JP2006037252A - Method for producing fiber structure for resin reinforcement - Google Patents

Method for producing fiber structure for resin reinforcement Download PDF

Info

Publication number
JP2006037252A
JP2006037252A JP2004215497A JP2004215497A JP2006037252A JP 2006037252 A JP2006037252 A JP 2006037252A JP 2004215497 A JP2004215497 A JP 2004215497A JP 2004215497 A JP2004215497 A JP 2004215497A JP 2006037252 A JP2006037252 A JP 2006037252A
Authority
JP
Japan
Prior art keywords
fiber
resin
fiber structure
aromatic polyamide
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004215497A
Other languages
Japanese (ja)
Inventor
Ryushi Fujimori
竜士 藤森
Mitsugi Koga
貢 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Techno Products Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Techno Products Ltd filed Critical Teijin Techno Products Ltd
Priority to JP2004215497A priority Critical patent/JP2006037252A/en
Publication of JP2006037252A publication Critical patent/JP2006037252A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a fiber structure, with which adhesiveness to a matrix resin, especially low water absorption properties of a composite material in the case of resin reinforcement is remarkably improved without impairing properties that an aromatic polyamide fiber essentially has and to obtain a fiber-reinforced composite material. <P>SOLUTION: The fiber structure composed of an aromatic polyamide fiber is coated with a treatment liquid that contains 0.01-10 wt.% of an adhesive component and mainly comprises a fiber-swelling organic solvent and then heat-treated at a temperature of the boiling point of the organic solvent minus ≥50°C. Preferably the aromatic polyamide fiber is a para-type aromatic polyamide fiber, the adhesive component is a silane coupling agent or a thermosetting resin and the fiber-swelling organic solvent comprises one or more kinds selected from the group consisting of N-methyl-2-pyrrolidone, dimethyl sulfoxide, N,N-dimethylformamide, N,N-dimethylacetamide and sulfolane. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、複合材料として用いた時に、繊維が本来持つ特性を損なうことなく樹脂に対する接着性を格段に向上させる繊維構造体の製造方法、及びそれを用いてなる繊維強化複合材料に関する。   The present invention relates to a method for producing a fiber structure that significantly improves the adhesion to a resin without impairing the inherent properties of the fiber when used as a composite material, and a fiber-reinforced composite material using the same.

芳香族ポリアミド繊維は、高強度、高弾性率及び優れた耐熱性を有する有機高分子材料であることから、この繊維を補強材として用いて、マトリックスを熱硬化性及び熱可塑性樹脂とした繊維強化複合材料が自動車、建築、土木、電気など種々の分野で使用され、その他の分野でもその活用が望まれている。   Aromatic polyamide fiber is an organic polymer material with high strength, high elastic modulus, and excellent heat resistance. Therefore, this fiber is used as a reinforcing material, and fiber reinforcement using a matrix as thermosetting and thermoplastic resin. Composite materials are used in various fields such as automobiles, architecture, civil engineering, and electricity, and their utilization is desired in other fields.

しかしながら、芳香族ポリアミド繊維は、他の汎用樹脂用の補強用繊維であるガラス繊維や炭素繊維に比べて、樹脂との親和性に劣ることが知られており、該繊維で補強した複合材料の開発には困難が伴うのが現状である。   However, aromatic polyamide fibers are known to have a lower affinity with resins than glass fibers and carbon fibers, which are reinforcing fibers for other general-purpose resins. The current situation is that development is difficult.

例えばマトリックスとの親和性を向上させるために、化学処理やプラズマ処理による化学的表面処理が試みられてきたが、これらの処理では過度の反応による繊維の劣化が見られるといった問題があった。たとえ芳香族ポリアミド繊維の表面のみをエッチングする方法としてプラズマ放電(例えば特許文献1)やエキシマレーザー(例えば特許文献2)による表面処理加工法を採用した場合であっても、表面形態を変化させる際に表面の結晶性の低下を招き、特に表面近傍での著しい結晶性の低下とともに繊維のフィブリル化現象が顕著になるという問題があった。このようなフィブリル化が起こった場合、繊維破損を招くために界面の接着性こそ向上するものの、繊維脆化により複合材料特性の低下につながることが知られている。   For example, chemical surface treatment by chemical treatment or plasma treatment has been attempted in order to improve the affinity with the matrix. However, these treatments have a problem in that the fiber is deteriorated due to excessive reaction. Even when the surface treatment method using plasma discharge (for example, Patent Document 1) or excimer laser (for example, Patent Document 2) is employed as a method for etching only the surface of the aromatic polyamide fiber, the surface morphology is changed. This causes a decrease in surface crystallinity, and there is a problem that the fibrillation phenomenon of the fiber becomes conspicuous with a remarkable decrease in crystallinity near the surface. When such fibrillation occurs, it is known that although the adhesiveness at the interface is improved in order to cause fiber breakage, the fiber material embrittlement leads to deterioration of the composite material characteristics.

また、例えば特許文献3では接着剤成分と界面活性剤を含む水系の処理剤であらかじめ繊維を処理する方法が開示されているが、水系の接着剤は溶剤系と比べ接着力が弱く、さらに芳香族ポリアミド繊維(アラミド繊維)には水分を吸収しやすいという問題があった。有機系のアラミド繊維は無機系のガラス繊維や炭素繊維に比べて吸湿性が高いこともあり、このような処理を行った繊維を用いた繊維強化複合材料は、繊維とマトリックス樹脂間の界面に水分を吸収し、物性の低下やマトリックス樹脂の微視破壊が起こるという問題があった。   Further, for example, Patent Document 3 discloses a method of treating fibers in advance with an aqueous treatment agent containing an adhesive component and a surfactant. However, an aqueous adhesive has a weaker adhesive strength than a solvent-based adhesive, and further has a fragrance. The group polyamide fibers (aramid fibers) have a problem that they easily absorb moisture. Organic aramid fibers may be more hygroscopic than inorganic glass fibers and carbon fibers, and fiber-reinforced composites using fibers that have been treated in this way are at the interface between the fibers and the matrix resin. There was a problem that moisture was absorbed, resulting in deterioration of physical properties and microscopic destruction of the matrix resin.

