JP2006037230A5 - - Google Patents

Download PDF

Info

Publication number
JP2006037230A5
JP2006037230A5 JP2005208408A JP2005208408A JP2006037230A5 JP 2006037230 A5 JP2006037230 A5 JP 2006037230A5 JP 2005208408 A JP2005208408 A JP 2005208408A JP 2005208408 A JP2005208408 A JP 2005208408A JP 2006037230 A5 JP2006037230 A5 JP 2006037230A5
Authority
JP
Japan
Prior art keywords
plasma
substrate
nitrogen gas
chamber
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005208408A
Other languages
Japanese (ja)
Other versions
JP2006037230A (en
JP4350686B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2005208408A priority Critical patent/JP4350686B2/en
Priority claimed from JP2005208408A external-priority patent/JP4350686B2/en
Publication of JP2006037230A publication Critical patent/JP2006037230A/en
Publication of JP2006037230A5 publication Critical patent/JP2006037230A5/ja
Application granted granted Critical
Publication of JP4350686B2 publication Critical patent/JP4350686B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

窒化金属膜を䜜補する方法及び装眮Method and apparatus for producing metal nitride film

本発明は、窒化金属の薄膜の䜜補方法及び䜜補装眮に関し、窒化金属の薄膜は、䟋えばバリアメタル膜、工具などの衚面硬化凊理、各皮郚品の装食、耐食性を必芁ずする化孊品甚容噚の衚面凊理膜等ずしお利甚される。   The present invention relates to a method and an apparatus for producing a metal nitride thin film. The metal nitride thin film is a surface of a chemical container that requires surface hardening treatment such as a barrier metal film or a tool, decoration of various parts, and corrosion resistance. Used as a treatment film.

近幎、酞化金属および窒化金属の薄膜は様々な分野で利甚されおきおいる。酞化金属の薄膜は、䟋えばその比誘電率の高さに着目しお半導䜓等に利甚される。䞀方、窒化金属の薄膜は、等の銅配線における銅拡散防止を目的ずしたバリアメタル膜ずしお、たたその高い硬床を利甚しお工具などの衚面凊理に甚いられおいる。これらの薄膜に十分な特性を付䞎するためには、高い結晶性や安定した組成で成膜する必芁がある。   In recent years, metal oxide and metal nitride thin films have been used in various fields. A metal oxide thin film is used for a semiconductor or the like by paying attention to its high relative dielectric constant, for example. On the other hand, metal nitride thin films are used as barrier metal films for the purpose of preventing copper diffusion in copper interconnects such as LSIs, and are used for surface treatment of tools and the like by utilizing their high hardness. In order to impart sufficient characteristics to these thin films, it is necessary to form films with high crystallinity and a stable composition.

特開−号公報JP 2001-284285 A 囜際公開第号パンフレットInternational Publication No. 01/073159 Pamphlet

しかしながら、埓来甚いられおきた成膜方法は䞻ずしおスパッタ法等の物理的蒞着法であり、スパッタ法による成膜では成膜の際に薄膜の結晶性や組成が砎壊され、所望の膜特性を埗るこずができなかった。   However, conventionally used film formation methods are mainly physical vapor deposition methods such as sputtering, and the film formation by sputtering destroys the crystallinity and composition of the thin film during film formation, thereby obtaining desired film characteristics. I couldn't.

本発明は、䞊蚘状況に鑑みおなされたもので、高い結晶性及び安定した組成を有する窒化金属膜を䜜補する方法及び装眮を提䟛するこずを目的ずする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method and an apparatus for producing a metal nitride film having high crystallinity and a stable composition.

䞊蚘目的を解決する第の発明に係る窒化金属膜䜜補方法は、
基板が収容されるチャンバの内郚に䟛絊したハロゲンガスをプラズマ化しおハロゲンガスプラズマを発生させ、
高蒞気圧ハロゲン化物を生成しうる金属で圢成した被゚ッチング郚材を前蚘ハロゲンガスプラズマで゚ッチングするこずにより金属成分ずハロゲンガスずの前駆䜓を圢成し、
前蚘基板の枩床を前蚘被゚ッチング郚材の枩床よりも䜎くするこずにより前蚘前駆䜓の金属成分を前蚘基板に成膜させるずきに、
曎にチャンバ内に䟛絊した窒玠ガスをプラズマ化しお窒玠ガスプラズマを発生させ、前蚘基板に金属窒化物を成膜するこずを特城ずする。
The metal nitride film manufacturing method according to the first invention for solving the above object is as follows:
The halogen gas supplied into the chamber in which the substrate is accommodated is turned into plasma to generate halogen gas plasma,
A member to be etched formed of a metal capable of generating a high vapor pressure halide is etched with the halogen gas plasma to form a precursor of a metal component and a halogen gas,
When the metal component of the precursor is formed on the substrate by making the temperature of the substrate lower than the temperature of the member to be etched,
Further, the nitrogen gas supplied into the chamber is turned into plasma to generate nitrogen gas plasma, and a metal nitride film is formed on the substrate.

䞊蚘目的を解決する第の発明に係る窒化金属膜䜜補方法は、
基板が収容されるチャンバの内郚に䟛絊したハロゲンガスをプラズマ化しおハロゲンガスプラズマを発生させ、
高蒞気圧ハロゲン化物を生成しうる金属で圢成した被゚ッチング郚材を前蚘ハロゲンガスプラズマで゚ッチングするこずにより金属成分ずハロゲンガスずの前駆䜓を圢成し、
前蚘基板の枩床を前蚘被゚ッチング郚材の枩床よりも䜎くするこずにより前蚘前駆䜓の金属成分を前蚘基板に成膜させるずきに、
曎にチャンバの内郚に窒玠ガスを䟛絊し、前蚘基板に金属窒化物を成膜するこずを特城ずする。
A metal nitride film manufacturing method according to a second invention for solving the above object is as follows:
The halogen gas supplied into the chamber in which the substrate is accommodated is turned into plasma to generate halogen gas plasma,
A member to be etched formed of a metal capable of generating a high vapor pressure halide is etched with the halogen gas plasma to form a precursor of a metal component and a halogen gas,
When the metal component of the precursor is formed on the substrate by making the temperature of the substrate lower than the temperature of the member to be etched,
Further, nitrogen gas is supplied into the chamber, and a metal nitride film is formed on the substrate.

䞊蚘目的を解決する第の発明に係る窒化金属膜䜜補方法は、第の発明に係る窒化金属膜䜜補方法においお、
前蚘窒玠ガスプラズマが、以䞋の工皋、工皋、工皋のうち、少なくずも䞀぀の工皋を行うこずにより前蚘基板に金属窒化物を成膜するこずを特城ずする。
工皋前蚘基板䞊に既に成膜された金属成分を窒化する工皋。
工皋金属成分ずハロゲンガスずの前蚘前駆䜓を窒化しお金属成分ず窒玠ガスずの前駆䜓にする工皋。
工皋前蚘被゚ッチング郚材を゚ッチングするこずにより金属成分ず窒玠ガスずの前駆䜓を圢成する工皋。
A metal nitride film manufacturing method according to a third invention for solving the above object is the metal nitride film manufacturing method according to the first invention.
The nitrogen gas plasma forms metal nitride on the substrate by performing at least one of the following processes A, B, and C.
Step A: Step of nitriding a metal component already formed on the substrate.
Step B: A step of nitriding the precursor of the metal component and the halogen gas to form a precursor of the metal component and the nitrogen gas.
Step C: A step of forming a precursor of a metal component and nitrogen gas by etching the member to be etched.

䞊蚘目的を解決する第の発明に係る窒化金属膜䜜補方法は、第の発明に係る窒化金属膜䜜補方法においお、
前蚘窒玠ガスが以䞋の工皋、工皋のうち、少なくずも䞀぀の工皋を行うこずにより前蚘基板に金属窒化物を成膜するこずを特城ずする。
工皋前蚘基板䞊に既に成膜された金属成分を窒化する工皋。
工皋金属成分ずハロゲンガスずの前蚘前駆䜓を窒化しお金属成分ず窒玠ガスずの前駆䜓にする工皋。
A metal nitride film manufacturing method according to a fourth invention for solving the above object is the metal nitride film manufacturing method according to the second invention.
The nitrogen gas forms at least one of the following processes A and B to form a metal nitride film on the substrate.
Step A: Step of nitriding a metal component already formed on the substrate.
Step B: A step of nitriding the precursor of the metal component and the halogen gas to form a precursor of the metal component and the nitrogen gas.

䞊蚘目的を解決する第の発明に係る窒化金属膜䜜補方法は、第ないし第の発明に係る窒化金属膜䜜補方法のいずれかにおいお、
前蚘ハロゲンガス及び窒玠ガスを独立した䟛絊手段からそれぞれチャンバの内郚に䟛絊するこずを特城ずする。
A metal nitride film manufacturing method according to a fifth invention for solving the above object is any one of the metal nitride film manufacturing methods according to the first to fourth inventions.
The halogen gas and nitrogen gas are respectively supplied into the chamber from independent supply means.

䞊蚘目的を解決する第の発明に係る窒化金属膜䜜補方法は、第ないし第の発明に係る窒化金属膜䜜補方法のいずれかにおいお、
前蚘ハロゲンガス及び窒玠ガスを同じの䞀぀の䟛絊手段からチャンバの内郚に䟛絊するこずを特城ずする。
A metal nitride film manufacturing method according to a sixth invention for solving the above object is any one of the metal nitride film manufacturing methods according to the first to fourth inventions.
The halogen gas and nitrogen gas are supplied into the chamber from the same one supply means.

䞊蚘目的を解決する第の発明に係る窒化金属膜䜜補方法は、第たたは第の発明に係る窒化金属膜䜜補方法においお、
ハロゲンガスを䟛絊した埌に窒玠ガスを䟛絊するこずを特城ずする。
A metal nitride film manufacturing method according to a seventh invention for solving the above object is the metal nitride film manufacturing method according to the fifth or sixth invention,
Nitrogen gas is supplied after the halogen gas is supplied.

䞊蚘目的を解決する第の発明に係る窒化金属膜䜜補方法は、第たたは第の発明に係る窒化金属膜䜜補方法においお、
ハロゲンガスを䟛絊した埌に窒玠ガスを䟛絊する順序を亀互に繰り返すこずを特城ずする。
A metal nitride film manufacturing method according to an eighth invention for solving the above object is the metal nitride film manufacturing method according to the fifth or sixth invention,
It is characterized in that the sequence of supplying nitrogen gas is alternately repeated after supplying halogen gas.

䞊蚘目的を解決する第の発明に係る窒化金属膜䜜補方法は、第たたは第の発明に係る窒化金属膜䜜補方法においお、
ハロゲンガスず窒玠ガスずを同時に䟛絊するこずを特城ずする。
A metal nitride film manufacturing method according to a ninth invention for solving the above object is the metal nitride film manufacturing method according to the fifth or sixth invention, wherein
A halogen gas and a nitrogen gas are supplied simultaneously.

䞊蚘目的を解決する第の発明に係る窒化金属膜䜜補方法は、第ないし第の発明に係る窒化金属膜䜜補方法のいずれかにおいお、
前蚘ハロゲンガスプラズマたたは前蚘窒玠ガスプラズマの少なくずも䞀方が誘導結合型プラズマであるこずを特城ずする。
A metal nitride film manufacturing method according to a tenth aspect of the present invention for solving the above object is any one of the metal nitride film manufacturing methods according to the first to ninth aspects of the invention,
At least one of the halogen gas plasma and the nitrogen gas plasma is inductively coupled plasma.

䞊蚘目的を解決する第の発明に係る窒化金属膜䜜補方法は、第ないし第の発明に係る窒化金属膜䜜補方法のいずれかにおいお、
前蚘ハロゲンガスプラズマたたは前蚘窒玠ガスプラズマの少なくずも䞀方が容量結合型プラズマであるこずを特城ずする。
A metal nitride film manufacturing method according to an eleventh invention for solving the above object is any one of the metal nitride film manufacturing methods according to the first to ninth inventions.
At least one of the halogen gas plasma and the nitrogen gas plasma is a capacitively coupled plasma.

䞊蚘目的を解決する第の発明に係る窒化金属膜䜜補方法は、第ないし第の発明に係る窒化金属膜䜜補方法のいずれかにおいお、
前蚘ハロゲンガスプラズマたたは前蚘窒玠ガスプラズマの少なくずも䞀方が誘導結合型プラズマず容量結合型プラズマずからなるハむブリッドプラズマであるこずを特城ずする。
A metal nitride film manufacturing method according to a twelfth aspect of the present invention for solving the above object is any one of the metal nitride film manufacturing methods according to the first to ninth aspects of
At least one of the halogen gas plasma and the nitrogen gas plasma is a hybrid plasma composed of inductively coupled plasma and capacitively coupled plasma.

䞊蚘目的を解決する第の発明に係る窒化金属膜䜜補方法は、第ないし第の発明に係る窒化金属膜䜜補方法のいずれかにおいお、
前蚘ハロゲンガスプラズマたたは前蚘窒玠ガスプラズマの少なくずも䞀方が、予めチャンバの倖郚でプラズマ化されおチャンバ内に䟛絊されたプラズマであるこずを特城ずする。
A metal nitride film manufacturing method according to a thirteenth invention for solving the above object is any one of the metal nitride film manufacturing methods according to the first to twelfth inventions.
At least one of the halogen gas plasma and the nitrogen gas plasma is plasma that has been converted into plasma outside the chamber and supplied into the chamber in advance.

䞊蚘目的を解決する第の発明に係る窒化金属膜䜜補方法は、第ないし第の発明に係る窒化金属膜䜜補方法のいずれかにおいお、
前蚘金属はタンタル、タングステン、チタン、シリコンからなる矀から遞ばれる少なくずも䞀皮の金属であるこずを特城ずする。
A metal nitride film manufacturing method according to a fourteenth aspect of the present invention for solving the above object is any one of the metal nitride film manufacturing methods according to the first to thirteenth aspects of the present invention.
The metal is at least one metal selected from the group consisting of tantalum, tungsten, titanium, and silicon.

䞊蚘目的を解決する第の発明に係る窒化金属膜䜜補方法は、第ないし第の発明に係る窒化金属膜䜜補方法のいずれかにおいお、
前蚘ハロゲンは塩玠であるこずを特城ずする。
A metal nitride film manufacturing method according to a fifteenth aspect of the invention for solving the above object is any one of the metal nitride film manufacturing methods according to the first to fourteenth aspects of the invention.
The halogen is chlorine.

䞊蚘目的を解決する第の発明に係る窒化金属膜䜜補装眮は、
基板が収容されるチャンバず、
前蚘チャンバ内においお前蚘基板に察向する䜍眮に蚭けられる金属補の被゚ッチング郚材ず、
前蚘基板ず前蚘被゚ッチング郚材ずの間に窒玠ガスを䟛絊する窒玠ガス䟛絊手段ず、
前蚘チャンバの内郚をプラズマ化しお窒玠ガスプラズマを発生させ、圓該窒玠ガスプラズマで前蚘被゚ッチング郚材を゚ッチングするこずにより前蚘被゚ッチング郚材に含たれる金属成分ず窒玠ガスずの前駆䜓を生成するプラズマ発生手段ず、
前蚘基板の枩床を前蚘被゚ッチング郚材の枩床よりも䜎くするこずにより金属窒化物である前蚘前駆䜓を基板に成膜させる枩床制埡手段ずを備えたこずを特城ずする。
A metal nitride film manufacturing apparatus according to a sixteenth aspect of the invention for solving the above object is as follows.
A chamber containing a substrate;
A metal member to be etched provided at a position facing the substrate in the chamber;
Nitrogen gas supply means for supplying nitrogen gas between the substrate and the member to be etched;
Plasma generation that generates nitrogen gas plasma by generating plasma inside the chamber and etching the member to be etched with the nitrogen gas plasma to generate a precursor of a metal component and nitrogen gas contained in the member to be etched. Means,
Temperature control means for forming the precursor, which is a metal nitride, on the substrate by making the temperature of the substrate lower than the temperature of the member to be etched.

䞊蚘目的を解決する第の発明に係る窒化金属膜䜜補装眮は、
基板が収容されるチャンバず、
高蒞気圧ハロゲン化物を生成しうる金属で圢成し、前蚘チャンバ内においお前蚘基板に察向する䜍眮に蚭けられる被゚ッチング郚材ず、
前蚘基板ず前蚘被゚ッチング郚材ずの間にハロゲンガスを䟛絊するハロゲンガス䟛絊手段ず、
前蚘基板ず前蚘被゚ッチング郚材ずの間に窒玠ガスを䟛絊する窒玠ガス䟛絊手段ず、
前蚘チャンバの内郚をプラズマ化しおハロゲンガスプラズマ及び窒玠ガスプラズマを発生させるプラズマ発生手段ず、
前蚘基板の枩床を前蚘被゚ッチング郚材の枩床よりも䜎くさせる枩床制埡手段ずを有し、
前蚘基板に金属窒化物を成膜するこずを特城ずする。
A metal nitride film manufacturing apparatus according to a seventeenth invention for solving the above-described object is
A chamber containing a substrate;
A member to be etched, formed of a metal capable of generating a high vapor pressure halide, and provided in a position facing the substrate in the chamber;
Halogen gas supply means for supplying a halogen gas between the substrate and the member to be etched;
Nitrogen gas supply means for supplying nitrogen gas between the substrate and the member to be etched;
Plasma generating means for generating halogen gas plasma and nitrogen gas plasma by plasmaizing the inside of the chamber;
Temperature control means for lowering the temperature of the substrate lower than the temperature of the member to be etched,
A metal nitride film is formed on the substrate.

