JP2006035660A - Manufacturing method of foamed molded article of thermoplastic resin and molded article - Google Patents

Manufacturing method of foamed molded article of thermoplastic resin and molded article Download PDF

Info

Publication number
JP2006035660A
JP2006035660A JP2004219465A JP2004219465A JP2006035660A JP 2006035660 A JP2006035660 A JP 2006035660A JP 2004219465 A JP2004219465 A JP 2004219465A JP 2004219465 A JP2004219465 A JP 2004219465A JP 2006035660 A JP2006035660 A JP 2006035660A
Authority
JP
Japan
Prior art keywords
mold
molded article
thermoplastic resin
polypropylene resin
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004219465A
Other languages
Japanese (ja)
Other versions
JP4536446B2 (en
Inventor
Ryoji Nakayama
亮二 中山
Kenji Mogami
健二 最上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2004219465A priority Critical patent/JP4536446B2/en
Publication of JP2006035660A publication Critical patent/JP2006035660A/en
Application granted granted Critical
Publication of JP4536446B2 publication Critical patent/JP4536446B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoplastic resin foam which is thin, has a high expansion ratio, a smooth surface and a uniform fine cell structure, and to provide its manufacturing method. <P>SOLUTION: The desired, foamed molded article is obtained by a first mold opening step wherein a thermoplastic resin composition and a foaming agent are supplied to an injection molding machine, molten, injected and filled into a mold and immediately after completion of the filling, the mold is opened to a predetermined position not to reach the position of the final product shaping; a midway mold closing step wherein the mold is closed to a predetermined position exceeding the initial cavity; and a second mold opening step wherein the mold is opened to the final product shaping position. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、熱可塑性樹脂射出発泡成形体の製法およびこの製法からなる成形体に関する。   The present invention relates to a process for producing a thermoplastic resin injection foam molded article and a molded article comprising this process.

熱可塑性樹脂の射出成形において、軽量化、コストダウン、成形体の反り・ヒケ防止を目的に発泡を行ういわゆる射出発泡成形が従来から行われてきた。熱可塑性樹脂を高発泡化させる技術としては、型開き可能に保持された金型の空間内に発泡剤を含む樹脂を射出成形した後、金型を開くことにより前記空間を拡大して樹脂を発泡させる方法がある(例えば特許文献1,2)が、通常単にこの方法を採用するのみでは内部にボイドが発生しやすく、高倍率の成形体を安定的に得ることは困難であった。なお本件でいうボイドとは内部の気泡が連通化するなどして生じる粗大な気泡で、実質その径が1.5mmを越える気泡のことを言う。   In the injection molding of thermoplastic resins, so-called injection foam molding has been conventionally performed in which foaming is performed for the purpose of reducing the weight, reducing costs, and preventing warping and sink marks of the molded body. As a technique for making the thermoplastic resin highly foamable, a resin containing a foaming agent is injection-molded in a mold space that is held so that the mold can be opened. There is a method of foaming (for example, Patent Documents 1 and 2). However, it is difficult to stably obtain a high-magnification molded body because voids are easily generated inside by simply adopting this method. The void referred to in the present case is a coarse bubble generated when internal bubbles communicate with each other, and means a bubble whose diameter substantially exceeds 1.5 mm.

この問題を解決する方法として、発泡剤を含む溶融樹脂の充填完了後の所定時間後に、最終キャビティ寸法未満の位置まで型開し、次いで所定時間型開を停止した後に最終キャビティ寸法まで型開する製法が提案されている(特許文献3)。確かにこの方法によれば、高発泡倍率の発泡成形体が得られるものの、射出後に型開までの間にキャビティ内の樹脂温度を特定温度まで下げるべく所定時間放置する必要があり、このため金型と接触する部分の冷却が進行し易く、通常は非発泡層(スキン層)が厚くなる傾向にある。スキン層が厚いと、ある厚みの成形品を成形する場合に内部の発泡層をより高倍率に発泡させることが必要となり、特に射出時の初期キャビティクリアランスが小さい場合には、この問題がより顕在化し、薄肉で高発泡倍率の成形品を得ることは困難であった。射出発泡成形において、軽量化を達成するためには、薄肉での高発泡倍率化が必須であり、これら従来技術では、軽量化のニーズに応えることが困難であった。スキン層形成を軽度に抑える一般的な方策として、金型温度を高く設定することや金型に断熱層を設ける等の方法があり、これらとの併用でスキン層を薄くすることは可能であると考えられるが、これらの方法はそれぞれ冷却時間が長くなることや金型費用が高くなる等の課題を有しており得策ではなかった。   As a method for solving this problem, the mold is opened to a position below the final cavity dimension after a predetermined time after the filling of the molten resin containing the foaming agent is completed, and then the mold opening is stopped to the final cavity dimension after the mold opening is stopped for a predetermined time. A manufacturing method has been proposed (Patent Document 3). Certainly, according to this method, a foamed molded article having a high foaming ratio can be obtained, but it is necessary to leave the resin temperature in the cavity for a predetermined time before injection until the mold is opened after injection. Cooling of the portion in contact with the mold is likely to proceed, and usually the non-foamed layer (skin layer) tends to be thick. When the skin layer is thick, it is necessary to foam the internal foam layer at a higher magnification when molding a molded product with a certain thickness, and this problem becomes more apparent especially when the initial cavity clearance during injection is small. It was difficult to obtain a molded product having a thin wall and a high expansion ratio. In injection foam molding, in order to achieve weight reduction, it is essential to increase the foaming ratio with a thin wall, and it has been difficult to meet the needs for weight reduction with these conventional technologies. As a general measure to suppress the formation of the skin layer lightly, there are methods such as setting the mold temperature high and providing a heat insulating layer on the mold, and it is possible to make the skin layer thin by using them together. However, each of these methods has problems such as longer cooling time and higher mold costs, and is not a good solution.

また材料としてポリプロピレン系樹脂を使用する場合、ポリプロピレン系樹脂は結晶性でメルトテンション(溶融張力)が低く発泡時に気泡が破壊し易いことから、成形体表面にシルバーストリーク(またはスワールマーク)と呼ばれる外観不良や内部にボイドが発生し易く、特に発泡倍率を高くすることは困難であった。   In addition, when polypropylene resin is used as the material, the appearance of a silver streak (or swirl mark) is formed on the surface of the molded body because the polypropylene resin is crystalline and has low melt tension (melting tension) and easily breaks bubbles when foamed. Defects and voids are likely to occur inside, and it was particularly difficult to increase the expansion ratio.

樹脂の発泡性を改良する方法として、架橋剤やシラングラフト熱可塑性樹脂を添加してポリプロピレン系樹脂のメルトテンションを高める方法が提案されている(例えば特許文献4、特許文献5)。しかし、この方法では高発泡倍率の発泡成形体が得られるものの溶融時の粘度が上がりすぎ、射出成形が困難となるとともに、得られた成形体の表面性も悪いものであった。   As a method for improving the foaming property of a resin, a method of increasing the melt tension of a polypropylene resin by adding a crosslinking agent or a silane graft thermoplastic resin has been proposed (for example, Patent Document 4 and Patent Document 5). However, in this method, although a foamed molded product having a high expansion ratio can be obtained, the viscosity at the time of melting is excessively increased, and injection molding becomes difficult, and the surface properties of the obtained molded product are also poor.

放射線照射により長鎖分岐を導入することで、通常の線状ポリプロピレン系樹脂に比べてメルトテンションが高く、さらに溶融物の延伸歪みの増加に伴い粘度が上昇する、いわゆる歪硬化性を示すポリプロピレン系樹脂がサンアロマー社よりHMS−PP(ハイ・メルトストレングス・ポリプロピレン)として市販されている(特許文献6)。このようなHMS−PPを基材樹脂として射出発泡成形に使用することで発泡成形体が得られることは知られている(特許文献7)。しかし、ここで使用されているHMS−PPはメルトフローレートが4g/10分程度しかなく、溶融時の流動性が低く、金型キャビティのクリアランスが1〜2mm程度の薄肉部分を有する成形においてはショートショットになりやすい問題があった。一方、メルトフローレートが高いHMS−PP(30g/10分)も知られているが、歪硬化性は示すものの、メルトテンションが0.3cN程度しかなく、高発泡倍率の発泡成形体を得ることは困難であった。しかも、これらのHMS−PPの製造は高価な放射線設備を使用しているため、製造されるHMS−PPも高価となり、それから得られる製品を安価に提供することは困難である。   By introducing long-chain branching by radiation irradiation, the melt tension is higher than that of ordinary linear polypropylene resin, and the viscosity increases as the stretch distortion of the melt increases. The resin is commercially available from Sun Allomer as HMS-PP (High Melt Strength Polypropylene) (Patent Document 6). It is known that a foam molded body can be obtained by using such HMS-PP as a base resin for injection foam molding (Patent Document 7). However, the HMS-PP used here has a melt flow rate of only about 4 g / 10 minutes, has a low fluidity at the time of melting, and has a thin part with a mold cavity clearance of about 1 to 2 mm. There was a problem with short shots. On the other hand, HMS-PP (30 g / 10 min) with a high melt flow rate is also known, but although it exhibits strain hardening, it has a melt tension of only about 0.3 cN and obtains a foamed molded article with a high expansion ratio. Was difficult. And since manufacture of these HMS-PP uses an expensive radiation equipment, manufactured HMS-PP also becomes expensive and it is difficult to provide the product obtained from it at low cost.

また、特定の極限粘度を有するポリエチレンが混合されたメルトフローレートおよびメルトテンションがいずれも高いポリプロピレン系樹脂(特許文献8)や、多段重合により特定の極限粘度を有する成分を含有する高メルトテンションのポリプロピレン系樹脂と高メルトフローレートのポリプロピレン系樹脂との混合物(特許文献9)を射出発泡成形に使用する方法も提案されている。しかし、このようなポリプロピレン系樹脂は、前記長鎖分岐を有するHMS−PPのような顕著な歪硬化性を示さないため、発泡倍率が2倍を越えるような高発泡倍率の場合には気泡が破壊され、内部ボイドが発生しやすい傾向になり、高度な剛性、軽量化のニーズに応えることができなかった。
特公昭39−22213号公報 特公昭51−8424号公報 特開2001−341154号公報 特開昭61−152754号公報 特開平7−109372号公報 特開昭62−121704号公報 特開2001−26032号公報 特開2003−128854号公報 特開2003−268145号公報
Also, a polypropylene resin (Patent Document 8) having a high melt flow rate and a high melt tension mixed with polyethylene having a specific intrinsic viscosity, and a high melt tension containing a component having a specific intrinsic viscosity by multistage polymerization. A method has also been proposed in which a mixture of a polypropylene resin and a high melt flow rate polypropylene resin (Patent Document 9) is used for injection foam molding. However, such a polypropylene-based resin does not exhibit remarkable strain-hardening properties like the HMS-PP having a long chain branch, and therefore, when the foaming ratio is higher than 2 times, bubbles are not generated. It was prone to breakage and internal voids were apt to occur, and could not meet the needs for high rigidity and light weight.
Japanese Examined Patent Publication No. 39-22213 Japanese Patent Publication No.51-8424 JP 2001-341154 A JP 61-152754 A Japanese Patent Laid-Open No. 7-109372 Japanese Patent Laid-Open No. 62-121704 JP 2001-26032 A JP 2003-128854 A JP 2003-268145 A

本発明の目的は、薄肉で高発泡倍率を有しかつボイド等による剛性低下がなく、軽量性に優れた発泡成形体を容易に得られる製法を提供することである。   An object of the present invention is to provide a production method that can easily obtain a foamed molded article that is thin, has a high foaming ratio, does not suffer from a decrease in rigidity due to voids, and is excellent in lightness.

本発明者らは、熱可塑性樹脂を射出発泡成形する製造方法において、射出完了直後に金型を少し開いた後、一端金型を閉じて、次いで最終製品形状まで金型を開くことで、軽量性に優れた発泡成形体を容易にえられることを見出し本発明の完成に至った。   In the manufacturing method for injection foam molding of a thermoplastic resin, the inventors opened the mold a little immediately after the completion of injection, then closed the mold at one end, and then opened the mold to the final product shape. As a result, the present inventors have found that a foamed molded article having excellent properties can be easily obtained and completed the present invention.