特公平1−12867号公報Japanese Patent Publication No. 1-1867 特開平4−136267号公報JP-A-4-136267 特開2002−194669号公報JP 2002-194669 A

本発明の目的は、上述した従来技術における問題点に鑑み、芳香族ポリアミド繊維が本来持つ特性を損なうことなく、マトリックス樹脂に対する接着性、特に樹脂補強を行った場合の複合体の低吸水性を格段に向上させる繊維構造体の製造方法、及びそれを用いてなる機械的物性に優れた繊維強化複合材料を提供することにある。   The object of the present invention is to solve the problems in the prior art described above, and to reduce the water absorption of the composite when the resin is reinforced, particularly the adhesiveness to the matrix resin without impairing the inherent properties of the aromatic polyamide fiber. An object of the present invention is to provide a method for producing a fiber structure that can be remarkably improved, and a fiber-reinforced composite material that is excellent in mechanical properties.

本発明の樹脂補強用繊維構造体の製造方法は、芳香族ポリアミド繊維からなる繊維構造体に、接着剤成分を0.01〜10重量%含み繊維膨潤性の有機溶剤を主とする処理液を塗布し、次いで該有機溶剤の沸点マイナス50℃以上の温度で熱処理することを特徴とする。   In the method for producing a fiber structure for resin reinforcement of the present invention, a treatment liquid mainly containing a fiber swellable organic solvent containing 0.01 to 10% by weight of an adhesive component is added to a fiber structure made of aromatic polyamide fibers. It is characterized by being coated and then heat-treated at a temperature of the boiling point of the organic solvent minus 50 ° C. or higher.

さらには、該芳香族ポリアミド繊維が、パラ型芳香族ポリアミド繊維であることや、接着剤成分が、シランカップリング剤または熱硬化性樹脂であること、繊維膨潤性の該有機溶剤が、N−メチル−2−ピロリドン、ジメチルスルホキサイド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、スルフォランの群から選ばれるいずれか一種以上を含むものであることが好ましい。また、熱処理後の該繊維構造体にマトリックス樹脂を含浸させたものであることや、接着剤成分が、マトリックス樹脂の一成分と同一であることが好ましい。   Further, the aromatic polyamide fiber is a para-type aromatic polyamide fiber, the adhesive component is a silane coupling agent or a thermosetting resin, and the fiber swellable organic solvent is N- It is preferable to include one or more selected from the group consisting of methyl-2-pyrrolidone, dimethyl sulfoxide, N, N-dimethylformamide, N, N-dimethylacetamide, and sulfolane. Moreover, it is preferable that the fiber structure after heat treatment is impregnated with a matrix resin, and the adhesive component is the same as one component of the matrix resin.

また、本発明の繊維強化複合材料は、上記の製造方法により得られた繊維構造体、及び熱硬化性樹脂または熱可塑性樹脂から形成されることを特徴とする。   The fiber-reinforced composite material of the present invention is characterized in that it is formed from the fiber structure obtained by the above production method and a thermosetting resin or a thermoplastic resin.

本発明によれば、芳香族ポリアミド繊維が本来持つ特性を保ちながら、マトリックス樹脂に対する接着性、特に樹脂補強を行った場合の複合体の低吸水性を格段に向上させる繊維構造体の製造方法、及びそれを用いてなる機械的物性に優れた繊維強化複合材料を提供される。   According to the present invention, while maintaining the properties inherent to aromatic polyamide fibers, the method for producing a fiber structure that significantly improves the adhesiveness to the matrix resin, particularly the low water absorption of the composite when the resin is reinforced, And a fiber-reinforced composite material using the same and having excellent mechanical properties.

以下、本発明の実施の形態について詳細に説明する。
本発明の製造方法は、芳香族ポリアミド繊維からなる繊維構造体に、繊維膨潤性の有機溶剤を主とし、接着剤成分を含む処理液を塗布し、次いで熱処理する方法である。
Hereinafter, embodiments of the present invention will be described in detail.
The production method of the present invention is a method of applying a treatment liquid mainly containing a fiber swellable organic solvent and containing an adhesive component to a fiber structure composed of aromatic polyamide fibers, followed by heat treatment.

本発明で用いる芳香族ポリアミド繊維とは、ポリアミドを構成する繰り返し単位の80モル%以上好ましくは90モル%以上が、芳香族ホモポリアミド、または、芳香族コポリアミドからなる短繊維である。ここで繊維となる芳香族基は同一、または、相異なる芳香族基からなるものでも構わない。また、芳香族基の水素原子は、ハロゲン原子、低級アルキル基、フェニル基などで置換されていてもよい。   The aromatic polyamide fiber used in the present invention is a short fiber in which 80 mol% or more, preferably 90 mol% or more of the repeating units constituting the polyamide are composed of aromatic homopolyamide or aromatic copolyamide. Here, the aromatic groups to be fibers may be the same or different aromatic groups. The hydrogen atom of the aromatic group may be substituted with a halogen atom, a lower alkyl group, a phenyl group, or the like.

このような芳香族ポリアミド繊維の製造方法や繊維特性については、従来公知の例えば、特開昭49−100322号公報、特開昭47−10863号公報、特開昭58−144152号公報、特開平4−65513号公報などに記載されているものが使用できる。   With respect to the production method and fiber characteristics of such aromatic polyamide fibers, for example, conventionally known methods such as JP-A-49-100322, JP-A-47-10863, JP-A-58-144152, JP-A-Hei. What is described in 4-65513 gazette etc. can be used.

また、該芳香族ポリアミド繊維の中でもパラ型芳香族ポリアミド繊維であることが、耐熱性及び強度に優れているので好ましい。パラ型芳香族ポリアミド繊維は前記芳香族ポリアミドの延鎖結合が共軸または平行で、且つ、反対方向に向いているポリアミドからなる繊維である。   Among the aromatic polyamide fibers, para-type aromatic polyamide fibers are preferable because they are excellent in heat resistance and strength. The para-type aromatic polyamide fiber is a fiber made of polyamide in which the chain bond of the aromatic polyamide is coaxial or parallel and faces in the opposite direction.

