚み分だけ上昇させた状態で,即ち,前記設置台4の表面(前記平面アンテナ素子3の配列面)を測定位置に配置された被測定物の測定面を含む平面(特定平面の一例)に位置決めした状態で行うことができる。そうすれば,被測定物の厚みが大きい場合でも,電波吸収特性の測定時の被測定物の測定面と,アンテナの位置合わせ時の前記設置台4の表面とがほぼ同一平面となり,アンテナの正確な位置合わせが可能となる。
By the way, in the above-mentioned embodiment, since the object to be measured is an extremely thin plate-like object, the surface of the fixed installation table 4 is measured at the measurement position (on the installation table 4). It was a plane near the plane including the measurement surface of the object.
However, when the thickness of the object to be measured is large, the difference in position between the measurement surface of the object to be measured arranged on the installation table 4 and the surface of the fixed installation table 4 becomes large, and the antenna is accurately aligned. Can not be.
In such a case, for example, a device provided with an elevating mechanism (moving mechanism for the installation table) for raising and lowering the installation table 4 can be considered. Thereby, the measurement of the radio wave absorption characteristic is performed in a state in which the object to be measured is placed (placed) on the installation table 4 positioned at a predetermined reference position by the lifting mechanism, while the antenna alignment is performed as described above. With the elevating mechanism, the installation table 4 is raised from the reference position by the thickness of the object to be measured, that is, the surface of the installation table 4 (arrangement surface of the planar antenna element 3) is arranged at the measurement position. Further, the measurement can be performed in a state in which the measured object is positioned on a plane including the measurement surface (an example of a specific plane). Then, even when the thickness of the object to be measured is large, the measurement surface of the object to be measured at the time of measuring the radio wave absorption characteristics and the surface of the mounting table 4 at the time of positioning the antenna are almost flush with each other. Accurate alignment is possible.

本発明は,電波吸収特性測定装置への利用が可能である。   The present invention can be used for a radio wave absorption characteristic measuring apparatus.

本発明の実施形態に係る電波吸収特性測定装置Xの概略構成を表した図。The figure showing the schematic structure of the electromagnetic wave absorption characteristic measuring apparatus X which concerns on embodiment of this invention. 電波吸収特性測定装置Xにより測定した被測定物の設置面における電波強度分布を画像出力した結果の画面例を表す図。The figure showing the example of a screen of the result of having output the radio wave intensity distribution in the installation surface of the to-be-measured object measured with the radio wave absorption characteristic measuring apparatus X as an image. 送信アンテナと受信アンテナの被測定物に対する電波照射エリアの対応関係を模式的に表した図。The figure which represented typically the correspondence of the radio wave irradiation area with respect to the to-be-measured object of a transmitting antenna and a receiving antenna. 電波吸収特性測定方法を模式的に表した図。The figure which represented the radio wave absorption characteristic measuring method typically.

符号の説明Explanation of symbols

X…電波吸収特性測定装置
C1…送信アンテナによる電波照射エリア
C2…受信アンテナによる電波照射エリア
1…送信アンテナ
2…受信アンテナ
3…平面アンテナ素子
4…被測定物の設置台
5…線路
6…マルチプレクサ
7…ベクトルネットワークアナライザ
8…計算機
9…コントローラ
10a,10b…フレキシブル支持部
21,22,23…スイッチ
X ... Radio wave absorption characteristic measuring apparatus C1 ... Radio wave irradiation area C2 by transmission antenna ... Radio wave irradiation area 1 by reception antenna 1 ... Transmission antenna 2 ... Reception antenna 3 ... Planar antenna element 4 ... Installation base 5 of measurement object ... Line 6 ... Multiplexer 7 ... Vector network analyzer 8 ... Computer 9 ... Controllers 10a, 10b ... Flexible supports 21, 22, 23 ... Switches

Claims (6)

