JP2006037759A - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
JP2006037759A
JP2006037759A JP2004215341A JP2004215341A JP2006037759A JP 2006037759 A JP2006037759 A JP 2006037759A JP 2004215341 A JP2004215341 A JP 2004215341A JP 2004215341 A JP2004215341 A JP 2004215341A JP 2006037759 A JP2006037759 A JP 2006037759A
Authority
JP
Japan
Prior art keywords
compression
piston
diameter
pressure
compression chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004215341A
Other languages
Japanese (ja)
Inventor
Hiyoshi Tatsuno
日吉 龍野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tatsuno Corp
Original Assignee
Tatsuno Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tatsuno Corp filed Critical Tatsuno Corp
Priority to JP2004215341A priority Critical patent/JP2006037759A/en
Publication of JP2006037759A publication Critical patent/JP2006037759A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compressor (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compressor having relatively simple structure, for filling fuel gas to a vehicle with high filling efficiency. <P>SOLUTION: The compressor comprises: a plurality of compression chambers constituted of cylinders 11, 21 and pistons 12, 22 and having diameters different from each other; a drive cylinder 1 having operating levers 3, 4 which are connected with the piston 2. The large-diameter compression chamber is connected in series with the small-diameter compression chamber, and cooling means 33 to 35 are connected with an exhaust port of at least one of the compression chambers. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、車両に燃料ガスを高圧で充填する施設に適した圧縮装置に関する。   The present invention relates to a compression apparatus suitable for a facility for filling a vehicle with fuel gas at a high pressure.

近年、環境問題、特に二酸化炭素の排出問題に対応すべく、燃料として水素や天然ガスを車両のエネルギー源に使用することが推し進められている。
このような水素や天然ガスは、ナフサやアルコールの改質操作による現地での製造や、またローリによる輸送により得られるものの、自動車に充填するに適した高圧状態で貯蔵するには、タンクを耐圧構造にする必要上、コストが上昇したり、また安全面からも適当な方法ということはできない。
このため、圧縮装置を設備し、比較的低圧のガスを圧縮しながら充填することも考えられるが、断熱圧縮によりガスの温度が高温に上昇し、車両の燃料タンクへの充填効率が低下するという問題がある。
In recent years, in order to cope with environmental problems, particularly carbon dioxide emission problems, it has been promoted to use hydrogen or natural gas as a fuel as an energy source for vehicles.
Such hydrogen and natural gas, which can be obtained locally by naphtha and alcohol reforming operations and transported by lorries, are stored in high-pressure conditions suitable for filling automobiles. Due to the necessity of the structure, the cost increases and it is not possible to be an appropriate method from the viewpoint of safety.
For this reason, it is conceivable to install a compression device and compress a relatively low-pressure gas while compressing it, but the adiabatic compression increases the temperature of the gas to a high temperature, which reduces the charging efficiency of the fuel tank of the vehicle. There's a problem.

本発明はこのような問題に鑑みてなされたものであって、その目的とするところは構造が比較的簡単で、かつ高い充填率で車両に充填できる圧縮装置を提供することである。   The present invention has been made in view of such problems, and an object of the present invention is to provide a compression device that has a relatively simple structure and can fill a vehicle with a high filling rate.

また、本発明の他の目的は、高耐圧圧縮装置を必要とすることなく、圧縮装置の規格の2倍の圧力まで圧縮することができる圧縮装置を提供することである。   Another object of the present invention is to provide a compression device that can compress the pressure up to twice the standard of the compression device without requiring a high pressure resistant compression device.

このような課題を達成するために請求項1の発明は、シリンダとピストンとで形成されたそれぞれ径が異なる複数の圧縮室と、ピストンに接続された作動杆を有する駆動シリンダとからなり、大径の前記圧縮室と小径の圧縮室とが直列に接続され、少なくとも前記圧縮室の1つの排気口に冷却手段が接続されて構成されている。   In order to achieve such a subject, the invention of claim 1 is composed of a plurality of compression chambers formed of a cylinder and a piston, each having a different diameter, and a drive cylinder having an operating rod connected to the piston. The compression chamber having a diameter and the compression chamber having a small diameter are connected in series, and a cooling unit is connected to at least one exhaust port of the compression chamber.