具体的には、ポリパラフェニレンテレフタルアミド繊維(例えば、テイジントワロンB.V.製、「トワロン」)や、共重合型の芳香族ポリアミド繊維であるコポリパラフェニレン・3,4’−オキシジフェニレン・テレフタルアミド繊維(例えば、帝人テクノプロダクツ(株)製、「テクノーラ」)等が例示され、特に共重合型である後者は、前記有機溶媒に対する膨潤性が高く好ましい。   Specifically, polyparaphenylene terephthalamide fiber (for example, “Twaron” manufactured by Teijin Towalon BV) or copolyparaphenylene • 3,4′-oxydiphenylene which is a copolymer type aromatic polyamide fiber. -A terephthalamide fiber (for example, "Technola" manufactured by Teijin Techno Products Co., Ltd.) is exemplified, and the latter, which is a copolymer type, is particularly preferable because of its high swellability with respect to the organic solvent.

また本発明で用いられる芳香族ポリアミド繊維はその強度を活用するために長繊維フィラメントとして用いることが好ましく、さらには無撚のマルチフィラメントとして用いることが好ましいが、補強形態によっては短繊維として用いることも好ましい。   The aromatic polyamide fiber used in the present invention is preferably used as a long fiber filament in order to utilize its strength, and more preferably as a non-twisted multifilament, but depending on the form of reinforcement, it may be used as a short fiber. Is also preferable.

また、本発明の芳香族ポリアミドからなる繊維構造体は樹脂補強に用いられる形態であれば特に制限されるものではないが、芳香族ポリアミド繊維を主成分とする織物状、不織布状、編物状、メッシュ状、一方向引き揃えシート状、ハニカムシート物であることが好ましく、それらの一種または二種以上の材料を組み合せたものであることも好ましい。   Further, the fiber structure made of the aromatic polyamide of the present invention is not particularly limited as long as it is a form used for resin reinforcement, but a woven fabric, a nonwoven fabric, a knitted fabric having an aromatic polyamide fiber as a main component, A mesh shape, a unidirectionally aligned sheet shape, and a honeycomb sheet material are preferable, and it is also preferable that one or a combination of two or more materials thereof is used.

本発明の製造方法は、このような芳香族ポリアミド繊維からなる繊維集合体に、繊維膨潤性の有機溶剤を主とし、接着剤成分を含む処理液を付着させ、熱処理するものであるが、繊維膨潤性の有機溶剤とは繊維を膨潤し結晶化度を低下させたり、結晶配向を緩める効果のある有機溶剤である。たとえば好ましい例としては、N−メチル−2−ピロリドン、ジメチルスルホキサイド(以下DMSOと記す)、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、スルフォラン(テトラメチレンスルホン)等を挙げることが出来る。特にDMSOは繊維膨潤効果が高く好ましい。また処理液とするにはこれらの繊維膨潤性の有機溶剤に加えて、接着成分を溶解する通常の有機溶剤を加えても良いが、好ましくは繊維膨潤性の有機溶剤が処理液中の50重量%以上であることが好ましい。このような有機溶剤を処理液の溶媒として用いることにより、最終的に得られる複合材料において、繊維と後の工程で用いる樹脂との接着性ばかりか密着性も高まり、複合材料の繊維・樹脂間への水分吸収を著しく軽減することが出来る。   The production method of the present invention is such that a fiber assembly composed of aromatic polyamide fibers is mainly subjected to a heat treatment by attaching a treatment liquid containing an adhesive component mainly containing a fiber swellable organic solvent. A swellable organic solvent is an organic solvent that has the effect of swelling fibers to lower the crystallinity and loosening the crystal orientation. For example, preferred examples include N-methyl-2-pyrrolidone, dimethyl sulfoxide (hereinafter referred to as DMSO), N, N-dimethylformamide, N, N-dimethylacetamide, sulfolane (tetramethylene sulfone) and the like. I can do it. DMSO is particularly preferable because of its high fiber swelling effect. In addition to the fiber-swellable organic solvent, a normal organic solvent that dissolves the adhesive component may be added to the treatment liquid. Preferably, the fiber-swellable organic solvent is 50% by weight in the treatment liquid. % Or more is preferable. By using such an organic solvent as a solvent for the treatment liquid, in the composite material finally obtained, not only the adhesion between the fiber and the resin used in the subsequent process, but also the adhesion is increased, so that the fiber / resin of the composite material Moisture absorption into the water can be significantly reduced.

本発明で用いられる接着剤成分としては、シランカップリング剤、または熱硬化性樹脂であることが好ましい。   The adhesive component used in the present invention is preferably a silane coupling agent or a thermosetting resin.

シランカップリング剤としては、従来公知のものが使用できるが、芳香族ポリアミド繊維との親和性の観点から、エポキシシラン、アミノシラン、イミダゾールシランであることが好ましい。   As the silane coupling agent, conventionally known silane coupling agents can be used, but epoxy silane, amino silane, and imidazole silane are preferable from the viewpoint of affinity with the aromatic polyamide fiber.

熱硬化性樹脂としては、より具体的にはフェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、ジアリルフタレート樹脂、ポリイミド樹脂、ビスマレイミド−トリアジン樹脂などが挙げられる。   More specifically, examples of the thermosetting resin include phenol resin, epoxy resin, unsaturated polyester resin, vinyl ester resin, diallyl phthalate resin, polyimide resin, bismaleimide-triazine resin, and the like.

これらの接着剤成分は、繊維強化複合材料とするために繊維構造体に含浸されるマトリックス樹脂の種類や、最終的な繊維強化複合材料の用途、要求特性に応じて適宜選択すればよく、特にマトリックス樹脂の一成分と同一であることが好ましい。   These adhesive components may be appropriately selected according to the type of matrix resin impregnated into the fiber structure to form a fiber reinforced composite material, the use of the final fiber reinforced composite material, and the required characteristics. It is preferably the same as one component of the matrix resin.