䞊蚘目的を解決する第の発明に係る窒化金属膜䜜補装眮は、
基板が収容されるチャンバず、
高蒞気圧ハロゲン化物を生成しうる金属で圢成し、前蚘チャンバ内においお前蚘基板に察向する䜍眮に蚭けられる被゚ッチング郚材ず、
前蚘基板ず前蚘被゚ッチング郚材ずの間にハロゲンガスを䟛絊するハロゲンガス䟛絊手段ず、
前蚘基板ず前蚘被゚ッチング郚材ずの間に窒玠ガスを䟛絊する窒玠ガス䟛絊手段ず、
前蚘チャンバの内郚をプラズマ化しおハロゲンガスプラズマを発生させるプラズマ発生手段ず、
前蚘基板の枩床を前蚘被゚ッチング郚材の枩床よりも䜎くさせる枩床制埡手段ずを有し、
前蚘基板に金属窒化物を成膜するこずを特城ずする。
An apparatus for producing a metal nitride film according to an eighteenth aspect of the invention for solving the above object is as follows:
A chamber containing a substrate;
A member to be etched, formed of a metal capable of generating a high vapor pressure halide, and provided in a position facing the substrate in the chamber;
Halogen gas supply means for supplying a halogen gas between the substrate and the member to be etched;
Nitrogen gas supply means for supplying nitrogen gas between the substrate and the member to be etched;
Plasma generating means for generating halogen gas plasma by converting the inside of the chamber into plasma;
Temperature control means for lowering the temperature of the substrate lower than the temperature of the member to be etched,
A metal nitride film is formed on the substrate.

䞊蚘目的を解決する第の発明に係る窒化金属膜䜜補装眮は、
基板が収容されるチャンバず、
高蒞気圧ハロゲン化物を生成しうる金属で圢成し、前蚘チャンバ内においお前蚘基板に察向する䜍眮に蚭けられる被゚ッチング郚材ず、
前蚘基板ず前蚘被゚ッチング郚材ずの間にハロゲンガスを䟛絊するハロゲンガス䟛絊手段ず、
前蚘基板ず前蚘被゚ッチング郚材ずの間に窒玠ガスを䟛絊する窒玠ガス䟛絊手段ず、
前蚘チャンバの内郚をプラズマ化しおハロゲンガスプラズマ及び窒玠ガスプラズマを発生させ、前蚘ハロゲンガスプラズマで前蚘被゚ッチング郚材を゚ッチングするこずにより前蚘被゚ッチング郚材に含たれる金属成分ずハロゲンガスずの第の前駆䜓を生成し、前蚘窒玠ガスプラズマで前蚘被゚ッチング郚材を゚ッチングするこずにより前蚘被゚ッチング郚材に含たれる金属成分ず窒玠ガスずの第の前駆䜓を生成するず共に、ハロゲン化金属である前蚘第の前駆䜓を前蚘窒玠ガスプラズマにより金属窒化物である前蚘第の前駆䜓に倉化させるプラズマ発生手段ず、
前蚘基板の枩床を前蚘被゚ッチング郚材の枩床よりも䜎くするこずにより、前蚘第の前駆䜓の金属成分及び前蚘第の前駆䜓を前蚘基板に成膜させるず共に、成膜された前蚘金属成分を前蚘窒玠ガスプラズマにより金属窒化物に倉化させる枩床制埡手段ずを有し、
前蚘基板に金属窒化物を成膜するこずを特城ずする。
A metal nitride film manufacturing apparatus according to a nineteenth invention for solving the above-described object is
A chamber containing a substrate;
A member to be etched, formed of a metal capable of generating a high vapor pressure halide, and provided in a position facing the substrate in the chamber;
Halogen gas supply means for supplying a halogen gas between the substrate and the member to be etched;
Nitrogen gas supply means for supplying nitrogen gas between the substrate and the member to be etched;
The inside of the chamber is turned into plasma to generate halogen gas plasma and nitrogen gas plasma, and the member to be etched is etched with the halogen gas plasma, whereby a first component of the metal component and halogen gas contained in the member to be etched is obtained. A precursor is generated, and a second precursor of a metal component and nitrogen gas contained in the member to be etched is generated by etching the member to be etched with the nitrogen gas plasma, and the metal halide is the metal halide. Plasma generating means for changing the first precursor to the second precursor which is a metal nitride by the nitrogen gas plasma;
By making the temperature of the substrate lower than the temperature of the member to be etched, the metal component of the first precursor and the second precursor are formed on the substrate, and the formed metal component And a temperature control means for changing the metal nitride into a metal nitride by the nitrogen gas plasma,
A metal nitride film is formed on the substrate.

䞊蚘目的を解決する第の発明に係る窒化金属膜䜜補装眮は、
基板が収容されるチャンバず、
高蒞気圧ハロゲン化物を生成しうる金属で圢成し、前蚘チャンバ内においお前蚘基板に察向する䜍眮に蚭けられる被゚ッチング郚材ず、
前蚘基板ず前蚘被゚ッチング郚材ずの間にハロゲンガスを䟛絊するハロゲンガス䟛絊手段ず、
前蚘基板ず前蚘被゚ッチング郚材ずの間に窒玠ガスを䟛絊する窒玠ガス䟛絊手段ず、
前蚘チャンバの内郚をプラズマ化しおハロゲンガスプラズマを発生させ、前蚘ハロゲンガスプラズマで前蚘被゚ッチング郚材を゚ッチングするこずにより前蚘被゚ッチング郚材に含たれる金属成分ずハロゲンガスずの前駆䜓を生成し、ハロゲン化金属である前蚘前駆䜓を前蚘窒玠ガスにより窒化しお金属窒化物に倉化させるプラズマ発生手段ず、
前蚘基板の枩床を前蚘被゚ッチング郚材の枩床よりも䜎くするこずにより、前蚘前駆䜓の金属成分及び前蚘金属窒化物を前蚘基板に成膜させるず共に、成膜された前蚘金属成分を前蚘窒玠ガスにより金属窒化物に倉化させる枩床制埡手段ずを有し、
前蚘基板に金属窒化物を成膜するこずを特城ずする。
A metal nitride film manufacturing apparatus according to a twentieth invention for solving the above-mentioned object is
A chamber containing a substrate;
A member to be etched, formed of a metal capable of generating a high vapor pressure halide, and provided in a position facing the substrate in the chamber;
Halogen gas supply means for supplying a halogen gas between the substrate and the member to be etched;
Nitrogen gas supply means for supplying nitrogen gas between the substrate and the member to be etched;
The inside of the chamber is turned into plasma to generate halogen gas plasma, and the member to be etched is etched with the halogen gas plasma to generate a precursor of a metal component and a halogen gas contained in the member to be etched. Plasma generating means for nitriding the precursor which is a metal phosphide with the nitrogen gas to convert it into a metal nitride;
By making the temperature of the substrate lower than the temperature of the member to be etched, the metal component of the precursor and the metal nitride are formed on the substrate, and the formed metal component is formed by the nitrogen gas. Temperature control means for changing to metal nitride,
A metal nitride film is formed on the substrate.

䞊蚘目的を解決する第の発明に係る窒化金属膜䜜補装眮は、第ないし第の発明に係る窒化金属膜䜜補装眮のいずれかにおいお、
前蚘ハロゲンガス䟛絊手段及び前蚘窒玠ガス䟛絊手段は独立した䟛絊手段であるこずを特城ずする。
A metal nitride film manufacturing apparatus according to a twenty-first invention for solving the above object is any one of the metal nitride film manufacturing apparatuses according to the seventeenth to twentieth inventions.
The halogen gas supply means and the nitrogen gas supply means are independent supply means.

䞊蚘目的を解決する第の発明に係る窒化金属膜䜜補装眮は、第ないし第の発明に係る窒化金属膜䜜補装眮のいずれかにおいお、
前蚘ハロゲンガス䟛絊手段及び窒玠ガス䟛絊手段を䞀䜓にしお䞀぀の䟛絊手段から前蚘ハロゲンガス及び窒玠ガスを䟛絊するこずを特城ずする。
A metal nitride film manufacturing apparatus according to a twenty-second invention for solving the above object is any one of the metal nitride film manufacturing apparatuses according to the seventeenth to twentieth inventions.
The halogen gas supply unit and the nitrogen gas supply unit are integrated to supply the halogen gas and the nitrogen gas from one supply unit.

䞊蚘目的を解決する第の発明に係る窒化金属膜䜜補装眮は、第たたは第の発明に係る窒化金属膜䜜補装眮においお、
曎に、前蚘ハロゲンガス䟛絊手段によりハロゲンガスを第所定時間䟛絊した埌に前蚘窒玠ガス䟛絊手段により窒玠ガスを第所定時間䟛絊するガス䟛絊制埡手段を曎に備えたこずを特城ずする。
A metal nitride film manufacturing apparatus according to a twenty-third invention for solving the above object is the metal nitride film manufacturing apparatus according to the twenty-first or twenty-second invention.
The apparatus further comprises gas supply control means for supplying nitrogen gas by the nitrogen gas supply means for a second predetermined time after the halogen gas is supplied by the halogen gas supply means for a first predetermined time.

䞊蚘目的を解決する第の発明に係る窒化金属膜䜜補装眮は、第たたは第の発明に係る窒化金属膜䜜補装眮においお、
曎に、前蚘ハロゲンガス䟛絊手段によりハロゲンガスを第所定時間䟛絊した埌に前蚘窒玠ガス䟛絊手段により窒玠ガスを第所定時間䟛絊する順序を亀互に繰り返すガス䟛絊制埡手段を備えたこずを特城ずする。
A metal nitride film manufacturing apparatus according to a twenty-fourth invention for solving the above object is the metal nitride film manufacturing apparatus according to the twenty-first or twenty-second invention.
The apparatus further comprises gas supply control means for alternately repeating the order of supplying nitrogen gas for a second predetermined time by the nitrogen gas supply means after the halogen gas is supplied by the halogen gas supply means for a first predetermined time. .

䞊蚘目的を解決する第の発明に係る窒化金属膜䜜補装眮は、第たたは第の発明に係る窒化金属膜䜜補装眮においお、
曎に、前蚘ハロゲンガスず前蚘窒玠ガスずを同時に䟛絊するガス䟛絊制埡手段を備えたこずを特城ずする。
A metal nitride film manufacturing apparatus according to a twenty-fifth invention for solving the above object is the metal nitride film manufacturing apparatus according to the twenty-first or twenty-second invention,
Further, the present invention is characterized in that gas supply control means for simultaneously supplying the halogen gas and the nitrogen gas is provided.

䞊蚘目的を解決する第の発明に係る窒化金属膜䜜補装眮は、
基板が収容されるチャンバず、
前蚘チャンバ内においお前蚘基板に察向する䜍眮に蚭けられる金属補の被゚ッチング郚材ず、
前蚘チャンバの倖郚に蚭けられ、窒玠ガスをプラズマ化しお窒玠ガスプラズマを発生させるず共に圓該窒玠ガスプラズマをチャンバ内に䟛絊するプラズマ発生手段ず、
前蚘基板の枩床を前蚘被゚ッチング郚材の枩床よりも䜎くさせる枩床制埡手段ずを有し、
前蚘基板に金属窒化物を成膜するこずを特城ずする。
A metal nitride film manufacturing apparatus according to a twenty-sixth aspect of the present invention for solving the above-described object is
A chamber containing a substrate;
A metal member to be etched provided at a position facing the substrate in the chamber;
Plasma generating means provided outside the chamber, generating nitrogen gas plasma by converting nitrogen gas into plasma, and supplying the nitrogen gas plasma into the chamber;
Temperature control means for lowering the temperature of the substrate lower than the temperature of the member to be etched,
A metal nitride film is formed on the substrate.

䞊蚘目的を解決する第の発明に係る窒化金属膜䜜補装眮は、
基板が収容されるチャンバず、
高蒞気圧ハロゲン化物を生成しうる金属で圢成し、前蚘チャンバ内においお前蚘基板に察向する䜍眮に蚭けられる被゚ッチング郚材ず、
前蚘基板ず前蚘被゚ッチング郚材ずの間にハロゲンガスを䟛絊するハロゲンガス䟛絊手段ず、
前蚘チャンバの内郚をプラズマ化しおハロゲンガスプラズマを発生させる第のプラズマ発生手段ず、
前蚘チャンバの倖郚に蚭けられ、窒玠ガスをプラズマ化しお窒玠ガスプラズマを発生させるず共に圓該窒玠ガスプラズマをチャンバ内に䟛絊する第のプラズマ発生手段ず、
前蚘基板の枩床を前蚘被゚ッチング郚材の枩床よりも䜎くさせる枩床制埡手段ずを有し、
前蚘基板に金属窒化物を成膜するこずを特城ずする。
A metal nitride film manufacturing apparatus according to a twenty-seventh aspect of the invention for solving the above-described object is
A chamber containing a substrate;
A member to be etched, formed of a metal capable of generating a high vapor pressure halide, and provided in a position facing the substrate in the chamber;
Halogen gas supply means for supplying a halogen gas between the substrate and the member to be etched;
First plasma generating means for generating halogen gas plasma by converting the inside of the chamber into plasma;
A second plasma generating means provided outside the chamber for generating nitrogen gas plasma by converting nitrogen gas into plasma, and supplying the nitrogen gas plasma into the chamber;
Temperature control means for lowering the temperature of the substrate lower than the temperature of the member to be etched,
A metal nitride film is formed on the substrate.

䞊蚘目的を解決する第の発明に係る窒化金属膜䜜補装眮は、
基板が収容されるチャンバず、
高蒞気圧ハロゲン化物を生成しうる金属で圢成し、前蚘チャンバ内においお前蚘基板に察向する䜍眮に蚭けられる被゚ッチング郚材ず、
前蚘基板ず前蚘被゚ッチング郚材ずの間に窒玠ガスを䟛絊する窒玠ガス䟛絊手段ず、
前蚘チャンバの内郚をプラズマ化しお窒玠ガスプラズマを発生させる第のプラズマ発生手段ず、
前蚘チャンバの倖郚に蚭けられ、ハロゲンガスをプラズマ化しおハロゲンガスプラズマを発生させるず共に圓該ハロゲンガスプラズマをチャンバ内に䟛絊する第のプラズマ発生手段ず、
前蚘基板の枩床を前蚘被゚ッチング郚材の枩床よりも䜎くさせる枩床制埡手段ずを有し、
前蚘基板に金属窒化物を成膜するこずを特城ずする。
A metal nitride film manufacturing apparatus according to a twenty-eighth aspect of the present invention for solving the above object is
A chamber containing a substrate;
A member to be etched, formed of a metal capable of generating a high vapor pressure halide, and provided in a position facing the substrate in the chamber;
Nitrogen gas supply means for supplying nitrogen gas between the substrate and the member to be etched;
First plasma generating means for generating nitrogen gas plasma by converting the inside of the chamber into plasma;
A second plasma generating means provided outside the chamber and generating halogen gas plasma by converting the halogen gas into plasma, and supplying the halogen gas plasma into the chamber;
Temperature control means for lowering the temperature of the substrate lower than the temperature of the member to be etched,
A metal nitride film is formed on the substrate.

䞊蚘目的を解決する第の発明に係る窒化金属膜䜜補装眮は、
基板が収容されるチャンバず、
高蒞気圧ハロゲン化物を生成しうる金属で圢成し、前蚘チャンバ内においお前蚘基板に察向する䜍眮に蚭けられる被゚ッチング郚材ず、
前蚘チャンバの倖郚に蚭けられ、ハロゲンガスおよび窒玠ガスをプラズマ化しおハロゲンガスプラズマおよび窒玠ガスプラズマを発生させるず共に圓該ハロゲンガスプラズマおよび窒玠ガスプラズマをチャンバ内に䟛絊するプラズマ発生手段ず、
前蚘基板の枩床を前蚘被゚ッチング郚材の枩床よりも䜎くさせる枩床制埡手段ずを有し、
前蚘基板に金属窒化物を成膜するこずを特城ずする。
A metal nitride film manufacturing apparatus according to a twenty-ninth aspect of the invention for solving the above-described object is
A chamber containing a substrate;
A member to be etched, formed of a metal capable of generating a high vapor pressure halide, and provided in a position facing the substrate in the chamber;
Plasma generating means provided outside the chamber and generating halogen gas plasma and nitrogen gas plasma by converting the halogen gas and nitrogen gas into plasma, and supplying the halogen gas plasma and nitrogen gas plasma into the chamber;
Temperature control means for lowering the temperature of the substrate lower than the temperature of the member to be etched,
A metal nitride film is formed on the substrate.

䞊蚘目的を解決する第の発明に係る窒化金属膜䜜補装眮は、
基板が収容されるチャンバず、
高蒞気圧ハロゲン化物を生成しうる金属で圢成し、前蚘チャンバ内においお前蚘基板に察向する䜍眮に蚭けられる被゚ッチング郚材ず、
前蚘チャンバの倖郚に蚭けられ、ハロゲンガスをプラズマ化しおハロゲンガスプラズマを発生させるず共に圓該ハロゲンガスプラズマをチャンバ内に䟛絊する第のプラズマ発生手段ず、
前蚘チャンバの倖郚に蚭けられ、窒玠ガスをプラズマ化しお窒玠ガスプラズマを発生させるず共に圓該窒玠ガスプラズマをチャンバ内に䟛絊する第のプラズマ発生手段ず、
前蚘基板の枩床を前蚘被゚ッチング郚材の枩床よりも䜎くさせる枩床制埡手段ずを有し、
前蚘基板に金属窒化物を成膜するこずを特城ずする。
A metal nitride film manufacturing apparatus according to a thirtieth invention for solving the above object is as follows:
A chamber containing a substrate;
A member to be etched, formed of a metal capable of generating a high vapor pressure halide, and provided in a position facing the substrate in the chamber;
A first plasma generating means provided outside the chamber for generating halogen gas plasma by converting the halogen gas into plasma, and supplying the halogen gas plasma into the chamber;
A second plasma generating means provided outside the chamber for generating nitrogen gas plasma by converting nitrogen gas into plasma, and supplying the nitrogen gas plasma into the chamber;
Temperature control means for lowering the temperature of the substrate lower than the temperature of the member to be etched,
A metal nitride film is formed on the substrate.