請求項4の発明によれば、前記大径の圧縮室が同一のシリンダにピストンにより区画された2つ領域により形成されて並列に接続され、また前記小径の圧縮室が同一のシリンダにピストンにより区画された2つ領域により形成されて逆止弁を介して直列に接続され、かつ一方の領域が前記大径の圧縮室に接続されている。   According to the invention of claim 4, the large-diameter compression chamber is formed by two regions partitioned by a piston on the same cylinder and connected in parallel, and the small-diameter compression chamber is connected to the same cylinder by a piston. It is formed by two partitioned regions and is connected in series via a check valve, and one region is connected to the large-diameter compression chamber.

請求項5の発明は、第1の圧縮装置の排気口と第2の圧縮装置の流入口とを連通させるとともに、前記第2の圧縮装置が高圧ガスの供給されている耐圧容器に収容され、前記圧縮装置のいずれかの排気口に冷却手段が接続されて構成されている。   The invention of claim 5 communicates the exhaust port of the first compression device and the inflow port of the second compression device, and the second compression device is accommodated in a pressure-resistant container supplied with high-pressure gas, A cooling means is connected to any exhaust port of the compression device.

請求項6の発明によれば、前記高圧ガスが不活性ガスである。   According to the invention of claim 6, the high-pressure gas is an inert gas.

請求項7の発明によれば、前記第1の圧縮装置の排気口が耐圧容器に接続され、また前記第2の圧縮装置の流入口が前記耐圧容器に連通されていて、前記高圧ガスが前記第1の圧縮装置により圧縮されたガスである。   According to invention of Claim 7, the exhaust port of the said 1st compression apparatus is connected to the pressure-resistant container, the inflow port of the said 2nd compression apparatus is connected to the said pressure-resistant container, Gas compressed by the first compression device.

請求項1の発明によれば、単一の駆動シリンダにより少なくとも2段で段階的に圧縮が可能となり、また冷却手段により充填ガスを確実に冷却した状態で車両などに供給でき、充填率を高めることができる。   According to the first aspect of the present invention, it is possible to compress in stages in at least two stages by a single drive cylinder, and the charging gas can be supplied to a vehicle or the like in a state of being reliably cooled by the cooling means, thereby increasing the filling rate. be able to.

請求項4の発明によれば、外部から供給された被圧縮ガスを大量に所定の圧力に圧縮して高圧圧縮用のシリンダに供給でき、また高圧圧縮用のシリンダでは、2段に圧縮でき、合計3段での圧縮が可能となる。   According to the invention of claim 4, a large amount of compressed gas supplied from the outside can be compressed to a predetermined pressure and supplied to a cylinder for high pressure compression, and can be compressed in two stages in a cylinder for high pressure compression. A total of three stages of compression is possible.

請求項5、6の発明によれば、ほぼ同一の圧縮装置を、2台使用して、2倍の圧力に高めることができ、高耐圧用の圧縮装置を不要として、コストの低減を図ることができる。   According to the fifth and sixth aspects of the present invention, the pressure can be increased to double the pressure by using two substantially identical compression devices, and a high pressure resistant compression device is not required, thereby reducing the cost. Can do.

請求項7の発明によれば、高圧不活性ガスを不要としてランニングコストを低減することができる。   According to the seventh aspect of the present invention, the running cost can be reduced by eliminating the need for a high-pressure inert gas.

図1は、本発明の圧縮装置を使用したガス充填設備の一実施例を示すものであって、駆動シリンダ1に装填された駆動ピストン2の両側に作動杆3、4が設けられ、それぞれの端部に大径の圧縮シリンダ11とこれよりも小径のシリンダ21に装填された圧縮ピストン12、22が接続されている。   FIG. 1 shows an embodiment of a gas filling equipment using a compression apparatus of the present invention, and operating rods 3 and 4 are provided on both sides of a drive piston 2 loaded in a drive cylinder 1, respectively. A large-diameter compression cylinder 11 and compression pistons 12 and 22 loaded in a smaller-diameter cylinder 21 are connected to the ends.