繊維構造体に付着させる処理液は、繊維膨潤性の有機溶剤を主とし、接着剤成分を0.01〜10重量%含むことが必須である。好ましくは接着剤成分の割合は5重量%以下、さらには4重量%以下であることが好ましい。また、下限としては0.01重量%以上、さらには0.1重量%以上であることが好ましい。接着剤成分が10重量%を超えると有機溶剤の効果が減少すると共に、その後の加熱工程での処理液中の有機溶媒が除去しきれない場合がある。そのような場合処理液の粘度が高くなることもあり、その後の工程でマトリックス樹脂を含浸し繊維強化複合材料を作成、特に真空下で加熱加圧成形を行って作成する際に、内部に気泡が発生し易くなり好ましくない。また接着剤成分が少なすぎる場合には粘度が不足し繊維の周囲に均一に処理液が付着しない傾向にある。   The treatment liquid to be attached to the fiber structure is mainly composed of a fiber swellable organic solvent and contains an adhesive component in an amount of 0.01 to 10% by weight. The proportion of the adhesive component is preferably 5% by weight or less, more preferably 4% by weight or less. Moreover, as a minimum, it is preferable that it is 0.01 weight% or more, Furthermore, it is 0.1 weight% or more. When the adhesive component exceeds 10% by weight, the effect of the organic solvent is reduced, and the organic solvent in the treatment liquid in the subsequent heating process may not be completely removed. In such a case, the viscosity of the treatment liquid may increase. In the subsequent process, a matrix resin is impregnated to create a fiber-reinforced composite material. Is likely to occur, which is not preferable. When the adhesive component is too small, the viscosity is insufficient and the treatment liquid tends not to adhere uniformly around the fiber.

繊維構造体に処理液を塗布するには、例えば処理液のディップ浴中に繊維構造体をくぐらせて含浸させれば良い。ここで、「くぐらせる」とは、溶媒中に浸漬してそのまま放置し浴中で反応させるのではなく、処理液中に浸漬した後、連続して直ちに引き上げ、短時間の接触をさせることを言う。処理液への含浸時間は処理液の温度にもよるが0.1〜60秒であることが好ましく、さらには1〜5秒であることが好ましい。処理液の温度としては0〜60℃の範囲であることが好ましく、さらに好ましくは10〜50℃、特には15〜30℃であることが好ましい。処理液の温度が室温近辺であることは、作業効率の点からも好ましい。   In order to apply the treatment liquid to the fiber structure, for example, the fiber structure may be passed through a dip bath of the treatment liquid and impregnated. Here, “pass” means not to immerse in a solvent and leave it to react in a bath, but to immerse it in a processing solution and then immediately pull it up to make contact for a short time. To tell. The impregnation time in the treatment liquid depends on the temperature of the treatment liquid, but is preferably 0.1 to 60 seconds, and more preferably 1 to 5 seconds. The temperature of the treatment liquid is preferably in the range of 0 to 60 ° C, more preferably 10 to 50 ° C, and particularly preferably 15 to 30 ° C. It is preferable from the viewpoint of work efficiency that the temperature of the treatment liquid is around room temperature.

このように塗布した処理液中の接着剤成分は、その乾燥後の接着剤成分の固形分付着量が繊維重量に対して0.01〜10重量%であることが好ましい。さらには1重量%以下であることが好ましい。接着剤成分の付着量を増加するためには処理液中の接着剤成分の含量を増加させる必要があり、本発明の効果が阻害される傾向にある。   The adhesive component in the treatment liquid applied in this manner preferably has a solid content adhesion amount of 0.01 to 10% by weight based on the fiber weight after drying. Furthermore, it is preferable that it is 1 weight% or less. In order to increase the adhesion amount of the adhesive component, it is necessary to increase the content of the adhesive component in the treatment liquid, which tends to hinder the effects of the present invention.

処理液を塗布した繊維構造体は続いて熱処理を行う。処理温度としては、処理液中の有機溶剤の沸点マイナス50℃以上であることが必須である。さらには沸点マイナス40℃以上であることが好ましい。上限としては接着剤成分である樹脂が完全に硬化しない処理条件、温度条件であれば良いが、沸点から30℃以下であることが好ましい。ここで溶媒として有機溶剤を複数用いている場合にはそのもっとも高い沸点を有する有機溶剤の沸点を基準とする。沸点マイナス50℃未満の温度で熱処理を行った場合には、乾燥時間を長くとったとしても過剰な有機溶剤を除去できず付着斑が発生し、接着の欠点となる。また除去できたとしても、長時間の熱処理が必要なため、処理剤が完全に硬化、あるいは変質してしまい、その後に含浸するマトリックス樹脂層との界面で剥離、または処理剤層で凝集破壊が起こり、結果複合材料の性能が低下するため好ましくない。   The fiber structure to which the treatment liquid has been applied is subsequently subjected to heat treatment. As the processing temperature, it is essential that the boiling point of the organic solvent in the processing liquid is minus 50 ° C. or higher. Further, the boiling point is preferably minus 40 ° C. or higher. The upper limit may be any processing condition or temperature condition in which the resin as the adhesive component is not completely cured, but is preferably 30 ° C. or less from the boiling point. Here, when a plurality of organic solvents are used as the solvent, the boiling point of the organic solvent having the highest boiling point is used as a reference. When the heat treatment is performed at a temperature lower than the boiling point minus 50 ° C., even if the drying time is extended, the excess organic solvent cannot be removed, causing adhesion spots, which is a defect in adhesion. Even if it can be removed, since the heat treatment for a long time is required, the treatment agent is completely cured or altered, and then peels off at the interface with the matrix resin layer to be impregnated, or cohesive failure occurs in the treatment agent layer. This is undesirable because the performance of the composite material is reduced.

熱処理の時間としては、樹脂の種類、硬化度に応じて適宜時間を調節する必要があり、この熱処理後に繊維表面に付着した処理剤は、半硬化状態であることが好ましい。したがって熱処理時間としては1〜60分間が好ましく、3〜20分間がより好ましい。ここで半硬化とは、溶媒の一部が除去されて接着剤成分が固化しているものの、まだ完全には架橋していない状態を言う。   As the heat treatment time, it is necessary to adjust the time appropriately according to the type of resin and the degree of curing, and the treatment agent attached to the fiber surface after this heat treatment is preferably in a semi-cured state. Accordingly, the heat treatment time is preferably 1 to 60 minutes, more preferably 3 to 20 minutes. Here, the semi-curing means a state in which a part of the solvent is removed and the adhesive component is solidified but not yet completely crosslinked.