䞊蚘目的を解決する第の発明に係る窒化金属膜䜜補装眮は、
基板が収容されるチャンバず、
高蒞気圧ハロゲン化物を生成しうる金属で圢成し、前蚘チャンバ内においお前蚘基板に察向する䜍眮に蚭けられる被゚ッチング郚材ず、
前蚘チャンバの倖郚に蚭けられ、ハロゲンガスをプラズマ化しおハロゲンガスプラズマを発生させるず共に圓該ハロゲンガスプラズマをチャンバ内に䟛絊するプラズマ発生手段ず、
前蚘基板ず前蚘被゚ッチング郚材ずの間に窒玠ガスを䟛絊する窒玠ガス䟛絊手段ず、
前蚘基板の枩床を前蚘被゚ッチング郚材の枩床よりも䜎くさせる枩床制埡手段ずを有し、
前蚘基板に金属窒化物を成膜するこずを特城ずする。
A metal nitride film manufacturing apparatus according to a thirty-first invention for solving the above object is as follows:
A chamber containing a substrate;
A member to be etched, formed of a metal capable of generating a high vapor pressure halide, and provided in a position facing the substrate in the chamber;
Plasma generating means provided outside the chamber, generating halogen gas plasma by converting the halogen gas into plasma, and supplying the halogen gas plasma into the chamber;
Nitrogen gas supply means for supplying nitrogen gas between the substrate and the member to be etched;
Temperature control means for lowering the temperature of the substrate lower than the temperature of the member to be etched,
A metal nitride film is formed on the substrate.

䞊蚘目的を解決する第の発明に係る窒化金属膜䜜補装眮は、第ないし第、第、第の発明に係る窒化金属膜䜜補装眮のいずれかにおいお、
前蚘窒玠ガス䟛絊手段は、前蚘基板の呚囲に配眮されるリング状パむプのガス流路ず、圓該ガス流路に蚭けられ窒玠ガスを基板に向かっお噎射するノズルずからなるこずを特城ずする。
A metal nitride film manufacturing apparatus according to a thirty-second invention for solving the above object is any one of the sixteenth to twenty-fifth, twenty-eighth, and thirty-first invention metal nitride film manufacturing apparatuses.
The nitrogen gas supply means includes a gas flow path of a ring-shaped pipe disposed around the substrate and a nozzle provided in the gas flow path for injecting nitrogen gas toward the substrate.

䞊蚘目的を解決する第の発明に係る窒化金属膜䜜補装眮は、第、第たたは第の発明に係る窒化金属膜䜜補装眮のいずれかにおいお、
前蚘窒玠ガス䟛絊手段は、前蚘基板の呚囲に配眮される導電䜓からなるリング状パむプのガス流路ず、圓該ガス流路に蚭けられ前蚘窒玠ガスを基板に向かっお噎射するノズルずからなるず共に、絊電により前蚘基板ずの間に容量結合型の窒玠ガスプラズマを発生させるこずを特城ずする。
A metal nitride film manufacturing apparatus according to a thirty-third invention for solving the above object is any one of the metal nitride film manufacturing apparatuses according to the sixteenth, seventeenth and nineteenth inventions.
The nitrogen gas supply means includes a gas flow path of a ring-shaped pipe made of a conductor disposed around the substrate, and a nozzle that is provided in the gas flow path and injects the nitrogen gas toward the substrate. In addition, a capacitively coupled nitrogen gas plasma is generated between the substrate and the substrate by feeding.

䞊蚘目的を解決する第の発明に係る窒化金属膜䜜補装眮は、第、第たたは第の発明に係る窒化金属膜䜜補装眮のいずれかにおいお、
前蚘窒玠ガス䟛絊手段は、前蚘基板の呚囲に配眮される導電䜓からなるリング状パむプのガス流路ず、圓該ガス流路に蚭けられ前蚘窒玠ガスを基板に向かっお噎射するノズルずからなるず共に、前蚘リング状パむプの呚方向の少なくずも䞀箇所が絶瞁されるず共に、絊電により前蚘基板ずの間に誘導結合型の窒玠ガスプラズマを発生させるこずを特城ずする。
A metal nitride film manufacturing apparatus according to a thirty-fourth invention for solving the above object is any one of the metal nitride film manufacturing apparatuses according to the sixteenth, seventeenth, or nineteenth invention.
The nitrogen gas supply means includes a gas flow path of a ring-shaped pipe made of a conductor disposed around the substrate, and a nozzle that is provided in the gas flow path and injects the nitrogen gas toward the substrate. In addition, at least one place in the circumferential direction of the ring-shaped pipe is insulated, and inductively coupled nitrogen gas plasma is generated between the substrate and the substrate by feeding.

䞊蚘目的を解決する第の発明に係る窒化金属膜䜜補装眮は、第ないし第の発明に係る窒化金属膜䜜補装眮のいずれかにおいお、
前蚘金属はタンタル、タングステン、チタン、シリコンからなる矀から遞ばれる少なくずも䞀皮の金属であるこずを特城ずする。
A metal nitride film manufacturing apparatus according to a thirty-fifth aspect of the present invention for solving the above object is any one of the metal nitride film manufacturing apparatuses according to the sixteenth to thirty-fourth aspects of the present invention.
The metal is at least one metal selected from the group consisting of tantalum, tungsten, titanium, and silicon.

䞊蚘目的を解決する第の発明に係る窒化金属膜䜜補装眮は、第ないし第の発明に係る窒化金属膜䜜補装眮のいずれかにおいお、
前蚘ハロゲンは塩玠であるこずを特城ずする。
A metal nitride film production apparatus according to a thirty-sixth aspect of the present invention for solving the above object is any one of the metal nitride film production apparatuses according to the seventeenth to thirty-fifth aspects of the invention.
The halogen is chlorine.

䞊蚘目的を解決する第の発明に係る窒化金属膜䜜補方法は、第ないし第の発明に係る窒化金属膜䜜補方法のいずれかにおいお、
前蚘金属は銅であるこずを特城ずする。
A metal nitride film manufacturing method according to a thirty-seventh aspect of the present invention for solving the above object is any one of the metal nitride film manufacturing methods according to the first to fifteenth inventions.
The metal is copper.

䞊蚘目的を解決する第の発明に係る窒化金属膜䜜補装眮は、第ないし第の発明に係る窒化金属膜䜜補装眮のいずれかにおいお、
前蚘金属は銅であるこずを特城ずする。
A metal nitride film manufacturing apparatus according to a thirty-eighth invention for solving the above object is any one of the metal nitride film manufacturing apparatuses according to the sixteenth to thirty-sixth inventions.
The metal is copper.

〔請求項〕に蚘茉する発明では、基板が収容されるチャンバの内郚に䟛絊したハロゲンガスをプラズマ化しおハロゲンガスプラズマを発生させ、
高蒞気圧ハロゲン化物を生成しうる金属で圢成した被゚ッチング郚材を前蚘ハロゲンガスプラズマで゚ッチングするこずにより金属成分ずハロゲンガスずの前駆䜓を圢成し、
前蚘基板の枩床を前蚘被゚ッチング郚材の枩床よりも䜎くするこずにより前蚘前駆䜓の金属成分を前蚘基板に成膜させるずきに
曎にチャンバ内に䟛絊した窒玠ガスをプラズマ化しお窒玠ガスプラズマを発生させ、前蚘基板に金属窒化物を成膜するこずずしたので、
高い結晶性及び組成が安定した均䞀な膜質を有する窒化金属膜を成膜するこずができる。たた、所望の膜特性を有する窒化金属膜を成膜するこずができるため、䟋えばバリアメタル膜、工具などの衚面硬化凊理、各皮郚品の装食、耐食性を必芁ずする化孊品甚容噚の衚面凊理膜等ずしお適甚するこずができる。
In the invention described in [Claim 1], the halogen gas supplied into the chamber in which the substrate is accommodated is turned into plasma to generate halogen gas plasma,
A member to be etched formed of a metal capable of generating a high vapor pressure halide is etched with the halogen gas plasma to form a precursor of a metal component and a halogen gas,
By making the temperature of the substrate lower than the temperature of the member to be etched, when the metal component of the precursor is formed on the substrate, the nitrogen gas supplied into the chamber is further converted into plasma to generate nitrogen gas plasma. Since the metal nitride film is formed on the substrate,
A metal nitride film having a uniform film quality with high crystallinity and a stable composition can be formed. In addition, since a metal nitride film having desired film characteristics can be formed, for example, a surface treatment film of a chemical container that requires surface hardening treatment of a barrier metal film, a tool, decoration of various parts, and corrosion resistance Etc. can be applied.

〔請求項〕に蚘茉する発明では、基板が収容されるチャンバの内郚に䟛絊したハロゲンガスをプラズマ化しおハロゲンガスプラズマを発生させ、
高蒞気圧ハロゲン化物を生成しうる金属で圢成した被゚ッチング郚材を前蚘ハロゲンガスプラズマで゚ッチングするこずにより金属成分ずハロゲンガスずの前駆䜓を圢成し、
前蚘基板の枩床を前蚘被゚ッチング郚材の枩床よりも䜎くするこずにより前蚘前駆䜓の金属成分を前蚘基板に成膜させるずきに、
曎にチャンバの内郚に窒玠ガスを䟛絊し、前蚘基板に金属窒化物を成膜するこずずしたので、
高い結晶性及び組成が安定した均䞀な膜質を有する窒化金属膜を成膜するこずができる。たた、所望の膜特性を有する窒化金属膜を成膜するこずができるため、䟋えばバリアメタル膜、工具などの衚面硬化凊理、各皮郚品の装食、耐食性を必芁ずする化孊品甚容噚の衚面凊理膜等ずしお適甚するこずができる。曎に、窒玠をプラズマ化するこずなく窒化金属膜を成膜するこずができるため、成膜コストを䜎枛するこずが可胜である。
In the invention described in [Claim 2], the halogen gas supplied into the chamber in which the substrate is accommodated is turned into plasma to generate halogen gas plasma,
A member to be etched formed of a metal capable of generating a high vapor pressure halide is etched with the halogen gas plasma to form a precursor of a metal component and a halogen gas,
When the metal component of the precursor is formed on the substrate by making the temperature of the substrate lower than the temperature of the member to be etched,
Further, nitrogen gas was supplied into the chamber, and metal nitride was formed on the substrate.
A metal nitride film having a uniform film quality with high crystallinity and a stable composition can be formed. In addition, since a metal nitride film having desired film characteristics can be formed, for example, a surface treatment film of a chemical container that requires surface hardening treatment of a barrier metal film, a tool, decoration of various parts, and corrosion resistance Etc. can be applied. Furthermore, since the metal nitride film can be formed without turning nitrogen into plasma, the film formation cost can be reduced.

〔請求項〕に蚘茉する発明では、〔請求項〕に蚘茉する発明においお、
前蚘窒玠ガスプラズマが以䞋の工皋、工皋、工皋のうち、少なくずも䞀぀の工皋を行うこずにより前蚘基板に金属窒化物を成膜するこずずしたので、
高い結晶性及び組成が安定した均䞀な膜質を有する窒化金属膜を成膜するこずができる。たた、所望の膜特性を有する窒化金属膜を成膜するこずができるため、䟋えばバリアメタル膜、工具などの衚面硬化凊理、各皮郚品の装食、耐食性を必芁ずする化孊品甚容噚の衚面凊理膜等ずしお適甚するこずができる。
工皋前蚘基板䞊に既に成膜された金属成分を窒化する工皋。
工皋金属成分ずハロゲンガスずの前蚘前駆䜓を窒化しお金属成分ず窒玠ガスずの前駆䜓にする工皋。
工皋前蚘被゚ッチング郚材を゚ッチングするこずにより金属成分ず窒玠ガスずの前駆䜓を圢成する工皋。
In the invention described in [Claim 3], in the invention described in [Claim 1],
Since the nitrogen gas plasma performs at least one of the following steps A, B, and C, a metal nitride film is formed on the substrate.
A metal nitride film having a uniform film quality with high crystallinity and a stable composition can be formed. In addition, since a metal nitride film having desired film characteristics can be formed, for example, a surface treatment film of a chemical container that requires surface hardening treatment of a barrier metal film, a tool, decoration of various parts, and corrosion resistance Etc. can be applied.
Step A: Step of nitriding a metal component already formed on the substrate.
Step B: A step of nitriding the precursor of the metal component and the halogen gas to form a precursor of the metal component and the nitrogen gas.
Step C: A step of forming a precursor of a metal component and nitrogen gas by etching the member to be etched.

〔請求項〕に蚘茉する発明では、〔請求項〕に蚘茉する発明においお、
前蚘窒玠ガスが以䞋の工皋、工皋のうち、少なくずも䞀぀の工皋を行うこずにより前蚘基板に金属窒化物を成膜するこずずしたので、
高い結晶性及び組成が安定した均䞀な膜質を有する窒化金属膜を成膜するこずができる。たた、所望の膜特性を有する窒化金属膜を成膜するこずができるため、䟋えばバリアメタル膜、工具などの衚面硬化凊理、各皮郚品の装食、耐食性を必芁ずする化孊品甚容噚の衚面凊理膜等ずしお適甚するこずができる。曎に、窒玠をプラズマ化するこずなく窒化金属膜を成膜するこずができるため、成膜コストを䜎枛するこずが可胜である。
工皋前蚘基板䞊に既に成膜された金属成分を窒化する工皋。
工皋金属成分ずハロゲンガスずの前蚘前駆䜓を窒化しお金属成分ず窒玠ガスずの前駆䜓にする工皋。
In the invention described in [Claim 4], in the invention described in [Claim 2],
Since the nitrogen gas forms at least one of the following steps A and B to form a metal nitride film on the substrate,
A metal nitride film having a uniform film quality with high crystallinity and a stable composition can be formed. In addition, since a metal nitride film having desired film characteristics can be formed, for example, a surface treatment film of a chemical container that requires surface hardening treatment of a barrier metal film, a tool, decoration of various parts, and corrosion resistance Etc. can be applied. Furthermore, since the metal nitride film can be formed without turning nitrogen into plasma, the film formation cost can be reduced.
Step A: Step of nitriding a metal component already formed on the substrate.
Step B: A step of nitriding the precursor of the metal component and the halogen gas to form a precursor of the metal component and the nitrogen gas.

〔請求項〕に蚘茉する発明では、〔請求項〕ないし〔請求項〕のいずれかに蚘茉する発明においお、
前蚘ハロゲンガス及び窒玠ガスを独立した䟛絊手段からそれぞれチャンバの内郚に䟛絊するこずずしたので、
各䜿甚ガスの䟛絊を高い粟床で制埡するず共に、各䜿甚ガスの玔床を保぀こずができる。
In the invention described in [Claim 5], in the invention described in any one of [Claim 1] to [Claim 4],
Since the halogen gas and nitrogen gas are supplied to the inside of the chamber from independent supply means,
The supply of each gas used can be controlled with high accuracy, and the purity of each gas used can be maintained.

〔請求項〕に蚘茉する発明では、〔請求項〕ないし〔請求項〕のいずれかに蚘茉する発明においお、
前蚘ハロゲンガス及び窒玠ガスを同じの䞀぀の䟛絊手段からチャンバの内郚に䟛絊するこずずしたので、
ガス配管等の蚭備をコンパクトにしお、装眮たわりの自由床を向䞊させるこずができる。
In the invention described in [Claim 6], in the invention described in any one of [Claim 1] to [Claim 4],
Since the halogen gas and nitrogen gas are supplied into the chamber from the same one supply means,
Equipment such as gas piping can be made compact, and the degree of freedom around the device can be improved.

〔請求項〕に蚘茉する発明では、〔請求項〕たたは〔請求項〕に蚘茉する発明においお、
ハロゲンガスを䟛絊した埌に窒玠ガスを䟛絊するこずずしたので、
各䜿甚ガスの䟛絊を簡䟿に制埡するこずができる。
In the invention described in [Claim 7], in the invention described in [Claim 5] or [Claim 6],
Since we decided to supply nitrogen gas after supplying halogen gas,
Supply of each use gas can be controlled easily.

〔請求項〕に蚘茉する発明では、〔請求項〕たたは〔請求項〕に蚘茉する発明においお、
ハロゲンガスを䟛絊した埌に窒玠ガスを䟛絊する順序を亀互に繰り返すこずずしたので、
〔請求項〕に蚘茉する発明の効果に加えお、曎に、厚い膜厚を有する膜の成膜に察応するこずができる。
In the invention described in [Claim 8], in the invention described in [Claim 5] or [Claim 6],
Since the order of supplying nitrogen gas after supplying halogen gas was repeated alternately,
In addition to the effects of the invention described in [Claim 7], it is possible to cope with the formation of a film having a larger film thickness.

〔請求項〕に蚘茉する発明では、〔請求項〕たたは〔請求項〕に蚘茉する発明においお、
ハロゲンガスず窒玠ガスずを同時に䟛絊するこずずしたので、
成膜速床を向䞊させるこずができる。
In the invention described in [Claim 9], in the invention described in [Claim 5] or [Claim 6],
Because we decided to supply halogen gas and nitrogen gas at the same time,
The deposition rate can be improved.

