JP2006036116A - Vehicle body structure - Google Patents

Vehicle body structure Download PDF

Info

Publication number
JP2006036116A
JP2006036116A JP2004221678A JP2004221678A JP2006036116A JP 2006036116 A JP2006036116 A JP 2006036116A JP 2004221678 A JP2004221678 A JP 2004221678A JP 2004221678 A JP2004221678 A JP 2004221678A JP 2006036116 A JP2006036116 A JP 2006036116A
Authority
JP
Japan
Prior art keywords
roof
vehicle body
width direction
roof member
body structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004221678A
Other languages
Japanese (ja)
Inventor
Sanemare Sano
真希 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004221678A priority Critical patent/JP2006036116A/en
Publication of JP2006036116A publication Critical patent/JP2006036116A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vehicle body structure capable of ensuring an in-cabin space while mitigating the side impact input in a pillar member by a roof member and a floor member continuously provided on upper and lower portions of the pillar member. <P>SOLUTION: When the collision load is input in a pillar member 3 by a side impact, the collision load is dispersed in the vertical direction as the axial force in the compressive direction. The axial force applied upwardly displaces an upper portion of the curved pillar member 3 substantially upwardly in the beginning of the collision to raise the reaction force and mitigate the impact. In the middle of the collision or later, the axial force is input in a roof member 6 and a floor member 7. However, since intermediate portions of first and second roof members 6A, 6B which are curved and separated are connected to each other by a connection member 12, the rigidity of the roof member 6 is high, the deformation of a roof part Rf inward of a cabin is suppressed, and the absorption of the collision energy is increased by the deformation of the roof member 6 and the floor member 7. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、側面衝突荷重を車体側面のピラー部材で受けるようにした車体構造に関する。   The present invention relates to a vehicle body structure in which a side collision load is received by a pillar member on a side surface of the vehicle body.

従来の側面衝突に対応させた車体構造としては、センタピラー等のピラー部材全周を閉断面構造化するとともに、そのピラー部材の下方に積極的に強度不連続部を設け、側面衝突時において同部位で的確に内側に折れ曲がるように変形させることにより、ピラー部材の中央部分と上方部分での局部的な折れ曲がりを防止し、ピラー部材を略均一に内側に変位させるとともに、その内側への変形量を比較的少なくするようにしたものが知られている(例えば、特許文献1参照)。
特開平8−72740号公報(第4頁、第1図)
As a conventional vehicle body structure corresponding to a side collision, the entire circumference of a pillar member such as a center pillar has a closed cross-sectional structure, and a strength discontinuity is positively provided below the pillar member, so that the same in a side collision. By deforming so that it bends inward precisely at the site, local bending at the center part and upper part of the pillar member is prevented, the pillar member is displaced inward substantially uniformly, and the amount of deformation to the inside There is known a technique in which the number of the lines is relatively reduced (see, for example, Patent Document 1).
JP-A-8-72740 (page 4, FIG. 1)

しかしながら、かかる従来の車体構造では、衝突初期にピラー部材下部を車室内方に折り曲げてしまうが故に、車体の強度はその折れ曲がり強度によって支配されてしまい、大幅な強度向上を期待することが困難になってしまう。   However, in such a conventional vehicle body structure, the lower part of the pillar member is bent toward the vehicle interior at the beginning of the collision, so the strength of the vehicle body is governed by the bending strength, and it is difficult to expect a significant improvement in strength. turn into.

そこで、本発明はピラー部材の上,下部に車幅方向に連設したルーフメンバとフロアメンバとにより、ピラー部材に入力した側面衝突入力の衝撃緩和を図りつつ車室内空間を確保できる車体構造を提供することを目的とする。   Therefore, the present invention provides a vehicle body structure that can secure a vehicle interior space while mitigating the impact of side collision input that is input to the pillar member by the roof member and the floor member that are continuously provided in the vehicle width direction above and below the pillar member. The purpose is to provide.

本発明にあっては、ルーフ部の車幅方向両側に車体前後方向に延在する左,右一対のルーフサイドレールと、フロア部の車幅方向両側に車体前後方向に延在する左,右一対のサイドシルと、上下に対向する前記ルーフサイドレールと前記サイドシルとを連結し、全体的に車体外方に湾曲するピラー部材と、左,右のルーフサイドレールを前記ピラー部材の連結部分で連結するルーフメンバと、左,右のサイドシルを前記ピラー部材の連結部分で連結するフロアメンバと、を備えた車体構造において、
前記ルーフメンバを、それぞれが車幅方向両端部で結合されるとともに、それぞれの車幅方向中間部分で互いに離れる方向に湾曲して分離する第1ルーフメンバおよび第2ルーフメンバで構成し、これら第1,第2ルーフメンバの車幅方向中間部をルーフメンバ連結部材で互いに連結したことを最も主要な特徴とする。
In the present invention, a pair of left and right roof side rails extending in the vehicle longitudinal direction on both sides in the vehicle width direction of the roof portion, and left and right extending in the vehicle longitudinal direction on both sides in the vehicle width direction of the floor portion. A pair of side sills, the roof side rails facing the top and bottom, and the side sills are connected, and a pillar member that is curved outwardly from the vehicle body, and the left and right roof side rails are connected by a connecting portion of the pillar members. A vehicle body structure comprising: a roof member to be connected; and a floor member for connecting left and right side sills at a connecting portion of the pillar member.
Each of the roof members is composed of a first roof member and a second roof member which are coupled at both ends in the vehicle width direction and are curved and separated in directions away from each other in the middle portion in the vehicle width direction. The most important feature is that the intermediate portions in the vehicle width direction of the first and second roof members are connected to each other by a roof member connecting member.

本発明によれば、側面衝突によりピラー部材に衝突荷重が入力すると、全体的に車体外方に湾曲したこのピラー部材には衝突荷重が圧縮方向の軸力として上下方向に分散し、上方に作用する軸力は衝突初期では湾曲したピラー部材の上部を略上方に変位させて反力を立ち上がらせるとともに衝撃を緩和し、衝突中盤以降では前記軸力がルーフメンバ,フロアメンバに入力するが、このルーフメンバが互いに離れる方向に湾曲して分離する第1ルーフメンバおよび第2ルーフメンバによって二重構造として形成され、かつ、それらの車幅方向中間部が連結部材で連結されることにより、このルーフメンバの剛性が増大してルーフ部が車室内方に進入するのを抑制して車室内空間を確保するとともに、該ルーフメンバおよびフロアメンバの変形によって衝突エネルギー吸収量を増大することができる。   According to the present invention, when a collision load is input to the pillar member due to a side collision, the collision load is distributed in the vertical direction as an axial force in the compression direction to the pillar member that is curved outwardly as a whole, and acts upward. In the initial stage of the collision, the axial force to be moved is displaced substantially upwards to cause the reaction force to rise, and the impact is mitigated.After the middle of the collision, the axial force is input to the roof member and floor member. The roof member is formed as a double structure by the first roof member and the second roof member that are curved and separated in a direction away from each other, and an intermediate portion in the vehicle width direction is connected by a connecting member. The rigidity of the member is increased and the roof portion is prevented from entering the interior of the vehicle interior to secure the vehicle interior space, and the roof member and the floor member can be deformed. It is possible to increase the impact energy absorption me.

以下、本発明の実施形態を図面と共に詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1〜図4は本発明にかかる車体構造の第1実施形態を示し、図1は車体の骨格構造の斜視図、図2は車体片側の骨格部材の分解斜視図、図3は側面衝突荷重が入力した時の車体の変形を(a)〜(c)に順を追って示す図1中A部の断面説明図、図4は横軸の変位と縦軸の荷重によって示す反力特性を破線で示す従来と比較したグラフである。   1 to 4 show a first embodiment of a vehicle body structure according to the present invention, FIG. 1 is a perspective view of a skeleton structure of a vehicle body, FIG. 2 is an exploded perspective view of a skeleton member on one side of the vehicle body, and FIG. FIG. 4 is a cross-sectional explanatory view of the portion A in FIG. 1 showing the deformation of the vehicle body in order from (a) to (c). FIG. 4 is a broken line showing the reaction force characteristics indicated by the horizontal axis displacement and the vertical axis load. It is a graph compared with the conventional shown by.