また、本発明の繊維構造体は熱処理後にさらにマトリックス樹脂を含浸させたものであることが好ましい。このような繊維とマトリックス樹脂からなるプレプリグシートは、何枚か重ね併せて繊維強化複合材料とすることができる。このとき処理液に用いる接着剤成分はマトリックス樹脂の一成分と同一であることが好ましい。このようなプレプリグシートを用いて複合材料とする工程において熱処理を行うことにより、接着成分のマトリックス樹脂との架橋反応が進み、繊維構造体に塗布された接着成分は最終的に完全に硬化した状態となる。つまり半硬化状態でマトリックス樹脂を含浸、その後さらに加熱成形を行うことにより、繊維内部に接着剤成分が潜り込んだ状態でマトリックス樹脂と複合化され、結果として繊維とマトリックス樹脂との接着性が向上される。   Moreover, it is preferable that the fiber structure of the present invention is further impregnated with a matrix resin after the heat treatment. Several prepreg sheets made of such fibers and matrix resin can be stacked to form a fiber-reinforced composite material. At this time, the adhesive component used in the treatment liquid is preferably the same as one component of the matrix resin. By performing heat treatment in the process of forming a composite material using such a prepreg sheet, the crosslinking reaction with the matrix resin of the adhesive component proceeds, and the adhesive component applied to the fiber structure is finally completely cured. It becomes a state. In other words, by impregnating the matrix resin in a semi-cured state and then heat forming, it is combined with the matrix resin with the adhesive component embedded in the fiber, and as a result, the adhesion between the fiber and the matrix resin is improved. The

もう一つの本発明の繊維強化複合材料は、上記の製造方法によって得られた樹脂補強用繊維構造体と、熱硬化性樹脂または熱可塑性樹脂から形成されるものである。さらに厚さを確保するためには、何枚かの樹脂補強用繊維複合体を重ねる方法が好ましい。   Another fiber-reinforced composite material of the present invention is formed from a fiber structure for resin reinforcement obtained by the above production method and a thermosetting resin or a thermoplastic resin. In order to further secure the thickness, a method of stacking several resin reinforcing fiber composites is preferable.

この本発明の繊維強化複合材料の製造方法には特に制限はないが、一般には繊維表面に付着した半硬化状態の処理剤およびマトリックス樹脂を完全硬化させるため、含浸した樹脂に応じた温度で加熱しながら成形を行う。   There is no particular limitation on the method for producing the fiber-reinforced composite material of the present invention, but in general, in order to completely cure the semi-cured treatment agent and matrix resin adhering to the fiber surface, heating is performed at a temperature corresponding to the impregnated resin. While molding.

具体的にはハンドレイアップ法、レジンインジェクション法、BMC法、SMC法、圧縮成形法などが挙げられ、目的とする形状や、熱硬化性樹脂または熱可塑性樹脂からなるマトリックス樹脂の種類に応じて最適な成形方法を適用すればよいが、中でも特に圧縮成形法が好ましく、繊維表面に付着した接着剤成分との化学結合を促進させ、繊維構造体とマトリックス樹脂との接着性向上をより効果的に発現させることが出来る。   Specific examples include hand lay-up method, resin injection method, BMC method, SMC method, compression molding method, etc., depending on the target shape and the type of matrix resin made of thermosetting resin or thermoplastic resin. The most suitable molding method may be applied, but the compression molding method is particularly preferred, promoting chemical bonding with the adhesive component adhering to the fiber surface, and more effective in improving the adhesion between the fiber structure and the matrix resin. Can be expressed.

本発明の繊維強化複合材料は、繊維本来の特性を損なうことなく繊維とマトリックス樹脂との接着性が向上したものである。そのため機械的特性、耐久性に優れ、自動車、船舶などの筐体、プリント基板などの電気絶縁材料、その他種々の分野へ好適に使用できる。さらに特に処理液中の有機溶剤の効果により繊維とマトリックス樹脂の密着性が増し、水分吸収性が低下し、吸湿時の耐熱安定性に優れるものとなるので、プリント基板などの電気絶縁材料に最適である。   The fiber-reinforced composite material of the present invention has improved adhesion between the fiber and the matrix resin without impairing the original properties of the fiber. Therefore, it is excellent in mechanical characteristics and durability, and can be suitably used for housings such as automobiles and ships, electrical insulating materials such as printed circuit boards, and other various fields. Furthermore, the effect of the organic solvent in the treatment liquid increases the adhesion between the fiber and the matrix resin, lowers the water absorption, and excels in heat stability during moisture absorption, making it ideal for electrical insulating materials such as printed circuit boards. It is.

以下、実施例により本発明をさらに詳細に説明する。なお、実施例で用いた試験片の作成方法、及びその評価方法は下記の通りである。   Hereinafter, the present invention will be described in more detail with reference to examples. In addition, the preparation method of the test piece used in the Example and its evaluation method are as follows.

(1)繊維強化複合材料の吸水率
繊維強化複合材料をプレッシャークッカーにて温度121℃、湿度100%RH、圧力2atm雰囲気中で200時間処理した後の重量Mを計測し、その後温度105℃で2時間乾燥し、デシケーター中で30分間徐冷した後の重量Mから、下記式によって算出した値を吸水率とする。
(吸水率)=(M−M)×100/M (%)
(1) Water Absorption Rate of Fiber Reinforced Composite Material Weight M 1 after measuring the fiber reinforced composite material in a pressure cooker at a temperature of 121 ° C., humidity of 100% RH and pressure of 2 atm for 200 hours is measured, and then the temperature is 105 ° C. The value calculated by the following formula from the weight M 0 after drying for 2 hours and slowly cooling in a desiccator for 30 minutes is defined as the water absorption rate.
(Water absorption) = (M 1 −M 0 ) × 100 / M 0 (%)

(2)ランド強度
繊維強化複合材料である積層板において、表層の銅箔をエッチングして形成した2mm角のランド上に、長さ7mmのピンを半田付けにより立て、ピンにこれを倒す方向の力を下から4mmの位置に加え、ランドが剥がれてピンが倒れる時の最大荷重を測定した。単位はNとした。
(2) Land strength In a laminated board which is a fiber reinforced composite material, a 7 mm long pin is placed by soldering on a 2 mm square land formed by etching a surface copper foil, and the direction in which the pin is tilted down A force was applied to a position 4 mm from the bottom, and the maximum load when the land was peeled and the pin was tilted was measured. The unit was N.