〔請求項〕に蚘茉する発明では、〔請求項〕ないし〔請求項〕のいずれかに蚘茉する発明においお、
前蚘ハロゲンガスプラズマたたは前蚘窒玠ガスプラズマの少なくずも䞀方を誘導結合型プラズマずしたので、
珟状の装眮構成を利甚しお本発明を実斜するこずができる。
In the invention described in [Claim 10], in the invention described in any one of [Claim 1] to [Claim 9],
Since at least one of the halogen gas plasma or the nitrogen gas plasma is inductively coupled plasma,
The present invention can be implemented using the current apparatus configuration.

〔請求項〕に蚘茉する発明では、〔請求項〕ないし〔請求項〕のいずれかに蚘茉する発明においお、
前蚘ハロゲンガスプラズマたたは前蚘窒玠ガスプラズマの少なくずも䞀方を容量結合型プラズマずしたので、
珟状の装眮構成を利甚しお本発明を実斜するこずができる。
In the invention described in [Claim 11], in the invention described in any one of [Claim 1] to [Claim 9],
Since at least one of the halogen gas plasma or the nitrogen gas plasma is a capacitively coupled plasma,
The present invention can be implemented using the current apparatus configuration.

〔請求項〕に蚘茉する発明では、〔請求項〕ないし〔請求項〕のいずれかに蚘茉する発明においお、
前蚘ハロゲンガスプラズマたたは前蚘窒玠ガスプラズマの少なくずも䞀方を誘導結合型プラズマず容量結合型プラズマずからなるハむブリッドプラズマずしたので、
珟状の装眮構成を利甚しお本発明を実斜するこずができる。曎に、誘導結合型プラズマの有する高い電子密床ず電子枩床及び容量結合型プラズマの有する䜎い電子密床ず電子枩床の䞭間状態のプラズマずするこずができ、電子密床や電子枩床等を制埡したプラズマにより成膜するこずができる。
In the invention described in [Claim 12], in the invention described in any one of [Claim 1] to [Claim 9],
Since at least one of the halogen gas plasma or the nitrogen gas plasma is a hybrid plasma composed of inductively coupled plasma and capacitively coupled plasma,
The present invention can be implemented using the current apparatus configuration. Furthermore, the plasma can be in the intermediate state between the high electron density and electron temperature of the inductively coupled plasma and the low electron density and electron temperature of the capacitively coupled plasma. Can be membrane.

〔請求項〕に蚘茉する発明では、〔請求項〕ないし〔請求項〕のいずれかに蚘茉する発明においお、
前蚘ハロゲンガスプラズマたたは前蚘窒玠ガスプラズマの少なくずも䞀方を、予めチャンバの倖郚でプラズマ化されおチャンバ内に䟛絊されたプラズマずしたので、
チャンバ内に発生したプラズマによる薄膜の損傷を䜎枛たたは防止するこずができる。
In the invention described in [Claim 13], in the invention described in any one of [Claim 1] to [Claim 12],
Since at least one of the halogen gas plasma or the nitrogen gas plasma is converted into plasma that has been converted into plasma outside the chamber and supplied into the chamber,
Damage to the thin film due to plasma generated in the chamber can be reduced or prevented.

〔請求項〕に蚘茉する発明では、〔請求項〕ないし〔請求項〕のいずれかに蚘茉する発明においお、
前蚘金属をタンタル、タングステン、チタン、シリコンからなる矀から遞ばれる少なくずも䞀皮の金属ずしたので、
所望の薄膜を䜜補し、䟋えばバリアメタル膜等に応甚するこずが可胜ずなる。
In the invention described in [Claim 14], in the invention described in any one of [Claim 1] to [Claim 13],
Since the metal is at least one metal selected from the group consisting of tantalum, tungsten, titanium, and silicon,
A desired thin film can be produced and applied to, for example, a barrier metal film.

〔請求項〕に蚘茉する発明では、〔請求項〕ないし〔請求項〕のいずれかに蚘茉する発明においお、
前蚘ハロゲンを塩玠ずしたので、
成膜速床を向䞊させるず共に成膜コストを䜎枛するこずができる。
In the invention described in [Claim 15], in the invention described in any one of [Claim 1] to [Claim 14],
Since the halogen is chlorine,
The deposition rate can be improved and the deposition cost can be reduced.

〔請求項〕に蚘茉する発明では、基板が収容されるチャンバず、
前蚘チャンバ内においお前蚘基板に察向する䜍眮に蚭けられる金属補の被゚ッチング郚材ず、
前蚘基板ず前蚘被゚ッチング郚材ずの間に窒玠ガスを䟛絊する窒玠ガス䟛絊手段ず、
前蚘チャンバの内郚をプラズマ化しお窒玠ガスプラズマを発生させ、圓該窒玠ガスプラズマで前蚘被゚ッチング郚材を゚ッチングするこずにより前蚘被゚ッチング郚材に含たれる金属成分ず窒玠ガスずの前駆䜓を生成するプラズマ発生手段ず、
前蚘基板の枩床を前蚘被゚ッチング郚材の枩床よりも䜎くするこずにより金属窒化物である前蚘前駆䜓を基板に成膜させる枩床制埡手段ずを備えたこずずしたので、
高い結晶性及び組成が安定した均䞀な膜質を有する窒化金属膜を成膜するこずができる。たた、所望の膜特性を有する窒化金属膜を成膜するこずができるため、䟋えばバリアメタル膜、工具などの衚面硬化凊理、各皮郚品の装食、耐食性を必芁ずする化孊品甚容噚の衚面凊理膜等ずしお適甚するこずができる。
In the invention described in (Claim 16), a chamber in which the substrate is accommodated,
A metal member to be etched provided at a position facing the substrate in the chamber;
Nitrogen gas supply means for supplying nitrogen gas between the substrate and the member to be etched;
Plasma generation that generates nitrogen gas plasma by generating plasma inside the chamber and etching the member to be etched with the nitrogen gas plasma to generate a precursor of a metal component and nitrogen gas contained in the member to be etched. Means,
Since the temperature of the substrate is made lower than the temperature of the member to be etched, the temperature control means for forming the precursor, which is a metal nitride, on the substrate is provided.
A metal nitride film having a uniform film quality with high crystallinity and a stable composition can be formed. In addition, since a metal nitride film having desired film characteristics can be formed, for example, a surface treatment film of a chemical container that requires surface hardening treatment of a barrier metal film, a tool, decoration of various parts, and corrosion resistance Etc. can be applied.

〔請求項〕に蚘茉する発明では、基板が収容されるチャンバず、
高蒞気圧ハロゲン化物を生成しうる金属で圢成し、前蚘チャンバ内においお前蚘基板に察向する䜍眮に蚭けられる被゚ッチング郚材ず、
前蚘基板ず前蚘被゚ッチング郚材ずの間にハロゲンガスを䟛絊するハロゲンガス䟛絊手段ず、
前蚘基板ず前蚘被゚ッチング郚材ずの間に窒玠ガスを䟛絊する窒玠ガス䟛絊手段ず、
前蚘チャンバの内郚をプラズマ化しおハロゲンガスプラズマ及び窒玠ガスプラズマを発生させるプラズマ発生手段ず、
前蚘基板の枩床を前蚘被゚ッチング郚材の枩床よりも䜎くさせる枩床制埡手段ずを有し、
前蚘基板に金属窒化物を成膜するこずずしたので、
高い結晶性及び組成が安定した均䞀な膜質を有する窒化金属膜を成膜するこずができる。たた、所望の膜特性を有する窒化金属膜を成膜するこずができるため、䟋えばバリアメタル膜、工具などの衚面硬化凊理、各皮郚品の装食、耐食性を必芁ずする化孊品甚容噚の衚面凊理膜等ずしお適甚するこずができる。
In the invention described in (Claim 17), a chamber in which the substrate is accommodated;
A member to be etched, formed of a metal capable of generating a high vapor pressure halide, and provided in a position facing the substrate in the chamber;
Halogen gas supply means for supplying a halogen gas between the substrate and the member to be etched;
Nitrogen gas supply means for supplying nitrogen gas between the substrate and the member to be etched;
Plasma generating means for generating halogen gas plasma and nitrogen gas plasma by plasmaizing the inside of the chamber;
Temperature control means for lowering the temperature of the substrate lower than the temperature of the member to be etched,
Since metal nitride was deposited on the substrate,
A metal nitride film having a uniform film quality with high crystallinity and a stable composition can be formed. In addition, since a metal nitride film having desired film characteristics can be formed, for example, a surface treatment film of a chemical container that requires surface hardening treatment of a barrier metal film, a tool, decoration of various parts, and corrosion resistance Etc. can be applied.

〔請求項〕に蚘茉する発明では、基板が収容されるチャンバず、
高蒞気圧ハロゲン化物を生成しうる金属で圢成し、前蚘チャンバ内においお前蚘基板に察向する䜍眮に蚭けられる被゚ッチング郚材ず、
前蚘基板ず前蚘被゚ッチング郚材ずの間にハロゲンガスを䟛絊するハロゲンガス䟛絊手段ず、
前蚘基板ず前蚘被゚ッチング郚材ずの間に窒玠ガスを䟛絊する窒玠ガス䟛絊手段ず、
前蚘チャンバの内郚をプラズマ化しおハロゲンガスプラズマを発生させるプラズマ発生手段ず、
前蚘基板の枩床を前蚘被゚ッチング郚材の枩床よりも䜎くさせる枩床制埡手段ずを有し、
前蚘基板に金属窒化物を成膜するこずずしたので、
高い結晶性及び組成が安定した均䞀な膜質を有する窒化金属膜を成膜するこずができる。たた、所望の膜特性を有する窒化金属膜を成膜するこずができるため、䟋えばバリアメタル膜、工具などの衚面硬化凊理、各皮郚品の装食、耐食性を必芁ずする化孊品甚容噚の衚面凊理膜等ずしお適甚するこずができる。曎に、窒玠をプラズマ化するこずなく窒化金属膜を成膜するこずができるため、成膜コストを䜎枛するこずが可胜である。
In the invention described in (Claim 18), a chamber in which the substrate is accommodated;
A member to be etched, formed of a metal capable of generating a high vapor pressure halide, and provided in a position facing the substrate in the chamber;
Halogen gas supply means for supplying a halogen gas between the substrate and the member to be etched;
Nitrogen gas supply means for supplying nitrogen gas between the substrate and the member to be etched;
Plasma generating means for generating halogen gas plasma by converting the inside of the chamber into plasma;
Temperature control means for lowering the temperature of the substrate lower than the temperature of the member to be etched,
Since metal nitride was deposited on the substrate,
A metal nitride film having a uniform film quality with high crystallinity and a stable composition can be formed. In addition, since a metal nitride film having desired film characteristics can be formed, for example, a surface treatment film of a chemical container that requires surface hardening treatment of a barrier metal film, a tool, decoration of various parts, and corrosion resistance Etc. can be applied. Furthermore, since the metal nitride film can be formed without turning nitrogen into plasma, the film formation cost can be reduced.

〔請求項〕に蚘茉する発明では、基板が収容されるチャンバず、
高蒞気圧ハロゲン化物を生成しうる金属で圢成し、前蚘チャンバ内においお前蚘基板に察向する䜍眮に蚭けられる被゚ッチング郚材ず、
前蚘基板ず前蚘被゚ッチング郚材ずの間にハロゲンガスを䟛絊するハロゲンガス䟛絊手段ず、
前蚘基板ず前蚘被゚ッチング郚材ずの間に窒玠ガスを䟛絊する窒玠ガス䟛絊手段ず、
前蚘チャンバの内郚をプラズマ化しおハロゲンガスプラズマ及び窒玠ガスプラズマを発生させ、前蚘ハロゲンガスプラズマで前蚘被゚ッチング郚材を゚ッチングするこずにより前蚘被゚ッチング郚材に含たれる金属成分ずハロゲンガスずの第の前駆䜓を生成し、前蚘窒玠ガスプラズマで前蚘被゚ッチング郚材を゚ッチングするこずにより前蚘被゚ッチング郚材に含たれる金属成分ず窒玠ガスずの第の前駆䜓を生成するず共に、ハロゲン化金属である前蚘第の前駆䜓を前蚘窒玠ガスプラズマにより金属窒化物である前蚘第の前駆䜓に倉化させるプラズマ発生手段ず、
前蚘基板の枩床を前蚘被゚ッチング郚材の枩床よりも䜎くするこずにより、前蚘第の前駆䜓の金属成分及び前蚘第の前駆䜓を前蚘基板に成膜させるず共に、成膜された前蚘金属成分を前蚘窒玠ガスプラズマにより金属窒化物に倉化させる枩床制埡手段ずを有し、
前蚘基板に金属窒化物を成膜するこずずしたので、
高い結晶性及び組成が安定した均䞀な膜質を有する窒化金属膜を成膜するこずができる。たた、所望の膜特性を有する窒化金属膜を成膜するこずができるため、䟋えばバリアメタル膜、工具などの衚面硬化凊理、各皮郚品の装食、耐食性を必芁ずする化孊品甚容噚の衚面凊理膜等ずしお適甚するこずができる。
In the invention described in (Claim 19), a chamber in which the substrate is accommodated,
A member to be etched, formed of a metal capable of generating a high vapor pressure halide, and provided in a position facing the substrate in the chamber;
Halogen gas supply means for supplying a halogen gas between the substrate and the member to be etched;
Nitrogen gas supply means for supplying nitrogen gas between the substrate and the member to be etched;
The inside of the chamber is turned into plasma to generate halogen gas plasma and nitrogen gas plasma, and the member to be etched is etched with the halogen gas plasma, whereby a first component of the metal component and halogen gas contained in the member to be etched is obtained. A precursor is generated, and a second precursor of a metal component and nitrogen gas contained in the member to be etched is generated by etching the member to be etched with the nitrogen gas plasma, and the metal halide is the metal halide. Plasma generating means for changing the first precursor to the second precursor which is a metal nitride by the nitrogen gas plasma;
By making the temperature of the substrate lower than the temperature of the member to be etched, the metal component of the first precursor and the second precursor are formed on the substrate, and the formed metal component And a temperature control means for changing the metal nitride into a metal nitride by the nitrogen gas plasma,
Since metal nitride was deposited on the substrate,
A metal nitride film having a uniform film quality with high crystallinity and a stable composition can be formed. In addition, since a metal nitride film having desired film characteristics can be formed, for example, a surface treatment film of a chemical container that requires surface hardening treatment of a barrier metal film, a tool, decoration of various parts, and corrosion resistance Etc. can be applied.

〔請求項〕に蚘茉する発明では、基板が収容されるチャンバず、
高蒞気圧ハロゲン化物を生成しうる金属で圢成し、前蚘チャンバ内においお前蚘基板に察向する䜍眮に蚭けられる被゚ッチング郚材ず、
前蚘基板ず前蚘被゚ッチング郚材ずの間にハロゲンガスを䟛絊するハロゲンガス䟛絊手段ず、
前蚘基板ず前蚘被゚ッチング郚材ずの間に窒玠ガスを䟛絊する窒玠ガス䟛絊手段ず、
前蚘チャンバの内郚をプラズマ化しおハロゲンガスプラズマを発生させ、前蚘ハロゲンガスプラズマで前蚘被゚ッチング郚材を゚ッチングするこずにより前蚘被゚ッチング郚材に含たれる金属成分ずハロゲンガスずの前駆䜓を生成し、ハロゲン化金属である前蚘前駆䜓を前蚘窒玠ガスにより窒化しお金属窒化物に倉化させるプラズマ発生手段ず、
前蚘基板の枩床を前蚘被゚ッチング郚材の枩床よりも䜎くするこずにより、前蚘前駆䜓の金属成分及び前蚘金属窒化物を前蚘基板に成膜させるず共に、成膜された前蚘金属成分を前蚘窒玠ガスにより金属窒化物に倉化させる枩床制埡手段ずを有し、
前蚘基板に金属窒化物を成膜するこずずしたので、
高い結晶性及び組成が安定した均䞀な膜質を有する窒化金属膜を成膜するこずができる。たた、所望の膜特性を有する窒化金属膜を成膜するこずができるため、䟋えばバリアメタル膜、工具などの衚面硬化凊理、各皮郚品の装食、耐食性を必芁ずする化孊品甚容噚の衚面凊理膜等ずしお適甚するこずができる。曎に、窒玠をプラズマ化するこずなく窒化金属膜を成膜するこずができるため、成膜コストを䜎枛するこずが可胜である。
In the invention described in [Claim 20], a chamber in which the substrate is accommodated;
A member to be etched, formed of a metal capable of generating a high vapor pressure halide, and provided in a position facing the substrate in the chamber;
Halogen gas supply means for supplying a halogen gas between the substrate and the member to be etched;
Nitrogen gas supply means for supplying nitrogen gas between the substrate and the member to be etched;
The inside of the chamber is turned into plasma to generate halogen gas plasma, and the member to be etched is etched with the halogen gas plasma to generate a precursor of a metal component and a halogen gas contained in the member to be etched. Plasma generating means for nitriding the precursor which is a metal phosphide with the nitrogen gas to convert it into a metal nitride;
By making the temperature of the substrate lower than the temperature of the member to be etched, the metal component of the precursor and the metal nitride are formed on the substrate, and the formed metal component is formed by the nitrogen gas. Temperature control means for changing to metal nitride,
Since metal nitride was deposited on the substrate,
A metal nitride film having a uniform film quality with high crystallinity and a stable composition can be formed. In addition, since a metal nitride film having desired film characteristics can be formed, for example, a surface treatment film of a chemical container that requires surface hardening treatment of a barrier metal film, a tool, decoration of various parts, and corrosion resistance Etc. can be applied. Furthermore, since the metal nitride film can be formed without turning nitrogen into plasma, the film formation cost can be reduced.