駆動シリンダ1のピストン2を境とする2つ領域5、6にはそれぞれ流入口7、8、流出口9,10が形成され、流入口7、8には切換弁V1、V2を介して駆動ポンプ31が、また流出口9、10には切換弁V3、V4を介して作動流体貯蔵槽32が接続されている。   Inflow areas 7 and 8 and outlets 9 and 10 are formed in the two regions 5 and 6 with the piston 2 of the drive cylinder 1 as a boundary, and the inlets 7 and 8 are driven via switching valves V1 and V2. A working fluid storage tank 32 is connected to the pump 31 and the outlets 9 and 10 via switching valves V3 and V4.

低圧圧縮用として機能する大径のピストン12と共同するシリンダ11には、ピストン12により区画されるそれぞれの領域(圧縮室)は吸引用の逆止弁V5、V6、及び排出用の逆止弁V7、V8を介して並列に接続された上で、前者は図示しないガス供給手段に、また後者は第1の冷却手段33を介して小径のシリンダの一方の領域(圧縮室)23の流入口に吸引用の逆止弁V9を介して接続されている。   In the cylinder 11 that cooperates with the large-diameter piston 12 that functions as a low-pressure compressor, each region (compression chamber) defined by the piston 12 includes check valves V5 and V6 for suction, and a check valve for discharge. After being connected in parallel via V7 and V8, the former is connected to a gas supply means (not shown), and the latter is connected to the inlet of one region (compression chamber) 23 of a small diameter cylinder via a first cooling means 33. Is connected through a check valve V9 for suction.

高圧圧縮用として機能する小径のピストン22と共同するシリンダ21には、ピストン22により区画される一方の領域(圧縮室)23には吸気用の逆止弁V9を介して第1の冷却手段33の排気口と排気用の逆止弁V10を介して第2の冷却手段34が接続されている。   In the cylinder 21 cooperating with the small-diameter piston 22 functioning for high-pressure compression, one region (compression chamber) 23 partitioned by the piston 22 is connected to the first cooling means 33 via an intake check valve V9. The 2nd cooling means 34 is connected via the exhaust port of this, and the check valve V10 for exhaust.

また、ピストン22により区画される他方の領域(圧縮室)24には吸気用の逆止弁V11を介して第2の冷却手段34の排気口と、排気用の逆止弁V12を介して第3の冷却手段35が接続され、第3の冷却手段35の排気口には圧力調整弁36を介してディスペンサ37が接続されている。   In addition, the other region (compression chamber) 24 partitioned by the piston 22 is connected to an exhaust port of the second cooling means 34 via an intake check valve V11 and an exhaust check valve V12. The cooling unit 35 is connected to a third cooling unit 35, and a dispenser 37 is connected to the exhaust port of the third cooling unit 35 via a pressure regulating valve 36.

この実施例において、駆動シリンダ1の切換弁V1、V4を閉弁し、また切換弁V2、V3を開弁して駆動ポンプ31から作動流体を領域6に圧入すると、ピストン2が一方向(図中、矢印Aの方向)に移動する。これにより外部から供給された2気圧程度のガスが低圧圧縮用のピストン12により圧縮されて12気圧程度になって第1の冷却手段33に流入し、第1の冷却手段33により圧縮で発生した熱が除去されて吸気用の逆止弁V9を経由して高圧圧縮用のシリンダ21の領域23に流れ込む。   In this embodiment, when the switching valves V1 and V4 of the drive cylinder 1 are closed and the switching valves V2 and V3 are opened and the working fluid is press-fitted into the region 6 from the drive pump 31, the piston 2 moves in one direction (see FIG. In the direction of arrow A). As a result, the gas of about 2 atm supplied from the outside is compressed by the low pressure compression piston 12 to become about 12 atm, flows into the first cooling means 33, and is generated by the compression by the first cooling means 33. The heat is removed and flows into the region 23 of the high pressure compression cylinder 21 via the intake check valve V9.

駆動シリンダ1のピストン2が死点に到達した時点で、切換弁V2、V3を閉弁し、また切換弁V1、V4を開弁すると、ピストン2が他方の方向(図中、矢印Bの方向)に反転、移動して既に12気圧程度に圧縮、加圧されたガスが70気圧程度に圧縮されて第2の冷却手段34を経由して他方の領域(圧縮室)24に流れ込む。   When the piston 2 of the drive cylinder 1 reaches the dead point, the switching valves V2 and V3 are closed and the switching valves V1 and V4 are opened, so that the piston 2 moves in the other direction (the direction of arrow B in the figure). The gas that has already been compressed and pressurized to about 12 atm is compressed to about 70 atm and flows into the other region (compression chamber) 24 via the second cooling means 34.