(3)曲げ強度・弾性率
繊維強化複合材料をJIS C−6481の5.8に準拠して測定した。
(3) Bending strength and elastic modulus The fiber reinforced composite material was measured in accordance with 5.8 of JIS C-6481.

[実施例1]
芳香族ポリアミドからなる繊維構造体として、目付61g/m、厚さ0.11mmであり、繊度220dtex/133フィラメントの無撚の繊維をタテ、ヨコ共に34本/2.54cm(1インチ)で配列した、コポリパラフェニレン・3、4’−オキシジフェニレン・テレフタルアミドからなる平織物を作成した。
[Example 1]
As a fiber structure made of an aromatic polyamide, the basis weight is 61 g / m 2 , the thickness is 0.11 mm, and untwisted fibers with a fineness of 220 dtex / 133 filaments are 34 / 2.54 cm (1 inch) both vertically and horizontally. A plain woven fabric made of copolyparaphenylene 3,4′-oxydiphenylene terephthalamide was prepared.

また別に処理液を作成した。すなわち、接着剤成分である高純度のブロム化ビスフェノールA型エポキシ樹脂及びオルソクレゾールノボラック型エポキシ樹脂からなるエポキシ樹脂組成物を用いて、このメチルエチルケトン溶解液(樹脂組成物含有量:80重量%)に、芳香族ポリアミド繊維を膨潤させる有機溶剤であるDMSO(ジメチルスルホキサイド、沸点189℃)を混合し、処理液中の接着剤組成物の含有量が2重量%となるように希釈した処理液を作成した。   Separately, a treatment solution was prepared. That is, by using an epoxy resin composition comprising a high purity brominated bisphenol A type epoxy resin and an orthocresol novolac type epoxy resin as adhesive components, this methyl ethyl ketone solution (resin composition content: 80% by weight) is used. DMSO (dimethyl sulfoxide, boiling point 189 ° C.), which is an organic solvent that swells aromatic polyamide fibers, is mixed and diluted so that the content of the adhesive composition in the processing liquid is 2% by weight. It was created.

次に、芳香族ポリアミドからなる繊維構造体である先に作成した平織物を、23℃の処理液に5秒間浸漬した。過剰に付着した処理液を十分に絞った後、150℃で10分間の熱処理を行い、エポキシ樹脂が付着した芳香族ポリアミド繊維からなる樹脂補強用繊維構造体を製造した。このものを完全に乾燥した後の接着剤成分の付着量は1.0重量%であった。繊維構造体の製造条件を表1に示した。   Next, the plain fabric prepared previously, which is a fiber structure made of aromatic polyamide, was immersed in a treatment solution at 23 ° C. for 5 seconds. After sufficiently squeezing the excessively attached treatment solution, heat treatment was performed at 150 ° C. for 10 minutes to produce a fiber structure for resin reinforcement composed of aromatic polyamide fibers to which an epoxy resin was adhered. The adhesion amount of the adhesive component after this was completely dried was 1.0% by weight. The production conditions of the fiber structure are shown in Table 1.

[実施例2]
実施例1で得られた樹脂補強用繊維構造体を基材として用い、該基材に高純度のブロム化ビスフェノールA型エポキシ樹脂及びオルソクレゾールノボラック型エポキシ樹脂に硬化剤としてジシアンジアミド、硬化促進剤として2−エチル−4−メチルイミダゾールを配合してなるエポキシ樹脂組成物をメチルエチルケトンとメチルセロソルブの混合溶液に溶解して得た配合ワニスを含浸させた後、120℃の温度で15分間乾燥して、厚さ0.17mmの半硬化状態の(Bステージ)プリプレグシートを作成した。
[Example 2]
The fiber structure for resin reinforcement obtained in Example 1 was used as a base material, and high purity brominated bisphenol A type epoxy resin and orthocresol novolac type epoxy resin were used as the base material for the base material, and dicyandiamide as a curing accelerator. After impregnating a compound varnish obtained by dissolving an epoxy resin composition containing 2-ethyl-4-methylimidazole in a mixed solution of methyl ethyl ketone and methyl cellosolve, it was dried at a temperature of 120 ° C. for 15 minutes, A semi-cured (B stage) prepreg sheet having a thickness of 0.17 mm was prepared.

更に上記プリプレグシートを、16枚重ねて厚さを1.6mmとし、その両面に厚さ18μmの電解銅箔を重ね、圧力:20〜50kg/cm、積層温度:170℃の範囲で50分間熱圧着処理を行い、更に200℃の熱風乾燥機内で約20分間硬化処理を行い、さらに表面の銅箔を全面エッチングし、水洗・風乾し、芳香族ポリアミド繊維からなる繊維強化複合材料を製造した。全重量における熱硬化性樹脂(接着剤成分を含む)の比率は60重量%の複合材料であり、プリント基板として最適なものであった。評価した諸特性を、表2に示す。 Furthermore, 16 sheets of the above prepreg sheets were stacked to a thickness of 1.6 mm, and an electrolytic copper foil with a thickness of 18 μm was stacked on both sides, and the pressure was 20 to 50 kg / cm 2 , and the lamination temperature was 170 ° C. for 50 minutes. A thermocompression treatment was carried out, and further a curing treatment was carried out in a hot air dryer at 200 ° C. for about 20 minutes. Further, the copper foil on the surface was entirely etched, washed with water and air-dried to produce a fiber-reinforced composite material composed of aromatic polyamide fibers. . The ratio of the thermosetting resin (including the adhesive component) in the total weight was a composite material of 60% by weight, and was optimal as a printed circuit board. The various properties evaluated are shown in Table 2.