この第1実施形態の車体構造は、図1に示すようにルーフ部Rfの車幅方向両側に車体前後方向に延在する左,右一対のルーフサイドレール1と、フロア部Frの車幅方向両側に車体前後方向に延在する左,右一対のサイドシル2と、上下に対向する前記ルーフサイドレール1と前記サイドシル2とを連結するピラー部材としてのセンタピラー3と、を備えており、このセンタピラー3は全体的に車体外方に湾曲形成してあり、その最大曲率部3aがセンタピラー3の下部、つまり、側面衝突される相手車両のバンパー位置に略対応する部位に形成されている。   As shown in FIG. 1, the vehicle body structure of the first embodiment includes a pair of left and right roof side rails 1 extending in the vehicle longitudinal direction on both sides in the vehicle width direction of the roof portion Rf, and the vehicle width direction of the floor portion Fr. A pair of left and right side sills 2 extending in the longitudinal direction of the vehicle body on both sides, and a center pillar 3 as a pillar member for connecting the roof side rail 1 and the side sills 2 facing vertically. The center pillar 3 is generally curved outwardly of the vehicle body, and the maximum curvature portion 3a is formed at the lower portion of the center pillar 3, that is, at a portion that substantially corresponds to the bumper position of the opponent vehicle that undergoes a side collision. .

前記ルーフサイドレール1、前記サイドシル2および前記センタピラー3は、それぞれ断面矩形状の中空部材で形成され、ルーフサイドレール1はセンターピラー3よりも車体前方を前方ルーフサイドレール1A、車体後方を後方ルーフサイドレール1Bで形成するとともに、サイドシル2はセンタピラー3よりも車体前方を前方サイドシル2A、車体後方を後方サイドシル2Bで形成してある。   The roof side rail 1, the side sill 2, and the center pillar 3 are each formed of a hollow member having a rectangular cross section. The roof side rail 1 is a front roof side rail 1A on the front side of the vehicle body and a rear side of the vehicle body behind the center pillar 3. The side sill 2 is formed with a front side sill 2A on the front side of the vehicle body and a rear side sill 2B on the rear side of the vehicle body.

また、前記ルーフサイドレール1と前記サイドシル2との間には、センタピラー3の車体前方に所定間隔をおいてフロントピラー4が配置されるとともに、センタピラー3の車体後方に所定間隔をおいてリアピラー5が配置される。   A front pillar 4 is disposed between the roof side rail 1 and the side sill 2 at a predetermined distance in front of the center pillar 3 and at a predetermined distance behind the center pillar 3 in the vehicle body. A rear pillar 5 is arranged.

前記左,右のルーフサイドレール1には前記センタピラー5の連結部分でルーフメンバ6が連結されるとともに、前記左,右のサイドシル2には前記センターピラー5の連結部分でフロアメンバ7が連結される。   A roof member 6 is connected to the left and right roof side rails 1 at a connecting portion of the center pillar 5, and a floor member 7 is connected to the left and right side sills 2 at a connecting portion of the center pillar 5. Is done.

また、前記左,右のルーフサイドレール1の車体前端部間にはフロントルーフボウ8が連結されるとともに、車体後端部間にはリアルーフボウ9が連結され、かつ、前記左,右のサイドシル2の車体前端部間にはフロントクロスメンバ10が連結されるとともに、車体後端部間にはリアクロスメンバ11が連結される。   A front roof bow 8 is connected between the front end portions of the left and right roof side rails 1, a rear roof bow 9 is connected between the rear end portions of the vehicle body, and the left and right side sills 2 are connected. A front cross member 10 is connected between the front end portions of the vehicle body, and a rear cross member 11 is connected between the rear end portions of the vehicle body.

ここで本発明は、前記ルーフメンバ6を、それぞれが車幅方向両端部で結合されるとともに、それぞれの車幅方向中間部分で互いに離れる方向に湾曲して分離する第1ルーフメンバとしての上方ルーフメンバ6Aおよび第2ルーフメンバとしての下方ルーフメンバ6Bで構成し、これら上方,下方ルーフメンバ6A,6Bの車幅方向中間部をルーフメンバ連結部材12で互いに連結してある。   Here, according to the present invention, the roof member 6 is joined at both ends in the vehicle width direction, and the upper roof as a first roof member that is curved and separated in the direction away from each other in the middle portion in the vehicle width direction. A member 6A and a lower roof member 6B as a second roof member are configured, and intermediate portions in the vehicle width direction of these upper and lower roof members 6A and 6B are connected to each other by a roof member connecting member 12.

前記上方ルーフメンバ6Aは車幅方向中央部が最大曲率部となるように全体的に車体上方に湾曲して車体上方に配置され、かつ、前記下方ルーフメンバ6Bは車幅方向中央部が最大曲率部となるように全体的に車体下方に湾曲して車体下方に配置される。   The upper roof member 6A is generally curved above the vehicle body and disposed above the vehicle body so that the central portion in the vehicle width direction becomes the maximum curvature portion, and the lower roof member 6B has the maximum curvature in the central portion in the vehicle width direction. As a whole, it is curved below the vehicle body and arranged below the vehicle body.

上方ルーフメンバ6Aおよび下方ルーフメンバ6Bはそれぞれ断面矩形状の中空部材で形成され、上方ルーフメンバ6Aは、図2に示すようにその車幅方向端部に形成した縮幅部6Awをセンタピラー3の上端部内に挿入して溶接し、その上方ルーフメンバ6Aの車幅方向端部下面に下方ルーフメンバ6Bの車幅方向端部に設けたフランジ6Bfをスポット溶接して、これら上方,下方ルーフメンバ6A,6Bの端部どうしを結合してある。   The upper roof member 6A and the lower roof member 6B are each formed of a hollow member having a rectangular cross section, and the upper roof member 6A has a reduced width portion 6Aw formed at the end in the vehicle width direction as shown in FIG. The upper roof member 6A is welded by being welded, and the flange 6Bf provided at the vehicle width direction end of the lower roof member 6B is spot welded to the lower surface of the vehicle roof direction end of the upper roof member 6A. The ends of 6A and 6B are joined together.

上方ルーフメンバ6Aおよび下方ルーフメンバ6Bは、それぞれの車幅方向中央部が最大曲率部となっており、これら上方,下方ルーフメンバ6A,6Bは、車幅方向両端部が互いに結合された状態で中央側間が中央部に向かって徐々に拡開し、それぞれの最大曲率部またはその近傍を上記ルーフメンバ連結部材12によって連結してある。   Each of the upper roof member 6A and the lower roof member 6B has a maximum curvature portion at the center in the vehicle width direction, and the upper and lower roof members 6A and 6B are in a state where both ends in the vehicle width direction are coupled to each other. The central side is gradually expanded toward the central portion, and the respective maximum curvature portions or the vicinity thereof are connected by the roof member connecting member 12.

即ち、ルーフメンバ連結部材12は断面矩形状の中空部材で形成して、これを車体上下方向に立てた状態で上方,下方ルーフメンバ6A,6B間に挟み込み、その連結部材12の上下両端部に設けたフランジ12fを上方,下方ルーフメンバ6A,6Bにスポット溶接してある。   That is, the roof member connecting member 12 is formed of a hollow member having a rectangular cross section, and is sandwiched between the upper and lower roof members 6A and 6B in a state where the roof member connecting member 12 stands in the vertical direction of the vehicle body. The provided flange 12f is spot welded to the upper and lower roof members 6A and 6B.

また、このようにセンタピラー3に上方,下方ルーフメンバ6A,6Bを結合した状態で、前方ルーフサイドレール1Aの車体後方端部に設けたフランジ1Afを上方,下方ルーフメンバ6A,6Bの結合部前面にスポット溶接するとともに、後方ルーフサイドレール1Bの車体前方端部に設けたフランジ1Bfを上方,下方ルーフメンバ6A,6Bの結合部後面にスポット溶接してある。   Further, with the upper and lower roof members 6A and 6B coupled to the center pillar 3 as described above, the flange 1Af provided at the vehicle body rear end of the front roof side rail 1A is connected to the upper and lower roof members 6A and 6B. In addition to spot welding on the front surface, a flange 1Bf provided at the front end of the vehicle body of the rear roof side rail 1B is spot welded to the rear surface of the joint portion between the upper and lower roof members 6A, 6B.