なお、外部から供給された2気圧程度のガスが低圧圧縮用のピストン12により圧縮されて12気圧程度になって第1の冷却手段33に流入するものの、ピストン2が他方向(矢印B方向)に移動している状態では、領域(圧縮室)23の圧力が上昇しているため、逆止弁V9に阻止されて領域に流入するのを阻止される。   Although the gas of about 2 atm supplied from the outside is compressed by the low pressure compression piston 12 to become about 12 atm and flows into the first cooling means 33, the piston 2 moves in the other direction (arrow B direction). Since the pressure in the region (compression chamber) 23 is rising, the check valve V9 is prevented from flowing into the region.

ついで、再び駆動シリンダ1の切換弁V1、V4を閉弁し、また切換弁V2、V3を開弁して駆動ポンプ31から作動流体が領域6に流入すると、ピストン2が一方向(図中、矢印Aの方向)に移動し、外部から供給された2気圧程度のガスが低圧圧縮用のピストン12により圧縮されて12気圧程度になって第1の冷却手段33に流入する。この時点では高圧圧縮用のピストン22が領域(圧縮室)23を膨張させる方向に移動しているため、逆止弁V9が開弁し、直前の工程で領域(圧縮室)13で圧縮されたガスとともに領域(圧縮室)23に流れ込む。   Next, when the switching valves V1 and V4 of the driving cylinder 1 are closed again and the switching valves V2 and V3 are opened and the working fluid flows into the region 6 from the driving pump 31, the piston 2 moves in one direction (in the drawing, The gas of about 2 atm supplied from the outside is compressed by the low pressure compression piston 12 to about 12 atm and flows into the first cooling means 33. At this time, since the high-pressure compression piston 22 is moving in the direction of expanding the region (compression chamber) 23, the check valve V9 is opened and compressed in the region (compression chamber) 13 in the immediately preceding process. It flows into the region (compression chamber) 23 together with the gas.

同時に高圧圧縮用のシリンダ21の領域(圧縮室)24がピストン22により圧縮されるため、ここに流入していた72気圧のガスが400気圧程度に圧縮されて第3の冷却手段35で熱を除去されてからディスペンサ37に流れ込む。   At the same time, the region (compression chamber) 24 of the cylinder 21 for high pressure compression is compressed by the piston 22, so that the 72 atm gas flowing in here is compressed to about 400 atm and heated by the third cooling means 35. After being removed, it flows into the dispenser 37.

この実施例によれば駆動シリンダにより大径、及び小径の2基のシリンダ、ピストンを駆動するとともに、大径のものの2つの領域(圧縮室)を並列に接続して低圧圧縮用に、また小径のもの2つの領域を直列に接続して高圧圧縮用に使用するため、一台の駆動シリンダによりガスを効率的に3段圧縮でき、また各段の排気口に冷却手段を接続して熱を除去するため、充填後の圧力低下を可及的に防止でき高い充填率で自動車に供給することができる。   According to this embodiment, two cylinders and pistons having a large diameter and a small diameter are driven by a drive cylinder, and two regions (compression chambers) of the large diameter are connected in parallel to be used for low-pressure compression, and also for a small diameter. Since two regions are connected in series and used for high-pressure compression, gas can be efficiently compressed in three stages with a single drive cylinder, and cooling means are connected to the exhaust ports of each stage to generate heat. Since it removes, the pressure drop after filling can be prevented as much as possible, and the vehicle can be supplied at a high filling rate.

なお、上述の実施例においては駆動ピストン2が他方向(図中、矢印Bの方向)に移動する際、逆止弁V8と逆止弁V9とを接続する流路や冷却手段33をバッファタンクとして機能させて、シリンダ21の領域23での圧縮時における低圧圧縮用のシリンダ11から排気されるガスを一時貯蔵するようにしているが、逆止弁V8と逆止弁V9とを接続する流路にバッファタンクを接続するのが望ましい。   In the above-described embodiment, when the drive piston 2 moves in the other direction (the direction of arrow B in the figure), the flow path connecting the check valve V8 and the check valve V9 and the cooling means 33 are used as the buffer tank. The gas exhausted from the low pressure compression cylinder 11 during compression in the region 23 of the cylinder 21 is temporarily stored, but the flow connecting the check valve V8 and the check valve V9 is It is desirable to connect a buffer tank to the road.