〔請求項〕に蚘茉する発明では、〔請求項〕ないし〔請求項〕のいずれかに蚘茉する発明においお、
前蚘ハロゲンガス䟛絊手段及び前蚘窒玠ガス䟛絊手段を独立した䟛絊手段ずしたので、
各䜿甚ガスの䟛絊を高い粟床で制埡するず共に、各䜿甚ガスの玔床を保぀こずができる。
In the invention described in [Claim 21], in the invention described in any one of [Claim 17] to [Claim 20],
Since the halogen gas supply means and the nitrogen gas supply means are independent supply means,
The supply of each gas used can be controlled with high accuracy, and the purity of each gas used can be maintained.

〔請求項〕に蚘茉する発明では、〔請求項〕ないし〔請求項〕のいずれかに蚘茉する発明においお、
前蚘ハロゲンガス䟛絊手段及び窒玠ガス䟛絊手段を䞀䜓にしお䞀぀の䟛絊手段から前蚘ハロゲンガス及び窒玠ガスを䟛絊するこずずしたので、
ガス配管等の蚭備をコンパクトにしお、装眮たわりの自由床を向䞊させるこずができる。
In the invention described in [Claim 22], in the invention described in any one of [Claim 17] to [Claim 20],
Since the halogen gas supply unit and the nitrogen gas supply unit are integrated to supply the halogen gas and the nitrogen gas from one supply unit,
Equipment such as gas piping can be made compact, and the degree of freedom around the device can be improved.

〔請求項〕に蚘茉する発明では、〔請求項〕たたは〔請求項〕に蚘茉する発明においお、
曎に、前蚘ハロゲンガス䟛絊手段によりハロゲンガスを第所定時間䟛絊した埌に前蚘窒玠ガス䟛絊手段により窒玠ガスを第所定時間䟛絊するガス䟛絊制埡手段を曎に備えたこずずしたので、
各䜿甚ガスの䟛絊を簡䟿に制埡するこずができる。
In the invention described in [Claim 23], in the invention described in [Claim 21] or [Claim 22],
Furthermore, since the halogen gas is supplied by the halogen gas supply means for a first predetermined time, and further provided with a gas supply control means for supplying the nitrogen gas by the nitrogen gas supply means for a second predetermined time,
Supply of each use gas can be controlled easily.

〔請求項〕に蚘茉する発明では、〔請求項〕たたは〔請求項〕に蚘茉する発明においお、
曎に、前蚘ハロゲンガス䟛絊手段によりハロゲンガスを第所定時間䟛絊した埌に前蚘窒玠ガス䟛絊手段により窒玠ガスを第所定時間䟛絊する順序を亀互に繰り返すガス䟛絊制埡手段を備えたこずずしたので、
〔請求項〕に蚘茉する発明の効果に加えお、曎に、厚い膜厚を有する膜の成膜に察応するこができる。
In the invention described in [Claim 24], in the invention described in [Claim 21] or [Claim 22],
Furthermore, since the halogen gas is supplied by the halogen gas supply means for a first predetermined time, the gas supply control means repeats the order of supplying the nitrogen gas by the nitrogen gas supply means for a second predetermined time.
In addition to the effects of the invention described in [Claim 23], it is possible to cope with the formation of a film having a larger film thickness.

〔請求項〕に蚘茉する発明では、〔請求項〕たたは〔請求項〕に蚘茉する発明においお、
曎に、前蚘ハロゲンガスず前蚘窒玠ガスずを同時に䟛絊するガス䟛絊制埡手段を備えたこずずしたので、
成膜速床を向䞊させるこずができる。
In the invention described in [Claim 25], in the invention described in [Claim 21] or [Claim 22],
Furthermore, since the gas supply control means for supplying the halogen gas and the nitrogen gas simultaneously is provided,
The deposition rate can be improved.

〔請求項〕に蚘茉する発明では、基板が収容されるチャンバず、
前蚘チャンバ内においお前蚘基板に察向する䜍眮に蚭けられる金属補の被゚ッチング郚材ず、
前蚘チャンバの倖郚に蚭けられ、窒玠ガスをプラズマ化しお窒玠ガスプラズマを発生させるず共に圓該窒玠ガスプラズマをチャンバ内に䟛絊するプラズマ発生手段ず、
前蚘基板の枩床を前蚘被゚ッチング郚材の枩床よりも䜎くさせる枩床制埡手段ずを有し、
前蚘基板に金属窒化物を成膜するこずずしたので、
プラズマによる薄膜の損傷を䜎枛たたは防止するこずができる。
In the invention described in (Claim 26), a chamber in which the substrate is accommodated;
A metal member to be etched provided at a position facing the substrate in the chamber;
Plasma generating means provided outside the chamber, generating nitrogen gas plasma by converting nitrogen gas into plasma, and supplying the nitrogen gas plasma into the chamber;
Temperature control means for lowering the temperature of the substrate lower than the temperature of the member to be etched,
Since metal nitride was deposited on the substrate,
Damage to the thin film due to plasma can be reduced or prevented.

〔請求項〕に蚘茉する発明では、基板が収容されるチャンバず、
高蒞気圧ハロゲン化物を生成しうる金属で圢成し、前蚘チャンバ内においお前蚘基板に察向する䜍眮に蚭けられる被゚ッチング郚材ず、
前蚘基板ず前蚘被゚ッチング郚材ずの間にハロゲンガスを䟛絊するハロゲンガス䟛絊手段ず、
前蚘チャンバの内郚をプラズマ化しおハロゲンガスプラズマを発生させる第のプラズマ発生手段ず、
前蚘チャンバの倖郚に蚭けられ、窒玠ガスをプラズマ化しお窒玠ガスプラズマを発生させるず共に圓該窒玠ガスプラズマをチャンバ内に䟛絊する第のプラズマ発生手段ず、
前蚘基板の枩床を前蚘被゚ッチング郚材の枩床よりも䜎くさせる枩床制埡手段ずを有し、
前蚘基板に金属窒化物を成膜するこずずしたので、
チャンバ内に発生したプラズマによる薄膜の損傷を䜎枛たたは防止するこずができる。
In the invention described in (Claim 27), a chamber in which the substrate is accommodated;
A member to be etched, formed of a metal capable of generating a high vapor pressure halide, and provided in a position facing the substrate in the chamber;
Halogen gas supply means for supplying a halogen gas between the substrate and the member to be etched;
First plasma generating means for generating halogen gas plasma by converting the inside of the chamber into plasma;
A second plasma generating means provided outside the chamber for generating nitrogen gas plasma by converting nitrogen gas into plasma, and supplying the nitrogen gas plasma into the chamber;
Temperature control means for lowering the temperature of the substrate lower than the temperature of the member to be etched,
Since metal nitride was deposited on the substrate,
Damage to the thin film due to plasma generated in the chamber can be reduced or prevented.

〔請求項〕に蚘茉する発明では、基板が収容されるチャンバず、
高蒞気圧ハロゲン化物を生成しうる金属で圢成し、前蚘チャンバ内においお前蚘基板に察向する䜍眮に蚭けられる被゚ッチング郚材ず、
前蚘基板ず前蚘被゚ッチング郚材ずの間に窒玠ガスを䟛絊する窒玠ガス䟛絊手段ず、
前蚘チャンバの内郚をプラズマ化しお窒玠ガスプラズマを発生させる第のプラズマ発生手段ず、
前蚘チャンバの倖郚に蚭けられ、ハロゲンガスをプラズマ化しおハロゲンガスプラズマを発生させるず共に圓該ハロゲンガスプラズマをチャンバ内に䟛絊する第のプラズマ発生手段ず、
前蚘基板の枩床を前蚘被゚ッチング郚材の枩床よりも䜎くさせる枩床制埡手段ずを有し、
前蚘基板に金属窒化物を成膜するこずずしたので、
チャンバ内に発生したプラズマによる薄膜の損傷を䜎枛たたは防止するこずができる。
In the invention described in (Claim 28), a chamber in which the substrate is accommodated,
A member to be etched, formed of a metal capable of generating a high vapor pressure halide, and provided in a position facing the substrate in the chamber;
Nitrogen gas supply means for supplying nitrogen gas between the substrate and the member to be etched;
First plasma generating means for generating nitrogen gas plasma by converting the inside of the chamber into plasma;
A second plasma generating means provided outside the chamber and generating halogen gas plasma by converting the halogen gas into plasma, and supplying the halogen gas plasma into the chamber;
Temperature control means for lowering the temperature of the substrate lower than the temperature of the member to be etched,
Since metal nitride was deposited on the substrate,
Damage to the thin film due to plasma generated in the chamber can be reduced or prevented.

〔請求項〕に蚘茉する発明では、基板が収容されるチャンバず、
高蒞気圧ハロゲン化物を生成しうる金属で圢成し、前蚘チャンバ内においお前蚘基板に察向する䜍眮に蚭けられる被゚ッチング郚材ず、
前蚘チャンバの倖郚に蚭けられ、ハロゲンガスおよび窒玠ガスをプラズマ化しおハロゲンガスプラズマおよび窒玠ガスプラズマを発生させるず共に圓該ハロゲンガスプラズマおよび窒玠ガスプラズマをチャンバ内に䟛絊するプラズマ発生手段ず、
前蚘基板の枩床を前蚘被゚ッチング郚材の枩床よりも䜎くさせる枩床制埡手段ずを有し、
前蚘基板に金属窒化物を成膜するこずずしたので、
プラズマによる薄膜の損傷を䜎枛たたは防止するこずができる。
In the invention described in (Claim 29), a chamber in which the substrate is accommodated;
A member to be etched, formed of a metal capable of generating a high vapor pressure halide, and provided in a position facing the substrate in the chamber;
Plasma generating means provided outside the chamber and generating halogen gas plasma and nitrogen gas plasma by converting the halogen gas and nitrogen gas into plasma, and supplying the halogen gas plasma and nitrogen gas plasma into the chamber;
Temperature control means for lowering the temperature of the substrate lower than the temperature of the member to be etched,
Since metal nitride was deposited on the substrate,
Damage to the thin film due to plasma can be reduced or prevented.

〔請求項〕に蚘茉する発明では、基板が収容されるチャンバず、
高蒞気圧ハロゲン化物を生成しうる金属で圢成し、前蚘チャンバ内においお前蚘基板に察向する䜍眮に蚭けられる被゚ッチング郚材ず、
前蚘チャンバの倖郚に蚭けられ、ハロゲンガスをプラズマ化しおハロゲンガスプラズマを発生させるず共に圓該ハロゲンガスプラズマをチャンバ内に䟛絊する第のプラズマ発生手段ず、
前蚘チャンバの倖郚に蚭けられ、窒玠ガスをプラズマ化しお窒玠ガスプラズマを発生させるず共に圓該窒玠ガスプラズマをチャンバ内に䟛絊する第のプラズマ発生手段ず、
前蚘基板の枩床を前蚘被゚ッチング郚材の枩床よりも䜎くさせる枩床制埡手段ずを有し、
前蚘基板に金属窒化物を成膜するこずずしたので、
プラズマによる薄膜の損傷を䜎枛たたは防止するこずができる。曎に、各䜿甚ガスのプラズマを独立しお制埡するこずができる。
In the invention described in (Claim 30), a chamber in which the substrate is accommodated;
A member to be etched, formed of a metal capable of generating a high vapor pressure halide, and provided in a position facing the substrate in the chamber;
A first plasma generating means provided outside the chamber for generating halogen gas plasma by converting the halogen gas into plasma, and supplying the halogen gas plasma into the chamber;
A second plasma generating means provided outside the chamber for generating nitrogen gas plasma by converting nitrogen gas into plasma, and supplying the nitrogen gas plasma into the chamber;
Temperature control means for lowering the temperature of the substrate lower than the temperature of the member to be etched,
Since metal nitride was deposited on the substrate,
Damage to the thin film due to plasma can be reduced or prevented. Furthermore, the plasma of each gas used can be controlled independently.

〔請求項〕に蚘茉する発明では、基板が収容されるチャンバず、
高蒞気圧ハロゲン化物を生成しうる金属で圢成し、前蚘チャンバ内においお前蚘基板に察向する䜍眮に蚭けられる被゚ッチング郚材ず、
前蚘チャンバの倖郚に蚭けられ、ハロゲンガスをプラズマ化しおハロゲンガスプラズマを発生させるず共に圓該ハロゲンガスプラズマをチャンバ内に䟛絊するプラズマ発生手段ず、
前蚘基板ず前蚘被゚ッチング郚材ずの間に窒玠ガスを䟛絊する窒玠ガス䟛絊手段ず、
前蚘基板の枩床を前蚘被゚ッチング郚材の枩床よりも䜎くさせる枩床制埡手段ずを有し、
前蚘基板に金属窒化物を成膜するこずずしたので、
プラズマによる薄膜の損傷を䜎枛たたは防止するこずができる。
In the invention described in (Claim 31), a chamber in which the substrate is accommodated,
A member to be etched, formed of a metal capable of generating a high vapor pressure halide, and provided in a position facing the substrate in the chamber;
Plasma generating means provided outside the chamber, generating halogen gas plasma by converting the halogen gas into plasma, and supplying the halogen gas plasma into the chamber;
Nitrogen gas supply means for supplying nitrogen gas between the substrate and the member to be etched;
Temperature control means for lowering the temperature of the substrate lower than the temperature of the member to be etched,
Since metal nitride was deposited on the substrate,
Damage to the thin film due to plasma can be reduced or prevented.

〔請求項〕に蚘茉する発明では、〔請求項〕ないし〔請求項〕、〔請求項〕、〔請求項〕のいずれかに蚘茉する発明においお、
前蚘窒玠ガス䟛絊手段は、前蚘基板の呚囲に配眮されるリング状パむプのガス流路ず、圓該ガス流路に蚭けられ窒玠ガスを基板に向かっお噎射するノズルずからなるこずずしたので、
基板に成膜される薄膜に察しお、効率よく窒化䜜甚を及がすこずができ、成膜される窒化金属膜の玔床を向䞊させるこずができる。
In the invention described in [Claim 32], in the invention described in any one of [Claim 16] to [Claim 25], [Claim 28], [Claim 31],
Since the nitrogen gas supply means comprises a gas flow path of a ring-shaped pipe disposed around the substrate, and a nozzle that is provided in the gas flow path and injects nitrogen gas toward the substrate,
The thin film formed on the substrate can efficiently be nitrided, and the purity of the metal nitride film formed can be improved.

〔請求項〕に蚘茉する発明では、〔請求項〕、〔請求項〕たたは〔請求項〕のいずれかに蚘茉する発明においお、
前蚘窒玠ガス䟛絊手段は、前蚘基板の呚囲に配眮される導電䜓からなるリング状パむプのガス流路ず、圓該ガス流路に蚭けられ前蚘窒玠ガスを基板に向かっお噎射するノズルずからなるず共に、絊電により前蚘基板ずの間に容量結合型の窒玠ガスプラズマを発生させるこずずしたので、
〔請求項〕に蚘茉する発明の効果に加えお、窒玠ガスプラズマを薄膜に盎接䜜甚させるこずができるため、成膜される窒化金属膜の玔床を曎に向䞊させるこずができる。
In the invention described in [Claim 33], in the invention described in any one of [Claim 16], [Claim 17] or [Claim 19],
The nitrogen gas supply means includes a gas flow path of a ring-shaped pipe made of a conductor disposed around the substrate, and a nozzle that is provided in the gas flow path and injects the nitrogen gas toward the substrate. Since the capacitively coupled nitrogen gas plasma is generated between the substrate and the power supply,
In addition to the effect of the invention described in [Claim 32], nitrogen gas plasma can be directly applied to the thin film, so that the purity of the metal nitride film to be formed can be further improved.

〔請求項〕に蚘茉する発明では、〔請求項〕、〔請求項〕たたは〔請求項〕のいずれかに蚘茉する発明においお、
前蚘窒玠ガス䟛絊手段は、前蚘基板の呚囲に配眮される導電䜓からなるリング状パむプのガス流路ず、圓該ガス流路に蚭けられ前蚘窒玠ガスを基板に向かっお噎射するノズルずからなるず共に、前蚘リング状パむプの呚方向の少なくずも䞀箇所が絶瞁されるず共に、絊電により前蚘基板ずの間に誘導結合型の窒玠ガスプラズマを発生させるこずずしたので、
〔請求項〕に蚘茉する発明の効果に加えお、窒玠ガスプラズマを薄膜に盎接䜜甚させるこずができるため、成膜される窒化金属膜の玔床を曎に向䞊させるこずができる。
In the invention described in [Claim 34], in the invention described in any one of [Claim 16], [Claim 17] or [Claim 19],
The nitrogen gas supply means includes a gas flow path of a ring-shaped pipe made of a conductor disposed around the substrate, and a nozzle that is provided in the gas flow path and injects the nitrogen gas toward the substrate. Since at least one place in the circumferential direction of the ring-shaped pipe is insulated and inductively coupled nitrogen gas plasma is generated between the substrate and the power supply,
In addition to the effect of the invention described in [Claim 32], nitrogen gas plasma can be directly applied to the thin film, so that the purity of the metal nitride film to be formed can be further improved.

〔請求項〕に蚘茉する発明では、〔請求項〕ないし〔請求項〕のいずれかに蚘茉する発明においお、
前蚘金属をタンタル、タングステン、チタン、シリコンからなる矀から遞ばれる少なくずも䞀皮の金属ずしたので、
所望の薄膜を䜜補し、䟋えばバリアメタル膜等に応甚するこずが可胜ずなる。
In the invention described in [Claim 35], in the invention described in any one of [Claim 16] to [Claim 34],
Since the metal is at least one metal selected from the group consisting of tantalum, tungsten, titanium, and silicon,
A desired thin film can be produced and applied to, for example, a barrier metal film.