すなわち本発明は、熱可塑性樹脂と発泡剤との溶融混合物を金型内に射出した後、金型を開くことにより発泡成形体を製造する方法において、熱可塑性樹脂組成物と発泡剤とを射出成形機へ供給し溶融させ金型内に射出充填し、充填が完了した直後に最終製品形状位置未満の所定位置まで金型を開く第1型開工程と、次いで初期キャビティより大きいの所定位置まで金型を閉じる途中型閉工程と、次いで最終製品形状位置まで金型を開く第2型開工程を含むことを特徴とする熱可塑性樹脂発泡成形体の製造方法に関する。   That is, the present invention relates to a method for producing a foamed molded article by injecting a molten mixture of a thermoplastic resin and a foaming agent into a mold and then opening the mold, and injecting the thermoplastic resin composition and the foaming agent. The first mold opening step of opening the mold to a predetermined position less than the final product shape position immediately after the filling is completed, and then to the predetermined position larger than the initial cavity. The present invention relates to a method for producing a thermoplastic resin foam molded article, comprising a mold closing process in the middle of closing a mold, and then a second mold opening process for opening the mold to a final product shape position.

前記第1型開工程における型開後のキャビティクリアランスは初期キャビティクリアランスの1.2倍以上3.0倍以下であることが望ましく、前記途中型閉工程における型閉後のキャビティクリアランスは初期キャビティクリアランスの1.1倍以上でかつ第1型開工程後のキャビティクリアランスの0.95倍以下であることが望ましい。また、前記第1型開工程における型開速度は5〜100mm/sec、前記途中型閉工程における型閉速度は0.01〜5mm/sec、前記第2型開工程における型開速度は0.05〜50mm/secであることが望ましい。   The cavity clearance after the mold opening in the first mold opening process is preferably 1.2 times or more and 3.0 times or less of the initial cavity clearance, and the cavity clearance after the mold closing in the middle mold closing process is the initial cavity clearance. It is desirable that it is 1.1 times or more and 0.95 times or less of the cavity clearance after the first mold opening step. The mold opening speed in the first mold opening process is 5 to 100 mm / sec, the mold closing speed in the intermediate mold closing process is 0.01 to 5 mm / sec, and the mold opening speed in the second mold opening process is 0. It is desirable that it is 05-50 mm / sec.

さらに前記熱可塑性樹脂はポリプロピレン系樹脂であることが望ましく、前記ポリプロピレン系樹脂は(A)メルトフローレートが10g/10分以上100g/10分以下、メルトテンションが2cN以下である線状ポリプロピレン系樹脂50〜95重量部と、(B)メルトフローレートが0.1g/10分以上10g/10分未満、メルトテンションが5cN以上で、かつ歪硬化性を示す改質ポリプロピレン系樹脂5〜50重量部(ただし、線状ポリプロピレン系樹脂(A)と改質ポリプロピレン系樹脂(B)の合計は100重量部)とからなることが望ましい。また、前記改質ポリプロピレン系樹脂(B)が、線状ポリプロピレン系樹脂、ラジカル重合開始剤、共役ジエン化合物を溶融混合して得られた改質ポリプロピレン系樹脂であることが望ましい。   Furthermore, the thermoplastic resin is preferably a polypropylene resin, and the polypropylene resin is (A) a linear polypropylene resin having a melt flow rate of 10 g / 10 min to 100 g / 10 min and a melt tension of 2 cN or less. 50 to 95 parts by weight, (B) 5 to 50 parts by weight of a modified polypropylene resin having a melt flow rate of 0.1 g / 10 min or more and less than 10 g / 10 min, a melt tension of 5 cN or more, and exhibiting strain hardening (However, the total of the linear polypropylene resin (A) and the modified polypropylene resin (B) is preferably 100 parts by weight). The modified polypropylene resin (B) is preferably a modified polypropylene resin obtained by melt-mixing a linear polypropylene resin, a radical polymerization initiator, and a conjugated diene compound.

さらに前記溶融混合物を射出する時の初期キャビティクリアランスが3mm未満で有ることが望ましい。   Furthermore, it is desirable that the initial cavity clearance when injecting the molten mixture is less than 3 mm.

本発明の第2は、前記製法により製造される発泡成形体に関し、好ましくは平均気泡径が500μm以下でかつ最大気泡径が平均気泡径の3倍以下の発泡層と、該発泡層の少なくとも片側の表面に形成される厚み10μm以上1000μm以下の非発泡層とを有する、発泡倍率が2倍以上10倍以下である発泡成形体に関する。   The second aspect of the present invention relates to a foamed molded article produced by the above-mentioned production method, preferably a foam layer having an average cell diameter of 500 μm or less and a maximum cell diameter of 3 times or less of the average cell diameter, and at least one side of the foam layer And a non-foamed layer having a thickness of 10 μm or more and 1000 μm or less formed on the surface of the foam molded article having a foaming ratio of 2 times or more and 10 times or less.

本発明の射出発泡成形体の製法によれば、初期キャビティクリアランスが薄い場合でも、高発泡倍率を有する軽量性、剛性に優れた発泡成形体が製造できる。さらに本発明において所定のポリプロピレン系樹脂を使用することで、比較的高価な改質ポリプロピレン系樹脂を安価な線状ポリプロピレン系樹脂で希釈しているために、従来は特に困難であったポリプロピレン系樹脂薄肉高発泡成形体を容易に、安価に提供できる。   According to the method for producing an injection-foamed molded article of the present invention, even when the initial cavity clearance is thin, a foamed molded article having a high foaming ratio and excellent in lightness and rigidity can be produced. Furthermore, the use of a predetermined polypropylene resin in the present invention dilutes a relatively expensive modified polypropylene resin with an inexpensive linear polypropylene resin, which has been particularly difficult in the past. A thin and highly foamed molded article can be provided easily and inexpensively.

本発明の熱可塑性樹脂射出発泡成形体の製造方法の大きな特徴は、1)発泡性熱可塑性樹脂を金型内に射出充填し、充填が完了した直後に金型を開きキャビティクリアランスを増大させ、2)次いで金型を閉めてキャビティクリアランスを減少させ、3)その後再び金型を開きキャビティクリアランスを増大させることにある。   The major features of the method for producing a thermoplastic resin injection foam molding of the present invention are: 1) injection filling a foamable thermoplastic resin into a mold, and immediately after the filling is completed, the mold is opened to increase the cavity clearance; 2) Next, the mold is closed to decrease the cavity clearance, and 3) the mold is then opened again to increase the cavity clearance.

射出充填完了直後に金型を開いてキャビティクリアランスを増大させることで、表面スキン層の形成を最小限に抑えることが出来る。本発明において、充填完了直後とは、出来るだけ速やかに第1型開工程へ移行することを言う。軽量化目的で、初期キャビティクリアランスt0を小さくして成形する場合、スキン層厚みが厚いと極端に内部発泡層の厚みが薄くなる。これに対して、スキン層が薄いとより厚い発泡層を有するため、有る一定の成形品厚みを確保しようとした場合に、スキン層が厚い場合に比べて内部発泡層がより低い発泡倍率となるため、よりボイドが発生し難い傾向になると考えられる。これに加えて、従来のスキン層を薄くする方法として金型温度を高くする方法や、金型表面に断熱層を有する金型を、成形サイクルの長化および金型費用の増大といったデメリットを許容できる範囲で併用することも可能である。 By opening the mold immediately after the completion of injection filling and increasing the cavity clearance, the formation of the surface skin layer can be minimized. In the present invention, “immediately after completion of filling” refers to shifting to the first mold opening step as quickly as possible. For the purpose of weight reduction, when molding with a small initial cavity clearance t 0 , the thickness of the internal foam layer becomes extremely thin when the skin layer is thick. On the other hand, if the skin layer is thin, it has a thicker foam layer, so when trying to secure a certain molded product thickness, the internal foam layer has a lower foaming ratio than when the skin layer is thick. For this reason, it is considered that voids tend to be less likely to occur. In addition to this, the conventional method of thinning the skin layer is to increase the mold temperature, and the mold having a heat insulating layer on the mold surface allows the disadvantages of longer molding cycle and increased mold cost. It is also possible to use in combination as far as possible.

第1型開工程後に金型を閉じることによる効果は定かではないが、以下のように考えられる。第1型開工程においては、成形品厚み方向に温度分布を持っており、金型壁面に接する部分は温度が低く、逆に中心付近は温度が高い状況になっていると考えられ、この状況で金型を開きキャビティクリランスを増大させると、樹脂温度が高い部分は低い部分比べて発泡が進行しやすく、気泡が大きくなる傾向にある。この時点からさらにキャビティクリアランスを増大させると、気泡はさらに成長し、他の部位より成長が進んでいる厚み方向中心部の気泡は破壊されやすく、その結果、僅かのキャビティクリアランスの増大でボイドが発生し易くなってしまう。よって、第1型開工程のキャビティクリアランスt1から一端金型を閉じ、厚み方向中心部の粗大化した気泡を小さくすることで、気泡径を均一化する事が出来ると考えられ、その後に再度型開することで、厚み方向に比較的均等に気泡が成長しながら倍率を高くすることが可能になるものと考えられる。 The effect of closing the mold after the first mold opening process is not clear, but is considered as follows. In the first mold opening process, there is a temperature distribution in the thickness direction of the molded product, the temperature that is in contact with the mold wall surface is low, and conversely, the temperature near the center is considered high. When the mold is opened and the cavity clearance is increased, foaming tends to proceed in the portion where the resin temperature is high compared to the portion where the resin temperature is low, and the bubbles tend to increase. If the cavity clearance is further increased from this point, the bubbles grow further, and the bubbles in the central part in the thickness direction, which are growing more than other parts, are easily destroyed. As a result, voids are generated with a slight increase in the cavity clearance. It becomes easy to do. Therefore, it is considered that the bubble diameter can be made uniform by closing the mold at one end from the cavity clearance t 1 in the first mold opening process and reducing the coarsened bubble at the center in the thickness direction. By opening the mold, it is considered that the magnification can be increased while bubbles grow relatively uniformly in the thickness direction.

第1型開工程の型開後のキャビティクリアランスt1は、最終製品形状位置未満であり、内部に気泡が破れて連通化することに起因するボイドが発生しない程度で大きいことが望ましい。この理由は、第1工程後のキャビティクリアランスt1が大きいとこの時のコア層発泡倍率が高くなり、自身が断熱層の役割を果たし金型表面からの冷却を受け難く、後の第2型開工程において、より厚い発泡層の確保に繋がるためであると考えられる。このt1の具体的な値としては、使用する樹脂によって異なるが、一般的には初期キャビティクリアランスの1.2倍以上3.0倍以下で有ることが好ましく、さらには1.5倍以上2.5倍以下であることが好ましい。この範囲内にあることで、ボイドの発生も少なくかつ金型からの冷却を最小限に抑えることが可能である。また第1型開工程における型開速度は5〜100mm/secであることが好ましい。上記範囲内にあることで、スキン層は薄く内部に多くの気泡を発生させる事ができ、かつ表面に凹凸模様が発現し難い。さらにこの傾向が顕著に現れるという観点から、型開速度は10〜70mm/secであることがより好ましい。 The cavity clearance t 1 after opening the mold in the first mold opening process is preferably less than the final product shape position, and is large so that voids are not generated due to bubbles breaking inside and communicating. The reason for this is that if the cavity clearance t 1 after the first step is large, the core layer foaming ratio at this time becomes high, and it itself serves as a heat insulating layer and is difficult to receive cooling from the mold surface. This is considered to be because it leads to securing a thicker foam layer in the opening process. Although the specific value of t 1 varies depending on the resin used, it is generally preferably 1.2 to 3.0 times the initial cavity clearance, and more preferably 1.5 to 2 .5 times or less is preferable. By being in this range, it is possible to minimize the generation of voids and to minimize the cooling from the mold. The mold opening speed in the first mold opening process is preferably 5 to 100 mm / sec. By being in the above-mentioned range, the skin layer is thin and can generate a large number of bubbles inside, and the uneven pattern is hardly exhibited on the surface. Further, from the viewpoint that this tendency appears remarkably, the mold opening speed is more preferably 10 to 70 mm / sec.