なお、さらに高圧のガス、例えば800気圧程度のガスが必要な場合には、上述の圧縮装置40をさらに一台直列に接続してもよい。この場合、図2に示したように後段側の圧縮装置40’を耐圧容器41に収容するとともに、この容器41を高圧不活性ガス源に接続して圧縮装置40’の周囲を400気圧程度まで昇圧することにより、同一の圧縮装置を高圧圧縮用に使用することができ、コストの低減を図ることが可能となる。   In addition, when a higher pressure gas, for example, a gas having a pressure of about 800 atm, is required, the above-described compression device 40 may be further connected in series. In this case, as shown in FIG. 2, the latter-stage compression device 40 ′ is accommodated in the pressure-resistant container 41, and the container 41 is connected to a high-pressure inert gas source to surround the compression device 40 ′ up to about 400 atmospheres. By increasing the pressure, the same compression apparatus can be used for high-pressure compression, and the cost can be reduced.

なお、上述の実施例では、耐圧容器41に高圧不活性ガスを注入するようにしているが、図3に示したように前段の圧縮装置40の排気口42を耐圧容器に連通させ、耐圧容器41のガスをここに収容されている圧縮装置40’によりさらに圧縮すると、高価な不活性ガス、不活性ガス加圧手段が不要となる。   In the above-described embodiment, the high-pressure inert gas is injected into the pressure vessel 41. However, as shown in FIG. 3, the exhaust port 42 of the preceding compressor 40 is communicated with the pressure vessel, and the pressure vessel If the 41 gas is further compressed by the compression device 40 'accommodated therein, expensive inert gas and inert gas pressurizing means are not required.

なお、第2、第3の実施例においては圧縮装置としてピストン式の圧縮装置を使用したが他の形式の圧縮装置を使用しても同様の作用を奏することは明らかである。また、断熱圧縮による熱を除去するための冷却手段は、好ましくは後段の排気口に接続することが望ましい。   In the second and third embodiments, the piston type compression device is used as the compression device. However, it is obvious that the same effect can be obtained even if another type of compression device is used. The cooling means for removing heat due to adiabatic compression is preferably connected to the exhaust port at the subsequent stage.

さらに上述の実施例においては、作動ピストン2の両側にそれぞれ低圧圧縮用、及び高圧圧縮用のピストン12、22を配置して、圧縮用のシリンダ11、12の封止構造の簡素化と、駆動力の均等化を図っているが、一方の側に直列に配置しても同様の作用を奏することは明らかである。   Further, in the above-described embodiment, the low-pressure compression piston and the high-pressure compression piston 12 and 22 are arranged on both sides of the working piston 2, respectively, and the sealing structure of the compression cylinders 11 and 12 is simplified and driven. Although the force is equalized, it is clear that the same effect can be obtained even if they are arranged in series on one side.

本発明の圧縮装置を使用したガス充填設備の一実施例を示す図である。It is a figure which shows one Example of the gas filling equipment which uses the compression apparatus of this invention. 本発明の圧縮装置の高圧圧縮用として使用する場合の実施例を示す図である。It is a figure which shows the Example in the case of using it for high pressure compression of the compression apparatus of this invention. 本発明の圧縮装置の高圧圧縮用として使用する場合の第2の実施例を示す図である。It is a figure which shows the 2nd Example in the case of using it for high pressure compression of the compression apparatus of this invention.