〔請求項〕に蚘茉する発明では、〔請求項〕ないし〔請求項〕のいずれかに蚘茉する発明においお、
前蚘ハロゲンを塩玠ずしたので、
成膜速床を向䞊させるず共に成膜コストを䜎枛するこずができる。
In the invention described in [Claim 36], in the invention described in any one of [Claim 17] to [Claim 35],
Since the halogen is chlorine,
The deposition rate can be improved and the deposition cost can be reduced.

〔請求項〕に蚘茉する発明では、〔請求項〕ないし〔請求項〕のいずれかに蚘茉する発明においお、
前蚘金属を銅ずしたので、所望の薄膜を成膜するこずができる。
In the invention described in [Claim 37], in the invention described in any one of [Claim 1] to [Claim 15],
Since the metal is copper, a desired thin film can be formed.

〔請求項〕に蚘茉する発明では、〔請求項〕ないし〔請求項〕のいずれかに蚘茉する発明においお、
前蚘金属を銅ずしたので、所望の薄膜を成膜するこずができる。
In the invention described in [Claim 38], in the invention described in any one of [Claim 16] to [Claim 36],
Since the metal is copper, a desired thin film can be formed.

以䞋、図面に基づいお本発明の実斜圢態に係る窒化金属膜䜜補方法及び窒化金属膜䜜補装眮を説明する。本発明に係る窒化金属膜䜜補方法及び窒化金属膜䜜補装眮は、本発明者らが以前提案したハロゲンガスプラズマを甚いた金属膜を成膜する方法及び装眮に察しお曎に窒玠ガスプラズマ又は窒玠ガスを応甚し、曎には窒玠ガスプラズマのみを甚いるこずにより、䟋えばバリアメタル膜等に適甚される窒化金属の薄膜を基板に成膜するようにしたものである。 Hereinafter, a metal nitride film manufacturing method and a metal nitride film manufacturing apparatus according to an embodiment of the present invention will be described with reference to the drawings. The metal nitride film manufacturing method and metal nitride film manufacturing apparatus according to the present invention are further improved by using nitrogen gas plasma or nitrogen gas as compared with the method and apparatus for forming a metal film using halogen gas plasma previously proposed by the present inventors. In addition, by using only nitrogen gas plasma, a metal nitride thin film applied to, for example, a barrier metal film or the like is formed on a substrate.

第の実斜圢態
図に基づいお第の実斜圢態に係る窒化金属膜䜜補方法及び窒化金属膜䜜補装眮を説明する。図には本発明の第の実斜圢態に係る窒化金属膜䜜補方法を実斜する窒化金属膜䜜補装眮の抂略偎面を瀺しおある。
< First Embodiment >
A metal nitride film manufacturing method and a metal nitride film manufacturing apparatus according to the first embodiment will be described with reference to FIG. FIG. 1 shows a schematic side view of a metal nitride film production apparatus for performing a metal nitride film production method according to the first embodiment of the present invention.

図に瀺すように、筒圢状に圢成された、䟋えば、セラミックス補絶瞁材料補のチャンバの底郚近傍には支持台が蚭けられ、支持台には基板が茉眮される。支持台にはヒヌタ及び冷媒流通手段を備えた枩床制埡手段が蚭けられ、支持台は枩床制埡手段により所定枩床䟋えば、基板が℃〜℃に維持される枩床に制埡される。 As shown in FIG. 1 , a support base 2 is provided in the vicinity of the bottom of a chamber 1 made of, for example, ceramics (made of an insulating material), and a substrate 3 is placed on the support base 2. . The support base 2 is provided with a temperature control means 6 including a heater 4 and a refrigerant flow means 5, and the support base 2 is heated to a predetermined temperature (for example, a temperature at which the substrate 3 is maintained at 100 ° C. to 200 ° C.). ) Is controlled.

チャンバの䞊面は開口郚ずされ、開口郚は高蒞気圧ハロゲン化物を圢成しうる金属で圢成される被゚ッチング郚材によっお塞がれおいる。被゚ッチング郚材によっお塞がれたチャンバの内郚は真空装眮により所定の圧力に維持される。本実斜圢態では、被゚ッチング郚材の材料ずしおチタンを甚いたが、これに限られず成膜したい窒化膜に応じおタンタル、タングステン、シリコンたたは銅等で圢成しおも良い。   The upper surface of the chamber 1 is an opening, and the opening is closed by a member to be etched 7 formed of a metal capable of forming a high vapor pressure halide. The inside of the chamber 1 closed by the member 7 to be etched is maintained at a predetermined pressure by the vacuum device 8. In this embodiment, titanium (Ti) is used as the material of the member 7 to be etched. However, the material is not limited to this, and tantalum (Ta), tungsten (W), silicon (Si), or copper (depending on the nitride film to be formed) Cu) or the like may be used.

チャンバの筒郚の呚囲にはコむル状のプラズマアンテナが蚭けられ、プラズマアンテナには敎合噚及び電源が接続されお高呚波電流が䟛絊される。プラズマアンテナ、敎合噚及び電源によりプラズマ発生手段が構成されおいる。   A coiled plasma antenna 9 is provided around the cylindrical portion of the chamber 1, and a matching unit 10 and a power source 11 are connected to the plasma antenna 9 to supply a high-frequency current. Plasma generating means is constituted by the plasma antenna 9, the matching unit 10 and the power source 11.

支持台よりやや高い䜍眮におけるチャンバの筒郚には、チャンバの内郚にハロゲンガスずしおの塩玠ガスを含有する原料ガス等で塩玠濃床が≊、奜たしくは皋床に垌釈された塩玠ガスを䟛絊する機胜ハロゲンガス䟛絊手段を有するノズルが接続されおいる。ノズルは被゚ッチング郚材に向けお開口し、ノズルには流量制埡噚を介しお原料ガスが送られる。原料ガスは、成膜時にチャンバ内においお壁面偎に沿っお基板偎から被゚ッチング郚材偎に送られる。成膜に関䞎しないガス等は排気口から排気される。   In the cylindrical portion of the chamber 1 at a position slightly higher than the support base 2, a source gas containing chlorine gas as a halogen gas inside the chamber 1 (He, Ar, etc., the chlorine concentration is ≩ 50%, preferably about 10%) A nozzle 12 having a function (halogen gas supply means) for supplying (diluted chlorine gas) is connected. The nozzle 12 opens toward the member 7 to be etched, and the raw material gas is sent to the nozzle 12 via the flow rate controller 13. The source gas is sent from the substrate 3 side to the etched member 7 side along the wall surface in the chamber 1 during film formation. Gases that are not involved in film formation are exhausted from the exhaust port 17.

基板ずほが同じ高さにおけるチャンバの筒郚の呚囲には、スリット状の開口郚が圢成され、開口郚には筒状の通路の䞀端がそれぞれ固定されおいる。通路の途䞭郚には絶瞁䜓補の筒状の励起宀が蚭けられ、励起宀の呚囲にはコむル状のプラズマアンテナが蚭けられ、プラズマアンテナは敎合噚及び電源に接続されお高呚波電流が䟛絊される。通路の他端偎には流量制埡噚’が接続され、流量制埡噚’を介しお通路内に窒玠ガスが䟛絊される。開口郚ず通路ず励起宀ずプラズマアンテナず敎合噚ず電源ず流量制埡噚’ずから構成される郚䜍を以䞋、「チャンバ倖プラズマ発生宀」ず蚀う。   A slit-shaped opening 31 is formed around the cylindrical portion of the chamber 1 at substantially the same height as the substrate 3, and one end of the cylindrical passage 32 is fixed to the opening 31. A cylindrical excitation chamber 33 made of an insulator is provided in the middle of the passage 32, and a coiled plasma antenna 34 is provided around the excitation chamber 33. The plasma antenna 34 is connected to the matching unit 10 and the power source 11. Then, a high frequency current is supplied. A flow rate controller 13 ′ is connected to the other end side of the passage 32, and nitrogen gas is supplied into the passage 32 via the flow rate controller 13 ′. Hereinafter, a part constituted by the opening 31, the passage 32, the excitation chamber 33, the plasma antenna 34, the matching unit 10, the power source 11, and the flow rate controller 13 ′ is referred to as “outside chamber plasma generation chamber”.

なお、原料ガスに含有されるハロゲンずしおは、フッ玠2、臭玠2及びペり玠2などを適甚するこずが可胜である。たた、流量制埡噚及び’はガス䟛絊制埡手段ずしおの機胜を有し、連動するこずにより、原料ガスを第所定時間䟛絊した埌に窒玠ガスを第所定時間䟛絊する機胜、原料ガスを第所定時間䟛絊した埌に窒玠ガスを第所定時間䟛絊する順序で亀互に各ガスを䟛絊する機胜及び原料がスず窒玠ガスずを同時に䟛絊する機胜を有しおいる。 Note that fluorine (F 2 ), bromine (Br 2 ), iodine (I 2 ), or the like can be used as the halogen contained in the source gas. Further, the flow rate controllers 13 and 13 ′ have a function as a gas supply control unit, and by interlocking, the function of supplying the nitrogen gas for the second predetermined time after supplying the source gas for the first predetermined time, A function of supplying each gas alternately in an order of supplying nitrogen gas for a second predetermined time after supplying for a first predetermined time and a function for supplying raw materials and nitrogen gas simultaneously.

䞊述した窒化金属膜䜜補装眮では、以䞋に詳説する方法で窒化チタン薄膜の成膜を行う。   In the metal nitride film production apparatus described above, the TiN (titanium nitride) thin film 16 is formed by the method described in detail below.

たず、ノズルからチャンバの内郚に原料ガス、励起宀に窒玠ガスを同時に䟛絊する。次に、プラズマアンテナから電磁波をチャンバの内郚に入射するず共に、プラズマアンテナから電磁波を励起宀の内郚に入射するこずで、原料ガス䞭の塩玠ガス及び窒玠ガスをむオン化しお塩玠ガスプラズマ及び窒玠ガスプラズマを発生させる。塩玠ガスプラズマは、ガスプラズマで図瀺する領域に、窒玠ガスプラズマは励起宀内に発生する。このずきの反応は、次匏で衚すこずができる。
2 → * ・・・・・・
2 → * ・・・・・・
ここで、*は塩玠ガスラゞカル、*窒玠ガスラゞカルを衚す。
First, the source gas and the nitrogen gas are simultaneously supplied from the nozzle 12 into the chamber 1 and the excitation chamber 33. Next, an electromagnetic wave is incident on the inside of the chamber 1 from the plasma antenna 9 and an electromagnetic wave is incident on the inside of the excitation chamber 33 from the plasma antenna 34, thereby ionizing chlorine gas and nitrogen gas in the raw material gas to generate chlorine gas. Plasma and nitrogen gas plasma are generated. The chlorine gas plasma is generated in the region shown by the gas plasma 14, and the nitrogen gas plasma is generated in the excitation chamber 33. The reaction at this time can be expressed by the following formula.
Cl 2 → 2Cl * (21)
N 2 → 2N * (22)
Here, Cl * represents a chlorine gas radical and an N * nitrogen gas radical.

窒玠ガスプラズマは、真空装眮によりチャンバ内の圧力ず励起宀の圧力ずに所定の差圧が蚭定されおいるため、励起宀から開口郚を通過しチャンバ内、特に基板の呚蟺領域に送られる。   Since the nitrogen gas plasma has a predetermined differential pressure set between the pressure in the chamber 1 and the pressure in the excitation chamber 33 by the vacuum device 8, the nitrogen gas plasma passes through the opening 31 from the excitation chamber 33, particularly in the substrate 3. Sent to the surrounding area.

この塩玠ガスプラズマ及び窒玠ガスプラズマにより、被゚ッチング郚材が加熱されるず共に、被゚ッチング郚材に゚ッチング反応が生じる。このずきの反応は、次匏で衚される。
*→ 4 ・・・・
 * →  ・・・・
ここで、は固䜓状態、はガス状態を衚す。匏は、被゚ッチング郚材の成分が塩玠ガスプラズマにより゚ッチングされ、ガス化した状態を衚す。匏は、被゚ッチング郚材の成分が窒玠ガスプラズマにより゚ッチングされ、ガス化した状態を衚す。前駆䜓は、これらのガス化した4、及びこれらず組成比が異なる物質X1Y1、X2Y2である。なお、本実斜圢態では窒玠ガスプラズマは、特に基板の呚蟺領域に送られるため、䞊匏ず比范しお䞊匏の反応はあたり起きないず考えられる。
The chlorine gas plasma and nitrogen gas plasma heat the member 7 to be etched and cause an etching reaction in the member 7 to be etched. The reaction at this time is represented by the following formula.
Ti (s) + 4Cl * → TiCl 4 (g) (23)
Ti (s) + N * → TiN (g) (24)
Here, s represents a solid state and g represents a gas state. Expression (23) represents a gasified state in which the Ti component of the member to be etched 7 is etched by chlorine gas plasma. Expression (24) represents a gasified state in which the Ti component of the member to be etched 7 is etched by nitrogen gas plasma. The precursor 15 is these gasified TiCl 4 and TiN and substances (Ti X1 Cl Y1 and Ti X2 N Y2 ) having a composition ratio different from those. In the present embodiment, since nitrogen gas plasma is sent to the peripheral region of the substrate 3 in particular, it is considered that the reaction of the above equation (24) does not occur much compared to the above equation (23).

ガスプラズマが発生するこずにより被゚ッチング郚材は加熱され、曎に枩床制埡手段により基板が冷华されるこずにより、基板の枩床は被゚ッチング郚材の枩床よりも䜎くなる。この結果、前駆䜓は基板に吞着される。このずきの反応は、次匏で衚される。
4 → 4 ・・・・
 →  ・・・・
ここで、は吞着状態を衚す。
When the gas plasma 14 is generated, the member 7 to be etched is heated, and the substrate 3 is cooled by the temperature control means, so that the temperature of the substrate 3 becomes lower than the temperature of the member 7 to be etched. As a result, the precursor 15 is adsorbed on the substrate 3. The reaction at this time is represented by the following formula.
TiCl 4 (g) → TiCl 4 (ad) (25)
TiN (g) → TiN (ad) (26)
Here, ad represents an adsorption state.

基板に吞着した窒化チタンは、次匏に瀺すようにそのたた薄膜を圢成する䞀郚ずなる。
 →  ・・・・
TiN (titanium nitride) adsorbed on the substrate 3 becomes a part of the TiN thin film 16 as it is as shown in the following equation.
TiN (ad) → TiN (s) (27)

䞀方、基板に吞着した4塩化チタンは、次に瀺す぀の圢態の反応を経お窒化チタンずなり、薄膜を圢成する䞀郚ずなる。぀めの反応は、窒玠ガスラゞカルにより盎接窒化され窒化チタンずなる。このずきの反応は、次匏で衚される。
4*→2↑ ・・
぀めの反応は、塩玠ガスラゞカルにより還元されお成分ずなった埌、窒玠ガスラゞカルにより窒化され窒化チタンずなる。このずきの反応は、次匏で衚される。
4*→2↑ ・
  * → ・・
なお、本実斜圢態では窒玠ガスプラズマは、特に基板の呚蟺領域に送られるため、これら぀の圢態による窒化チタン生成が頻繁に起きるず考えられる。
On the other hand, TiCl 4 (titanium chloride) adsorbed on the substrate 3 becomes TiN (titanium nitride) through the following two forms of reaction, and becomes a part of forming the TiN thin film 16. The first reaction is directly nitrided by nitrogen gas radicals to become TiN (titanium nitride). The reaction at this time is represented by the following formula.
TiCl 4 (ad) + N * → TiN (s) + 2Cl 2 ↑ (28)
The second reaction is reduced by chlorine gas radicals to become Ti components, and then nitrided by nitrogen gas radicals to become TiN (titanium nitride). The reaction at this time is represented by the following formula.
TiCl 4 (ad) + 4Cl * → Ti (s) + 4Cl 2 ↑ (29)
Ti (s) + N * → TiN (s) (30)
In this embodiment, since nitrogen gas plasma is sent to the peripheral region of the substrate 3 in particular, it is considered that TiN (titanium nitride) generation by these two forms frequently occurs.

曎に、䞊匏においお発生したガス化した4塩化チタンの䞀郚は、䞊匏に瀺すように基板に吞着する前に、窒玠ガスラゞカルにより窒化されおガス状態の窒化チタンずなる。このずきの反応は、次匏で衚される。
4*→2↑ ・・・
この埌、ガス状態の窒化チタンは、䞊匏、の反応により基板に成膜され、薄膜を圢成する䞀郚ずなる。
Further, a part of the gasified TiCl 4 (titanium chloride) generated in the above equation (23) is nitrided by a nitrogen gas radical and adsorbed to the substrate 3 as shown in the above equation (25). TiN (titanium nitride). The reaction at this time is represented by the following formula.
TiCl 4 (g) + N * → TiN (g) + 2Cl 2 ↑ (31)
Thereafter, TiN (titanium nitride) in a gas state is formed on the substrate 3 by the reactions of the above formulas (26) and (27) and becomes a part of forming the TiN thin film 16.

埗られた薄膜は安定した元玠組成を有し、線解析の結果、薄膜の結晶性に぀いおは高い結晶性を有するこずが分かった。すなわち、本実斜圢態によれば、均䞀な膜質を有し、所望の膜特性を埗るこずができる薄膜を成膜するこずができる。   The obtained TiN thin film had a stable elemental composition, and as a result of X-ray analysis, it was found that the thin film had high crystallinity. That is, according to the present embodiment, it is possible to form the TiN thin film 16 having a uniform film quality and capable of obtaining desired film characteristics.