2つのアンテナ各々を位置調節可能に支持し,一方のアンテナからの電波を被測定物に照射させ,その反射電波を他方のアンテナに入射させて得た測定信号に基づいて前記被測定物の電波吸収特性を測定する電波吸収特性測定装置であって,
前記2つのアンテナのいずれから電波を出射させるかを切り替え可能とする電波出力切替手段と,
測定位置に配置された前記被測定物の測定面を含む平面若しくはその近傍の平面である特定平面における受信電波の強度分布を測定する強度分布測定手段を具備してなることを特徴とする電波吸収特性測定装置。
Each of the two antennas is supported so that the position of the antenna can be adjusted, the object to be measured is irradiated with a radio wave from one antenna, and the radio wave of the object to be measured is obtained based on a measurement signal obtained by causing the reflected radio wave to enter the other antenna. A radio wave absorption characteristic measuring device for measuring absorption characteristics,
Radio wave output switching means for switching which of the two antennas emits radio waves;
A radio wave absorption characterized by comprising intensity distribution measuring means for measuring the intensity distribution of a received radio wave in a specific plane which is a plane including the measurement surface of the object to be measured arranged at a measurement position or a plane in the vicinity thereof Characteristic measuring device.
平面状に配列された複数の平面アンテナ素子を具備し,
前記強度分布測定手段が,前記特定平面に配置された前記平面アンテナ素子各々による受信信号に基づいて,複数の前記平面アンテナ素子の受信面における受信電波の強度分布を測定してなる請求項1に記載の電波吸収特性測定装置。
A plurality of planar antenna elements arranged in a plane,
2. The intensity distribution measuring means measures intensity distribution of received radio waves on reception surfaces of the plurality of planar antenna elements based on reception signals by the planar antenna elements arranged on the specific plane. The radio wave absorption characteristic measuring device described.
前記2つのアンテナの一方又は両方の位置及び/又は向きを調節可能とするアンテナ位置調節手段と,
前記2つのアンテナ各々から電波が出射された各々の場合における前記強度分布測定手段による両測定結果を比較可能に出力する強度分布比較出力手段と,
を具備してなる請求項1又は2に記載の電波吸収特性測定装置。
Antenna position adjusting means for adjusting the position and / or orientation of one or both of the two antennas;
Intensity distribution comparison output means for outputting both measurement results by the intensity distribution measurement means in each case where radio waves are emitted from each of the two antennas;
The radio wave absorption characteristic measuring device according to claim 1, comprising:
前記2つのアンテナ各々から電波が出射された各々の場合における前記強度分布測定手段による測定結果の比較に基づいて前記2つのアンテナの一方又は両方の位置及び/又は向きを自動調節するアンテナ位置自動調節手段を具備してなる請求項1又は2に記載の電波吸収特性測定装置。   Automatic antenna position adjustment for automatically adjusting the position and / or orientation of one or both of the two antennas based on comparison of measurement results by the intensity distribution measuring means in each case where radio waves are emitted from the two antennas. The radio wave absorption characteristic measuring apparatus according to claim 1 or 2, comprising means. 前記平面アンテナ素子各々の受信信号を順次切り替えて選択する信号切替手段を具備し,
前記強度分布測定手段が,前記信号切替手段により順次選択される信号の強度各々に基づいて複数の前記平面アンテナ素子の受信面における受信電波の強度分布を測定してなる請求項2〜4のいずれかに記載の電波吸収特性測定装置。
Comprising signal switching means for sequentially switching and selecting received signals of each of the planar antenna elements;
5. The intensity distribution measuring means measures the intensity distribution of received radio waves on the receiving surfaces of the plurality of planar antenna elements based on the respective signal intensities sequentially selected by the signal switching means. The electromagnetic wave absorption characteristic measuring device according to claim 1.
前記2つのアンテナのうちの一方のアンテナに電波を出射させる基準信号を出力するとともに他方のアンテナにより受信された測定信号を入力して信号変化を測定するベクトルネットワークアナライザを具備し,
前記強度分布測定手段が,前記信号切替手段により順次選択される信号の測定に前記ベクトルネットワークアナライザを兼用してなる請求項5に記載の電波吸収特性測定装置。
A vector network analyzer for outputting a reference signal for emitting a radio wave to one of the two antennas and measuring a signal change by inputting a measurement signal received by the other antenna;
6. The radio wave absorption characteristic measuring apparatus according to claim 5, wherein the intensity distribution measuring means also serves as the vector network analyzer for measuring signals sequentially selected by the signal switching means.
JP2004215307A 2004-07-23 2004-07-23 Instrument for measuring electric wave absorption characteristic Withdrawn JP2006038503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004215307A JP2006038503A (en) 2004-07-23 2004-07-23 Instrument for measuring electric wave absorption characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004215307A JP2006038503A (en) 2004-07-23 2004-07-23 Instrument for measuring electric wave absorption characteristic