符号の説明Explanation of symbols

1 駆動シリンダ 2 駆動ピストン 3、4 作動杆 11 大径の圧縮シリンダ 12 ピストン 21 小径のシリンダ 22 ピストン 22,23 高圧用の圧縮室 V1〜V4 切換弁 V5〜V12 逆止弁 33〜35 冷却手段 36 圧力調整弁 37 ディスペンサ 40、40’ 圧縮装置 41 耐圧容器     DESCRIPTION OF SYMBOLS 1 Drive cylinder 2 Drive piston 3, 4 Actuation rod 11 Large diameter compression cylinder 12 Piston 21 Small diameter cylinder 22 Piston 22, 23 Compression chamber for high pressure V1-V4 Switching valve V5-V12 Check valve 33-35 Cooling means 36 Pressure regulating valve 37 Dispenser 40, 40 'Compressor 41 Pressure vessel

Claims (8)

シリンダとピストンとで形成されたそれぞれ径が異なる複数の圧縮室と、ピストンに接続された作動杆を有する駆動シリンダとからなり、大径の前記圧縮室と小径の圧縮室とが直列に接続され、少なくとも前記圧縮室の1つの排気口に冷却手段が接続されている圧縮装置。   It consists of a plurality of compression chambers formed of a cylinder and a piston, each having a different diameter, and a drive cylinder having an operating rod connected to the piston. The large-diameter compression chamber and the small-diameter compression chamber are connected in series. A compression device in which a cooling means is connected to at least one exhaust port of the compression chamber. 前記駆動シリンダが油圧により駆動される請求項1に記載の圧縮装置。   The compression apparatus according to claim 1, wherein the drive cylinder is driven by hydraulic pressure. 前記大径の圧縮室と小径の圧縮室とのピストンがそれぞれ前記作動杆の一端と他端とに接続されている請求項1に記載の圧縮装置。   The compression apparatus according to claim 1, wherein pistons of the large-diameter compression chamber and the small-diameter compression chamber are respectively connected to one end and the other end of the operating rod. 前記大径の圧縮室が同一のシリンダにピストンにより区画された2つ領域により形成されて並列に接続され、また前記小径の圧縮室が同一のシリンダにピストンにより区画された2つ領域により形成されて逆止弁を介して直列に接続され、かつ一方の領域が前記大径の圧縮室に接続されている請求項1に記載の圧縮装置。   The large-diameter compression chamber is formed by two regions partitioned by a piston in the same cylinder and connected in parallel, and the small-diameter compression chamber is formed by two regions partitioned by a piston in the same cylinder. The compressor according to claim 1, wherein the compressor is connected in series via a check valve, and one region is connected to the large-diameter compression chamber. 第1の圧縮装置の排気口と第2の圧縮装置の流入口とを連通させるとともに、前記第2の圧縮装置が高圧ガスの供給されている耐圧容器に収容され、前記圧縮装置のいずれかの排気口に冷却手段が接続されている圧縮装置。   The exhaust port of the first compression device communicates with the inlet of the second compression device, and the second compression device is accommodated in a pressure-resistant container to which high-pressure gas is supplied. A compression device in which cooling means is connected to the exhaust port. 前記高圧ガスが不活性ガスである請求項5に記載の圧縮装置。   The compression apparatus according to claim 5, wherein the high-pressure gas is an inert gas. 前記第1の圧縮装置の排気口が耐圧容器に接続され、また前記第2の圧縮装置の流入口が前記耐圧容器に連通されていて、前記高圧ガスが前記第1の圧縮装置により圧縮されたガスである請求項5に記載の圧縮装置。   The exhaust port of the first compression device is connected to the pressure vessel, and the inlet of the second compression device is connected to the pressure vessel, so that the high pressure gas is compressed by the first compression device. The compression apparatus according to claim 5, which is a gas. 前記第1、第2の圧縮装置が、シリンダとピストンとで形成されたそれぞれ径が異なる複数の圧縮室と、ピストンに接続された作動杆を有する駆動シリンダとからなり、大径の前記圧縮室と小径の圧縮室とが直列に接続されて構成されている請求項5乃至請求項7のいずれかに記載の圧縮装置。   The first and second compression devices include a plurality of compression chambers formed of a cylinder and a piston, each having a different diameter, and a drive cylinder having an operating rod connected to the piston, and the compression chamber having a large diameter. The compression device according to any one of claims 5 to 7, wherein the compression chamber and the small-diameter compression chamber are connected in series.
JP2004215341A 2004-07-23 2004-07-23 Compressor Pending JP2006037759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004215341A JP2006037759A (en) 2004-07-23 2004-07-23 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004215341A JP2006037759A (en) 2004-07-23 2004-07-23 Compressor

Publications (1)

Publication Number Publication Date
JP2006037759A true JP2006037759A (en) 2006-02-09