なお本発明においては、熱可塑性樹脂と発泡剤との溶融混合物を金型内に射出充填するときの初期キャビティークリアランスt0が、3mm未満であることが、成形品の軽量化および本発明の効果が好適に発揮されるという点から好ましい。 In the present invention, the initial cavity clearance t 0 when the molten mixture of the thermoplastic resin and the foaming agent is injected and filled into the mold is less than 3 mm. It is preferable from the viewpoint that the effect is suitably exhibited.

また、途中型閉工程により減少させるキャビティクリアランスtBは、初期キャビティクリアランスt0より大きく第1型開工程時のキャビティクリアランスt1より小さければ良いが、断熱効果を持続するという観点からt0の1.1倍以上さらには1.3倍以上が好ましく、かつ、気泡径を均一化するという観点からt1の0.95倍以下さらには0.9倍以下にすることが好ましい。 Further, the cavity clearance t B to decrease by the middle mold closing step is smaller than the cavity clearance t 1 during the initial cavity larger than the clearance t 0 first mold opening process good, the t 0 from the viewpoint of sustained heat insulating effect It is preferably 1.1 times or more, more preferably 1.3 times or more, and preferably 0.95 times or less, more preferably 0.9 times or less of t 1 from the viewpoint of making the bubble diameter uniform.

途中型閉工程における型閉速度は、遅い方が成形体の気泡径がより均一化され易い傾向にある。その理由は定かではないが、第1型開工程を終了した時点で径の大きい気泡(主に厚み方向中心部付近)と径の小さい気泡(主にスキン層付近)が存在し、圧力の高い部分(小気泡)と低い部分(大気泡)が存在すると考えられ、この様な状況で比較的速い速度で金型を閉じると、キャビティ内の樹脂全体が一気に圧縮され、圧力の高い部分も圧縮され小さい気泡が更に小さくなってしまうのに対して、遅い速度で金型が閉じられると効率よく圧力の低い部分すなわち大気泡のみが圧縮されることで気泡径が均一化され、その後の第2型開工程を経た後でも気泡が均一化し易い傾向に有ると考えられる。途中型閉工程の型閉速度の具体的値としては、0.01〜5mm/secであることが好ましく、さらには0.05〜2.5mm/secで有ることが好ましい。ただし、型閉に要する時間が長いと内部の冷却が進行し、第2型開工程において最終製品形状まで発泡させることが困難となる場合があるため、前記t1およびtBの値にもよるが、型閉に要する時間は15s以内であることが好ましく、この範囲で所望の型閉が終了するように、型閉速度を調節する事が好ましい。なお、必要に応じて、前記途中型閉工程の後に、内部の温度を均一化するという目的で型開を停止する時間を設けても良い。この時間は、次の第2型開工程において最終製品形状まで発泡させることが可能であれば特に制限はないが、概ね10s以内であることが好ましい。 The mold closing speed in the middle mold closing process tends to make the bubble diameter of the molded body more uniform. The reason is not clear, but when the first mold opening process is completed, there are bubbles with large diameter (mainly near the center in the thickness direction) and bubbles with small diameter (mainly near the skin layer), and the pressure is high. It is thought that there are parts (small bubbles) and low parts (large bubbles). When the mold is closed at a relatively high speed in such a situation, the entire resin in the cavity is compressed at once, and the part with high pressure is also compressed. On the other hand, the small bubbles are further reduced. On the other hand, when the mold is closed at a low speed, only the low pressure portion, that is, the large bubbles are efficiently compressed, and the bubble diameter is made uniform. It is considered that the bubbles tend to be uniformized even after the mold opening process. The specific value of the mold closing speed in the middle mold closing process is preferably 0.01 to 5 mm / sec, and more preferably 0.05 to 2.5 mm / sec. However, if the time required for mold closing is long, the internal cooling proceeds, and it may be difficult to foam to the final product shape in the second mold opening process, so it depends on the values of t 1 and t B. However, the time required for mold closing is preferably within 15 s, and it is preferable to adjust the mold closing speed so that the desired mold closing is completed within this range. If necessary, a time for stopping the mold opening may be provided for the purpose of equalizing the internal temperature after the intermediate mold closing process. This time is not particularly limited as long as it can be foamed to the final product shape in the next second mold opening step, but is preferably within approximately 10 seconds.

第2型開工程では最終製品形状となるキャビティクリアランスt2まで金型を開くことで、内部の気泡を成長させる。この時の型開速度は0.05〜50mm/secであることが好ましく、さらに0.1〜25mm/secであることが好ましい。この範囲内にあることで、所定の製品厚みを得ることができかつ金型とスキン層の剥離による表面荒れを防止することが出来る。 In the second mold opening process, the internal bubbles are grown by opening the mold to the cavity clearance t 2 that is the final product shape. The mold opening speed at this time is preferably 0.05 to 50 mm / sec, and more preferably 0.1 to 25 mm / sec. By being in this range, a predetermined product thickness can be obtained, and surface roughness due to peeling between the mold and the skin layer can be prevented.

本発明で使用される熱可塑性樹脂としては、ポリスチレン、ポリエチレン、ポリプロピレン、ABS樹脂など、公知の熱可塑性樹脂が主成分であれば特に制限なく使用できるが、その効果が顕著に発揮できると言う観点からポリオレフィン系樹脂、特にはポリプロピレン系樹脂で有ることが好ましい。   As the thermoplastic resin used in the present invention, any known thermoplastic resin such as polystyrene, polyethylene, polypropylene, and ABS resin can be used without particular limitation as long as it is a main component. Therefore, it is preferable to be a polyolefin resin, particularly a polypropylene resin.

さらに本発明においては、線状ポリプロピレン系樹脂(A)と改質ポリプロピレン系樹脂(B)とからなるポリプロピレン系樹脂を使用することが最も好ましい。   Furthermore, in the present invention, it is most preferable to use a polypropylene resin comprising a linear polypropylene resin (A) and a modified polypropylene resin (B).

線状ポリプロピレン系樹脂(A)は、メルトフローレートが10g/10分以上100g/10分以下であることが好ましく、更に好ましくは15g/10分以上50g/10分以下であり、メルトテンションが好ましくは2cN以下、更に好ましくは1cN以下である。メルトフローレートが10g/10分以上100g/10分以下の範囲であると、射出発泡成形体を製造する際に、金型キャビティのクリアランスが1〜2mm程度の薄肉部分を有する成形においてもショートショットになりにくく、連続して安定した成形が行える傾向にある。また、高発泡倍率であり、且つ、発泡時に気泡が破壊されにくいため、表面外観美麗な発泡成形体が得られる傾向にある。また、メルトテンションが2cN以下であれば、金型面への転写性が良好であり、表面外観美麗な発泡成形体が得られやすい。   The linear polypropylene resin (A) preferably has a melt flow rate of 10 g / 10 min or more and 100 g / 10 min or less, more preferably 15 g / 10 min or more and 50 g / 10 min or less, and a melt tension is preferable. Is 2 cN or less, more preferably 1 cN or less. When the melt flow rate is in the range of 10 g / 10 min or more and 100 g / 10 min or less, when producing an injection-foamed molded article, a short shot is required even in molding having a thin-walled portion with a mold cavity clearance of about 1 to 2 mm. It tends to be able to form continuously and stably. In addition, since the foaming ratio is high and the bubbles are not easily destroyed at the time of foaming, a foamed molded article having a beautiful surface appearance tends to be obtained. Moreover, if the melt tension is 2 cN or less, the transferability to the mold surface is good, and a foamed molded article having a beautiful surface appearance is easily obtained.

メルトフローレートとは、ASTM D−1238に準拠し、230℃、2.16kg荷重下で測定したものを言い、メルトテンションとは、メルトテンション測定用アタッチメントを付けたキャピログラフ(東洋精機製作所製)を使用して、230℃でφ1mm、長さ10mmの孔を有するダイスから、ピストン降下速度10mm/分で降下させたストランドを1m/分で引き取り、安定後に40m/分2で引き取り速度を増加させたとき、破断したときのロードセル付きプーリーの引き取り荷重を言う。 The melt flow rate is a value measured under a load of 2.16 kg at 230 ° C. in accordance with ASTM D-1238. Used, a strand lowered at a piston descending speed of 10 mm / min was taken out at 1 m / min from a die having a hole of φ1 mm and a length of 10 mm at 230 ° C., and the take-up speed was increased at 40 m / min 2 after stabilization. Sometimes, it refers to the take-up load of the pulley with a load cell when it breaks.

ここでいう線状ポリプロピレン系樹脂(A)とは、線状の分子構造を有しているポリプロピレン系樹脂であり、通常の重合方法、例えば担体に担持させた遷移金属化合物と有機金属化合物から得られる触媒系(例えばチーグラー・ナッタ触媒)の存在下の重合で得られる。具体的には、プロピレンの単独重合体、ブロック共重合体およびランダム共重合体であって、結晶性の重合体があげられる。プロピレンの共重合体としては、プロピレンを75重量%以上含有しているものが、ポリプロピレン系樹脂の特徴である結晶性、剛性、耐薬品性などが保持されている点で好ましい。共重合可能なα−オレフィンは、エチレン、1−ブテン、イソブテン、1−ペンテン、3−メチル−1−ブテン、1−ヘキセン、4−メチル−1−ペンテン、3,4−ジメチル−1−ブテン、1−ヘプテン、3−メチル−1−ヘキセン、1−オクテン、1−デセンなどの炭素数2または4〜12のα−オレフィン、シクロペンテン、ノルボルネン、テトラシクロ[6,2,11,8,13,6]−4−ドデセンなどの環状オレフィン、5−メチレン−2−ノルボルネン、5−エチリデン−2−ノルボルネン、1,4−ヘキサジエン、メチル−1,4−ヘキサジエン、7−メチル−1,6−オクタジエンなどのジエン、塩化ビニル、塩化ビニリデン、アクリロニトリル、酢酸ビニル、アクリル酸、メタクリル酸、マレイン酸、アクリル酸エチル、アクリル酸ブチル、メタクリル酸メチル、無水マレイン酸、スチレン、メチルスチレン、ビニルトルエン、ジビニルベンゼンなどのビニル単量体などが挙げられる。これらのうち、エチレン、1−ブテンが耐寒脆性向上、安価等という点で好ましい。 The linear polypropylene resin (A) here is a polypropylene resin having a linear molecular structure, and is obtained from a usual polymerization method, for example, a transition metal compound supported on a carrier and an organometallic compound. Obtained in the presence of a catalyst system such as a Ziegler-Natta catalyst. Specific examples include propylene homopolymers, block copolymers, and random copolymers, which are crystalline polymers. As a copolymer of propylene, a copolymer containing propylene in an amount of 75% by weight or more is preferable in that the crystallinity, rigidity, chemical resistance, etc., which are characteristics of the polypropylene resin, are maintained. The copolymerizable α-olefin is ethylene, 1-butene, isobutene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 3,4-dimethyl-1-butene. , 1-heptene, 3-methyl-1-hexene, 1-octene, 1-decene, and the like, α-olefin having 2 or 4 to 12 carbon atoms, cyclopentene, norbornene, tetracyclo [6,2,1 1,8 , 1 3,6 ] -4-dodecene and other cyclic olefins, 5-methylene-2-norbornene, 5-ethylidene-2-norbornene, 1,4-hexadiene, methyl-1,4-hexadiene, 7-methyl-1,6 -Diene such as octadiene, vinyl chloride, vinylidene chloride, acrylonitrile, vinyl acetate, acrylic acid, methacrylic acid, maleic acid, ethyl acrylate, acrylic Butyl Le, methyl methacrylate, maleic anhydride, styrene, methyl styrene, vinyl toluene, and vinyl monomers such as divinylbenzene. Among these, ethylene and 1-butene are preferable in terms of improving cold brittleness resistance and low cost.