[実施例3]
実施例1において、150℃の熱処理温度を170℃へ変更した以外は実施例1と同様に行って樹脂補強用繊維構造体を製造した。さらにこの繊維構造体を用いて実施例2と同様に複合材料を作成した。
製造条件を表1に、諸特性を表2に、併せて示す。
[Example 3]
In Example 1, a fiber structure for resin reinforcement was produced in the same manner as in Example 1 except that the heat treatment temperature at 150 ° C. was changed to 170 ° C. Further, a composite material was prepared in the same manner as in Example 2 using this fiber structure.
Manufacturing conditions are shown in Table 1, and various characteristics are shown in Table 2.

[実施例4]
実施例1において、処理液中の芳香族ポリアミド繊維を膨潤させる有機溶剤をDMSOからN,N−ジメチルアセトアミド(DMAc、沸点165.5℃)に変更し、さらに150℃の熱処理温度を130℃へ変更した以外は実施例1と同様に行って樹脂補強用繊維構造体を製造した。さらにこの繊維構造体を用いて実施例2と同様に複合材料を作成した。
製造条件を表1に、諸特性を表2に、併せて示す。
[Example 4]
In Example 1, the organic solvent for swelling the aromatic polyamide fiber in the treatment liquid was changed from DMSO to N, N-dimethylacetamide (DMAc, boiling point 165.5 ° C.), and the heat treatment temperature at 150 ° C. was changed to 130 ° C. Except having changed, it carried out like Example 1 and manufactured the fiber structure for resin reinforcement. Further, a composite material was prepared in the same manner as in Example 2 using this fiber structure.
Manufacturing conditions are shown in Table 1, and various characteristics are shown in Table 2.

[比較例1]
実施例1において、処理液中の接着剤成分であるエポキシ樹脂組成物濃度を2重量%から15重量%に変更した以外は実施例1と同様に行って樹脂補強用繊維構造体を製造した。さらにこの繊維構造体を用いて実施例2と同様に複合材料を作成した。
製造条件を表1に、諸特性を表2に、併せて示す。
[Comparative Example 1]
In Example 1, a resin reinforcing fiber structure was produced in the same manner as in Example 1 except that the concentration of the epoxy resin composition as the adhesive component in the treatment liquid was changed from 2% by weight to 15% by weight. Further, a composite material was prepared in the same manner as in Example 2 using this fiber structure.
Manufacturing conditions are shown in Table 1, and various characteristics are shown in Table 2.

[比較例2]
実施例1において、処理液に浸漬しなかった以外は実施例1と同様に行って、すなわち未処理の平織物を樹脂補強用繊維構造体とした。さらにこの平織物を繊維構造体として用いて実施例2と同様に複合材料を作成した。
製造条件を表1に、諸特性を表2に、併せて示す。
[Comparative Example 2]
In Example 1, it carried out similarly to Example 1 except not being immersed in the process liquid, ie, the untreated plain fabric was made into the fiber structure for resin reinforcement. Further, a composite material was prepared in the same manner as in Example 2 using this plain fabric as a fiber structure.
Manufacturing conditions are shown in Table 1, and various characteristics are shown in Table 2.

[比較例3]
実施例1で作成した未処理の平織物を水洗、乾燥した後、80℃に加熱したDMSO中で30分間処理し、次いで熱湯で30分間湯洗して水洗、乾燥した。この平織物を繊維構造体として用いて実施例2と同様に複合材料を作成した。
製造条件を表1に、諸特性を表2に、併せて示す。
[Comparative Example 3]
The untreated plain fabric prepared in Example 1 was washed with water and dried, then treated in DMSO heated to 80 ° C. for 30 minutes, then washed with hot water for 30 minutes, washed with water and dried. A composite material was prepared in the same manner as in Example 2 using this plain fabric as a fiber structure.
Manufacturing conditions are shown in Table 1, and various characteristics are shown in Table 2.

Figure 2006037252
Figure 2006037252

Figure 2006037252
Figure 2006037252

Claims (9)