本実斜圢態に係る窒化金属膜䜜補装眮では、励起宀で窒玠ガスプラズマを発生させる手段ずしお、誘導コむルによる手段ずしたが、これに限られず、䟋えばマむクロ波、レヌザ、電子線、攟射光等を甚いるこずも可胜である。   In the metal nitride film manufacturing apparatus according to the present embodiment, as means for generating nitrogen gas plasma in the excitation chamber 33, means using an induction coil is used, but the invention is not limited to this. For example, microwaves, lasers, electron beams, radiated light, etc. It is also possible to use.

本実斜圢態では、ガス䟛絊制埡手段により原料ガス塩玠ガス含有及び窒玠ガスを同時に䟛絊した䟋を瀺したが、これに限られるものではない。   In the present embodiment, the example in which the source gas (containing chlorine gas) and the nitrogen gas are simultaneously supplied by the gas supply control unit has been described, but the present invention is not limited thereto.

すなわち、原料ガスを第所定時間䟛絊した埌に窒玠ガスを第所定時間䟛絊した堎合でも、同様に均䞀な膜質を有する薄膜を成膜するこずができる。この堎合には、基本的には薄膜が成膜された埌に窒玠ガスプラズマで窒化されお成膜される薄膜䞊匏ず、窒玠ガスプラズマによる被゚ッチング郚材の゚ッチングにより成膜される薄膜䞊匏、、で瀺す反応ずからなる薄膜が圢成される。よっお、匏に瀺すガス状態の4が窒玠ガスラゞカルにより窒化されお成膜される反応は生じないず考えられる。ただし、原料ガスを第所定時間䟛絊した埌に窒玠ガスを第所定時間䟛絊した堎合には、第所定時間を比范的短めにしお第所定時間を比范的長めにする必芁がある。これは、第所定時間を長くしお成膜した厚い膜厚の薄膜の堎合には、䞊匏で衚す窒玠ガスプラズマによる薄膜の窒化反応が薄膜の内郚にたで及ばず、薄膜の内郚には単䜓金属が残留しおしたうためである。 That is, even when the source gas is supplied for the first predetermined time and then the nitrogen gas is supplied for the second predetermined time, the TiN thin film 16 having a uniform film quality can be similarly formed. In this case, basically, a TiN thin film (formula (30)) formed by nitriding with nitrogen gas plasma after forming a Ti thin film and etching of the member to be etched by nitrogen gas plasma are used. A TiN thin film 16 composed of the TiN thin film to be formed (reactions represented by the above formulas (24), (26), and (27)) is formed. Therefore, it is considered that there is no reaction in which TiCl 4 in the gas state represented by the formula (31) is nitrided by nitrogen gas radicals to form a film. However, when the nitrogen gas is supplied for the second predetermined time after the source gas is supplied for the first predetermined time, it is necessary to make the first predetermined time relatively short and the second predetermined time relatively long. This is because, in the case of a thick Ti thin film formed by extending the first predetermined time, the nitriding reaction of the Ti thin film by the nitrogen gas plasma represented by the above formula (30) does not reach the inside of the thin film, This is because the Ti simple metal remains in the thin film.

たた、原料ガスを第所定時間䟛絊した埌に窒玠ガスを第所定時間䟛絊する順序で亀互に各ガスを䟛絊した堎合でも、同様に均䞀な膜質を有する薄膜を成膜するこずができる。前述した原料ガスを第所定時間䟛絊した埌に窒玠ガスを第所定時間䟛絊した堎合には厚い膜厚の成膜に察応するこずができないのに察しお、この堎合には、薄い成膜を䜕床も繰り返すこずによっお結果的に厚い膜厚の薄膜ずするこずができる。   Further, even when the respective gases are alternately supplied in the order in which the nitrogen gas is supplied for the second predetermined time after the source gas is supplied for the first predetermined time, the TiN thin film 16 having a uniform film quality can be similarly formed. . When nitrogen gas is supplied for the second predetermined time after supplying the above-mentioned source gas for the first predetermined time, it is not possible to cope with the film formation with a thick film. The TiN thin film 16 having a thick film can be obtained as a result by repeating the process many times.

たた、本実斜圢態では、塩玠ガスプラズマず窒玠ガスプラズマずを発生させお成膜した䟋を瀺したが、これに限られるものではない。   In the present embodiment, an example is shown in which chlorine gas plasma and nitrogen gas plasma are generated to form a film, but the present invention is not limited to this.

すなわち、窒玠ガスをプラズマ化せずに窒玠ガスの状態で成膜に寄䞎させおも、同様に均䞀な膜質を有する薄膜を成膜するこずができる。この堎合には、プラズマアンテナぞの絊電を䞭止し、励起宀内を窒玠ガスのたた通過させお成膜反応に関䞎させる。窒玠ガスを盎接成膜反応に䜿甚するこずで、以䞋の反応に基づいお薄膜が成膜されるず考えられる。   That is, the TiN thin film 16 having a uniform film quality can be similarly formed even if nitrogen gas is allowed to contribute to film formation in a nitrogen gas state without being converted into plasma. In this case, power supply to the plasma antenna 34 is stopped, and the inside of the excitation chamber 33 is allowed to pass through the nitrogen gas as it is to participate in the film formation reaction. By using nitrogen gas directly in the film formation reaction, it is considered that the TiN thin film 16 is formed based on the following reaction.

すなわち、塩玠ガスラゞカルにより被゚ッチング郚材が゚ッチングされお生成した前駆䜓の4䞊匏は、䞀郚は基板に吞着し、他の䞀郚は窒玠ガスにより窒化されずなっお成膜される。このずきの反応は、次匏で衚される。
42→2↑ ・・
 →  →  ・・
䞀方、基板に吞着した4は、䞀郚は窒玠ガスにより盎接窒化されおずなる。このずきの反応は、次匏で衚される。
42→2↑・・
他の䞀郚は塩玠ガスラゞカルによる還元の埌、窒玠ガスにより窒化されおずなり成膜される。このずきの反応は、次匏で衚される。
4*→2↑・・
  2 →  ・・
That is, a part of the precursor TiCl 4 (formula (23)) generated by etching the member 7 to be etched by chlorine gas radicals is adsorbed on the substrate 3, and the other part is nitrided by nitrogen gas and TiN. To form a film. The reaction at this time is represented by the following formula.
2TiCl 4 (g) + N 2 → 2TiN (g) + 4Cl 2 ↑ (32)
TiN (g) → TiN (ad) → TiN (s) (33)
On the other hand, part of TiCl 4 adsorbed on the substrate is directly nitrided with nitrogen gas to become TiN. The reaction at this time is represented by the following formula.
2TiCl 4 (ad) + N 2 → 2TiN (s) + 4Cl 2 ↑ (34)
The other part is reduced by chlorine gas radicals, and then is nitrided by nitrogen gas to form TiN. The reaction at this time is represented by the following formula.
TiCl 4 (ad) + 4Cl * → Ti (s) + 4Cl 2 ↑ (35)
2Ti (s) + N 2 → 2TiN (s) (36)

この結果、窒玠ガスをプラズマ化せずに窒玠ガスずしお成膜反応に寄䞎させおも、同様に均䞀な膜質を有する薄膜を成膜するこずができる。ただし、窒玠ガスは窒玠ガスプラズマに比べお反応性は䜎いため、䟋えば、基板の枩床を、被゚ッチング郚材よりも高くならない範囲で、第の実斜圢態で説明した方法よりも比范的高めに蚭定しおおくこずで反応性を向䞊させるこずができる。   As a result, the TiN thin film 16 having a uniform film quality can be similarly formed even if nitrogen gas is converted into nitrogen gas and contributed to the film formation reaction. However, since nitrogen gas is less reactive than nitrogen gas plasma, for example, the temperature of the substrate 3 is relatively higher than the method described in the tenth embodiment within a range not to be higher than the member 7 to be etched. The reactivity can be improved by setting to.

たた、塩玠ガスプラズマを発生させずに原料ガスを䟛絊せずに、窒玠ガスプラズマのみで第の実斜圢態ず同様に均䞀な膜質を有する薄膜を成膜するこずができる。この堎合には、䟋えば、ノズルからの原料ガス䟛絊を䞭止するず共に「チャンバ倖プラズマ発生宀」から噎出する窒玠ガスプラズマを被゚ッチング郚材に向かうように蚭眮し、窒玠ガスプラズマのみで被゚ッチング郚材の゚ッチング及び基板ぞの成膜を行う。このずきの反応は、䞊匏、、、で衚される。なお、この堎合には、塩玠ガスプラズマが成膜反応に関䞎しないため、被゚ッチング郚材は高蒞気圧ハロゲン化物を生成しうる金属である必芁はなく、窒化されうる金属であればどのような金属でも良い。   Further, the TiN thin film 16 having a uniform film quality can be formed by using only nitrogen gas plasma without generating chlorine gas plasma (without supplying raw material gas) as in the tenth embodiment. In this case, for example, the supply of the source gas from the nozzle 12 is stopped and the nitrogen gas plasma ejected from the “outside chamber plasma generation chamber” is directed toward the member to be etched 7, and the etching is performed only with the nitrogen gas plasma. The member 7 is etched and the film is formed on the substrate 3. The reaction at this time is represented by the above formulas (22), (24), (26), and (27). In this case, since the chlorine gas plasma does not participate in the film formation reaction, the member to be etched 7 does not need to be a metal that can generate a high vapor pressure halide, and any metal that can be nitrided can be used. Metal may be used.

なお、原料ガスずしお、等で垌釈された塩玠ガスを䟋に挙げお説明したが、塩玠ガスを単独で甚いたり、ガスを適甚するこずも可胜である。ガスを適甚した堎合、原料ガスプラズマずしおはガスプラズマが生成されるが、被゚ッチング郚材の゚ッチングにより生成される前駆䜓はxyである。埓っお、原料ガスは塩玠を含有するガスであればよく、ガスず塩玠ガスずの混合ガスを甚いるこずも可胜である。もちろん、塩玠ガスを垌釈する際に、窒玠ガスず混合するこずにより垌釈しおも良い。 In addition, although chlorine gas diluted with He, Ar etc. was mentioned as an example and demonstrated as source gas, it is also possible to use chlorine gas independently or to apply HCl gas. When applying the HCl gas, the raw material gas plasma is HCl gas plasma is generated, the precursor produced by etching of the etched member 7 is Ti x Cl y. Therefore, the source gas may be any gas containing chlorine, and a mixed gas of HCl gas and chlorine gas can also be used. Of course, when diluting chlorine gas, it may be diluted by mixing with nitrogen gas.

次に、図ないし図に基づいお、本発明の第ないし第の実斜圢態に係る窒化金属膜䜜補方法及び窒化金属膜䜜補装眮を説明する。以䞋に瀺した窒化金属膜䜜補方法及び窒化金属膜䜜補装眮でも、塩玠ガスず窒玠ガスずを同時に䟛絊しプラズマ化するプラズマ化する堎所は異なるこずで発生した塩玠ガスプラズマ及び窒玠ガスプラズマにより、被゚ッチング郚材を゚ッチングしお金属窒化物の薄膜を基板に成膜する。これにより、高い結晶性等の均䞀な膜質を有する金属窒化物の薄膜を成膜するこずが可胜ずなる。 Next, based on FIGS. 2 to 4, illustrating the second to fourth embodiments the metal nitride film production method and metal nitride film production apparatus according to the embodiment of the present invention. Also in the metal nitride film manufacturing method and metal nitride film manufacturing apparatus shown below, chlorine gas and nitrogen gas are simultaneously supplied into plasma to generate plasma (where plasma generation is different). Then, the member to be etched is etched to form a metal nitride thin film on the substrate. Thereby, a thin film of metal nitride having a uniform film quality such as high crystallinity can be formed.

図ないし図には、本発明の第ないし第の実斜圢態に係る窒化金属膜䜜補方法を実斜する窒化金属膜䜜補装眮の抂略構成を瀺しおある。なお、図に瀺した窒化金属膜䜜補装眮ず同皮郚材には同䞀笊号を付し、重耇する説明は省略しおある。 FIG. 2 to FIG. 4 show a schematic configuration of a metal nitride film manufacturing apparatus for performing the metal nitride film manufacturing method according to the second to fourth embodiments of the present invention. The same members as those in the metal nitride film manufacturing apparatus shown in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.

第の実斜圢態
図に瀺した第の実斜圢態に係る窒化金属膜䜜補装眮では、チャンバの䞊面は開口郚ずされ、開口郚は絶瞁材補䟋えば、セラミックス補の板状の倩井板によっお塞がれおいる。倩井板の䞊方にはチャンバの内郚をプラズマ化するためのプラズマアンテナが蚭けられ、プラズマアンテナは倩井板の面ず平行な平面リング状に圢成されおいる。プラズマアンテナには敎合噚及び電源が接続されお高呚波電流が䟛絊される。
< Second Embodiment >
In the metal nitride film manufacturing apparatus according to the second embodiment shown in FIG. 2 , the upper surface of the chamber 1 is an opening, and the opening is closed by a plate-like ceiling plate 25 made of an insulating material (for example, ceramic). It is peeling off. A plasma antenna 27 for converting the inside of the chamber 1 into plasma is provided above the ceiling plate 25, and the plasma antenna 27 is formed in a planar ring shape parallel to the surface of the ceiling plate 25. The plasma antenna 27 is connected to the matching unit 10 and the power source 11 and supplied with a high frequency current.

チャンバの䞊面の開口郚ず倩井板ずの間には、高蒞気圧ハロゲン化物を圢成しうる金属で圢成される被゚ッチング郚材が挟持されおいる。本実斜圢態では、被゚ッチング郚材の材料ずしおチタンを甚いたが、これに限られず成膜したい窒化膜に応じおタンタル、タングステン、シリコンたたは銅等で圢成しおも良い。   A member to be etched 26 made of a metal capable of forming a high vapor pressure halide is sandwiched between the opening on the upper surface of the chamber 1 and the ceiling plate 25. In this embodiment, titanium (Ti) is used as the material of the member 26 to be etched. However, the material is not limited to this, and tantalum (Ta), tungsten (W), silicon (Si), or copper (depending on the nitride film to be formed). Cu) or the like may be used.

被゚ッチング郚材は、チャンバの内壁から埄方向䞭心に向かうず共に円呚方向に耇数蚭けられる突起郚からなり、突起郚同士の間には切欠郚空間が存圚しおいる。このため、プラズマアンテナに流れる電流の流れ方向に察しお䞍連続状態ずなるように基板ず倩井板ずの間に配眮されおいる。   The member to be etched 26 is composed of a plurality of protrusions that are provided in the circumferential direction from the inner wall of the chamber 1 and have a notch (space) between the protrusions. For this reason, it arrange | positions between the board | substrate 3 and the ceiling board 25 so that it may become a discontinuous state with respect to the flow direction of the electric current which flows into the plasma antenna 27. FIG.

本実斜圢態に係る窒化金属膜䜜補装眮では、チャンバの内郚にノズルからハロゲンガスずしおの塩玠ガスを含有する原料ガスを䟛絊し、プラズマアンテナから電磁波をチャンバの内郚に入射するこずで、塩玠ガスがむオン化されお塩玠ガスプラズマが発生する。塩玠ガスプラズマは、ガスプラズマで図瀺する領域に発生する。たた、窒玠ガスプラズマは第の実斜圢態で説明したのず同様の機構で励起宀内に発生し、チャンバ内、特に基板の呚蟺領域に送られる。これらの各プラズマにより、被゚ッチング郚材に゚ッチング反応が生じ、第の実斜圢態ず同じ䜜甚により薄膜が成膜される。 In the metal nitride film manufacturing apparatus according to the present embodiment, a raw material gas containing chlorine gas as a halogen gas is supplied from the nozzle 12 to the inside of the chamber 1, and electromagnetic waves are incident on the inside of the chamber 1 from the plasma antenna 27. Chlorine gas is ionized to generate chlorine gas plasma. The chlorine gas plasma is generated in a region shown by the gas plasma 14. Nitrogen gas plasma is generated in the excitation chamber 33 by the same mechanism as described in the first embodiment, and is sent to the chamber 1, particularly to the peripheral region of the substrate 3. These plasmas cause an etching reaction in the member 26 to be etched, and the TiN thin film 16 is formed by the same action as in the first embodiment.

プラズマアンテナの䞋郚には導電䜓である被゚ッチング郚材が存圚しおいるが、被゚ッチング郚材はプラズマアンテナに流れる電流の流れ方向に察しお䞍連続な状態で配眮されおいるので、被゚ッチング郚材ず基板ずの間、すなわち、被゚ッチング郚材の䞋偎にガスプラズマが安定しお発生するようになっおいる。   A member to be etched 26, which is a conductor, exists below the plasma antenna 27, but the member to be etched 26 is disposed in a discontinuous state with respect to the flow direction of the current flowing through the plasma antenna 27. The gas plasma 14 is stably generated between the member to be etched 26 and the substrate 3, that is, below the member to be etched 26.

第の実斜圢態
図に瀺した第の実斜圢態に係る窒化金属膜䜜補装眮では、図に瀺した窒化金属膜䜜補装眮ず比范しお、チャンバの筒郚の呚囲にはプラズマアンテナが蚭けられおおらず、被゚ッチング郚材に敎合噚及び電源が接続されお被゚ッチング郚材に高呚波電流が䟛絊される。たた、支持台基板はアヌスされおいる。
< Third Embodiment >
In the metal nitride film manufacturing apparatus according to the third embodiment shown in FIG. 3 , a plasma antenna 9 is provided around the cylindrical portion of the chamber 1 as compared with the metal nitride film manufacturing apparatus shown in FIG. The matching unit 10 and the power source 11 are connected to the member 7 to be etched, and a high frequency current is supplied to the member 7 to be etched. Further, the support base 2 (substrate 3) is grounded.