本発明で使用する改質ポリプロピレン系樹脂(B)は、メルトフローレートが0.1g/10分以上10g/10分未満であることが好ましく、更に好ましくは0.3g/10分以上5g/10分以下であり、メルトテンションが好ましくは5cN以上、更に好ましくは8cN以上で、かつ歪硬化性を示すものであることが好ましい。メルトフローレートが0.1g/10分以上10g/10分未満であると、線状ポリプロピレン系樹脂(A)への分散性が良好であり、高発泡倍率であり気泡が均一の、表面性が良い本発明の発泡成形体が得られる傾向にある。また、金型面への転写性が良好で、美麗な表面外観が得られやすい。また、メルトテンションが5cN以上の場合には2倍以上の均一微細な気泡の発泡成形体が得られやすい。   The modified polypropylene resin (B) used in the present invention preferably has a melt flow rate of 0.1 g / 10 min or more and less than 10 g / 10 min, more preferably 0.3 g / 10 min or more and 5 g / 10. It is preferable that the melt tension is 5 cN or more, more preferably 8 cN or more, and exhibits strain hardening properties. When the melt flow rate is 0.1 g / 10 min or more and less than 10 g / 10 min, the dispersibility in the linear polypropylene resin (A) is good, the foaming ratio is high, the bubbles are uniform, and the surface property is high. There exists a tendency for the good foaming molding of the present invention to be obtained. In addition, transferability to the mold surface is good, and a beautiful surface appearance is easily obtained. In addition, when the melt tension is 5 cN or more, it is easy to obtain a foamed molded product having uniform fine cells twice or more.

ここでいう歪硬化性は、溶融物の延伸歪みの増加に伴い粘度が上昇することとして定義され、通常は特開昭62−121704号公報に記載の方法、すなわち市販のレオメーターにより測定した伸長粘度と時間の関係をプロットすることで判定することができる。また、例えばメルトテンション測定時の溶融ストランドの破断挙動からも歪硬化性を判定できる。すなわち、引き取り速度を増加させたときに急激にメルトテンションが増加し、切断に至るときは歪硬化性を示す場合である。改質ポリプロピレン系樹脂(B)が歪硬化性を示し、メルトテンションが高い場合に発泡倍率が2倍を越える高発泡倍率の発泡成形体が得られ、射出成形時の溶融樹脂流動先端部で破泡しやすくなることによっておこるシルバーストリークが出にくくなるので表面外観美麗な発泡成形体が得られる。   Strain hardening here is defined as that the viscosity increases as the stretch strain of the melt increases, and is usually the method described in Japanese Patent Application Laid-Open No. 62-121704, that is, the elongation measured by a commercially available rheometer. This can be determined by plotting the relationship between viscosity and time. Further, for example, strain hardening can be determined from the breaking behavior of the molten strand at the time of melt tension measurement. That is, when the take-up speed is increased, the melt tension increases abruptly, and when cutting, strain hardening is exhibited. The modified polypropylene resin (B) exhibits strain-hardening properties, and when the melt tension is high, a foamed molded product having a foaming ratio exceeding 2 times can be obtained and broken at the molten resin flow front end during injection molding. Since it becomes difficult for silver streaks to occur due to easy foaming, a foam molded article having a beautiful surface appearance can be obtained.

このような改質ポリプロピレン系樹脂(B)としては、例えば線状ポリプロピレン系樹脂に放射線を照射するか、または線状ポリプロピレン系樹脂、ラジカル重合開始剤、共役ジエン化合物を溶融混合するなどの方法により得られる分岐構造あるいは高分子量成分を含有する改質ポリプロピレン系樹脂が挙げられる。これらの中で、本発明においては、線状ポリプロピレン樹脂、ラジカル重合開始剤および共役ジエン化合物を溶融混合して得られる改質ポリプロピレン系樹脂を用いることが、高価な設備を必要としない点から安価に製造できる点から好ましい。この改質ポリプロピレン系樹脂(B)の製造に用いられる原料ポリプロピレン系樹脂としては、前記線状ポリプロピレン系樹脂(A)と同じものが例示できる。   As such a modified polypropylene resin (B), for example, the linear polypropylene resin is irradiated with radiation, or the linear polypropylene resin, radical polymerization initiator, conjugated diene compound is melt mixed. Examples thereof include a modified polypropylene resin containing the resulting branched structure or high molecular weight component. Among these, in the present invention, it is inexpensive to use a modified polypropylene resin obtained by melt-mixing a linear polypropylene resin, a radical polymerization initiator, and a conjugated diene compound because it does not require expensive equipment. It is preferable from the point which can be manufactured. Examples of the raw material polypropylene resin used in the production of the modified polypropylene resin (B) include the same as the linear polypropylene resin (A).

前記共役ジエン化合物としては例えばブタジエン、イソプレン、1,3−ヘプタジエン、2,3−ジメチルブタジエン、2,5−ジメチル−2,4−ヘキサジエンなどがあげられるが、これらを単独または組み合わせ使用してもよい。これらの中では、ブタジエン、イソプレンが安価で取り扱いやすく、反応が均一に進みやすい点からとくに好ましい。   Examples of the conjugated diene compound include butadiene, isoprene, 1,3-heptadiene, 2,3-dimethylbutadiene, 2,5-dimethyl-2,4-hexadiene, and these may be used alone or in combination. Good. Among these, butadiene and isoprene are particularly preferable because they are inexpensive and easy to handle and the reaction easily proceeds uniformly.

前記共役ジエン化合物の添加量としては、線状ポリプロピレン系樹脂100重量部に対して、0.01〜20重量部が好ましく、0.05〜5重量部がさらに好ましい。0.01重量部未満では改質の効果が得られにくい場合があり、また20重量部を越える添加量においては効果が飽和してしまい、経済的でない場合がある。   The addition amount of the conjugated diene compound is preferably 0.01 to 20 parts by weight and more preferably 0.05 to 5 parts by weight with respect to 100 parts by weight of the linear polypropylene resin. If the amount is less than 0.01 parts by weight, the effect of the modification may be difficult to obtain, and if the amount exceeds 20 parts by weight, the effect is saturated, which may not be economical.

前記共役ジエン化合物と共重合可能な単量体、たとえば塩化ビニル、塩化ビニリデン、アクリロニトリル、メタクリロニトリル、アクリルアミド、メタクリルアミド、酢酸ビニル、アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、アクリル酸金属塩、メタクリル酸金属塩、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2−エチルヘキシル、アクリル酸ステアリルなどのアクリル酸エステル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸2−エチルヘキシル、メタクリル酸ステアリルなどのメタクリル酸エステルなどを併用してもよい。   Monomers copolymerizable with the conjugated diene compounds, such as vinyl chloride, vinylidene chloride, acrylonitrile, methacrylonitrile, acrylamide, methacrylamide, vinyl acetate, acrylic acid, methacrylic acid, maleic acid, maleic anhydride, metal acrylate Salt, metal methacrylate, methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, stearyl acrylate, and other acrylic esters, methyl methacrylate, ethyl methacrylate, butyl methacrylate, 2-methacrylic acid 2- Methacrylic acid esters such as ethylhexyl and stearyl methacrylate may be used in combination.

ラジカル重合開始剤としては、一般に過酸化物、アゾ化合物などが挙げられるが、ポリプロピレン系樹脂や前記共役ジエン化合物からの水素引き抜き能を有するものが好ましく、一般にケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、ジアシルパーオキサイド、パーオキシジカーボネート、パーオキシエステルなどの有機過酸化物が挙げられる。これらのうち、とくに水素引き抜き能が高いものが好ましく、たとえば1,1−ビス(t−ブチルパーオキシ)3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ブチルパーオキシ)シクロヘキサン、n−ブチル4,4−ビス(t−ブチルパーオキシ)バレレート、2,2−ビス(t−ブチルパーオキシ)ブタンなどのパーオキシケタール、ジクミルパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン、α,α’−ビス(t−ブチルパーオキシ−m−イソプロピル)ベンゼン、t−ブチルクミルパーオキサイド、ジ−t−ブチルパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)−3−ヘキシンなどのジアルキルパーオキサイド、ベンゾイルパーオキサイドなどのジアシルパーオキサイド、t−ブチルパーオキシオクテート、t−ブチルパーオキシイソブチレート、t−ブチルパーオキシラウレート、t−ブチルパーオキシ3,5,5−トリメチルヘキサノエート、t−ブチルパーオキシイソプロピルカーボネート、2,5−ジメチル−2,5−ジ(ベンゾイルパーオキシ)ヘキサン、t−ブチルパーオキシアセテート、t−ブチルパーオキシベンゾエート、ジ−t−ブチルパーオキシイソフタレートなどのパーオキシエステルなどの1種または2種以上が挙げられる。   The radical polymerization initiator generally includes peroxides, azo compounds, and the like, but those having a capability of extracting hydrogen from a polypropylene resin or the conjugated diene compound are preferable. Generally, ketone peroxides, peroxyketals, hydroperoxides are used. Organic peroxides such as oxides, dialkyl peroxides, diacyl peroxides, peroxydicarbonates, and peroxyesters are listed. Of these, those having particularly high hydrogen abstraction ability are preferred, such as 1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane, 1,1-bis (t-butylperoxy) cyclohexane, Peroxyketals such as n-butyl 4,4-bis (t-butylperoxy) valerate, 2,2-bis (t-butylperoxy) butane, dicumyl peroxide, 2,5-dimethyl-2,5 -Di (t-butylperoxy) hexane, α, α'-bis (t-butylperoxy-m-isopropyl) benzene, t-butylcumyl peroxide, di-t-butylperoxide, 2,5-dimethyl Diacyl peroxides such as dialkyl peroxides such as -2,5-di (t-butylperoxy) -3-hexyne and benzoyl peroxides Oxide, t-butyl peroxyoctate, t-butyl peroxyisobutyrate, t-butyl peroxylaurate, t-butyl peroxy 3,5,5-trimethylhexanoate, t-butyl peroxyisopropyl carbonate 1, peroxyesters such as 2,5-dimethyl-2,5-di (benzoylperoxy) hexane, t-butylperoxyacetate, t-butylperoxybenzoate, di-t-butylperoxyisophthalate A seed | species or 2 or more types is mentioned.

ラジカル重合開始剤の添加量としては、線状ポリプロピレン系樹脂100重量部に対して、0.01重量部以上10重量部以下が好ましく、0.05重量部以上2重量部以下がさらに好ましい。0.01重量部未満では改質の効果が得られにくい場合があり、また10重量部を越える添加量では、改質の効果が飽和してしまい経済的でない場合がある。   The addition amount of the radical polymerization initiator is preferably 0.01 parts by weight or more and 10 parts by weight or less, more preferably 0.05 parts by weight or more and 2 parts by weight or less with respect to 100 parts by weight of the linear polypropylene resin. If the amount is less than 0.01 part by weight, the effect of reforming may be difficult to obtain, and if the amount exceeds 10 parts by weight, the effect of reforming may be saturated and not economical.

線状ポリプロピレン系樹脂、共役ジエン化合物、およびラジカル重合開始剤を反応させるための装置としては、ロール、コニーダー、バンバリーミキサー、ブラベンダー、単軸押出機、2軸押出機などの混練機、2軸表面更新機、2軸多円板装置などの横型撹拌機、ダブルヘリカルリボン撹拌機などの縦型撹拌機、などが挙げられる。これらのうち、混練機を使用することが好ましく、とくに押出機が生産性の点から好ましい。   The apparatus for reacting the linear polypropylene resin, the conjugated diene compound, and the radical polymerization initiator includes a roll, a kneader, a Banbury mixer, a Brabender, a single screw extruder, a kneader such as a twin screw extruder, a twin screw, etc. Examples of the surface renewal machine include a horizontal stirrer such as a biaxial multi-disk device, and a vertical stirrer such as a double helical ribbon stirrer. Among these, a kneader is preferably used, and an extruder is particularly preferable from the viewpoint of productivity.

線状ポリプロピレン系樹脂、共役ジエン化合物、およびラジカル重合開始剤を混合、混練(撹拌)する順序、方法にはとくに制限はない。線状ポリプロピレン系樹脂、共役ジエン化合物、およびラジカル重合開始剤を混合したのち溶融混練(撹拌)してもよいし、ポリプロピレン系樹脂を溶融混練(撹拌)したのち、共役ジエン化合物あるいはラジカル開始剤を同時にあるいは別々に、一括してあるいは分割して混合してもよい。混練(撹拌)機の温度は130〜300℃が、線状ポリプロピレン系樹脂が溶融し、かつ熱分解しないという点で好ましい。またその時間は一般に1〜60分が好ましい。   There is no particular limitation on the order and method of mixing and kneading (stirring) the linear polypropylene resin, the conjugated diene compound, and the radical polymerization initiator. The linear polypropylene-based resin, the conjugated diene compound, and the radical polymerization initiator may be mixed and then melt-kneaded (stirred). After the polypropylene-based resin is melt-kneaded (stirred), the conjugated diene compound or the radical initiator may be mixed. They may be mixed simultaneously or separately, collectively or divided. The temperature of the kneading (stirring) machine is preferably 130 to 300 ° C. in that the linear polypropylene resin melts and does not thermally decompose. The time is generally preferably 1 to 60 minutes.