Family

ID=35903017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004215341A Pending JP2006037759A (en) 2004-07-23 2004-07-23 Compressor

Country Status (1)

Country Link
JP (1) JP2006037759A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101668672B1 (en) * 2016-08-01 2016-10-24 최상배 Liquid pressed gas compressor having pressure-volume converting device and torque converting device
JP2018091488A (en) * 2008-03-10 2018-06-14 ブルクハルト コンプレッション アーゲー Supply device and method for natural gas fuel
CN112539154A (en) * 2020-12-04 2021-03-23 中石化石油机械股份有限公司研究院 Carry on hydrogen compressor of plunger type pressurized cylinder

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5368409A (en) * 1976-11-30 1978-06-17 Yoshihiro Matsumoto Multistage compressor
JPS5813181A (en) * 1981-07-17 1983-01-25 Daikin Ind Ltd Refrigerating machine
JPS61164480U (en) * 1986-03-19 1986-10-13
JPH039088A (en) * 1989-06-06 1991-01-16 Riken Corp Three-stage compressor
JPH0537523U (en) * 1991-10-30 1993-05-21 カルソニツク株式会社 Vehicle air conditioner
JPH06207585A (en) * 1993-01-12 1994-07-26 Nippon Steel Corp Booster

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5368409A (en) * 1976-11-30 1978-06-17 Yoshihiro Matsumoto Multistage compressor
JPS5813181A (en) * 1981-07-17 1983-01-25 Daikin Ind Ltd Refrigerating machine
JPS61164480U (en) * 1986-03-19 1986-10-13
JPH039088A (en) * 1989-06-06 1991-01-16 Riken Corp Three-stage compressor
JPH0537523U (en) * 1991-10-30 1993-05-21 カルソニツク株式会社 Vehicle air conditioner
JPH06207585A (en) * 1993-01-12 1994-07-26 Nippon Steel Corp Booster

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018091488A (en) * 2008-03-10 2018-06-14 ブルクハルト コンプレッション アーゲー Supply device and method for natural gas fuel
JP2020122579A (en) * 2008-03-10 2020-08-13 ブルクハルト コンプレッション アーゲー Supply device and method for natural gas fuel
KR101668672B1 (en) * 2016-08-01 2016-10-24 최상배 Liquid pressed gas compressor having pressure-volume converting device and torque converting device
CN112539154A (en) * 2020-12-04 2021-03-23 中石化石油机械股份有限公司研究院 Carry on hydrogen compressor of plunger type pressurized cylinder

Similar Documents

Publication Publication Date Title
EP1839975B1 (en) Hydrogen compressor system
JP4562335B2 (en) Gas flow compression method and compressor module
CN114144584B (en) Electric liquid driven piston type hydrogen compressor and compression method
US8978715B2 (en) Method for filling a tank with pressurized gas
US9541236B2 (en) Multi-stage home refueling appliance and method for supplying compressed natural gas
CN102933839B (en) Allow the relatively flat hydraulic transmission equipment geostationary coupled
US6561774B2 (en) Dual diaphragm pump
CN105004616B (en) The many performance test apparatus of low-temperature (low temperature) vessel and test method
CN103492785A (en) Hydrogen station
US6792981B1 (en) Method and apparatus for filling a pressure vessel having application to vehicle fueling
CN210218052U (en) Electric liquid driven piston type hydrogen compressor
JP7113035B2 (en) System for producing and dispensing pressurized hydrogen
RU2018128027A (en) Gas liquefaction system
JP2006037759A (en) Compressor
US11788521B2 (en) Centrifugal compressor with piston intensifier
CN102322413B (en) Hydraulic oil piston type natural gas sub-station compressor
JP2017528644A5 (en)
JP2013170580A (en) Method for compressing cryogenic medium
CN213746113U (en) Hydrogen supply system for long tube trailer
EP2746641B1 (en) Compression and cooling of a gas
CN106640847B (en) Accumulator fatigue experimental device and test method
CN214304656U (en) Pass jack durability test hydraulic system and test device
US8360743B2 (en) Rotary pressure production device
JP2009186012A (en) Hydrogen fuel supply method
CN204534110U (en) Hydraulic type air entraining substation

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080509

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080924