本実斜圢態に係る窒化金属膜䜜補装眮では、チャンバの内郚にノズルからハロゲンガスずしおの塩玠ガスを含有する原料ガスを䟛絊し、被゚ッチング郚材からチャンバの内郚に静電堎を䜜甚させるこずで、塩玠ガスがむオン化されお塩玠ガスプラズマが発生する。塩玠ガスプラズマは、ガスプラズマで図瀺する領域に発生する。たた、窒玠ガスプラズマは第の実斜圢態で説明したのず同様の機構で励起宀内に発生し、チャンバ内、特に基板の呚蟺領域に送られる。これらのプラズマにより、被゚ッチング郚材に゚ッチング反応が生じ、第の実斜圢態ず同じ䜜甚により薄膜が成膜される。 In the metal nitride film manufacturing apparatus according to this embodiment, a raw material gas containing chlorine gas as a halogen gas is supplied from the nozzle 12 to the inside of the chamber 1, and an electrostatic field is applied to the inside of the chamber 1 from the member to be etched 7. As a result, chlorine gas is ionized to generate chlorine gas plasma. The chlorine gas plasma is generated in a region shown by the gas plasma 14. Nitrogen gas plasma is generated in the excitation chamber 33 by the same mechanism as described in the first embodiment, and is sent to the chamber 1, particularly to the peripheral region of the substrate 3. These plasmas cause an etching reaction in the member 7 to be etched, and the TiN thin film 16 is formed by the same action as in the first embodiment.

本実斜圢態に係る窒化金属膜䜜補装眮では、被゚ッチング郚材自身をプラズマ発生甚の電極ずしお適甚しおいるので、チャンバの筒郚の呚囲にプラズマアンテナ図参照が䞍芁ずなり、呚囲の構成の自由床を増すこずができる。 In the metal nitride film manufacturing apparatus according to the present embodiment, the member to be etched 7 itself is applied as an electrode for plasma generation, so that the plasma antenna 9 (see FIG. 1 ) is not required around the cylindrical portion of the chamber 1, The degree of freedom of surrounding configuration can be increased.

第の実斜圢態
図に瀺した第の実斜圢態に係る窒化金属膜䜜補装眮では、チャンバの䞊面は開口郚ずされ、開口郚は、䟋えば、セラミックス補絶瞁材料補の倩井板によっお塞がれおいる。倩井板の䞋面には高蒞気圧ハロゲン化物を圢成しうる金属で圢成される被゚ッチング郚材が蚭けられ、被゚ッチング郚材は四角錐圢状ずなっおいる。
< Fourth Embodiment >
In the metal nitride film manufacturing apparatus according to the fourth embodiment shown in FIG. 4 , the upper surface of the chamber 1 is an opening, and the opening is closed by, for example, a ceramic (made of an insulating material) ceiling plate 29. ing. On the lower surface of the ceiling plate 29, an etching target member 30 made of a metal capable of forming a high vapor pressure halide is provided, and the etching target member 30 has a quadrangular pyramid shape.

たた、本実斜圢態に係る窒化金属膜䜜補装眮は、図に瀺した窒化金属膜䜜補装眮ず比范しお、チャンバの筒郚の呚囲にはプラズマアンテナが蚭けられおおらず、窒玠ガス専甚の「チャンバ倖プラズマ発生宀」に加えお、原料ガス専甚の「チャンバ倖プラズマ発生宀」が蚭眮されおいる点が異なっおいる。これにより、窒玠ガスず原料ガスずが別々にプラズマ化され、基板を芆うように窒玠ガスプラズマが䟛絊されるず共に、原料ガスプラズマは被゚ッチング郚材に向けお䟛絊される。 Further, in the metal nitride film manufacturing apparatus according to the present embodiment, the plasma antenna 9 is not provided around the cylindrical portion of the chamber 1 as compared with the metal nitride film manufacturing apparatus shown in FIG. In addition to a dedicated “outside chamber plasma generation chamber”, a “outside chamber plasma generation chamber” dedicated to the source gas is provided. Thus, the nitrogen gas and the source gas are separately converted into plasma, and nitrogen gas plasma is supplied so as to cover the substrate 3, and the source gas plasma is supplied toward the member to be etched 30.

以䞊、第ないし第の実斜圢態を詳现に説明したが、第ないし第の実斜圢態においおも、第の実斜圢態ず同様に、埗られた薄膜は安定した元玠組成を有し、線解析の結果、薄膜の結晶性に぀いおは高い結晶性を有するこずが分かった。すなわち、第ないし第の実斜圢態によれば、均䞀な膜質を有し、所望の膜特性を埗るこずができる薄膜を成膜するこずができる。 As described above, the second to fourth embodiments have been described in detail. In the second to fourth embodiments as well, the obtained TiN thin film has a stable elemental composition as in the first embodiment. As a result of X-ray analysis, it was found that the thin film has high crystallinity. That is, according to the second to fourth embodiments , it is possible to form the TiN thin film 16 having uniform film quality and capable of obtaining desired film characteristics.

たた、第ないし第の実斜圢態においおも、第の実斜圢態ず同様に、ガス䟛絊制埡手段により原料ガス塩玠ガス含有及び窒玠ガスを同時に䟛絊した䟋を瀺したが、これに限られるものではない。すなわち、原料ガスを第所定時間䟛絊した埌に窒玠ガスを第所定時間䟛絊した堎合や、原料ガスを第所定時間䟛絊した埌に窒玠ガスを第所定時間䟛絊する順序で亀互に各ガスを䟛絊した堎合でも、同様に均䞀な膜質を有する薄膜を成膜するこずができる。この堎合の薄膜が圢成される機構は第の実斜圢態で説明した通りである。 Also in the second to fourth embodiments , as in the first embodiment , the example in which the source gas (containing chlorine gas) and the nitrogen gas are simultaneously supplied by the gas supply control means has been shown. It is not something that can be done. That is, when the source gas is supplied for the first predetermined time and then the nitrogen gas is supplied for the second predetermined time, or after the source gas is supplied for the first predetermined time and then the nitrogen gas is supplied for the second predetermined time, the respective gases are alternately supplied. Even when supplied, the TiN thin film 16 having a uniform film quality can be similarly formed. The mechanism for forming the TiN thin film 16 in this case is as described in the first embodiment.

たた、第ないし第の実斜圢態においおも、第の実斜圢態ず同様に、塩玠ガスプラズマず窒玠ガスプラズマずを発生させお成膜した䟋を瀺したが、これに限られるものではない。すなわち、窒玠ガスをプラズマ化せずに窒玠ガスの状態で成膜に寄䞎させおも、第の実斜圢態ず同様に均䞀な膜質を有する薄膜を成膜するこずができる。なお、プラズマアンテナぞの絊電を停止すれば窒玠ガスのたた成膜反応に寄䞎させるこずができる。 Also, in the second to fourth embodiments , as in the first embodiment , an example was shown in which film formation was performed by generating chlorine gas plasma and nitrogen gas plasma. However, the present invention is not limited to this. . That is, the TiN thin film 16 having a uniform film quality can be formed as in the first embodiment even if nitrogen gas is not converted into plasma and contributes to film formation in the state of nitrogen gas. If power supply to the plasma antenna is stopped, the nitrogen gas can be contributed to the film formation reaction.

たた、第ないし第の実斜圢態においおも、第の実斜圢態ず同様に、塩玠ガスプラズマを発生させずに原料ガスを䟛絊せずに、窒玠ガスプラズマのみで第の実斜圢態ず同様に均䞀な膜質を有する薄膜を成膜するこずができる。 Also in the second to fourth embodiments , as in the first embodiment , the chlorine gas plasma is not generated (the source gas is not supplied), and only the nitrogen gas plasma is used in the first embodiment. Similarly, a TiN thin film 16 having a uniform film quality can be formed.

たた、第ないし第の実斜圢態においおも、第の実斜圢態ず同様に、原料ガスずしお、等で垌釈された塩玠ガスを䟋に挙げお説明したが、塩玠ガスを単独で甚いたり、ガスを適甚するこずも可胜である。原料ガスは塩玠を含有するガスであればよく、ガスず塩玠ガスずの混合ガスを甚いるこずも可胜である。もちろん、塩玠ガスを垌釈する際に、窒玠ガスず混合するこずにより垌釈しおも良い。 In the second to fourth embodiments, as in the first embodiment, the chlorine gas diluted with He, Ar or the like has been described as an example of the source gas, but the chlorine gas is used alone. It is also possible to use or apply HCl gas. The source gas may be any gas containing chlorine, and a mixed gas of HCl gas and chlorine gas can also be used. Of course, when diluting chlorine gas, it may be diluted by mixing with nitrogen gas.

以䞊説明した、第ないし第の実斜圢態における薄膜の成膜機構では、窒玠ガスが「チャンバ倖プラズマ発生宀」から窒玠ガスプラズマずしお基板を芆うようにしお䟛絊されるこずにより、窒玠ガスラゞカルによる被゚ッチング郚材、、の゚ッチング䞊匏及びそれ以降の成膜反応䞊匏、は発生しにくいず考えられる。䞀方、前駆䜓4の窒化反応䞊匏、特に基板付近で発生する基板に吞着した前駆䜓4の窒化反応䞊匏及び単䜓の窒化反応䞊匏は発生する確率が高くなるず考えられる。 In the film forming mechanism of the TiN thin film 16 in the first to fourth embodiments described above, nitrogen gas is supplied from the “outside chamber plasma generation chamber” so as to cover the substrate 3 as nitrogen gas plasma, It is considered that etching of the members 7, 26 and 30 to be etched by nitrogen gas radicals (formula (24)) and subsequent film formation reactions (formulas (26) and (27)) are unlikely to occur. On the other hand, the nitriding reaction of the precursor TiCl 4 (the above formula (31)), in particular, the nitriding reaction of the precursor TiCl 4 adsorbed on the substrate 3 generated near the substrate 3 (the above formula (28)) and the nitriding reaction of Ti alone ( The above equation (30)) is considered to increase the probability of occurrence.

第ないし第の実斜圢態では、窒玠ガスを「チャンバ倖プラズマ発生宀」においお予めプラズマ化した埌、チャンバ内に䟛絊する䟋を瀺したが、これに限られない。䟋えば、チャンバ内をプラズマ化するプラズマ発生手段により、チャンバ内においおプラズマ化しおも同様に窒化金属膜を成膜するこずができる。たた、第ないし第の実斜圢態では、ハロゲンガス䟛絊手段ず窒玠ガス䟛絊手段ずを独立しお蚭けた䟋を瀺したが、ハロゲンガス及び窒玠ガスの䟛絊手段を䞀䜓にしお蚭眮するこずにより、ガス配管をコンパクトにするこずも可胜であり、この堎合にも同様に窒化金属膜を成膜するこずができる。 In the first to fourth embodiments , the nitrogen gas is converted into plasma in the “outside chamber plasma generation chamber” and then supplied into the chamber, but the present invention is not limited to this. For example, the plasma generating means for plasma within Ji Yanba, it is possible to form a similar metal nitride film be plasma in the chamber. In the first to fourth embodiments , an example in which the halogen gas supply unit and the nitrogen gas supply unit are provided independently has been described. However, by providing the halogen gas and nitrogen gas supply unit integrally. The gas piping can also be made compact, and in this case as well, a metal nitride film can be similarly formed.

たた、第ないし第の実斜圢態では、ハロゲンガス䟛絊手段をノズルで瀺す圢状を䟋ずしお説明し、窒玠ガス䟛絊手段を「チャンバ倖プラズマ発生宀」タむプずしお説明したが、これに限られない。䟋えば、ハロゲンガス䟛絊手段たたは窒玠ガス䟛絊手段を基板の呚囲に配眮されたリング状パむプずしおも、同様に窒化金属膜を成膜するこずができる。さらに、リング状パむプのガスリングず基板ずの間に静電堎を生じさせハロゲンガスたたは窒玠ガスをプラズマ化容量結合型プラズマしお成膜反応に甚いおもよい。たた、リング状パむプのガスリングず基板ずの間に誘導電界を生じさせハロゲンガスたたは窒玠ガスをプラズマ化誘導結合型プラズマしお成膜反応に甚いおもよい。これらの堎合にも、同様に窒化金属膜を成膜するこずができる。 In the first to fourth embodiments, the shape of the halogen gas supply unit indicated by the nozzle 12 has been described as an example, and the nitrogen gas supply unit has been described as the “outside chamber plasma generation chamber” type. However, the present invention is not limited to this. Absent. For example, even the hard Rogengasu supply means or the nitrogen gas supply means as a ring-shaped pipe that is disposed around the substrate, it is possible to deposit the same metal nitride film. Furthermore, an electrostatic field may be generated between the gas ring of the ring-shaped pipe and the substrate, and halogen gas or nitrogen gas may be converted into plasma (capacitively coupled plasma) and used for the film formation reaction. Alternatively, an induction electric field may be generated between the gas ring of the ring-shaped pipe and the substrate, and halogen gas or nitrogen gas may be converted into plasma (inductively coupled plasma) and used for the film formation reaction. In these cases, a metal nitride film can be similarly formed.

本発明の第の実斜圢態に係る窒化金属膜䜜補方法を実斜する窒化金属膜䜜補装眮の抂略偎面図である。 1 is a schematic side view of a metal nitride film manufacturing apparatus for performing a metal nitride film manufacturing method according to a first embodiment of the present invention. 本発明の第の実斜圢態に係る窒化金属膜䜜補方法を実斜する窒化金属膜䜜補装眮の抂略偎面図である。It is a schematic side view of the metal nitride film production apparatus which enforces the metal nitride film production method concerning the 2nd Embodiment of this invention. 本発明の第の実斜圢態に係る窒化金属膜䜜補方法を実斜する窒化金属膜䜜補装眮の抂略偎面図である。It is a schematic side view of the metal nitride film production apparatus which enforces the metal nitride film production method concerning the 3rd Embodiment of this invention. 本発明の第の実斜圢態に係る窒化金属膜䜜補方法を実斜する窒化金属膜䜜補装眮の抂略偎面図である。It is a schematic side view of the metal nitride film production apparatus which enforces the metal nitride film production method concerning the 4th Embodiment of this invention.

笊号の説明Explanation of symbols

 チャンバ
 支持台
 基板
 ヒヌタ
 冷媒流通手段
 枩床制埡手段
 被゚ッチング郚材
 真空装眮
 プラズマアンテナ
 敎合噚
 電源
 ノズル
 流量制埡噚
 ガスプラズマ
 前駆䜓
 排気口
 倩井板
 開口郚
 通路
 励起宀
DESCRIPTION OF SYMBOLS 1 Chamber 2 Support stand 3 Substrate 4 Heater 5 Refrigerant distribution means 6 Temperature control means 7, 26, 30 Member to be etched 8 Vacuum apparatus 9, 27, 34 Plasma antenna 10 Matching device 11 Power supply 12 Nozzle 13, 20 Flow rate controller 14, 35 Gas plasma 15 Precursor 17 Exhaust port 25, 29 Ceiling plate 31 Opening 32 Passage 33 Excitation chamber

JP2005208408A 2005-07-19 2005-07-19 Method and apparatus for producing metal nitride film Expired - Fee Related JP4350686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005208408A JP4350686B2 (en) 2005-07-19 2005-07-19 Method and apparatus for producing metal nitride film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005208408A JP4350686B2 (en) 2005-07-19 2005-07-19 Method and apparatus for producing metal nitride film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002243240A Division JP3716240B2 (en) 2002-08-23 2002-08-23 Method and apparatus for producing metal oxide film

Publications (3)

Publication Number Publication Date
JP2006037230A JP2006037230A (en) 2006-02-09
JP2006037230A5 true JP2006037230A5 (en) 2008-03-21
JP4350686B2 JP4350686B2 (en) 2009-10-21

Family

ID=35902530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005208408A Expired - Fee Related JP4350686B2 (en) 2005-07-19 2005-07-19 Method and apparatus for producing metal nitride film

Country Status (1)

Country Link
JP (1) JP4350686B2 (en)

Similar Documents

Publication Publication Date Title
JP4666912B2 (en) Plasma reinforced atomic layer deposition apparatus and thin film forming method using the same
JP3404536B2 (en) Method for forming integrated circuit by low-temperature plasma enhancement
TWI624870B (en) Procedure for etch rate consistency
CN105914146B (en) Method for achieving ultra-high selectivity in etching silicon nitride
US5306666A (en) Process for forming a thin metal film by chemical vapor deposition
JP2016166405A (en) Metal doping of amorphous carbon and silicon film used as hard mask by substrate processing system
TW201443992A (en) Enhanced etching processes using remote plasma sources
CN106158619A (en) It is of target objects by processing method
JP3716240B2 (en) Method and apparatus for producing metal oxide film
US7659209B2 (en) Barrier metal film production method
JP4350686B2 (en) Method and apparatus for producing metal nitride film
WO2023058582A1 (en) Etching method and etching device
JP2006037230A5 (en)
JP4000296B2 (en) Metal compound film production apparatus and metal compound film production method
JP4340221B2 (en) Metal nitride film manufacturing apparatus and metal nitride film manufacturing method
JP4117308B2 (en) Metal film manufacturing method and metal film manufacturing apparatus
JP3872787B2 (en) Metal film production apparatus and production method
JP4369860B2 (en) Metal film, metal film manufacturing method, metal film manufacturing apparatus, plasma processing method and etching apparatus
JP3771865B2 (en) Metal film production apparatus and metal film production method
JP3975207B2 (en) Metal film production apparatus and metal film production method
JP4364504B2 (en) Metal film production apparatus and metal film production method
JP3900496B2 (en) Metal film manufacturing method and metal film manufacturing apparatus
JP2005320634A5 (en)
WO2016111832A1 (en) Laminate and core shell formation of silicide nanowire
TW202503092A (en) Formation of silicon-and-metal-containing materials for hardmask applications