このようにして、本発明に用いる改質ポリプロピレン系樹脂(B)を製造することができる。   In this way, the modified polypropylene resin (B) used in the present invention can be produced.

ポリプロピレン系樹脂(A)、(B)の形状、大きさに制限はなく、ペレット状でもよい。   There is no restriction | limiting in the shape and magnitude | size of polypropylene resin (A) and (B), and a pellet form may be sufficient.

本発明で使用する線状ポリプロピレン系樹脂(A)と改質ポリプロピレン系樹脂(B)の合計100重量部中、線状ポリプロピレン樹脂(A)は、50重量部以上95重量部以下であることが好ましく、更に好ましくは60重量部以上90重量部以下である。改質ポリプロピレン系樹脂(B)は5〜50重量部であることが好ましく、更に好ましくは10〜40重量部である。前記配合量であれば、均一微細な気泡を有す、発泡倍率が2倍以上の発泡成形体が得られやすい。また、薄肉部分を有する成形でショートショットが起こらず、連続して安定した生産が行えるほか、表面外観美麗な発泡成形体をに安価に提供することが出来る。   Of the total 100 parts by weight of the linear polypropylene resin (A) and the modified polypropylene resin (B) used in the present invention, the linear polypropylene resin (A) may be 50 parts by weight or more and 95 parts by weight or less. Preferably, it is 60 parts by weight or more and 90 parts by weight or less. The modified polypropylene resin (B) is preferably 5 to 50 parts by weight, more preferably 10 to 40 parts by weight. If it is the said compounding quantity, it will be easy to obtain the foaming molding which has a uniform fine bubble and whose expansion ratio is 2 times or more. In addition, a short shot does not occur in the molding having a thin-walled portion, and continuous and stable production can be performed, and a foamed molded article having a beautiful surface appearance can be provided at a low cost.

本発明で使用する射出発泡成形用ポリプロピレン系樹脂は、線状ポリプロピレン系樹脂(A)と改質ポリプロピレン系樹脂(B)を混合することで得たものを使用することが好ましい。混合方法は特に限定はなく、公知の方法で行うことが出来、例えば、ペレット状の樹脂をブレンダー、ミキサー等を用いてドライブレンドする、溶融混合する、溶剤に熔解して混合する等の方法が挙げられる。本発明においてはドライブレンドした上で射出発泡成形に供する方法が、熱履歴が少なくて済み、メルトテンションの低下が少なくなる為、好ましい。   The polypropylene resin for injection foam molding used in the present invention is preferably a resin obtained by mixing a linear polypropylene resin (A) and a modified polypropylene resin (B). The mixing method is not particularly limited and can be performed by a known method. For example, dry blending of pellet-shaped resin using a blender, mixer, etc., melt mixing, melting and mixing in a solvent, etc. Can be mentioned. In the present invention, the method of dry blending and then subjecting to injection foam molding is preferable because it requires less heat history and decreases the melt tension.

本発明で使用できる発泡剤は、化学発泡剤、物理発泡剤など射出発泡成形に通常使用できるものであればとくに制限はない。化学発泡剤は、前記樹脂組成物と予め混合してから射出成形機に供給され、シリンダー内で分解して炭酸ガス等の気体を発生するものである。化学発泡剤としては、重炭酸ナトリウム、炭酸アンモニウム等の無機系化学発泡剤や、アゾジカルボンアミド、N,N’−ジニトロソペンタテトラミン等の有機系化学発泡剤があげられる。物理発泡剤は、成形機のシリンダー内の溶融樹脂にガス状または超臨界流体として注入され、分散または溶解されるもので、金型内に射出後、圧力開放されることによって発泡剤として機能するものである。物理発泡剤としては、プロパン、ブタン等の脂肪族炭化水素類、シクロブタン、シクロペンタン等の脂環式炭化水素類、クロロジフルオロメタン、ジクロロメタン等のハロゲン化炭化水素類、窒素、炭酸ガス、空気等の無機ガスがあげられる。これらは単独または2種以上混合して使用してよい。   The foaming agent that can be used in the present invention is not particularly limited as long as it can be usually used for injection foam molding, such as a chemical foaming agent and a physical foaming agent. The chemical foaming agent is previously mixed with the resin composition and then supplied to the injection molding machine, and decomposes in the cylinder to generate a gas such as carbon dioxide. Examples of the chemical foaming agent include inorganic chemical foaming agents such as sodium bicarbonate and ammonium carbonate, and organic chemical foaming agents such as azodicarbonamide and N, N′-dinitrosopentatetramine. A physical foaming agent is injected into a molten resin in a cylinder of a molding machine as a gaseous or supercritical fluid, dispersed or dissolved, and functions as a foaming agent by being released from pressure after being injected into a mold. Is. Physical foaming agents include aliphatic hydrocarbons such as propane and butane, alicyclic hydrocarbons such as cyclobutane and cyclopentane, halogenated hydrocarbons such as chlorodifluoromethane and dichloromethane, nitrogen, carbon dioxide, air, etc. Inorganic gas. You may use these individually or in mixture of 2 or more types.

これらの発泡剤の中では、通常の射出成形機が安全に使用でき、均一微細な気泡が得られやすいものとして、化学発泡剤としては無機系化学発泡剤、物理発泡剤としては窒素、炭酸ガス、空気等の無機ガスが好ましい。これらの発泡剤には、発泡成形体の気泡を安定的に均一微細にするために必要に応じて、例えばクエン酸のような有機酸等の発泡助剤やタルク、炭酸リチウムのような無機微粒子等の造核剤を添加してもよい。通常、上記無機系化学発泡剤は取扱性、貯蔵安定性、ポリプロピレン系樹脂への分散性の点から、10〜50重量%濃度のポリオレフィン系樹脂のマスターバッチとして使用されるのが好ましい。   Among these foaming agents, normal injection molding machines can be used safely, and uniform fine bubbles are easily obtained. Chemical foaming agents are inorganic chemical foaming agents, physical foaming agents are nitrogen and carbon dioxide. Inorganic gas such as air is preferable. These foaming agents include, for example, foaming aids such as organic acids such as citric acid and inorganic fine particles such as talc and lithium carbonate, in order to stably and uniformly make the foamed foam air bubbles. A nucleating agent such as may be added. Usually, the inorganic chemical foaming agent is preferably used as a masterbatch of a polyolefin resin having a concentration of 10 to 50% by weight from the viewpoints of handleability, storage stability, and dispersibility in a polypropylene resin.

上記発泡剤の使用量は、最終製品の発泡倍率と発泡剤の種類や成形時の樹脂温度によって適宜設定すればよい。例えば、通常無機系化学発泡剤の場合は、本発明のポリプロピレン系樹脂100重量部に対して好ましくは、0.1重量部以上20重量部以下、更に好ましくは0.5重量部以上10重量部以下の範囲で使用される。この範囲で使用することにより、経済的に発泡倍率が2倍以上、且つ均一微細気泡の発泡成形体が得られやすい。   What is necessary is just to set the usage-amount of the said foaming agent suitably with the foaming magnification of the final product, the kind of foaming agent, and the resin temperature at the time of shaping | molding. For example, in the case of an inorganic chemical foaming agent, it is preferably 0.1 to 20 parts by weight, more preferably 0.5 to 10 parts by weight, with respect to 100 parts by weight of the polypropylene resin of the present invention. Used in the following ranges. By using in this range, it is easy to economically obtain a foamed molded article having a foaming ratio of 2 times or more and uniform fine cells.

さらに必要に応じて、本発明の効果を損なわない範囲で、酸化防止剤、金属不活性剤、燐系加工安定剤、紫外線吸収剤、紫外線安定剤、蛍光増白剤、金属石鹸、制酸吸着剤などの安定剤、架橋剤、連鎖移動剤、核剤、滑剤、可塑剤、充填材、強化材、顔料、染料、難燃剤、帯電防止剤などの添加剤を併用してもよい。必要に応じて用いられるこれらの添加剤は、本発明の効果を損なわない範囲で使用されるのはもちろんであるが、一般に本発明のポリプロピレン系樹脂組成物100重量部に対して、好ましくは0.01重量部以上10重量部以下使用される。   Further, if necessary, as long as the effects of the present invention are not impaired, antioxidants, metal deactivators, phosphorus processing stabilizers, UV absorbers, UV stabilizers, fluorescent brighteners, metal soaps, antacid adsorption An additive such as a stabilizer such as an agent, a crosslinking agent, a chain transfer agent, a nucleating agent, a lubricant, a plasticizer, a filler, a reinforcing material, a pigment, a dye, a flame retardant, and an antistatic agent may be used in combination. Of course, these additives used as necessary are used within the range not impairing the effects of the present invention, but generally 0 parts by weight with respect to 100 parts by weight of the polypropylene resin composition of the present invention. 0.01 parts by weight or more and 10 parts by weight or less is used.

このようにして得られる本発明の発泡成形体は、平均気泡径が好ましくは500μm以下、更に好ましくは300μm以下であり、かつ最大気泡径が平均気泡径の好ましくは3倍以下、更に好ましくは2.5倍以下の発泡層と、該発泡層の少なくとも片側の表面に形成される厚みが好ましくは10μm以上1000μm以下、更に好ましくは100μm以上500μm以下の非発泡層とを有する。発泡層の平均気泡径が500μmを越える場合は優れた剛性が得られない場合があり、さらに最大気泡径が平均気泡径の3倍を超える場合には、特にその傾向が顕著になる。非発泡層の厚みが10μm未満では外観美麗な表面にならず、剛性も低下する傾向があり、1000μmを越える場合は軽量性が得られにくい恐れがある。なお、本発明において「気泡径」とは気泡が球状である場合はその直径、楕円形である場合は、その長径と短径の平均値とし、平均気泡径とは、発泡成形体を厚み方向に切断した断面の顕微鏡写真において、任意に選んだ20個の平均値であり、最大気泡径とは、この顕微鏡写真において最大の気泡の気泡径を言う。   The foamed molded article of the present invention thus obtained has an average cell diameter of preferably 500 μm or less, more preferably 300 μm or less, and a maximum cell diameter of preferably 3 times or less, more preferably 2 And a non-foamed layer having a thickness of preferably 10 μm or more and 1000 μm or less, more preferably 100 μm or more and 500 μm or less, formed on at least one surface of the foamed layer. When the average cell diameter of the foamed layer exceeds 500 μm, excellent rigidity may not be obtained, and when the maximum cell diameter exceeds 3 times the average cell diameter, this tendency is particularly remarkable. If the thickness of the non-foamed layer is less than 10 μm, the surface is not beautiful and the rigidity tends to decrease. If it exceeds 1000 μm, the lightness may not be obtained. In the present invention, the “bubble diameter” refers to the diameter when the bubbles are spherical, and the average value of the long and short diameters when the bubbles are oval, and the average bubble diameter refers to the foam molded body in the thickness direction. In the micrograph of the cross section cut into two, the average value of 20 arbitrarily selected, and the maximum bubble diameter refers to the bubble diameter of the largest bubble in this micrograph.

また、本発明の発泡成形体の発泡倍率は、好ましくは2倍以上10倍以下、更に好ましくは3倍以上6倍以下である。発泡倍率が2倍未満では軽量性が得られにくい場合があり、10倍を越える場合には剛性の低下が著しくなる傾向がある。発泡倍率は、射出発泡成形用ポリプロピレン系樹脂組成物を発泡剤を添加しない以外は発泡成形体と同条件で射出成形した非発泡成形体との比重の比から得られた値である。   The expansion ratio of the foamed molded article of the present invention is preferably 2 to 10 times, more preferably 3 to 6 times. If the expansion ratio is less than 2 times, it may be difficult to obtain light weight, and if it exceeds 10 times, the rigidity tends to be significantly reduced. The expansion ratio is a value obtained from the ratio of the specific gravity of the foamed molded product and the non-foamed molded product that was injection molded under the same conditions except that the foaming agent was not added to the polypropylene resin composition for injection foam molding.