芳香族ポリアミド繊維からなる繊維構造体に、接着剤成分を0.01〜10重量%含み繊維膨潤性の有機溶剤を主とする処理液を塗布し、次いで該有機溶剤の沸点マイナス50℃以上の温度で熱処理することを特徴とする樹脂補強用繊維構造体の製造方法。   A treatment liquid containing 0.01 to 10% by weight of an adhesive component and mainly a fiber swellable organic solvent is applied to a fiber structure composed of aromatic polyamide fibers, and then the boiling point of the organic solvent is not lower than 50 ° C. A method for producing a fiber structure for resin reinforcement, characterized by heat treatment at a temperature. 該芳香族ポリアミド繊維が、パラ型芳香族ポリアミド繊維である請求項1記載の樹脂補強用繊維構造体の製造方法。   The method for producing a fiber structure for resin reinforcement according to claim 1, wherein the aromatic polyamide fiber is a para-type aromatic polyamide fiber. 該繊維構造体が、織物、不織布、紙、編物、メッシュ、一方向引き揃えシート、ハニカムシートのいずれかである請求項1または2記載の樹脂補強用繊維構造体の製造方法。   The method for producing a fiber structure for resin reinforcement according to claim 1 or 2, wherein the fiber structure is any one of woven fabric, nonwoven fabric, paper, knitted fabric, mesh, unidirectionally aligned sheet, and honeycomb sheet. 接着剤成分が、シランカップリング剤または熱硬化性樹脂である請求項1〜3のいずれか1項記載の樹脂補強用繊維構造体の製造方法。   The method for producing a fiber structure for resin reinforcement according to any one of claims 1 to 3, wherein the adhesive component is a silane coupling agent or a thermosetting resin. 繊維膨潤性の該有機溶剤が、N−メチル−2−ピロリドン、ジメチルスルホキサイド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、スルフォランの群から選ばれるいずれか一種以上を含むものである請求項1〜4のいずれか1項記載の樹脂補強用繊維構造体の製造方法。   The fiber-swellable organic solvent contains at least one selected from the group consisting of N-methyl-2-pyrrolidone, dimethyl sulfoxide, N, N-dimethylformamide, N, N-dimethylacetamide, and sulfolane. Item 5. A method for producing a fiber structure for resin reinforcement according to any one of Items 1 to 4. 繊維重量に対する接着剤成分の固形分付着量が0.01〜10重量%である請求項1〜5のいずれか1項記載の樹脂補強用繊維構造体の製造方法。   The method for producing a fiber structure for resin reinforcement according to any one of claims 1 to 5, wherein the adhesive amount of the adhesive component relative to the fiber weight is 0.01 to 10% by weight. 熱処理後の該繊維構造体にマトリックス樹脂を含浸させる請求項1〜6のいずれか1項記載の樹脂補強用繊維構造体の製造方法。   The method for producing a fiber structure for resin reinforcement according to any one of claims 1 to 6, wherein the fiber structure after heat treatment is impregnated with a matrix resin. 接着剤成分が、マトリックス樹脂の一成分と同一である請求項7記載の樹脂補強用繊維構造体の製造方法。   The method for producing a fiber structure for resin reinforcement according to claim 7, wherein the adhesive component is the same as one component of the matrix resin. 請求項1〜8のいずれか一項に記載の方法で製造された繊維構造体、及び熱硬化性樹脂または熱可塑性樹脂から形成されることを特徴とする繊維強化複合材料。   A fiber reinforced composite material formed from the fiber structure produced by the method according to any one of claims 1 to 8, and a thermosetting resin or a thermoplastic resin.
JP2004215497A 2004-07-23 2004-07-23 Method for producing fiber structure for resin reinforcement Pending JP2006037252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004215497A JP2006037252A (en) 2004-07-23 2004-07-23 Method for producing fiber structure for resin reinforcement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004215497A JP2006037252A (en) 2004-07-23 2004-07-23 Method for producing fiber structure for resin reinforcement

Publications (1)

Publication Number Publication Date
JP2006037252A true JP2006037252A (en) 2006-02-09

Family

ID=35902545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004215497A Pending JP2006037252A (en) 2004-07-23 2004-07-23 Method for producing fiber structure for resin reinforcement

Country Status (1)

Country Link
JP (1) JP2006037252A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009114332A (en) * 2007-11-07 2009-05-28 Mitsubishi Chemicals Corp Filament-reinforced composite resin composition and molded article
JP2009132772A (en) * 2007-11-29 2009-06-18 Mitsubishi Chemicals Corp Composition for automobile interior part
JP2017534486A (en) * 2014-10-03 2017-11-24 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Honeycomb core with high compressive strength

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62110968A (en) * 1985-11-11 1987-05-22 旭化成株式会社 Production of surface modified full-aromatic polyamide fiber
JPS63165583A (en) * 1986-12-26 1988-07-08 旭化成株式会社 Method for improving adhesiveness of para type aramid fiber
JPH0284442A (en) * 1988-06-22 1990-03-26 Degussa Ag Aramid fiber and epoxy resin reinforced therewith

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62110968A (en) * 1985-11-11 1987-05-22 旭化成株式会社 Production of surface modified full-aromatic polyamide fiber
JPS63165583A (en) * 1986-12-26 1988-07-08 旭化成株式会社 Method for improving adhesiveness of para type aramid fiber
JPH0284442A (en) * 1988-06-22 1990-03-26 Degussa Ag Aramid fiber and epoxy resin reinforced therewith

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009114332A (en) * 2007-11-07 2009-05-28 Mitsubishi Chemicals Corp Filament-reinforced composite resin composition and molded article
JP2009132772A (en) * 2007-11-29 2009-06-18 Mitsubishi Chemicals Corp Composition for automobile interior part
JP2017534486A (en) * 2014-10-03 2017-11-24 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Honeycomb core with high compressive strength

Similar Documents

Publication Publication Date Title
KR102458088B1 (en) Glass cloth
KR100470262B1 (en) Prepreg, manufacturing method thereof, and printed circuit board / laminate using the same
KR101456769B1 (en) Epoxy resin composition, prepreg, metal-clad laminate, and printed wiring board
JP2005154727A (en) Resin composition for interlayer insulation of multilayer printed wiring board, adhesive film, and prepreg
CN109721752B (en) Glass cloth, prepreg, and printed wiring board
JP4162685B2 (en) Polyparaphenylene terephthalamide fiber composite and use thereof
JP3430897B2 (en) Prepreg and laminate
TW200951256A (en) High strength and highly elastic sheet material
JP2006037252A (en) Method for producing fiber structure for resin reinforcement
JP2010155980A (en) Epoxy resin composition and prepreg and laminate using the same
JP4969425B2 (en) Aramid fiber fabric, and prepreg and laminate using the fabric
JP2002293979A (en) Porous para-oriented aromatic polyamide film, its prepreg and substrate using prepreg and used for printed circuit
JP5098226B2 (en) Metal-clad laminate
JP3570806B2 (en) Glass fiber woven fabric and method for producing the same
JP2002317392A (en) Method of producing poly-para-phenylene terephthalamide paper and method of producing printed circuit substrate therefrom
JP3806200B2 (en) Prepreg and laminate
JP2004324007A (en) Treating agent for polyimide fiber, polyimide fiber treated therewith, nonwoven fabric and composite material
JP2002348754A (en) Glass cloth, prepreg, laminated sheet, and printed wiring board
JP2010254941A (en) Printed circuit board resin composition and printed circuit board using this
JP4229509B2 (en) Surface treatment agent for glass fiber
JP2004100052A (en) Method for producing precoating treated glass cloth
JP2004067968A (en) Resin composition, prepreg, and laminated plate
JP3741382B2 (en) Manufacturing method of prepreg
JP2001138426A (en) Laminate and method of manufacturing the same
JP3599481B2 (en) Manufacturing method of prepreg

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091127

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20100323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100406