一方、上記フロアメンバ7の車幅方向端部に脆弱部としての凹設部7aを形成し、この凹設部7aを中間にしてフロアメンバ7上面に、車幅方向に所定間隔δをもって対峙し、凹設部7aの所定以上の変形によって互いに干渉する荷重受け部材13を設けてある。   On the other hand, a recessed portion 7a as a fragile portion is formed at the vehicle width direction end portion of the floor member 7, and the recessed portion 7a is located in the middle to face the floor member 7 with a predetermined interval δ in the vehicle width direction. The load receiving member 13 is provided which interferes with each other due to the deformation of the recessed portion 7a.

フロアメンバ7は、図2に示すように断面矩形状の中空部材で形成され、その車幅方向端部に形成した縮幅部7wをセンタピラー3の下端部に差し込んで溶接してあり、このセンタピラー3の下端部の前面に前方サイドシル2Aの車体後方端部に設けたフランジ2Afをスポット溶接するとともに、センタピラー3の下端部の後面に後方サイドシル2Bの車体前方部に設けたフランジ2Bfをスポット溶接してある。   The floor member 7 is formed of a hollow member having a rectangular cross section as shown in FIG. 2, and a reduced width portion 7w formed at an end portion in the vehicle width direction is inserted into a lower end portion of the center pillar 3 and welded. A flange 2Af provided at the vehicle body rear end of the front side sill 2A is spot welded to the front surface of the lower end portion of the center pillar 3, and a flange 2Bf provided at the vehicle body front portion of the rear side sill 2B is provided on the rear surface of the lower end portion of the center pillar 3. Spot welded.

尚、このとき前記フランジ2Afおよび2Bfは、前方,後方サイドシル2A,2Bの各端部の車幅方向内方側の略半分に設けてあり、前方,後方サイドシル2A,2B端部の車幅方向内方半部をセンタピラー3の前,後面に結合し、前方,後方サイドシル2A,2B端部の車幅方向外方半部に設けたフランジ2Af′,2Bf′はセンタピラー3の外側に配置して互いに結合してある。   At this time, the flanges 2Af and 2Bf are provided at substantially half of the front and rear side sills 2A and 2B on the inner side in the vehicle width direction, and the front and rear side sills 2A and 2B end portions in the vehicle width direction. The flanges 2Af ′ and 2Bf ′ provided on the outer half in the vehicle width direction of the front and rear side sills 2A and 2B are arranged outside the center pillar 3 with the inner half joined to the front and rear surfaces of the center pillar 3. Are connected to each other.

また、前記凹設部7aは図2に示すようにフロアメンバ7を部分的に上方からプレス等して凹設して形成してあり、一方、前記荷重受け部材13はその凹設部7aを挟んで車幅方向に対峙する一対の内側部材13Aと外側部材13Bとで構成してある。   Further, as shown in FIG. 2, the recessed portion 7a is formed by recessing the floor member 7 by partially pressing it from above, while the load receiving member 13 has the recessed portion 7a. It is comprised by a pair of inner member 13A and the outer member 13B which oppose in the vehicle width direction on both sides.

内側部材13Aは、車幅方向外側に荷重受け面13Aaを設けてフランジ13Afを介してフロアメンバ7にスポット溶接する一方、外側部材13Bは、車幅方向内側に荷重受け面13Baを設けてフランジ13Bfを介してフロアメンバ7およびセンタピラー3に跨ってスポット溶接し、それぞれの荷重受け面13Aa,13Baを所定間隔をおいて対向配置してある。   The inner member 13A is provided with a load receiving surface 13Aa on the outer side in the vehicle width direction and spot welded to the floor member 7 via the flange 13Af, while the outer member 13B is provided with a load receiving surface 13Ba on the inner side in the vehicle width direction and provided with the flange 13Bf. Are spot-welded across the floor member 7 and the center pillar 3, and the load receiving surfaces 13Aa and 13Ba are arranged to face each other at a predetermined interval.

以上の構成によりこの第1実施形態の車体構造によれば、図3(a)に示すように自動車などの衝突物が側面衝突してセンタピラー3の最大曲率部3aに衝突荷重Fが入力すると、全体的に車体外方に湾曲したこのセンタピラー3は伸展方向の変形力を受けて初期反力が立ち上がり、最大曲率部3aを中心に圧縮方向の軸力f1,f2として衝突荷重Fを上下方向に分散する。   According to the vehicle body structure of the first embodiment having the above configuration, when a collision object such as an automobile collides sideways and a collision load F is input to the maximum curvature portion 3a of the center pillar 3 as shown in FIG. The center pillar 3 that is curved outwardly of the vehicle body receives a deformation force in the extending direction, and an initial reaction force rises, and the collision load F is increased and decreased as axial forces f1 and f2 in the compression direction centering on the maximum curvature portion 3a. Disperse in the direction.

図3(a)に示す衝突初期では、上方に作用する軸力f1は湾曲したセンタピラー3の上部3Tを車幅方向内方に向かう斜め上方K1に変位させる一方、下方に作用する軸力f2はセンタピラー3の下部3Bを車幅方向内方に向かう斜め下方K2に変位させるとともに、フロアメンバ7の凹設部7aを下方に変形させて、図4中P1領域に示すように衝突直後の衝撃を緩和する。   In the initial stage of the collision shown in FIG. 3A, the axial force f1 acting upward displaces the upper part 3T of the curved center pillar 3 to the diagonally upward K1 inward in the vehicle width direction, while the axial force f2 acting downward. 4 displaces the lower part 3B of the center pillar 3 in an obliquely downward direction K2 inward in the vehicle width direction, and deforms the recessed part 7a of the floor member 7 downward so that the position immediately after the collision as shown in the P1 region in FIG. Reduce the impact.

そして、衝突状態が進行して図3(b)に示す衝突中盤では、前記軸力f1がルーフメンバ6に入力するが、このルーフメンバ6が互いに離れる方向に湾曲して分離する上方ルーフメンバ6Aおよび下方ルーフメンバ6Bによって二重構造として形成してあるので、このルーフメンバ6の剛性が増大してルーフ部Rfが車室内方に進入するのを抑制し、車室内空間を確保することができる。   3B, the axial force f1 is input to the roof member 6, and the roof member 6A is curved and separated in a direction away from each other. Since the roof member 6B is formed as a double structure, the rigidity of the roof member 6 is increased, so that the roof portion Rf can be prevented from entering the vehicle interior, and the vehicle interior space can be secured. .

つまり、本実施形態では上記ルーフメンバ6を構成する上方ルーフメンバ6Aは全体的に車体上方に湾曲し、かつ、下方ルーフメンバ6Bは全体的に車体下方に湾曲しているので、前記軸力f1によるセンタピラー3の上部3Tの斜め上方K1への変位により、下方ルーフメンバ6Bに作用する圧縮力f3により下方突出方向K3への緊張状態が発生して、迅速な反力の立ち上がりを促進するとともに、センタピラー3の軸力f1が増大して上方ルーフメンバ6Aの圧縮力f4により、上方突出方向K4への変形と下方ルーフメンバ6Bの下方突出方向K3への変形とが増長することで反力が増加する。   That is, in the present embodiment, the upper roof member 6A constituting the roof member 6 is generally curved upward and the lower roof member 6B is generally curved downward, so that the axial force f1. As a result of the displacement of the upper part 3T of the center pillar 3 to the diagonally upward K1, a compressive force f3 acting on the lower roof member 6B causes a tension state in the downward projecting direction K3, which promotes a quick rise of reaction force. The axial force f1 of the center pillar 3 is increased, and the deformation in the upward projecting direction K4 and the deformation of the lower roof member 6B in the downward projecting direction K3 are increased by the compressive force f4 of the upper roof member 6A. Will increase.

また、これと同時にセンタピラー3の下部3Bの斜め下方K2への変形が進むと、フロアメンバ7の凹設部7aが図3(b)に示すように下方への変形が増大し、この変形が所定量に達すると荷重受け部材13の内側部材13Aおよび外側部材13Bのそれぞれの荷重受け面13Aa,13Baは互いに当接して反力が増大し、図4中P2領域に示す特性となる。   At the same time, when the deformation of the lower part 3B of the center pillar 3 toward the diagonally downward K2 progresses, the concave portion 7a of the floor member 7 is deformed downward as shown in FIG. When the load reaches a predetermined amount, the load receiving surfaces 13Aa and 13Ba of the inner member 13A and the outer member 13B of the load receiving member 13 come into contact with each other to increase the reaction force, and the characteristics shown in the P2 region in FIG.