その他の成形条件は、各ポリプロピレン系樹脂のMFR、発泡剤の種類、成形機の種類あるいは金型の形状によって適宜調整すればよい。通常、樹脂温度170〜250℃、金型温度10〜100℃、成形サイクル1〜60分、射出速度10〜300mm/秒、射出圧力10〜200MPa等の条件で行われる。   Other molding conditions may be appropriately adjusted according to the MFR of each polypropylene resin, the type of foaming agent, the type of molding machine, or the shape of the mold. Usually, the resin temperature is 170 to 250 ° C., the mold temperature is 10 to 100 ° C., the molding cycle is 1 to 60 minutes, the injection speed is 10 to 300 mm / second, and the injection pressure is 10 to 200 MPa.

以下に実施例によって本発明をより詳しく説明するが、本発明はこれらによって何ら制限されるものではない。   The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these examples.

実施例および比較例において、各種の評価方法に用いられた試験法および判定基準は次の通りである。
(1)メルトフローレート:ASTM1238に準拠し、温度230℃、荷重2.16kgで測定した。
(2)メルトテンション:メルトテンション測定用アタッチメントを付けたキャピログラフ(東洋精機製作所製)を使用した。230℃でφ1mm、長さ10mmの孔を有するダイスから、ピストン降下速度10mm/分で降下させたストランドを1m/分で引き取り、安定後に40m/分2で引き取り速度を増加させたとき、破断したときのロードセル付きプーリーの引き取り荷重をメルトテンションとした。
(3)歪硬化性:上記メルトテンション測定時、引き取り速度を増加させたときに急激に引き取り荷重が増加し、破断に至る場合を「歪硬化性を示す」とし、そうでない場合を「歪硬化性を示さない」とした。
(4)射出発泡成形性:連続して40ショット成形したときにショートショットになった個数(不良個数)を求めて、次の3段階で評価した。
In the examples and comparative examples, the test methods and criteria used in various evaluation methods are as follows.
(1) Melt flow rate: Measured in accordance with ASTM 1238 at a temperature of 230 ° C. and a load of 2.16 kg.
(2) Melt tension: A capilograph (manufactured by Toyo Seiki Seisakusho) with an attachment for measuring melt tension was used. When a strand lowered at a piston descending speed of 10 mm / min was drawn at 1 m / min from a die having a hole of φ1 mm and a length of 10 mm at 230 ° C., it broke when the take-up speed was increased at 40 m / min 2 after stabilization. The take-up load of the pulley with the load cell at that time was taken as melt tension.
(3) Strain hardenability: When measuring the above-mentioned melt tension, when the take-up speed is increased, the take-up load increases abruptly, and when it reaches the fracture, it indicates “strain hardenability”; It does not show sex ".
(4) Injection foam moldability: The number of short shots (number of defects) when 40 shots were continuously molded was determined and evaluated in the following three stages.

不良個数が1個以下・・・・・○
不良個数が2〜4個・・・・・△
不良個数が5個以上・・・・・×
(5)発泡倍率:発泡成形体から表面の非発泡層も含めた試片を切り出し、別途作製した肉厚3mmの非発泡成形体(参考例1)との比重の比から求めた。
(6)平均気泡径、非発泡層厚み:発泡成形体を厚み方向に切断した断面の顕微鏡写真より求めた。非発泡層厚みは可動型側と固定型側の平均値とした。平均気泡径については任意に選んだ20個の平均値とし、次の様に評価した。
The number of defects is 1 or less.
2 to 4 defectives ... △
The number of defects is 5 or more.
(5) Foaming ratio: A specimen including the non-foamed layer on the surface was cut out from the foamed molded product, and the ratio was determined from the specific gravity ratio with a non-foamed molded product having a thickness of 3 mm (Reference Example 1).
(6) Average cell diameter, non-foamed layer thickness: It was determined from a micrograph of a cross section of the foamed molded product cut in the thickness direction. The non-foamed layer thickness was an average value of the movable mold side and the fixed mold side. The average cell diameter was an average value of 20 arbitrarily selected, and evaluated as follows.

平均気泡径が500μm以下・・・・・・・○
平均気泡径が500μmを越えるもの・・・×
(7)気泡均一性:発泡成形体を厚み方向に切断した断面を観察し、発泡層中の一番大きな気泡の径を最大気泡径とし、前記平均気泡径との関係から次の様に評価した。
Average bubble diameter is 500μm or less.
Those whose average bubble diameter exceeds 500μm ・ ・ ・ ×
(7) Bubble uniformity: The cross section of the foamed product cut in the thickness direction is observed, and the largest bubble diameter in the foam layer is taken as the maximum bubble diameter, and evaluated as follows from the relationship with the average bubble diameter. did.

最大気泡径/平均気泡径≦2.5・・・・・・○
2.5<最大気泡径/平均気泡径≦3・・・・△
3<最大気泡径/平均気泡径・・・・・・・・×
(8)成形体肉厚:厚み方向に切断した断面について、4隅および中央部の5点の平均値とした。
(9)表面平滑性:成形体肉厚測定の5点の測定結果の内、最大値と最小値の差で平滑性を評価した。
Maximum bubble diameter / average bubble diameter ≤ 2.5
2.5 <maximum bubble diameter / average bubble diameter ≦ 3...
3 <maximum bubble diameter / average bubble diameter ...
(8) Molded body thickness: For a cross section cut in the thickness direction, an average value of five points at the four corners and the central portion was used.
(9) Surface smoothness: Smoothness was evaluated by the difference between the maximum value and the minimum value among the five measurement results of the measurement of the molded product thickness.

差が0.2mm以内のもの・・・○
差が0.2mmを超えるもの・・×
次に、実施例、比較例で使用したポリプロピレン系樹脂、発泡剤を以下に示す。
(A)線状ポリプロピレン系樹脂
PP−1:グランドポリマー社製J708UG(プロピレン・エチレン・ブロックコポリマー、メルトフローレート45g/10分、メルトテンション1cN以下)
PP−2:グランドポリマー社製J707G(プロピレン・エチレン・ブロックコポリマー、メルトフローレート30g/10分、メルトテンション1cN以下)
(B)改質ポリプロピレン系樹脂
MP−1:線状ポリプロピレン系樹脂としてメルトフローレート3g/10分のポリプロピレンホモポリマー100重量部と、ラジカル重合開始剤としてt−ブチルパーオキシイソプロピルカーボネート0.3重量部の混合物を、44mmφ二軸押出機(L/D=38)のホッパーから50kg/時で供給し、途中に設けた導入部よりイソプレンモノマーを定量ポンプを用いて0.25kg/時の速度で供給し、ストランドを水冷、細断することにより得た改質ポリプロピレン系樹脂(メルトフローレート0.5g/10分、メルトテンション12cN、歪硬化性を示す)
MP−2:サンアロマー社製PF814(ホモポリマー、メルトフローレート3g/10分、メルトテンション10cN、歪硬化性を示す)
(C)発泡剤
B−1:化学発泡剤マスターバッチ(永和化成社製ポリスレンEE275、発泡剤濃度27%、分解ガス量40ml/g)
B−2:純度99%以上の二酸化炭素
(実施例1)
射出成形機はシリンダ先端にシャットオフノズル機構を有した宇部興産機械(株)製「MD350S−IIIDP型」を使用し、金型はダイレクトスプルーゲートを有し、縦250mm×横200mmで可動型の位置調整により厚さ可変の平板形状のキャビティを有するものを使用した。成形条件としては、樹脂温度200℃、金型温度50℃、射出速度100mm/秒、背圧5MPa、冷却時間90秒にて発泡成形を実施した。
The difference is within 0.2mm ... ○
The difference exceeds 0.2mm
Next, polypropylene resins and foaming agents used in Examples and Comparative Examples are shown below.
(A) Linear polypropylene resin PP-1: J708UG (Propylene / ethylene / block copolymer, melt flow rate 45 g / 10 min, melt tension 1 cN or less) manufactured by Grand Polymer Co., Ltd.
PP-2: J707G manufactured by Grand Polymer Co., Ltd. (propylene / ethylene / block copolymer, melt flow rate 30 g / 10 min, melt tension 1 cN or less)
(B) Modified polypropylene resin MP-1: 100 parts by weight of a polypropylene homopolymer having a melt flow rate of 3 g / 10 min as a linear polypropylene resin, and 0.3 wt. Of t-butyl peroxyisopropyl carbonate as a radical polymerization initiator Part of the mixture is fed from a hopper of a 44 mmφ twin screw extruder (L / D = 38) at 50 kg / hour, and isoprene monomer is fed at a rate of 0.25 kg / hour from the introduction part provided in the middle using a metering pump. A modified polypropylene resin obtained by supplying, cooling with water and chopping the strand (melt flow rate 0.5 g / 10 min, melt tension 12 cN, exhibiting strain hardening)
MP-2: PF814 manufactured by Sun Allomer (homopolymer, melt flow rate 3 g / 10 min, melt tension 10 cN, strain hardening)
(C) Foaming agent B-1: Chemical foaming agent master batch (Polyslen EE275 manufactured by Eiwa Kasei Co., Ltd., foaming agent concentration 27%, decomposition gas amount 40 ml / g)
B-2: Carbon dioxide having a purity of 99% or more (Example 1)
The injection molding machine uses “MD350S-IIIDP type” manufactured by Ube Machinery Co., Ltd., which has a shut-off nozzle mechanism at the tip of the cylinder. What has the flat plate-shaped cavity of variable thickness by position adjustment was used. As molding conditions, foam molding was performed at a resin temperature of 200 ° C., a mold temperature of 50 ° C., an injection speed of 100 mm / second, a back pressure of 5 MPa, and a cooling time of 90 seconds.

すなわち、線状ポリプロピレン系樹脂(A)としてPP−1を80重量部、改質ポリプロピレン系樹脂(B)としてMP−2を20重量部、発泡剤としてB−1を5重量部、をドライブレンドして得た射出発泡成形用ポリプロピレン系樹脂混合物を前記射出成形機に供給した。成形機内で可塑化混練した後、初期キャビティクリアランス(t0)1.5mmの金型に射出充填し、充填完了後直ちに第1型開工程により型開速度50mm/secでキャビティクリアランス(t1)を2.5mmまで拡大した。次いで、途中型閉工程により型閉速度0.1mm/secでキャビティクリアランス(tB)を2.0mmまで縮小した後、第2型開工程により型開速度5mm/secでキャビティクリアランスを拡大して、所定の成形品厚みの発泡成形体を得た。 That is, 80 parts by weight of PP-1 as a linear polypropylene resin (A), 20 parts by weight of MP-2 as a modified polypropylene resin (B), and 5 parts by weight of B-1 as a foaming agent are dry blended. The polypropylene resin mixture for injection foam molding thus obtained was supplied to the injection molding machine. After plasticizing and kneading in the molding machine, a mold having an initial cavity clearance (t 0 ) of 1.5 mm is injection-filled. Immediately after the filling is completed, a cavity clearance (t 1 ) is obtained at a mold opening speed of 50 mm / sec by the first mold opening process. Was expanded to 2.5 mm. Next, the cavity clearance (t B ) is reduced to 2.0 mm at a mold closing speed of 0.1 mm / sec by a mold closing process, and then the cavity clearance is enlarged at a mold opening speed of 5 mm / sec by a second mold opening process. A foamed molded product having a predetermined molded product thickness was obtained.

(実施例2)
線状ポリプロピレン系樹脂(A)としてPP−1を70重量部、改質ポリプロピレン系樹脂(B)としてMP−2を30重量部、発泡剤としてB−1を7.5重量部、をドライブレンドして得た射出発泡成形用ポリプロピレン系樹脂混合物を使用し、t1を3.0mmとした以外は、実施例1と同様にして発泡成形体を得た。
(Example 2)
Dry blend 70 parts by weight of PP-1 as the linear polypropylene resin (A), 30 parts by weight of MP-2 as the modified polypropylene resin (B), and 7.5 parts by weight of B-1 as the foaming agent. A foam molded article was obtained in the same manner as in Example 1 except that the polypropylene resin mixture for injection foam molding obtained was used and t 1 was set to 3.0 mm.