Publications (1)

Publication Number Publication Date
JP2006038503A true JP2006038503A (en) 2006-02-09

Family

ID=35903665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004215307A Withdrawn JP2006038503A (en) 2004-07-23 2004-07-23 Instrument for measuring electric wave absorption characteristic

Country Status (1)

Country Link
JP (1) JP2006038503A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009002788A (en) * 2007-06-21 2009-01-08 Panasonic Corp Electromagnetic wave measuring method and electromagnetic wave measuring device
CN112946377A (en) * 2019-12-10 2021-06-11 深圳市通用测试系统有限公司 Vehicle wireless performance test darkroom

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009002788A (en) * 2007-06-21 2009-01-08 Panasonic Corp Electromagnetic wave measuring method and electromagnetic wave measuring device
US7924232B2 (en) 2007-06-21 2011-04-12 Panasonic Corporation Electromagnetic wave measuring method and electromagnetic wave measuring apparatus
CN112946377A (en) * 2019-12-10 2021-06-11 深圳市通用测试系统有限公司 Vehicle wireless performance test darkroom
CN112946377B (en) * 2019-12-10 2023-01-13 深圳市通用测试系统有限公司 Vehicle wireless performance test darkroom

Similar Documents

Publication Publication Date Title
US7672640B2 (en) Multichannel absorberless near field measurement system
CN108966264B (en) System and method for performing over-the-air testing for large-scale multiple-input multiple-output wireless systems
CN108206717B (en) Test system and test method
US8502546B2 (en) Multichannel absorberless near field measurement system
US10536226B1 (en) System and method for over-the-air (OTA) testing to detect faulty elements in an active array antenna of an extremely high frequency (EHF) wireless communication device
KR101360280B1 (en) Multichannel absorberless near field measurement system
TWI559698B (en) Near-field mimo wireless test systems, structures, and processes
CN107390035B (en) Antenna measurement system and antenna measurement method
US20110032253A1 (en) Antenna Near-Field Probe Station Scanner
JP2009516949A (en) Frequency scanning antenna
JP2018179961A (en) Method and apparatus for radar accuracy measurement
CN110007157B (en) Antenna measurement system and antenna measurement method
KR101065479B1 (en) System and method for antenna alignment
US20210356511A1 (en) Integrated circuit testing for integrated circuits with antennas
US20150219704A1 (en) Electromagnetic Wave Visualization Device
CN115047256A (en) Array antenna multichannel parallel test device, test method and calibration method
TWI422838B (en) Multichannel absorberless near field measurement system
CN114124250B (en) Radio frequency consistency test system of millimeter wave terminal equipment
KR101649514B1 (en) Electromagnetic compatibility testing apparatus
US9880210B2 (en) Scanner system and method for high-resolution spatial scanning of an electromagnetic field radiated by an electronic device under test
US11802904B2 (en) Electronic component testing apparatus, sockets, and replacement parts for electronic component testing apparatus
JP3491038B2 (en) Apparatus and method for measuring antenna characteristics using near-field measurement
JP2006038503A (en) Instrument for measuring electric wave absorption characteristic
CN216350958U (en) Millimeter wave antenna test rotary table and system
JP2009276092A (en) Measuring equipment of electromagnetic field

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061025