更に、衝突状態が進行することにより図3(c)に示すように、センタピラー3の上部3Tの変形が底付くと、ルーフメンバ6の上方,下方ルーフメンバ6A,6Bの相対位置が上昇し、上方ルーフメンバ6Aへの荷重伝達が増加する。   Further, as the collision progresses, as shown in FIG. 3C, when the deformation of the upper portion 3T of the center pillar 3 bottoms, the relative positions of the upper roof member 6 and the lower roof members 6A and 6B rise. The load transmission to the upper roof member 6A increases.

このため、上方ルーフメンバ6Aは上方突出方向K4への変形が増長し、ルーフメンバ連結部材12で連結されている下方ルーフメンバ6Bもその上方への変形に追随する。   Therefore, the deformation of the upper roof member 6A in the upward projecting direction K4 increases, and the lower roof member 6B connected by the roof member connecting member 12 follows the upward deformation.

一方、センタピラー3の下部3Bの変形およびフロアメンバ7の凹設部7aの変形が進むことにより、荷重受け部材の内側部材13Aと外側部材13Bとの反力も増加してフロアメンバ7の変形が抑制され、これに伴って図4中P3領域に示すようにセンタピラー3の上部3Tの変形も抑制される。   On the other hand, as the deformation of the lower portion 3B of the center pillar 3 and the deformation of the recessed portion 7a of the floor member 7 proceed, the reaction force between the inner member 13A and the outer member 13B of the load receiving member also increases and the deformation of the floor member 7 occurs. Accordingly, the deformation of the upper portion 3T of the center pillar 3 is also suppressed as shown in the P3 region in FIG.

従って、本実施形態では図4に示すように、破線に示す従来の特性に比較して、車室内空間の維持および衝突初期の迅速な反力の立ち上がり、および安定した反力維持といった特性を持つ車体構造を提供することができる。   Therefore, in this embodiment, as shown in FIG. 4, compared with the conventional characteristics shown by the broken line, there are characteristics such as maintenance of the vehicle interior space, rapid rise of reaction force at the beginning of the collision, and stable reaction force maintenance. A vehicle body structure can be provided.

また、本実施形態では上方ルーフメンバ6Aと下方ルーフメンバ6Bとは、車幅方向両端部が結合された状態で中央側間が中央部に向かって徐々に拡開し、それぞれの最大曲率部またはその近傍を上記ルーフメンバ連結部材12によって連結したので、局部的な曲げ変形を抑制するとともに、上方,下方ルーフメンバ6A,6Bそれぞれへの荷重分散効果にも寄与することができる。   Further, in the present embodiment, the upper roof member 6A and the lower roof member 6B are gradually expanded from the central side toward the central part in a state where both ends in the vehicle width direction are coupled, and the respective maximum curvature parts or Since the vicinity thereof is connected by the roof member connecting member 12, local bending deformation can be suppressed, and the load distribution effect to the upper and lower roof members 6A and 6B can be contributed.

更に、フロアメンバ7の車幅方向端部に凹設部7aを形成し、この凹設部7aを中間にしてフロアメンバ7上面には、幅方向に所定間隔δをもって対峙し、凹設部7aの所定以上の変形によって互いに干渉する荷重受け部材13を設けたので、センタピラー3の下部3Bおよびフロアメンバ7において車幅方向内方への変形後に荷重受け部材13が干渉して荷重伝達機能および変形拘束機能を発揮する。   Further, a recessed portion 7a is formed at the vehicle width direction end of the floor member 7, and the recessed portion 7a is opposed to the upper surface of the floor member 7 with a predetermined interval δ in the width direction with the recessed portion 7a being in the middle. Since the load receiving members 13 that interfere with each other due to deformation more than a predetermined amount are provided, the load receiving member 13 interferes after the deformation inward in the vehicle width direction at the lower part 3B of the center pillar 3 and the floor member 7, and the load transmission function and Deformation restraint function is demonstrated.

従って、ある程度変形が進行すると、その変形を拘束するとともに荷重伝達効率が増加するので、強度を高めて車室内空間が阻害されるのを抑制しつつ反力を維持することができる。   Therefore, if the deformation progresses to some extent, the deformation is restrained and the load transmission efficiency increases. Therefore, the reaction force can be maintained while increasing the strength and suppressing the inhibition of the vehicle interior space.

図5,図6は本発明の第2実施形態を示し、前記第1実施形態と同一構成部分に同一符号を付して重複する説明を省略して述べるものとし、図5は車体の骨格構造の斜視図、図6は骨格部材の要部を分解した拡大斜視図である。   5 and 6 show a second embodiment of the present invention, in which the same components as those in the first embodiment are denoted by the same reference numerals and redundant description is omitted, and FIG. FIG. 6 is an enlarged perspective view in which a main part of the skeleton member is disassembled.

この第2実施形態の車体構造は、図5に示すように基本的に第1実施形態と同様の構成となり、ルーフメンバ6を全体的に車体上方に湾曲する上方ルーフメンバ6Aと、全体的に車体下方に湾曲する下方ルーフメンバ6Bとで構成してあるが、特に本実施形態では下方ルーフメンバ6Bの車幅方向端部をセンタピラー3に連結し、上方ルーフメンバ6Aの車幅方向端部を下方ルーフメンバ6Bにルーフサイドレール1よりも車幅方向内方で連結してある。   The vehicle body structure of the second embodiment is basically the same as that of the first embodiment as shown in FIG. 5, and includes an upper roof member 6A that curves the roof member 6 entirely upward of the vehicle body, Although the lower roof member 6B is curved downward in the vehicle body, in the present embodiment, the vehicle width direction end of the lower roof member 6B is connected to the center pillar 3, and the vehicle width direction end of the upper roof member 6A is connected. Is connected to the lower roof member 6B inward in the vehicle width direction relative to the roof side rail 1.

つまり、図6に示すように下方ルーフメンバ6Bの車幅方向端部をセンタピラー3の上部3Tの配置方向に沿って斜め下方に折曲し、その先端部に縮幅部6Bwを形成して、この縮幅部6Bwをセンタピラー3の上端部に差し込んで溶接するとともに、前記下方ルーフメンバ6Bの車幅方向端部に、上方ルーフメンバ6Aの車幅方向端部をフランジ6Afを介してスポット溶接してある。   That is, as shown in FIG. 6, the vehicle width direction end portion of the lower roof member 6B is bent obliquely downward along the arrangement direction of the upper portion 3T of the center pillar 3, and the reduced width portion 6Bw is formed at the tip portion thereof. The reduced width portion 6Bw is inserted into the upper end portion of the center pillar 3 and welded, and the vehicle width direction end portion of the lower roof member 6B is spotted on the vehicle width direction end portion of the lower roof member 6B via the flange 6Af. Welded.

このとき、下方ルーフメンバ6Bの車幅方向端部の車体前後面には、前記上方ルーフメンバ6Aを連結した箇所よりも車幅方向外方部分に、前方ルーフサイドレール1Aおよび後方ルーフサイドレール1Bをそれぞれのフランジ1Af,1Bfを介して連結してある。   At this time, the front roof side rail 1 </ b> A and the rear roof side rail 1 </ b> B are disposed on the vehicle body front and rear surfaces at the vehicle width direction end portion of the lower roof member 6 </ b> B at the outer portion in the vehicle width direction. Are connected via respective flanges 1Af and 1Bf.

従って、この第2実施形態の車体構造によれば、上方ルーフメンバ6Aの車幅方向端部を下方ルーフメンバ6Bのルーフサイドレール1よりも車幅方向内方で連結してあるので、下方ルーフメンバ6Bのルーフサイドレール1よりも車幅方向外方部分が上方ルーフメンバ6Aによって拘束されることが無いため、衝突直後にセンタピラー3の上部3Tからルーフメンバ6に軸力f1が伝達された際に、衝撃吸収効果をより高めることができるとともに、反力の立ち上がりを迅速化することができる。   Therefore, according to the vehicle body structure of the second embodiment, the end of the upper roof member 6A in the vehicle width direction is connected to the lower roof member 6B inward in the vehicle width direction than the roof side rail 1 of the lower roof member 6B. Since the outer portion in the vehicle width direction of the member 6B than the roof side rail 1 is not restrained by the upper roof member 6A, the axial force f1 is transmitted from the upper portion 3T of the center pillar 3 to the roof member 6 immediately after the collision. At the same time, the impact absorption effect can be further enhanced, and the rise of the reaction force can be speeded up.

図7,図8は本発明の第3実施形態を示し、前記第1実施形態と同一構成部分に同一符号を付して重複する説明を省略して述べるものとし、図7は車体の骨格構造の斜視図、図8は図7中B部の拡大断面図である。   7 and 8 show a third embodiment of the present invention, in which the same components as those in the first embodiment are denoted by the same reference numerals and redundant description is omitted, and FIG. FIG. 8 is an enlarged sectional view of a portion B in FIG.

この第3実施形態の車体構造は、図7に示すように基本的に第1実施形態と同様の構成となり、ルーフメンバ6を全体的に車体上方に湾曲する上方ルーフメンバ6Aと、全体的に車体下方に湾曲する下方ルーフメンバ6Bとで構成してあるが、特に本実施形態では上方ルーフメンバ6Aの強度を下方ルーフメンバ6Bよりも大きくしてある。   The vehicle body structure of the third embodiment is basically the same as that of the first embodiment as shown in FIG. 7, and includes an upper roof member 6A that curves the roof member 6 entirely upward of the vehicle body, Although the lower roof member 6B is curved downward in the vehicle body, the strength of the upper roof member 6A is made larger than that of the lower roof member 6B particularly in this embodiment.

即ち、本実施形態では図8に示すように矩形状の閉断面構造とした上方ルーフメンバ6Aの肉厚T1を、同様に矩形状の閉断面構造とした下方ルーフメンバ6Bの肉厚T2よりも厚く(T1>T2)形成することにより、上方ルーフメンバ6Aの断面剛性を下方ルーフメンバ6Bよりも高く形成してある。   That is, in this embodiment, as shown in FIG. 8, the thickness T1 of the upper roof member 6A having a rectangular closed cross-sectional structure is larger than the wall thickness T2 of the lower roof member 6B having a rectangular closed cross-sectional structure. By forming it thick (T1> T2), the cross-sectional rigidity of the upper roof member 6A is higher than that of the lower roof member 6B.

従って、この第3実施形態の車体構造によれば、上方ルーフメンバ6Aの強度を下方ルーフメンバ6Bよりも大きくしたので、センタピラー3から入力される軸力f1による変形促進を主に下方ルーフメンバ6Bで受け持つとともに、その後の変形拘束および反力維持を主に上方ルーフメンバ6Aで受け持つことにより、衝突時の衝撃緩和を図りつつ、車室内への変形抑制や反力向上をより増大することができる。   Therefore, according to the vehicle body structure of the third embodiment, since the strength of the upper roof member 6A is made larger than that of the lower roof member 6B, deformation promotion by the axial force f1 input from the center pillar 3 is mainly promoted. 6B, and the subsequent deformation restraint and reaction force maintenance are mainly handled by the upper roof member 6A, so that it is possible to further increase the suppression of deformation into the vehicle interior and the improvement of the reaction force while reducing the impact at the time of collision. it can.

図9は第3実施形態の第1変形例を示し、矩形状の閉断面構造とした上方ルーフメンバ6Aを厚肉形成するとともに、高さL1を下方ルーフメンバ6Bの高さL2よりも高く(L1>L2)形成することにより、上方ルーフメンバ6Aの断面剛性を下方ルーフメンバ6Bよりも高く形成してあり、同様の作用効果を奏する。   FIG. 9 shows a first modification of the third embodiment. The upper roof member 6A having a rectangular closed cross-sectional structure is formed thick, and the height L1 is higher than the height L2 of the lower roof member 6B ( By forming L1> L2), the sectional rigidity of the upper roof member 6A is formed to be higher than that of the lower roof member 6B, and the same effect is obtained.

図10は第3実施形態の第2変形例を示し、上方,下方ルーフメンバ6A,6Bはそれぞれ矩形状の閉断面構造に形成されるが、上方ルーフメンバ6Aの内部の前後(図中左右方向)略中央部に仕切壁6Apを設けることにより、上方ルーフメンバ6Aの断面剛性を下方ルーフメンバ6Bよりも高く形成してあり、同様の作用効果を奏する。   FIG. 10 shows a second modification of the third embodiment. The upper and lower roof members 6A and 6B are each formed in a rectangular closed cross-sectional structure. ) By providing the partition wall 6Ap substantially at the center, the cross-sectional rigidity of the upper roof member 6A is made higher than that of the lower roof member 6B, and the same operational effects are achieved.

図11,図12は本発明の第4実施形態を示し、前記第1実施形態と同一構成部分に同一符号を付して重複する説明を省略して述べるものとし、図11は車体の骨格構造の斜視図、図12はフロアメンバの片側端部を示す斜視図である。   FIGS. 11 and 12 show a fourth embodiment of the present invention, in which the same components as those in the first embodiment are denoted by the same reference numerals and redundant description is omitted, and FIG. FIG. 12 is a perspective view showing one end of the floor member.

この第4実施形態の車体構造は、図11に示すように基本的に第1実施形態と同様の構成となり、フロアメンバ7の車幅方向端部に脆弱部を形成し、この脆弱部を中間にしてフロアメンバ7上面には、車幅方向に所定間隔δをもって対峙し、脆弱部の所定以上の変形によって互いに干渉する荷重受け部材13を設けてある。   The vehicle body structure of the fourth embodiment is basically the same as that of the first embodiment as shown in FIG. 11, and a weak portion is formed at the end of the floor member 7 in the vehicle width direction. On the upper surface of the floor member 7, load receiving members 13 that are opposed to each other with a predetermined interval δ in the vehicle width direction and interfere with each other by a predetermined deformation or more of the fragile portion are provided.

そして、本実施形態では図12に示すように、脆弱部をフロアメンバ7の車体前後方向両側面に形成した一対の凹設部7bで形成しており、これら凹設部7bは、ルーフサイドレール1よりも車幅方向内方の位置に形成してある。   And in this embodiment, as shown in FIG. 12, the weak part is formed with a pair of recessed parts 7b formed on both sides in the vehicle body front-rear direction of the floor member 7, and these recessed parts 7b It is formed at an inner position in the vehicle width direction than 1.

従って、この第4実施形態の車体構造によれば、フロアメンバ7に形成した凹設部7bをルーフサイドレール1よりも車幅方向内方に形成したので、衝突荷重Fの入力位置からの変形許容範囲が長く成るセンタピラー3の上部3Tを下部3Bよりも先行して変位させ、ルーフメンバ6の変形による反力が向上するようなタイミングでセンタピラー3の下部3Bに入力が増加し、当該部分が略車幅方向内方に変位する。   Therefore, according to the vehicle body structure of the fourth embodiment, the recessed portion 7b formed in the floor member 7 is formed inward in the vehicle width direction from the roof side rail 1, so that the deformation from the input position of the collision load F is changed. The upper part 3T of the center pillar 3 having a longer allowable range is displaced ahead of the lower part 3B, and the input to the lower part 3B of the center pillar 3 is increased at a timing such that the reaction force due to the deformation of the roof member 6 is improved. The portion is displaced substantially inward in the vehicle width direction.

従って、相対的に上部3Tよりも強度が高くなる下部3Bへの入力を増加させて、構造上の強度バランスに適応した荷重配分となるようにコントロールでき、効率的な部材構成が成立するとともに、局部的な変形を抑制して反力を高く維持する効果がある。   Therefore, the input to the lower part 3B, which is relatively higher in strength than the upper part 3T, can be increased to control the load distribution suitable for the structural strength balance, and an efficient member configuration is established, This has the effect of suppressing local deformation and maintaining a high reaction force.

図13,図14は第4実施形態の第1変形例を示し、図13に示すように断面矩形状の中空部材で形成したフロアメンバ7の外形状を一様に形成する一方、その肉厚を図14に示すように薄肉化することにより脆弱部としての肉厚変化部7cを形成してある。   FIGS. 13 and 14 show a first modification of the fourth embodiment. As shown in FIG. 13, the outer shape of the floor member 7 formed of a hollow member having a rectangular cross section is uniformly formed, while its thickness is increased. As shown in FIG. 14, the thickness change part 7c as a weak part is formed by thinning.

即ち、この第1変形例では図14(a)に示すように、図13中C部から断面にした肉厚変化部7cの上下側の肉厚T3を、図14(b)に示すように、図13中D部から断面にした一般部分の肉厚T4よりも薄く(T3<T4)形成してあり、センタピラー3の下部3Bから軸力f2が入力された場合に肉厚変化部7cから変形するようになっており、第4実施形態と同様の作用効果を奏する。   That is, in this first modification, as shown in FIG. 14 (a), the thickness T3 on the upper and lower sides of the thickness changing portion 7c taken as a cross section from the C portion in FIG. 13 is as shown in FIG. 14 (b). 13 is formed thinner than a general thickness T4 (T3 <T4) as a cross-section from the portion D in FIG. 13, and when the axial force f2 is input from the lower portion 3B of the center pillar 3, the thickness change portion 7c. It is designed to be deformed from the above, and has the same effects as the fourth embodiment.

図15は第4実施形態の第2変形例を示し、図15(a)に示すように、前記図13中C部から断面にした肉厚変化部7cの車体前後側の肉厚T5を、図15(b)に示すように、図13中D部から断面にした一般部分の肉厚T6よりも薄く(T5<T6)形成して、センタピラー3の下部3Bから軸力f2が入力された場合に肉厚変化部7cから変形するようになっており、第4実施形態と同様の作用効果を奏する。   FIG. 15 shows a second modification of the fourth embodiment. As shown in FIG. 15 (a), the thickness T5 on the front and rear sides of the vehicle body of the thickness changing portion 7c taken as a cross section from the C portion in FIG. As shown in FIG. 15B, the axial force f2 is inputted from the lower part 3B of the center pillar 3 by forming it thinner than the general thickness T6 (T5 <T6) taken from the section D in FIG. In this case, the wall thickness is changed from the thickness changing portion 7c, and the same effect as that of the fourth embodiment is achieved.

図16,図17は本発明の第5実施形態を示し、前記第1実施形態と同一構成部分に同一符号を付して重複する説明を省略して述べるものとし、図16は車体の骨格構造の斜視図、図17は荷重受け部材の拡大斜視図である。   FIGS. 16 and 17 show a fifth embodiment of the present invention, in which the same components as those in the first embodiment are denoted by the same reference numerals and redundant description is omitted, and FIG. 16 is a skeleton structure of a vehicle body. FIG. 17 is an enlarged perspective view of the load receiving member.

この第5実施形態の車体構造は、図16に示すように基本的に第1実施形態と同様の構成となり、フロアメンバ7に形成した凹設部7aを中間にしたフロアメンバ7上面には、車幅方向に所定間隔δをもって対峙し、凹設部7aの所定以上の変形によって互いに干渉する荷重受け部材13を設けてあり、特に本実施形態では荷重受け部材13に、互いに干渉した後に凹設部7aの変形量が増大するに伴って荷重伝達量を増大する伝達荷重増大手段14を設けてある。   The vehicle body structure of the fifth embodiment is basically the same as that of the first embodiment as shown in FIG. 16, and the upper surface of the floor member 7 with the recessed portion 7a formed in the floor member 7 in the middle is Load receiving members 13 that face each other at a predetermined interval δ in the vehicle width direction and interfere with each other due to deformation of the recessed portion 7a more than a predetermined amount are provided. In particular, in this embodiment, the load receiving members 13 are recessed after interfering with each other. A transmission load increasing means 14 is provided for increasing the load transmission amount as the deformation amount of the portion 7a increases.

即ち、本実施形態の荷重受け部材13は第1実施形態と同様に一対の内側部材13Aと外側部材13Bとで構成してあり、内側部材13Aの車幅方向外側に階段状の荷重受け面13Abを形成するとともに、外側部材13Bの車幅方向内側に前記荷重受け面13Abの形状に略沿った荷重受け面13Bbを形成し、これら荷重受け面13Ab,13Bbによって上記伝達荷重増大手段14を構成してある。   That is, the load receiving member 13 of this embodiment is composed of a pair of an inner member 13A and an outer member 13B as in the first embodiment, and a stepped load receiving surface 13Ab on the outer side in the vehicle width direction of the inner member 13A. And a load receiving surface 13Bb substantially in line with the shape of the load receiving surface 13Ab is formed on the inner side in the vehicle width direction of the outer member 13B, and the transmission load increasing means 14 is constituted by these load receiving surfaces 13Ab and 13Bb. It is.

従って、この第5実施形態の車体構造によれば、フロアメンバ7に形成した凹設部7aを挟んで設けた荷重受け部材13に伝達荷重増大手段14を設けて、互いに干渉した後に凹設部7aの変形量が増大するに伴って荷重伝達量を増大するようにしたので、凹設部7aの変形許容範囲、つまり内側部材13Aと外側部材13Bとが干渉するまでの範囲では凹設部7aの変形によってエネルギー吸収量を増大する一方、センタピラー3の上部3Tおよびルーフメンバ6は変形による可動範囲が大きいので徐々に反力を増大させることで、それらの部分の変形を十分に行わせた後に、センタピラー3の下部3Bの耐力を向上させることができる。   Therefore, according to the vehicle body structure of the fifth embodiment, the load receiving member 13 provided with the recessed portion 7a formed on the floor member 7 is provided with the transmission load increasing means 14, and the recessed portion is formed after interfering with each other. Since the load transmission amount is increased as the deformation amount of 7a increases, the recessed portion 7a is within the allowable deformation range of the recessed portion 7a, that is, the range until the inner member 13A and the outer member 13B interfere with each other. While the amount of energy absorption is increased by the deformation of the upper portion, the upper 3T of the center pillar 3 and the roof member 6 have a large movable range due to the deformation, so that the reaction force is gradually increased to sufficiently deform those portions. Later, the yield strength of the lower part 3B of the center pillar 3 can be improved.

図18は第5実施形態の変形例を示し、内側部材13Aの車幅方向外側に車幅方向内側から外側に向かって下方傾斜する傾斜面13Acを形成するとともに、外側部材13Bの車幅方向内側に前記傾斜面13Acに略沿った傾斜面13Bcを形成し、これら傾斜面13Ac,13Bcによって伝達荷重増大手段14を構成してあり、この場合にあっても第5実施形態と同様の作用効果を奏する。   FIG. 18 shows a modification of the fifth embodiment, in which an inclined surface 13Ac that inclines downward from the inner side in the vehicle width direction to the outer side is formed on the outer side in the vehicle width direction of the inner member 13A, and the inner side in the vehicle width direction of the outer member 13B. An inclined surface 13Bc substantially along the inclined surface 13Ac is formed, and the transmission load increasing means 14 is constituted by these inclined surfaces 13Ac and 13Bc. Even in this case, the same effect as that of the fifth embodiment is obtained. Play.

図19,図20は本発明の第6実施形態を示し、前記第1実施形態と同一構成部分に同一符号を付して重複する説明を省略して述べるものとし、図19は車体の骨格構造の斜視図、図20は骨格部材の要部を分解した拡大斜視図である。   19 and 20 show a sixth embodiment of the present invention, in which the same components as those in the first embodiment are denoted by the same reference numerals and redundant description is omitted, and FIG. 19 is a skeleton structure of a vehicle body. FIG. 20 is an enlarged perspective view in which a main part of the skeleton member is disassembled.

この第6実施形態の車体構造は、図19に示すように前記各実施形態と同様の構成となり、センタピラー3の上部3Tにルーフメンバ6およびルーフサイドレール1が連結されるが、本実施形態では図20にも示すように、ルーフメンバ6を構成する第1ルーフメンバを、全体的に車体前方に湾曲して車体前方に配置される前方ルーフメンバ6Cで構成し、かつ、第2ルーフメンバを、全体的に車体後方に湾曲して車体後方に配置される後方ルーフメンバ6Dで構成してある。   The vehicle body structure of the sixth embodiment is the same as that of each of the embodiments as shown in FIG. 19, and the roof member 6 and the roof side rail 1 are connected to the upper part 3T of the center pillar 3. Then, as shown in FIG. 20, the first roof member constituting the roof member 6 is constituted by a front roof member 6C that is curved in front of the vehicle body and disposed in front of the vehicle body, and the second roof member. Is composed of a rear roof member 6D that is curved rearward of the vehicle body and disposed rearward of the vehicle body.

そして、前記前方,後方ルーフメンバ6C,6Dの車幅方向端部を二股状連結部材15を介してセンタピラー3の上部3Tに結合してあり、かつ、前方ルーフメンバ6Cの端部前面に前方ルーフサイドレール1Aを結合するとともに、後方ルーフメンバ6Dの端部後面に後方ルーフサイドレール1Bを結合してある。   The vehicle width direction end portions of the front and rear roof members 6C and 6D are coupled to the upper portion 3T of the center pillar 3 via the bifurcated connecting member 15, and the front end portion of the front roof member 6C is front-facing. The roof side rail 1A is coupled, and the rear roof side rail 1B is coupled to the rear surface of the end of the rear roof member 6D.

このとき、センタピラー3は、その上部3Tをセンタピラー3の中心線Cよりも車体前方に傾かせて形成してある。   At this time, the center pillar 3 is formed such that the upper part 3T is inclined forward of the vehicle body with respect to the center line C of the center pillar 3.

また、前方,後方ルーフメンバ6C,6Dは、これらの車幅方向中央部の最大曲率部またはその近傍を、車体前後方向に配置したルーフメンバ連結部材12Aによって連結してある。   Further, the front and rear roof members 6C and 6D are connected at the maximum curvature portion at or near the center in the vehicle width direction by a roof member connecting member 12A arranged in the vehicle longitudinal direction.

従って、この第6実施形態の車体構造によれば、衝突荷重Fがセンタピラー3に入力されると、センタピラー3の上方に作用する軸力f1が前方に傾斜した上部3Tから主に前方ルーフメンバ6Cに入力されて、この前方ルーフメンバ6Cをその湾曲方向となる車体前方に大きく変形する。   Therefore, according to the vehicle body structure of the sixth embodiment, when the collision load F is input to the center pillar 3, the axial force f1 acting above the center pillar 3 is mainly moved forward from the upper portion 3T inclined forward. Input to the member 6C, the front roof member 6C is largely deformed forward of the vehicle body in the bending direction.

すると、前方ルーフメンバ6Cの前方変位が、ルーフメンバ連結部材12Aを介して連結した後方ルーフメンバ6Dに伝達され、この後方ルーフメンバ6Dはその湾曲方向による本来の変形し易い方向(車体後方)とは逆方向に力が働くため、大きな耐力を発生させることができる。   Then, the forward displacement of the front roof member 6C is transmitted to the rear roof member 6D connected via the roof member connecting member 12A, and the rear roof member 6D is in a direction (the rear of the vehicle body) that is easily deformed due to the bending direction. Since a force works in the opposite direction, a large yield strength can be generated.

そして、変形が進行することにより、センタピラー3から前方,後方ルーフメンバ6C,6Dに軸力f1が伝達されるようになり、後方ルーフメンバ6Dに後方に曲がろうとする入力が増加することにより、ルーフメンバ連結部材12Aによって後方ルーフメンバ6Dを車体後方に引っ張る力が発生して耐力を更に高めることができる。   As the deformation progresses, the axial force f1 is transmitted from the center pillar 3 to the front and rear roof members 6C and 6D, and the input to bend rearward increases to the rear roof member 6D. Further, the roof member connecting member 12A generates a force for pulling the rear roof member 6D rearward of the vehicle body, so that the proof stress can be further increased.

ところで、本発明の車体構造は前記第1〜第6実施形態およびそれらの各変形例に例をとって説明したが、これら実施形態に限ることなく本発明の要旨を逸脱しない範囲で他の実施形態を各種採用することができる。   By the way, although the vehicle body structure of the present invention has been described by taking the examples of the first to sixth embodiments and their modifications, other embodiments are not limited to these embodiments and do not depart from the gist of the present invention. Various forms can be adopted.

本発明の第1実施形態における車体の骨格構造の斜視図である。1 is a perspective view of a skeleton structure of a vehicle body in a first embodiment of the present invention. 本発明の第1実施形態における車体片側の骨格部材の分解斜視図である。It is a disassembled perspective view of the frame member of the vehicle body one side in a 1st embodiment of the present invention. 本発明の第1実施形態における側面衝突荷重が入力した時の車体の変形を(a)〜(c)に順を追って示す図1中A部の断面説明図である。It is a section explanatory view of the A section in Drawing 1 which shows deformation of a vehicle body when a side collision load in a 1st embodiment of the present invention is inputted in order from (a) to (c). 本発明の第1実施形態における横軸の変位と縦軸の荷重によって示す反力特性を破線で示す従来と比較したグラフである。It is the graph compared with the conventional which shows the reaction force characteristic shown with the displacement of the horizontal axis | shaft and the load of a vertical axis | shaft in 1st Embodiment of this invention with a broken line. 本発明の第2実施形態における車体の骨格構造の斜視図である。It is a perspective view of the frame structure of the vehicle body in a 2nd embodiment of the present invention. 本発明の第2実施形態における骨格部材の要部を分解した拡大斜視図である。It is the expansion perspective view which decomposed | disassembled the principal part of the frame member in 2nd Embodiment of this invention. 本発明の第3実施形態における車体の骨格構造の斜視図である。It is a perspective view of the frame structure of the vehicle body in a 3rd embodiment of the present invention. 図7中B部の拡大断面図である。It is an expanded sectional view of the B section in FIG. 第3実施形態の第1変形例を示す図8に対応した拡大断面図である。It is an expanded sectional view corresponding to Drawing 8 showing the 1st modification of a 3rd embodiment. 第3実施形態の第2変形例を示す図8に対応した拡大断面図である。It is an expanded sectional view corresponding to Drawing 8 showing the 2nd modification of a 3rd embodiment. 本発明の第4実施形態における車体の骨格構造の斜視図である。It is a perspective view of the frame structure of the vehicle body in a 4th embodiment of the present invention. 本発明の第4実施形態におけるフロアメンバの片側端部を示す斜視図である。It is a perspective view which shows the one side edge part of the floor member in 4th Embodiment of this invention. 第4実施形態の第1変形例を示すフロアメンバの端部斜視図である。It is an edge part perspective view of the floor member which shows the 1st modification of 4th Embodiment. 図13中C部の断面を(a)にD部の断面を(b)に示す拡大断面図である。It is an expanded sectional view which shows the cross section of the C section in FIG. 13 at (a), and shows the cross section of the D section at (b). 第4実施形態の第2変形例を示す図13中C部の断面を(a)にD部の断面を(b)に示す拡大断面図である。It is an expanded sectional view which shows the cross section of the C section in FIG. 13 which shows the 2nd modification of 4th Embodiment, and shows the cross section of the D section in (b). 本発明の第5実施形態における車体の骨格構造の斜視図である。It is a perspective view of the frame structure of the vehicle body in a 5th embodiment of the present invention. 本発明の第5実施形態における荷重受け部材の拡大斜視図である。It is an expansion perspective view of the load receiving member in 5th Embodiment of this invention. 第5実施形態の変形例を示す図17に対応した拡大斜視図である。It is an expansion perspective view corresponding to FIG. 17 which shows the modification of 5th Embodiment. 本発明の第6実施形態における車体の骨格構造の斜視図である。It is a perspective view of the frame structure of the vehicle body in a 6th embodiment of the present invention. 本発明の第6実施形態における骨格部材の要部を分解した拡大斜視図である。It is the expansion perspective view which decomposed | disassembled the principal part of the frame member in 6th Embodiment of this invention.

符号の説明Explanation of symbols

1 ルーフサイドレール
2 サイドシル
3 センタピラー(ピラー部材)
6 ルーフメンバ
6A 上方ルーフメンバ(第1ルーフメンバ)
6B 下方ルーフメンバ(第2ルーフメンバ)
6C 前方ルーフメンバ(第1ルーフメンバ)
6D 後方ルーフメンバ(第2ルーフメンバ)
7 フロアメンバ
7a,7b 凹設部(脆弱部)
12,12A ルーフメンバ連結部材
13 荷重受け部材
14 伝達荷重増大手段
Rf ルーフ部
Fr フロア部
1 roof side rail 2 side sill 3 center pillar (pillar member)
6 Roof member 6A Upper roof member (first roof member)
6B Lower roof member (second roof member)
6C Front roof member (first roof member)
6D Rear roof member (second roof member)
7 Floor members 7a, 7b Recessed part (fragile part)
12, 12A Roof member connecting member 13 Load receiving member 14 Transmission load increasing means Rf Roof portion Fr Floor portion

Claims (10)

車体を構成するピラー若しくはメンバーからなる骨格部材を湾曲させ、湾曲させた骨格部材の頂点どうしを連結する連結部材を設け、湾曲した骨格部材の変形を前記連結部材で抑制するよう構成したことを特徴とする車体構造。   A skeleton member comprising pillars or members constituting a vehicle body is bent, a connecting member for connecting the vertices of the bent skeleton member is provided, and deformation of the curved skeleton member is suppressed by the connecting member. Car body structure. ルーフ部の車幅方向両側に車体前後方向に延在する左,右一対のルーフサイドレールと、
フロア部の車幅方向両側に車体前後方向に延在する左,右一対のサイドシルと、
上下に対向する前記ルーフサイドレールと前記サイドシルとを連結し、全体的に車体外方に湾曲するピラー部材と、
左,右のルーフサイドレールを前記ピラー部材の連結部分で連結するルーフメンバと、
左,右のサイドシルを前記ピラー部材の連結部分で連結するフロアメンバと、を備えた車体構造において、
前記ルーフメンバを、それぞれが車幅方向両端部で結合されるとともに、それぞれの車幅方向中間部分で互いに離れる方向に湾曲して分離する第1ルーフメンバおよび第2ルーフメンバで構成し、これら第1,第2ルーフメンバの車幅方向中間部をルーフメンバ連結部材で互いに連結したことを特徴とする車体構造。
A pair of left and right roof side rails extending in the vehicle longitudinal direction on both sides in the vehicle width direction of the roof;
A pair of left and right side sills extending in the vehicle longitudinal direction on both sides in the vehicle width direction of the floor,
A pillar member that connects the roof side rail and the side sill opposed to each other up and down and curves outwardly of the vehicle body;
A roof member for connecting the left and right roof side rails at the connecting portion of the pillar member;
In a vehicle body structure comprising a floor member for connecting left and right side sills at a connecting portion of the pillar member,
Each of the roof members is composed of a first roof member and a second roof member which are coupled at both ends in the vehicle width direction and are curved and separated in directions away from each other in the middle portion in the vehicle width direction. A vehicle body structure characterized in that intermediate portions in the vehicle width direction of the first and second roof members are connected to each other by a roof member connecting member.
第1ルーフメンバは、全体的に車体上方に湾曲して車体上方に配置される上方ルーフメンバであり、かつ、第2ルーフメンバは、全体的に車体下方に湾曲して車体下方に配置される下方ルーフメンバであることを特徴とする請求項2に記載の車体構造。   The first roof member is an upper roof member that is generally curved above the vehicle body and disposed above the vehicle body, and the second roof member is generally curved below the vehicle body and disposed below the vehicle body. The vehicle body structure according to claim 2, wherein the vehicle body structure is a lower roof member. 第1ルーフメンバは、全体的に車体前方に湾曲して車体前方に配置される前方ルーフメンバであり、かつ、第2ルーフメンバは、全体的に車体後方に湾曲して車体後方に配置される後方ルーフメンバであることを特徴とする請求項2に記載の車体構造。   The first roof member is a front roof member that is generally curved forward of the vehicle body and disposed at the front of the vehicle body, and the second roof member is generally curved rearward of the vehicle body and disposed at the rear of the vehicle body. The vehicle body structure according to claim 2, wherein the vehicle body structure is a rear roof member. ルーフメンバ連結部材は、それぞれ湾曲した第1,第2ルーフメンバの最大曲率部またはその近傍を連結することを特徴とする請求項2〜4のいずれか1つに記載の車体構造。   The vehicle body structure according to any one of claims 2 to 4, wherein the roof member connecting member connects the maximum curvature portions of the curved first and second roof members or the vicinity thereof. フロアメンバの車幅方向端部に脆弱部を形成し、フロアメンバ上面に、前記脆弱部を中間にして車幅方向に所定間隔をもって対峙し、脆弱部の所定以上の変形によって互いに干渉する荷重受け部材を設けたことを特徴とする請求項2〜5のいずれか1つに記載の車体構造。   A load receiving portion that forms a fragile portion at the vehicle width direction end of the floor member, faces the floor member at a predetermined interval in the vehicle width direction with the fragile portion in the middle, and interferes with each other by a predetermined deformation or more of the fragile portion. The vehicle body structure according to any one of claims 2 to 5, wherein a member is provided. 脆弱部は、ルーフサイドレールよりも車幅方向内方に形成したことを特徴とする請求項6に記載の車体構造。   The vehicle body structure according to claim 6, wherein the fragile portion is formed inward in the vehicle width direction with respect to the roof side rail. 荷重受け部材は、互いに干渉した後に脆弱部の変形量が増大するに伴って荷重伝達量を増大する伝達荷重増大手段を設けたことを特徴とする請求項6または7に記載の車体構造。   The vehicle body structure according to claim 6 or 7, wherein the load receiving member is provided with a transmission load increasing means for increasing the load transmission amount as the deformation amount of the fragile portion increases after interfering with each other. 下方ルーフメンバの車幅方向端部をピラー部材に連結し、上方ルーフメンバの車幅方向端部を下方ルーフメンバにルーフサイドレールよりも車幅方向内方で連結したことを特徴とする請求項3または5〜8のいずれか1つに記載の車体構造。   The vehicle width direction end portion of the lower roof member is connected to a pillar member, and the vehicle width direction end portion of the upper roof member is connected to the lower roof member inward in the vehicle width direction from the roof side rail. The vehicle body structure according to any one of 3 and 5-8. 上方ルーフメンバの強度を下方ルーフメンバよりも大きくしたことを特徴とする請求項3または5〜9のいずれか1つに記載の車体構造。

10. The vehicle body structure according to claim 3, wherein the strength of the upper roof member is greater than that of the lower roof member.

JP2004221678A 2004-07-29 2004-07-29 Vehicle body structure Pending JP2006036116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004221678A JP2006036116A (en) 2004-07-29 2004-07-29 Vehicle body structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004221678A JP2006036116A (en) 2004-07-29 2004-07-29 Vehicle body structure

Publications (1)

Publication Number Publication Date
JP2006036116A true JP2006036116A (en) 2006-02-09

Family

ID=35901561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004221678A Pending JP2006036116A (en) 2004-07-29 2004-07-29 Vehicle body structure

Country Status (1)

Country Link
JP (1) JP2006036116A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010058625A (en) * 2008-09-03 2010-03-18 Mazda Motor Corp Method for manufacturing automobile body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010058625A (en) * 2008-09-03 2010-03-18 Mazda Motor Corp Method for manufacturing automobile body

Similar Documents

Publication Publication Date Title
JP4265647B2 (en) Body side structure
JP4752411B2 (en) Body frame structure
JP5203852B2 (en) Bumper device for vehicle
JP6560710B2 (en) Body front structure
JP2016150719A (en) Front part body structure of vehicle
CN107054474B (en) Vehicle body front structure
JP2008230453A (en) Center pillar structure
JP2006321491A (en) Reinforcing structure of vehicle body skeleton frame
KR20200035149A (en) Bumper beam and vehicle
JP2011037291A (en) Front pillar structure
JP2007186125A (en) Front structure of vehicle body
US10336374B2 (en) Vehicle rear portion structure
JP5228864B2 (en) Rocker structure
JP2006036116A (en) Vehicle body structure
JP2005329789A (en) Reinforcement structure of member of vehicle body front part
JP2009012703A (en) Automobile body structure
JP5302617B2 (en) Pillar structure
JP7444663B2 (en) Front body structure
JP2006321490A (en) Reinforcing structure of vehicle body skeleton frame
JP6961524B2 (en) Vehicle front pillar reinforcement structure
JP2005324653A (en) Vehicle body structure
JP5056461B2 (en) Underbody structure of the vehicle
JP2017052341A (en) Vehicle front part structure
JP2006069282A (en) Vehicle body structure
JP2008143214A (en) Roof support assembly and roof support pillar for vehicle