(実施例3)
発泡剤としてB−1を9重量部混合し、途中型閉工程において型閉速度0.05mm/sec、tBを2.5mmとした以外は、実施例2と同様にして発泡成形体を得た。
Example 3
9 parts by weight of B-1 was mixed as a foaming agent, and a foamed molded article was obtained in the same manner as in Example 2 except that the mold closing speed was 0.05 mm / sec and t B was 2.5 mm in the mold closing process. It was.

(実施例4)
発泡剤としてB−1を9重量部混合し、t0を2.0mm、t1を5.0mm、tBを3.0mmとし、さらに第2型開工程において型開速度10mm/secでキャビティクリアランスを拡大した以外は、実施例2と同様にして発泡成形体を得た。
Example 4
9 parts by weight of B-1 as a foaming agent is mixed, t 0 is set to 2.0 mm, t 1 is set to 5.0 mm, t B is set to 3.0 mm, and the cavity is opened at a mold opening speed of 10 mm / sec in the second mold opening process. A foamed molded article was obtained in the same manner as in Example 2 except that the clearance was enlarged.

(実施例5)
改質ポリプロピレン系樹脂(B)としてMP−1を使用し、tBを2.5mmとした以外は、実施例2と同様にして発泡成形体を得た。
(Example 5)
A foamed molded article was obtained in the same manner as in Example 2 except that MP-1 was used as the modified polypropylene resin (B) and t B was 2.5 mm.

(実施例6)
途中型閉工程において型閉速度を10mm/secとした以外は実施例2と同様にして発泡成形体を得た。
(Example 6)
A foamed molded article was obtained in the same manner as in Example 2 except that the mold closing speed was 10 mm / sec in the middle mold closing step.

Figure 2006035660
Figure 2006035660

Figure 2006035660
(実施例7)
実施例1〜5で使用した射出成形機をベントタイプ仕様(シリンダ中央付近にベント口)に変えてベント部分を二酸化炭素で加圧できるようにした成形機を使用し、さらに旭エンジニアリング(株)製「炭酸ガス供給装置MAC−100」を用いて二酸化炭素を圧力一定で供給することで、溶融樹脂に対する二酸化炭素供給量を制御した。
Figure 2006035660
(Example 7)
The injection molding machine used in Examples 1 to 5 was changed to a vent type specification (a vent port near the center of the cylinder), and a molding machine in which the vent part could be pressurized with carbon dioxide was used. Asahi Engineering Co., Ltd. The amount of carbon dioxide supplied to the molten resin was controlled by supplying carbon dioxide at a constant pressure using a “carbon dioxide supply device MAC-100” manufactured by the manufacturer.

表3に示す組成比の線状ポリプロピレン系樹脂(A)、改質ポリプロピレン系樹脂(B)に造核剤としてB−1を0.5部加えたものをドライブレンドして得た射出発泡成形用ポリプロピレン系樹脂混合物を前記射出成形機に供給し、発泡剤として二酸化炭素(B−2)を成形機ベント部分の圧力を表3のようにして供給した以外は実施例3と同様にして発泡成形体を得た。   Injection foam molding obtained by dry blending linear polypropylene resin (A) and modified polypropylene resin (B) having a composition ratio shown in Table 3 with 0.5 part of B-1 as a nucleating agent. Foaming was performed in the same manner as in Example 3 except that the polypropylene resin mixture for use was supplied to the injection molding machine, and carbon dioxide (B-2) was supplied as a foaming agent as shown in Table 3. A molded body was obtained.

(実施例8)
B−2の供給圧力を3MPa、途中型閉工程において型閉速度0.1mm/sec、tBを2.0mmとした以外は、実施例7と同様にして発泡成形体を得た。
(Example 8)
A foamed molded article was obtained in the same manner as in Example 7, except that the supply pressure of B-2 was 3 MPa, the mold closing speed was 0.1 mm / sec and t B was 2.0 mm in the middle mold closing step.

実施例1〜8における成形性、得られた発泡成形体の形状および物性を表2、表4に示す。表2、表4に示すように、実施例1〜8により得られた発泡成形体は射出発泡成形性が良好で、発泡倍率2.6〜4.4倍であり、高発泡倍率で軽量性に優れている。表面には300μmの非発泡層(スキン層)を有しており、内部の気泡も微細でかつ均一性に優れ、表面平滑性も良好であることがわかる。
(参考例1)
実施例において、改質ポリプロピレン系樹脂、発泡剤を使用せず、線状ポリプロピレン系樹脂PP−2のみを初期キャビティクリアランス(t0)3.0mmの金型に射出充填し、射出充填完了後に90秒間冷却して非発泡成形体を取り出した。結果を表2に示す。
Tables 2 and 4 show the moldability in Examples 1 to 8, and the shapes and physical properties of the obtained foamed molded articles. As shown in Tables 2 and 4, the foamed molded products obtained in Examples 1 to 8 have good injection foaming moldability, and have a foaming ratio of 2.6 to 4.4 times. Is excellent. It can be seen that the surface has a non-foamed layer (skin layer) of 300 μm, the internal bubbles are fine and excellent in uniformity, and the surface smoothness is also good.
(Reference Example 1)
In the examples, a modified polypropylene resin and a foaming agent are not used, and only a linear polypropylene resin PP-2 is injected and filled into a mold having an initial cavity clearance (t 0 ) of 3.0 mm, and after completion of injection filling, 90% is obtained. The non-foamed molded body was taken out after cooling for 2 seconds. The results are shown in Table 2.

(比較例1)
充填完了後に型開速度50mm/secで一段階で型開工程を実施する以外は実施例2と同様にして発泡成形体を得た。結果を表2に示す。厚み方向中心付近の気泡径が大きく不均一な気泡構造を有する発泡体であった。
(Comparative Example 1)
A foamed molded article was obtained in the same manner as in Example 2 except that the mold opening process was carried out in one step at a mold opening speed of 50 mm / sec after completion of filling. The results are shown in Table 2. The foam had a large and nonuniform cell structure near the center in the thickness direction.

(比較例2)
充填完了後に1秒間そのままの状態を保持した後、型開速度5mm/secでキャビティクリアランスを3.0mmまで拡大し、その状態で5秒間保持する。次いで型開速度10mm/secで再度キャビティクリアランスを拡大する以外は実施例2と同様にして発泡成形体を得た。結果を表2に示す。非発泡層がやや厚く、厚み方向中心付近の気泡径が大きく不均一な気泡構造を有する発泡体であった。また発泡が所望厚みまで膨らまず部分的に表面に凹凸のある発泡体であった。
(Comparative Example 2)
After the completion of filling, the state is maintained for 1 second, and then the cavity clearance is increased to 3.0 mm at a mold opening speed of 5 mm / sec, and the state is maintained for 5 seconds. Subsequently, a foamed molded article was obtained in the same manner as in Example 2 except that the cavity clearance was increased again at a mold opening speed of 10 mm / sec. The results are shown in Table 2. The non-foamed layer was a slightly thick foam, and the foam had a large and nonuniform cell structure near the center in the thickness direction. Further, the foam did not swell to the desired thickness, and was a foam having a partially uneven surface.

(比較例3)
充填完了後に1秒間そのままの状態を保持した後に第1型開工程を実施し、第1型開工程後にその状態を5秒間保持した後、第2型開工程を実施すること以外は実施例2と同様にして発泡成形体を得た。結果を表2に示す。非発泡層がやや厚く、厚み方向中心付近の気泡径が大きく不均一な気泡構造を有する発泡体であった。また発泡が所望厚みまで膨らまず部分的に表面に凹凸のある発泡体であった。
(Comparative Example 3)
Example 2 except that the first mold opening process is carried out after holding the state as it is for 1 second after completion of filling, and the second mold opening process is carried out after holding the state for 5 seconds after the first mold opening process. In the same manner, a foamed molded product was obtained. The results are shown in Table 2. The non-foamed layer was a slightly thick foam, and the foam had a large and nonuniform cell structure near the center in the thickness direction. Further, the foam did not swell to the desired thickness, and was a foam having a partially uneven surface.

(比較例4)
第1型開工程後にその状態を5秒間保持した後、第2型開工程を実施すること以外は実施例2と同様にして発泡成形体を得た。結果を表2に示す。厚み方向中心付近の気泡径が大きく不均一な気泡構造を有する発泡体であった。
(Comparative Example 4)
After maintaining the state for 5 seconds after the first mold opening process, a foamed molded article was obtained in the same manner as in Example 2 except that the second mold opening process was performed. The results are shown in Table 2. The foam had a large and nonuniform cell structure near the center in the thickness direction.

(比較例5)
充填完了後に型開速度50mm/secによる一段階での型開工程を実施する以外は実施例7と同様にして発泡成形体を得た。結果を表4に示す。厚み方向中心付近の気泡径が大きく不均一な気泡構造を有する発泡体であった。
(Comparative Example 5)
A foamed molded article was obtained in the same manner as in Example 7 except that a mold opening process in one step was performed at a mold opening speed of 50 mm / sec after completion of filling. The results are shown in Table 4. The foam had a large and nonuniform cell structure near the center in the thickness direction.

(比較例6)
充填完了後に1秒間そのままの状態を保持した後、型開速度5mm/secでキャビティクリアランスを3.0mmまで拡大し、その状態で5秒間保持する。次いで型開速度10mm/secで再度キャビティクリアランスを拡大する以外は実施例7と同様にして発泡成形体を得た。結果を表4に示す。非発泡層がやや厚く、厚み方向中心付近の気泡径が大きく不均一な気泡構造を有する発泡体であった。また発泡が所望厚みまで膨らまず部分的に表面に凹凸のある発泡体であった。
(Comparative Example 6)
After the completion of filling, the state is maintained for 1 second, and then the cavity clearance is increased to 3.0 mm at a mold opening speed of 5 mm / sec, and the state is maintained for 5 seconds. Next, a foamed molded article was obtained in the same manner as in Example 7 except that the cavity clearance was increased again at a mold opening speed of 10 mm / sec. The results are shown in Table 4. The non-foamed layer was a slightly thick foam, and the foam had a large and nonuniform cell structure near the center in the thickness direction. Further, the foam did not swell to the desired thickness, and was a foam having a partially uneven surface.

Figure 2006035660
Figure 2006035660

Figure 2006035660
Figure 2006035660

本発明の熱可塑性樹脂射出発泡成形法は、高倍率化が可能であり、これにより得られた発泡成形体は表面平滑で軽量性にすぐれていることから、各種自動車部材をはじめ、食品包装用容器や家電、建材用途に広く使用できる。   The thermoplastic resin injection foam molding method of the present invention is capable of high magnification, and the resulting foam molded article has a smooth surface and is excellent in light weight. Can be widely used for containers, home appliances, and building materials.

Claims (11)

熱可塑性樹脂と発泡剤との溶融混合物を金型内に射出した後、金型を開くことにより発泡成形体を製造する方法において、熱可塑性樹脂組成物と発泡剤とを射出成形機へ供給し溶融させ金型内に射出充填し、充填が完了した直後に最終製品形状位置未満の所定位置まで金型を開く第1型開工程と、次いで初期キャビティより大きいの所定位置まで金型を閉じる途中型閉工程と、次いで最終製品形状位置まで金型を開く第2型開工程を含むことを特徴とする熱可塑性樹脂発泡成形体の製造方法。   In a method for producing a foamed molded article by injecting a molten mixture of a thermoplastic resin and a foaming agent into a mold and then opening the mold, the thermoplastic resin composition and the foaming agent are supplied to an injection molding machine. 1st mold opening process which melts and injects and fills the mold, and opens the mold to a predetermined position less than the final product shape position immediately after the filling is completed, and then closes the mold to a predetermined position larger than the initial cavity A method for producing a thermoplastic resin foam molded article, comprising a mold closing process and a second mold opening process for opening the mold to a final product shape position. 前記第1型開工程における型開後のキャビティクリアランスが初期キャビティクリアランスの1.2倍以上3.0倍以下であることを特徴とする請求項1記載の熱可塑性樹脂発泡成形体の製造方法。   The method for producing a thermoplastic resin foam molded article according to claim 1, wherein a cavity clearance after the mold opening in the first mold opening step is 1.2 times or more and 3.0 times or less of an initial cavity clearance. 前記途中型閉工程における型閉後のキャビティクリアランスが初期キャビティクリアランスの1.1倍以上でかつ第1型開工程後のキャビティクリアランスの0.95倍以下であることを特徴とする請求項1または2記載の熱可塑性樹脂発泡成形体の製造方法。   The cavity clearance after mold closing in the middle mold closing process is 1.1 times or more of the initial cavity clearance and 0.95 times or less of the cavity clearance after the first mold opening process. 3. A method for producing a thermoplastic resin foam molded article according to 2. 前記第1型開工程における型開速度が5〜100mm/secであることを特徴とする請求項1〜3のいずれかに記載の熱可塑性樹脂発泡成形体の製造方法。   The mold opening speed in the first mold opening step is 5 to 100 mm / sec. The method for producing a thermoplastic resin foam molded article according to any one of claims 1 to 3. 前記途中型閉工程における型閉速度が0.01〜5mm/secであることを特徴とする請求項1〜4のいずれかに記載の熱可塑性樹脂発泡成形体の製造方法。   The method for producing a thermoplastic resin foam molded article according to any one of claims 1 to 4, wherein a mold closing speed in the intermediate mold closing step is 0.01 to 5 mm / sec. 前記第2型開工程における型開速度が0.05〜50mm/secであることを特徴とする請求項1〜5のいずれかに記載の熱可塑性樹脂発泡成形体の製造方法。   The method for producing a thermoplastic resin foam molded article according to any one of claims 1 to 5, wherein a mold opening speed in the second mold opening step is 0.05 to 50 mm / sec. 前記熱可塑性樹脂が、ポリプロピレン系樹脂であることを特徴とする特徴とする請求項1〜6のいずれかに記載の熱可塑性樹脂発泡成形体の製造方法。   The method for producing a thermoplastic resin foam molded article according to any one of claims 1 to 6, wherein the thermoplastic resin is a polypropylene resin. 前記ポリプロピレン系樹脂が(A)メルトフローレートが10g/10分以上100g/10分以下、メルトテンションが2cN以下である線状ポリプロピレン系樹脂50〜95重量部と、(B)メルトフローレートが0.1g/10分以上10g/10分未満、メルトテンションが5cN以上で、かつ歪硬化性を示す改質ポリプロピレン系樹脂5〜50重量部(ただし、線状ポリプロピレン系樹脂(A)と改質ポリプロピレン系樹脂(B)の合計は100重量部)とからなることを特徴とする請求項1〜7のいずれかに記載の熱可塑性樹脂発泡成形体の製造方法。   The polypropylene resin is (A) 50 to 95 parts by weight of a linear polypropylene resin having a melt flow rate of 10 g / 10 min to 100 g / 10 min and a melt tension of 2 cN or less, and (B) the melt flow rate is 0. 5 to 50 parts by weight of a modified polypropylene resin having a melt tension of 5 cN or more and a strain hardening property (however, the linear polypropylene resin (A) and the modified polypropylene) The total amount of the resin (B) is 100 parts by weight). The method for producing a thermoplastic resin foam-molded article according to any one of claims 1 to 7. 前記改質ポリプロピレン系樹脂(B)が、線状ポリプロピレン系樹脂、ラジカル重合開始剤、共役ジエン化合物を溶融混合して得られた改質ポリプロピレン系樹脂であることを特徴とする請求項1〜8のいずれかに記載の熱可塑性樹脂発泡成形体の製造方法。   The modified polypropylene resin (B) is a modified polypropylene resin obtained by melt-mixing a linear polypropylene resin, a radical polymerization initiator, and a conjugated diene compound. The manufacturing method of the thermoplastic resin foaming molding in any one of. 前記溶融混合物を射出する時の初期キャビティクリアランスが3mm未満で有ることを特徴とする請求項1〜9のいずれかに記載の熱可塑性樹脂発泡成形体の製造方法。   The method for producing a thermoplastic resin foam molded article according to any one of claims 1 to 9, wherein an initial cavity clearance when the molten mixture is injected is less than 3 mm. 平均気泡径が500μm以下でかつ最大気泡径が平均気泡径の3倍以下の発泡層と、該発泡層の少なくとも片側の表面に形成される厚み10μm以上1000μm以下の非発泡層とを有する、発泡倍率が2倍以上10倍以下であることを特徴とする請求項1〜10のいずれかに記載の製法により得られる発泡成形体。   Foam having an average bubble diameter of 500 μm or less and a maximum bubble diameter of 3 times or less of the average bubble diameter and a non-foamed layer having a thickness of 10 μm or more and 1000 μm or less formed on the surface of at least one side of the foam layer The expanded molded article obtained by the production method according to any one of claims 1 to 10, wherein the magnification is 2 to 10 times.
JP2004219465A 2004-07-28 2004-07-28 Method for producing thermoplastic resin foam molded body and molded body Expired - Fee Related JP4536446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004219465A JP4536446B2 (en) 2004-07-28 2004-07-28 Method for producing thermoplastic resin foam molded body and molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004219465A JP4536446B2 (en) 2004-07-28 2004-07-28 Method for producing thermoplastic resin foam molded body and molded body

Publications (2)

Publication Number Publication Date
JP2006035660A true JP2006035660A (en) 2006-02-09
JP4536446B2 JP4536446B2 (en) 2010-09-01

Family

ID=35901158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004219465A Expired - Fee Related JP4536446B2 (en) 2004-07-28 2004-07-28 Method for producing thermoplastic resin foam molded body and molded body

Country Status (1)

Country Link
JP (1) JP4536446B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007245450A (en) * 2006-03-15 2007-09-27 Kaneka Corp Thermoplastic resin foamed molded object and its manufacturing method
JP2013103403A (en) * 2011-11-14 2013-05-30 Mazda Motor Corp Method and apparatus for manufacturing foamed resin molded body
JP2013103404A (en) * 2011-11-14 2013-05-30 Mazda Motor Corp Method for manufacturing foamed resin molded body

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04214311A (en) * 1990-12-12 1992-08-05 Japan Steel Works Ltd:The Injection-compression molding method and apparatus therefor
JPH07109372A (en) * 1993-10-13 1995-04-25 Sekisui Chem Co Ltd Production of expansion molded article
JPH08267526A (en) * 1995-03-28 1996-10-15 Mitsubishi Chem Corp Molding method for injection foamed molded product
JPH09143298A (en) * 1995-11-22 1997-06-03 Sekisui Chem Co Ltd Vinyl chloride-based resin composition
JPH10119078A (en) * 1996-10-24 1998-05-12 Sumitomo Chem Co Ltd Manufacture of foam, resin composition, and foam
JPH10230528A (en) * 1996-04-04 1998-09-02 Mitsui Chem Inc Thermoplastic resin foamed injection-molded body and manufacture thereof
JP2001026032A (en) * 1999-07-14 2001-01-30 Showa Denko Kk Method for injection molding of polypropylene foam
JP2001341154A (en) * 1999-08-30 2001-12-11 Sekisui Chem Co Ltd Method for manufacturing thermoplastic resin foam and mold for molding thermoplastic resin foam
JP2002011755A (en) * 2000-06-29 2002-01-15 Japan Polychem Corp Method for manufacturing foamed molded object
JP2002079545A (en) * 2000-06-22 2002-03-19 Mitsui Chemicals Inc Injection foaming molding method, injection molding machine and resin composition suitable for the method
JP2002264164A (en) * 2001-03-08 2002-09-18 Mitsui Chemicals Inc Resin composition for injection foaming
WO2003072335A1 (en) * 2002-02-28 2003-09-04 Ube Machinery Corporation, Ltd. Method for expansion injection molding

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04214311A (en) * 1990-12-12 1992-08-05 Japan Steel Works Ltd:The Injection-compression molding method and apparatus therefor
JPH07109372A (en) * 1993-10-13 1995-04-25 Sekisui Chem Co Ltd Production of expansion molded article
JPH08267526A (en) * 1995-03-28 1996-10-15 Mitsubishi Chem Corp Molding method for injection foamed molded product
JPH09143298A (en) * 1995-11-22 1997-06-03 Sekisui Chem Co Ltd Vinyl chloride-based resin composition
JPH10230528A (en) * 1996-04-04 1998-09-02 Mitsui Chem Inc Thermoplastic resin foamed injection-molded body and manufacture thereof
JPH10119078A (en) * 1996-10-24 1998-05-12 Sumitomo Chem Co Ltd Manufacture of foam, resin composition, and foam
JP2001026032A (en) * 1999-07-14 2001-01-30 Showa Denko Kk Method for injection molding of polypropylene foam
JP2001341154A (en) * 1999-08-30 2001-12-11 Sekisui Chem Co Ltd Method for manufacturing thermoplastic resin foam and mold for molding thermoplastic resin foam
JP2002079545A (en) * 2000-06-22 2002-03-19 Mitsui Chemicals Inc Injection foaming molding method, injection molding machine and resin composition suitable for the method
JP2002011755A (en) * 2000-06-29 2002-01-15 Japan Polychem Corp Method for manufacturing foamed molded object
JP2002264164A (en) * 2001-03-08 2002-09-18 Mitsui Chemicals Inc Resin composition for injection foaming
WO2003072335A1 (en) * 2002-02-28 2003-09-04 Ube Machinery Corporation, Ltd. Method for expansion injection molding

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007245450A (en) * 2006-03-15 2007-09-27 Kaneka Corp Thermoplastic resin foamed molded object and its manufacturing method
JP2013103403A (en) * 2011-11-14 2013-05-30 Mazda Motor Corp Method and apparatus for manufacturing foamed resin molded body
JP2013103404A (en) * 2011-11-14 2013-05-30 Mazda Motor Corp Method for manufacturing foamed resin molded body

Also Published As

Publication number Publication date
JP4536446B2 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
JP4745057B2 (en) POLYPROPYLENE RESIN COMPOSITION, FOAM MOLDING COMPRISING THE SAME, AND METHOD FOR PRODUCING THE SAME
JP5770634B2 (en) Polypropylene resin, polypropylene resin composition, and injection-foamed molded article
JP5368148B2 (en) Polypropylene resin composition for injection foam molding and injection foam molded body comprising the resin composition
JP4851104B2 (en) Polypropylene resin foam molded article and method for producing the same
JP5628553B2 (en) Thermoplastic elastomer composition for injection foam molding and injection foam molded article comprising the resin composition
JP5112674B2 (en) Polypropylene resin composition for injection foam molding and injection foam molded body comprising the resin composition
JP2009001772A (en) Polypropylene resin foam injection-molded article
JP4908043B2 (en) Polypropylene resin injection foam
JP5122760B2 (en) Polypropylene resin injection foam
JP2007245450A (en) Thermoplastic resin foamed molded object and its manufacturing method
JP4519477B2 (en) Polypropylene-based resin foam molding and its production method
JP4963266B2 (en) Polypropylene resin injection foam
JP2012107097A (en) Polypropylene-based resin composition and injection foaming molded article comprising the resin composition
JP2010269530A (en) Method of manufacturing thermoplastic resin injection foamed molding
JP4536446B2 (en) Method for producing thermoplastic resin foam molded body and molded body
JP2009298113A (en) Method of manufacturing thermoplastic resin injection-foamed molded article
JP2005271499A (en) Method for manufacturing thermoplastic resin expansion molded body and molded body
JP2008254302A (en) Mold for injection foaming molding and manufacturing method
JP2010106093A (en) Injection foam molding polypropylene-based resin composition and injection foam molded product composed of the resin composition
JP5638928B2 (en) Polypropylene resin for injection foam molding and injection foam molded body thereof
JP2011094068A (en) Polypropylene-based resin composition for injection foam molding and injection foam molded article comprising the resin composition
JP2017171788A (en) Polypropylene-based resin composition for injection foam molding and injection foam molded body
JP2006056910A (en) Polypropylene resin composition for injection expansion molding and molded product thereof
JP2012197345A (en) Polypropylenic resin composition for injection foam molding, and injection foam molded body comprising the same
JP2006212952A (en) Method for producing injected, foamed molding of polypropylene resin and molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4536446

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140625

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees