JP2006035056A - Container for microwave heating - Google Patents

Container for microwave heating Download PDF

Info

Publication number
JP2006035056A
JP2006035056A JP2004216629A JP2004216629A JP2006035056A JP 2006035056 A JP2006035056 A JP 2006035056A JP 2004216629 A JP2004216629 A JP 2004216629A JP 2004216629 A JP2004216629 A JP 2004216629A JP 2006035056 A JP2006035056 A JP 2006035056A
Authority
JP
Japan
Prior art keywords
reaction
container
microwave heating
pressure
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004216629A
Other languages
Japanese (ja)
Other versions
JP4997414B2 (en
Inventor
Mitsuhisa Kanakubo
光央 金久保
Takashi Aizawa
崇史 相澤
Yoshiaki Kurata
良明 倉田
Osamu Sato
佐藤  修
Masayuki Shirai
誠之 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004216629A priority Critical patent/JP4997414B2/en
Publication of JP2006035056A publication Critical patent/JP2006035056A/en
Application granted granted Critical
Publication of JP4997414B2 publication Critical patent/JP4997414B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Abstract

<P>PROBLEM TO BE SOLVED: To provide a container for microwave heating composed of a specified resin material and related items. <P>SOLUTION: The container for microwave heating has specified microwave transmission, pressure and heat resistance and workability, and its body is composed partly or entirely of one or more selected from polyamide, polyimide, polyether, polyphenylene, polysulfone and polybenzoimidazole type resin materials. A microwave heating reactor using the container as a reaction vessel is also provided. The container is available as a preferred reaction vessel for reactions using a supercritical fluid which vessel has a heat resistance of up to 150°C and a pressure resistance of up to 40 MPa. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、マイクロ波加熱用容器及びマイクロ波加熱反応装置に関するものであり、更に詳しくは、容器本体の一部又は全部を特定の樹脂材料で構成した、所定のマイクロ波の透過性、耐圧性、耐熱性及び加工性を有するマイクロ波加熱用容器及び該容器を反応容器として含むマイクロ波加熱反応装置に関するものである。本発明は、マイクロ波加熱を利用した反応装置の技術分野において、従来の反応容器では、例えば、マイクロ波加熱高温・高圧容器(HT−HPvessel)として必要とされる条件のうち、第1条件としての、マイクロ波透過性、引張強度(耐圧性)、耐熱性、及び第2条件としての、耐薬品性、加工性、安全性、安価、の全てを満たす反応容器を作製することは困難であったことを踏まえ、これらの諸条件を全て満たすことを可能とする、新しいマイクロ波加熱用反応容器を提供するものであり、例えば、超臨界状態の媒体による反応又は高温高圧の水熱合成反応等を好適に実施することができる、新規マイクロ波加熱用反応容器等を提供するものである。   The present invention relates to a microwave heating container and a microwave heating reactor, and more specifically, a predetermined microwave permeability and pressure resistance in which a part or all of the container body is made of a specific resin material. The present invention relates to a microwave heating container having heat resistance and processability and a microwave heating reactor including the container as a reaction container. In the technical field of a reactor using microwave heating, the present invention is, as a first condition among the conditions required for a conventional reaction vessel, for example, a microwave heating high-temperature / high-pressure vessel (HT-HPvessel). It was difficult to produce a reaction vessel satisfying all of microwave permeability, tensile strength (pressure resistance), heat resistance, and chemical resistance, workability, safety, and low cost as the second condition. In view of the above, the present invention provides a new reaction vessel for microwave heating that can satisfy all of these conditions, such as a reaction using a medium in a supercritical state or a hydrothermal synthesis reaction at a high temperature and a high pressure. The present invention provides a novel microwave heating reactor and the like.

従来、マイクロ波を利用した化学反応に関しては、多くの報告がなされている。有機化合物、無機化合物の合成反応等において、使用されているマイクロ波加熱方式は、キャビティと呼ばれる密閉金属箱の中に、被加熱物を置き、これにマイクロ波を照射するものであり、周波数300MHZ〜30GHZ(波長1cmから1m)マイクロ波の中から、加熱の用途には、2450MHZの周波数が通常使用されている。マイクロ波は、誘電損失の大きい物質に当たると分子摩擦によって、熱エネルギーに変わり、電波は急速に減衰する。この加熱方式は、ヒーター等の外側からの加熱(外部加熱)に対して、物質自身が発熱するので内部加熱と呼ばれ、被加熱物を、選択的に、急速に加熱することが可能である。   Conventionally, many reports have been made on chemical reactions using microwaves. In the synthesis reaction of organic compounds and inorganic compounds, the microwave heating method used is to place an object to be heated in a sealed metal box called a cavity and irradiate it with microwaves, with a frequency of 300 MHz. Of the ~ 30 GHZ (wavelength 1 cm to 1 m) microwave, a frequency of 2450 MHZ is commonly used for heating applications. When a microwave hits a substance having a large dielectric loss, it is converted into thermal energy by molecular friction, and the radio wave is rapidly attenuated. This heating method is called internal heating because the substance itself generates heat as compared to heating from the outside such as a heater (external heating), and the object to be heated can be selectively and rapidly heated. .

この、マイクロ波加熱を、例えば、有機合成反応等の化学反応において、加熱手段として採用すると、従来の熱伝導加熱よりも反応速度が数オーダーも上昇し、高収率で目的物が得られるばかりか、立体特異的な反応が生起することも報告されている。また、この加熱方法は、マイクロ波のエネルギーが、被反応物分子に直接伝わり、温度の急激な上昇を起こすのみならず、その一部分を高温とする局所加熱や、高圧下での加熱により溶媒を沸点以上に加熱するなどして、これまでの加熱方法では、難しかった、高温高圧条件下での反応を容易に遂行することを可能とする。また、この加熱方法は、従来の加熱方法よりも溶媒の使用が少量で済み、反応後の溶媒の除去が容易であり、固相反応も可能となる等、環境調和的な合成反応を実施することが可能である。   If this microwave heating is employed as a heating means in a chemical reaction such as an organic synthesis reaction, for example, the reaction rate is increased by several orders of magnitude compared to conventional heat conduction heating, and the target product can be obtained in a high yield. It has also been reported that a stereospecific reaction occurs. In addition, this heating method not only causes the microwave energy to be directly transmitted to the reactant molecules and causes a rapid rise in temperature, but also the solvent is removed by local heating or heating under high pressure. It is possible to easily carry out the reaction under high-temperature and high-pressure conditions, which is difficult with the conventional heating methods, such as by heating to the boiling point or higher. In addition, this heating method requires less solvent than the conventional heating method, facilitates removal of the solvent after the reaction, and enables a solid-phase reaction. It is possible.

マイクロ波加熱を利用した化学合成に関しては、例えば、有機カルボン酸とアミン類との脱水縮合反応を、有機塩基性物質の存在下に、マイクロ波加熱により進行させることにより、カルボン酸アミド又はカルボン酸イミド化合物を製造するにあたり、反応系に特別の水分離器、凝縮器、加熱装置等を設置することを不要とし、あるいはそれらの設置を簡略化することができ、しかも、脱水縮合反応の反応速度を高め、短時間で酸アミド又は酸イミド化合物を製造することができること、また、反応容器として、パイレックス(登録商標)ガラス製のNMR管が使用できること、が報告されている(特許文献1参照)。   Regarding chemical synthesis using microwave heating, for example, a dehydration condensation reaction between an organic carboxylic acid and an amine is performed by microwave heating in the presence of an organic basic substance, whereby a carboxylic acid amide or a carboxylic acid is obtained. When producing an imide compound, it is not necessary to install a special water separator, condenser, heating device, etc. in the reaction system, or the installation thereof can be simplified, and the reaction rate of the dehydration condensation reaction It is reported that an acid amide or acid imide compound can be produced in a short time, and that a Pyrex (registered trademark) glass NMR tube can be used as a reaction vessel (see Patent Document 1). .

マイクロ波を用いた水熱合成としては、ピンホールのない緻密なZSM−5型ゼオライト膜を、短時間に効率良く製造する方法が報告され、例えば、反応温度は、90〜200℃、好ましくは130〜180℃で、反応時間は、0.5〜8時間行われる(特許文献2参照)。また、リン源とアルミニウム源とを含有する液状混合物から、結晶性リン酸アルミニウム水和物を合成するにあたり、マイクロ波照射により加熱することが報告され、耐熱ガラス容器中で、125℃以下の反応温度で0.5時間の反応により合成される。この方法では、従来、有機テンプレートを用いて数時間ないし数十時間を要した水熱合成反応を、数分ないし数十分〜1時間の範囲に短縮することができる(特許文献3参照)。   As hydrothermal synthesis using microwaves, a method for efficiently producing a dense ZSM-5 type zeolite membrane without pinholes in a short time has been reported. For example, the reaction temperature is 90 to 200 ° C., preferably The reaction time is 130 to 180 ° C. and the reaction time is 0.5 to 8 hours (see Patent Document 2). In addition, it has been reported that in the synthesis of crystalline aluminum phosphate hydrate from a liquid mixture containing a phosphorus source and an aluminum source, heating by microwave irradiation has been reported. Synthesized by reaction for 0.5 hour at temperature. In this method, a hydrothermal synthesis reaction that conventionally requires several hours to several tens of hours using an organic template can be shortened to a range of several minutes to several tens of minutes to one hour (see Patent Document 3).

また、これまで、マイクロ波透過性のよい材料として、タッパー(登録商標)等の原材料である、ポリプロピレンやテフロン(登録商標)、及び陶磁器の原料であるセラミックスやガラス等が広く使用されている。しかし、ポリプロピレンやテフロン(登録商標)等は、引張強度が低く耐圧容器として適当な材料とは言い難い。一方、セラミックスやガラス材料は、引張強度が大きく耐圧容器として使用されているものもあり、マイクロ波加熱による化学反応を実施するにあたり、ガラス、又は石英等を材質とする容器を使用することが行われているが、これらの材質は、マイクロ波透過性は良いが、加工性に劣り、耐衝撃性に劣るため、取り扱いに注意が必要である場合があり、また、価格が高い、所望の形状構造のものが入手し難い、等の欠点を有している。   In addition, as a material having good microwave transmission, polypropylene and Teflon (registered trademark), which are raw materials such as Tapper (registered trademark), and ceramics and glass, which are raw materials for ceramics, have been widely used. However, polypropylene, Teflon (registered trademark), etc. are difficult to say as materials suitable for pressure vessels because of their low tensile strength. On the other hand, some ceramics and glass materials have high tensile strength and are used as pressure-resistant containers. When performing chemical reactions by microwave heating, it is recommended to use containers made of glass or quartz. However, these materials have good microwave transmission, but they are inferior in workability and impact resistance, so care must be taken in handling, and the desired shape is expensive. There is a drawback that the structure is difficult to obtain.

また、高温高圧の反応容器内にマイクロ波を供給する方法及び装置としては、マイクロ波発振器と反応容器との間に、一つあるいは複数の窓を設けて圧力バランスを保ちながら行うやり方が提案されており、また、開口部に仕切窓としての第1の窓を設置した中空の導波管よりなる化学反応促進用マイクロ波供給装置を設けた高温高圧容器であって、該容器が耐圧容器及び反応容器で構成され、耐圧容器の内側に耐熱、耐食性の密閉式反応容器を備え、耐圧容器と反応容器の内圧を等しく制御できるようにした高温高圧容器が提案されている(特許文献4,5参照)。しかし、この種の方法及び装置では、装置の構成が、かなり複雑となり、試料の出し入れ等の操作性は劣るものと推察される。また、反応容器については、石英、テトラフルオロエチレンが材質として例示されているが、テトラフルオロエチレンは、高温高圧容器として十分な特性を有するものではない。   In addition, as a method and apparatus for supplying microwaves into a high-temperature and high-pressure reaction vessel, there has been proposed a method in which one or a plurality of windows are provided between the microwave oscillator and the reaction vessel to maintain pressure balance. And a high-temperature and high-pressure vessel provided with a chemical reaction promoting microwave supply device comprising a hollow waveguide having a first window as a partition window in the opening, the vessel being a pressure vessel and There has been proposed a high-temperature and high-pressure vessel comprising a reaction vessel, which is provided with a heat-resistant and corrosion-resistant sealed reaction vessel inside the pressure vessel, so that the internal pressures of the pressure vessel and the reaction vessel can be controlled equally (Patent Documents 4 and 5). reference). However, in this type of method and apparatus, the configuration of the apparatus is considerably complicated, and it is assumed that operability such as taking in and out of the sample is inferior. As for the reaction vessel, quartz and tetrafluoroethylene are exemplified as materials, but tetrafluoroethylene does not have sufficient characteristics as a high-temperature and high-pressure vessel.

特開平11−199554号公報JP-A-11-199554 特開2000−58973号公報JP 2000-58973 A 特開2002−29716号公報JP 2002-29716 A 特開2002−113349号公報JP 2002-113349 A 特開2002−113350号公報JP 2002-113350 A

このような状況の中で、本発明者らは、上記従来技術に鑑みて、マイクロ波加熱高温・高圧容器として必要とされる、前記第1条件及び第2条件の全てを満たすマイクロ波加熱用容器を開発することを目標として鋭意研究を積み重ねた結果、容器本体の一部又は全部を特定の樹脂材料で構成することにより、優れたマイクロ波の透過性、耐圧性、耐熱性及び加工性を有する新しいマイクロ波加熱用容器を作製し得ることを見出し、本発明を完成するに至った。即ち、本発明は、従来のセラミックスやガラス製等の反応容器に比較して、マイクロ波の透過性、耐圧性、耐熱性及び加工性に優れたマイクロ波加熱用容器を提供することを目的とするものである。また、本発明は、誘電特性に優れ、その誘電正接が0.01以下で温度依存性並びに周波数依存性が極めて小さく、マイクロ波加熱の加熱特性に優れた、また、加工性がよく、接続部分の気密性を高めることが容易なマイクロ波加熱用容器を提供することを目的とするものである。更に、本発明は、廉価で、高性能のマイクロ波加熱反応装置を提供することを目的とするものである。   Under such circumstances, the present inventors, in view of the above prior art, for microwave heating satisfying all of the first condition and the second condition required as a microwave heating high temperature / high pressure vessel. As a result of intensive research aimed at developing containers, by constructing a part or all of the container body with a specific resin material, excellent microwave permeability, pressure resistance, heat resistance and workability are achieved. It has been found that a new microwave heating container can be produced, and the present invention has been completed. That is, an object of the present invention is to provide a microwave heating container that is superior in microwave permeability, pressure resistance, heat resistance, and workability as compared with conventional reaction containers made of ceramics or glass. To do. In addition, the present invention is excellent in dielectric properties, its dielectric loss tangent is 0.01 or less, extremely low in temperature dependency and frequency dependency, excellent in heating characteristics of microwave heating, good workability, and connected portion. It is an object of the present invention to provide a microwave heating container that can easily improve the hermeticity. Furthermore, an object of the present invention is to provide an inexpensive and high-performance microwave heating reactor.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)マイクロ波加熱用容器としての所定のマイクロ波透過性、耐圧性、耐熱性及び加工性を有するマイクロ波加熱用容器であって、該容器本体の一部又は全部を、ポリアミド系、ポリイミド系、ポリエーテル系、ポリフェニレン系、ポリサルホン系、又はポリベンゾイミダゾール系の樹脂材料で構成したことを特徴とするマイクロ波加熱用容器。
(2)マイクロ波加熱用容器が、高温高圧容器である、上記(1)に記載のマイクロ波加熱用容器。
(3)高温高圧容器が、150℃までの耐熱性、及び40MPaまでの耐圧性を有する、上記(2)に記載のマイクロ波加熱用容器。
(4)高温高圧容器が、水熱反応、又は亜臨界ないし超臨界の媒体中での反応を遂行するための反応容器である、上記(2)に記載のマイクロ波加熱用容器。
(5)亜臨界ないし超臨界の媒体が、二酸化炭素又は水である、上記(4)に記載のマイクロ波加熱用容器。
(6)上記(2)から(5)のいずれかに記載のマイクロ波加熱用容器を反応容器として使用したマイクロ波加熱反応装置であって、該反応容器、反応容器内部の試料の温度及び圧力を計測するための計測器、反応容器内部の試料をマイクロ波加熱するためのマイクロ波発振器、及び反応容器内部の試料の温度及び圧力の反応条件を制御するための制御システムを構成要素として含み、加熱用容器内部の試料の温度及び圧力を計測して、所定の温度及び圧力に制御する機能を有することを特徴とするマイクロ波加熱反応装置。
(7)反応容器が、反応容器内の容積を所定の値に調整するためのスペーサー及び開口部を密封するためのヘッドキャップを有する、上記(6)に記載のマイクロ波加熱反応装置。
(8)反応容器及びスペーサーを、ポリエーテルエーテルケトンから構成した、上記(7)に記載のマイクロ波加熱反応装置。
(9)水熱反応、又は亜臨界ないし超臨界の媒体中での反応を遂行するための反応装置である、上記(6)から(8)のいずれかに記載のマイクロ波加熱反応装置。
The present invention for solving the above-described problems comprises the following technical means.
(1) A microwave heating container having predetermined microwave permeability, pressure resistance, heat resistance, and workability as a microwave heating container, wherein a part or all of the container main body is made of polyamide, polyimide A container for microwave heating, characterized by comprising a resin material of a series, a polyether, a polyphenylene, a polysulfone, or a polybenzimidazole.
(2) The microwave heating container according to (1), wherein the microwave heating container is a high-temperature high-pressure container.
(3) The microwave heating container according to (2), wherein the high-temperature and high-pressure container has heat resistance up to 150 ° C. and pressure resistance up to 40 MPa.
(4) The microwave heating container according to (2) above, wherein the high-temperature and high-pressure container is a reaction container for performing a hydrothermal reaction or a reaction in a subcritical or supercritical medium.
(5) The microwave heating container according to (4) above, wherein the subcritical or supercritical medium is carbon dioxide or water.
(6) A microwave heating reaction apparatus using the microwave heating container according to any one of (2) to (5) as a reaction container, wherein the temperature and pressure of the reaction container and the sample inside the reaction container And a control system for controlling the reaction conditions of the temperature and pressure of the sample inside the reaction vessel as components, a measuring instrument for measuring the temperature, a microwave oscillator for microwave heating the sample inside the reaction vessel, A microwave heating reactor having a function of measuring the temperature and pressure of a sample inside a heating container and controlling the temperature and pressure to a predetermined temperature and pressure.
(7) The microwave heating reaction apparatus according to (6), wherein the reaction container includes a spacer for adjusting the volume in the reaction container to a predetermined value and a head cap for sealing the opening.
(8) The microwave heating reactor according to (7) above, wherein the reaction vessel and the spacer are made of polyetheretherketone.
(9) The microwave heating reaction apparatus according to any one of (6) to (8) above, which is a reaction apparatus for performing a hydrothermal reaction or a reaction in a subcritical or supercritical medium.

次に、本発明について、更に詳細に説明する。
本発明は、所定のマイクロ波透過性、耐圧性、耐熱性及び加工性を有する、マイクロ波加熱用容器であって、容器本体の一部又は全部を、ポリアミド系、ポリイミド系、ポリエーテル系、ポリフェニレン系、ポリサルホン系、又はポリベンゾイミダゾール系の樹脂材料で構成したことを特徴とする、マイクロ波加熱用容器及び該容器を反応容器として使用したマイクロ波加熱反応装置を提供するものである。
Next, the present invention will be described in more detail.
The present invention is a microwave heating container having predetermined microwave permeability, pressure resistance, heat resistance and processability, and a part or all of the container body is made of polyamide, polyimide, polyether, The present invention provides a microwave heating container and a microwave heating reactor using the container as a reaction container, characterized by comprising a polyphenylene-based, polysulfone-based, or polybenzimidazole-based resin material.

本発明者らは、亜臨界ないし超臨界の媒体中での反応について、研究を進める中で、反応容器の一部又は全部を特定の樹脂材料で構成することで、優れたマイクロ波透過性、引張強度(耐圧性)、耐熱性、及び加工性を有する、マイクロ波加熱用容器を製造し、提供できることを見出した。近年、マイクロ波は、様々な技術分野において加熱手段として、しばしば使用されるようになり、特に、化学反応において、被反応物質に熱エネルギーを急速に付加する手段として採用されはじめた。そのためには、そうした反応条件に適合する、新しいマイクロ波加熱用反応容器の開発が待たれていたが、本発明は、こうした技術的ニーズに適合したものである。   The present inventors are proceeding with research on reactions in subcritical or supercritical media, and by constituting part or all of the reaction vessel with a specific resin material, excellent microwave permeability, It has been found that a microwave heating container having tensile strength (pressure resistance), heat resistance, and workability can be manufactured and provided. In recent years, microwaves have frequently been used as a heating means in various technical fields, and have begun to be adopted as a means for rapidly adding thermal energy to a reactant, particularly in chemical reactions. To that end, development of a new microwave heating reaction vessel that meets such reaction conditions has been awaited, but the present invention meets such technical needs.

本発明者らの実験により、本発明のマイクロ波加熱用容器は、150℃までの高温、及び40MPaまでの高圧の反応条件下での超臨界流体を用いた、高温高圧反応の反応容器として好適に使用できること、また、このような反応を行う際に、容器に収容した試料の反応基質を選択的にマイクロ波加熱できる機能を有すること、が実証され、本発明のマイクロ波加熱用容器及びこの容器を反応容器として使用したマイクロ波加熱反応装置は、特に、150℃までの高温及び40MPaまでの超臨界流体を用いた超臨界反応容器及びその装置として、安定かつ安全に使用し得るものであることが確認された。   According to experiments by the present inventors, the container for microwave heating of the present invention is suitable as a reaction container for high-temperature and high-pressure reaction using a supercritical fluid under high-temperature reaction conditions up to 150 ° C. and high-pressure up to 40 MPa. In addition, it has been demonstrated that when performing such a reaction, the reaction substrate of the sample contained in the container can be selectively heated by microwaves. A microwave heating reactor using a vessel as a reaction vessel can be used stably and safely, particularly as a supercritical reaction vessel and a device using a supercritical fluid up to 150 ° C. and a supercritical fluid up to 40 MPa. It was confirmed.

マイクロ波加熱を、有機合成反応等の化学反応における加熱手段として適用すると、従来の熱伝導加熱よりも反応速度が数オーダーも上昇し、高収率で目的物が得られるばかりか、従来にない、立体特異的な反応が生起することも観察されている。また、マイクロ波のエネルギーが、被反応物の分子に直接伝わり、温度の急激な上昇を起こすのみならず、その一部分を高温とする局所加熱や、高圧下での加熱により溶媒を沸点以上に加熱して、これまで難しかった、高温高圧条件下での反応が可能となるに至った。また、従来の加熱方法よりも溶媒の使用が少量でよいため、反応後の溶媒の除去が容易であり、また、固相反応も可能となり、環境調和的な合成反応を実施することが可能であり、有用な反応方式として、今後の発展が期待されている。   When microwave heating is applied as a heating means in chemical reactions such as organic synthesis reactions, the reaction rate is increased by several orders of magnitude compared to conventional heat conduction heating, and the target product can be obtained in a high yield. It has also been observed that stereospecific reactions occur. In addition, the microwave energy is directly transmitted to the molecules of the reactants, causing not only a rapid rise in temperature, but also heating the solvent above the boiling point by local heating that raises a part of it or heating under high pressure. Thus, the reaction under high temperature and high pressure conditions, which has been difficult until now, has become possible. In addition, since the solvent may be used in a smaller amount than the conventional heating method, it is easy to remove the solvent after the reaction, and a solid-phase reaction is possible, and an environmentally harmonious synthesis reaction can be performed. It is expected to develop as a useful reaction method in the future.

しかるに、マイクロ波加熱には、マイクロ波を反射する金属類は使用できないので、これまで、マイクロ波加熱用反応容器の材料として、セラミックス又はガラスを使用するのが通常であった。しかしながら、これらの材料は、引張強度に優れ、耐圧耐熱容器として使用できるものであるが、衝撃に弱く、また、加工性に劣る等の欠点を有している。本発明は、それらの欠点を克服した、マイクロ波透過性、引張強度(耐圧性)、耐熱性、耐薬品性、加工性、安全性に優れた、しかも安価なマイクロ波加熱用反応容器を提供するものである。   However, since metals that reflect microwaves cannot be used for microwave heating, it has been usual to use ceramics or glass as a material for a reaction vessel for microwave heating. However, these materials are excellent in tensile strength and can be used as a pressure-resistant and heat-resistant container, but have disadvantages such as weak against impact and inferior workability. The present invention provides a microwave heating reactor excellent in microwave permeability, tensile strength (pressure resistance), heat resistance, chemical resistance, workability, safety, and inexpensive, which overcomes these drawbacks. To do.

本発明の、マイクロ波加熱用容器は、第1条件として、所定のマイクロ波透過性、引張強度(耐圧性)、耐熱性を有し、更に、第2条件として、所定の耐薬品性、加工性、安全性を有し、安価なマイクロ波加熱用容器であって、容器本体の一部又は全部が、ポリアミド系、ポリイミド系、ポリエーテル系、ポリフェニレン系、ポリサルホン系、又はポリベンゾイミダゾール系の樹脂材料で構成される。これらの樹脂材料の具体例としては、ポリアミド系プラスチックスとして、ポリアミド6、ポリアミド66、ポリアミドMXD6、ポリアミドイミドが例示され、ポリイミド系プラスチックスとして、ポリイミドが例示され、ポリエーテル系プラスチックスとして、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリエーテルケトンが例示され、ポリフェニレン系プラスチックスとして、ポリフェニレンエーテル、ポリフェニレンサルファイドが例示され、ポリサルホン系プラスチックスとしては、ポリサルホン、ポリエーテルサルホン、ポリフェニレンサルホンが例示され、また、ポリベンゾイミダゾール系プラスチックスとして、ポリベンゾイミダゾールが例示される。   The container for microwave heating of the present invention has predetermined microwave permeability, tensile strength (pressure resistance) and heat resistance as the first condition, and further has predetermined chemical resistance and processing as the second condition. A safe, inexpensive microwave heating container, part or all of which is made of polyamide, polyimide, polyether, polyphenylene, polysulfone, or polybenzimidazole Consists of resin material. Specific examples of these resin materials include polyamide 6, polyamide 66, polyamide MXD6, and polyamide imide as polyamide plastics, polyimide as polyimide plastics, and poly plastic as polyether plastics. Examples include ether imide, polyether ether ketone, and polyether ketone. Examples of polyphenylene plastics include polyphenylene ether and polyphenylene sulfide. Examples of polysulfone plastics include polysulfone, polyether sulfone, and polyphenylene sulfone. Moreover, polybenzimidazole is exemplified as the polybenzimidazole plastics.

本発明では、これらの樹脂材料の中で、特に好適に、例えば、ポリエーテルエーテルケトンが使用される。この樹脂は、融点:334℃であり、この樹脂材料で構成した本発明のマイクロ波加熱用容器は、200〜260℃の熱水中での連続使用が可能であり、また、優れた、耐疲労性、耐摩耗性、耐衝撃性を有し、濃硫酸、濃硝酸以外の薬品には溶解せず、誘電損失が小さく、機械切削加工に適している等の特性を有している。また、例えば、ポリサルホンで構成した本発明のマイクロ波加熱用容器は、熱変形温度が175〜180℃で、150℃での連続使用に耐え、酸、アルカリに耐え、誘電率:3.15、誘電損失:0.0050を示し、電磁波に対する透明性の点では、セラミックスよりも優れている。   In the present invention, among these resin materials, for example, polyether ether ketone is particularly preferably used. This resin has a melting point of 334 ° C., and the microwave heating container of the present invention made of this resin material can be used continuously in hot water at 200 to 260 ° C. It has fatigue properties, wear resistance, impact resistance, does not dissolve in chemicals other than concentrated sulfuric acid and concentrated nitric acid, has low dielectric loss, and is suitable for machine cutting. For example, the microwave heating container of the present invention composed of polysulfone has a heat distortion temperature of 175 to 180 ° C., can withstand continuous use at 150 ° C., withstands acids and alkalis, and has a dielectric constant of 3.15. Dielectric loss: 0.0050, which is superior to ceramics in terms of transparency to electromagnetic waves.

本発明において上記樹脂材料は、それらの単位を変性又は誘導体化したもの、各種の重合体との共重合体、又はこれらの樹脂類を混合した組成物を含むものであり、また、炭素繊維、ガラス繊維等のフィラー類を添加したものを含む。本発明では、これらの樹脂材料を用いて、少なくともマイクロ波加熱用反応容器本体(セル本体)を形成する。本発明のマイクロ波加熱用反応容器は、使用する反応装置、マイクロ波発生装置等の形状、構造に応じて任意に設計し、切削加工等の機械的加工により作製することができる。本発明で用いる上記樹脂材料は、金型による成形等の大量生産に適しているばかりか、加工性に優れているため、例えば、切削による、単品での生産にも適している。   In the present invention, the resin material includes those obtained by modifying or derivatizing these units, copolymers with various polymers, or compositions obtained by mixing these resins, and carbon fibers, Includes those added with fillers such as glass fiber. In the present invention, these resin materials are used to form at least a microwave heating reaction vessel main body (cell main body). The reaction vessel for microwave heating of the present invention can be arbitrarily designed according to the shape and structure of the reaction apparatus, microwave generation apparatus, etc. used, and can be produced by mechanical processing such as cutting. The resin material used in the present invention is not only suitable for mass production such as molding by a mold, but also excellent in workability, and is therefore suitable for production by a single product, for example, by cutting.

本発明の、マイクロ波加熱反応装置は、上記マイクロ波加熱用容器を反応容器として使用し、その基本構成は、例えば、反応容器、マイクロ波発振器及び反応容器内部の試料の温度及び圧力の反応条件を制御する制御システムからなり、反応容器内部の試料の温度、圧力を計測可能で、所定の温度、圧力に制御可能であるように構成される。マイクロ波発振器により発振されたマイクロ波は、導波管を通じて反応容器に照射され、マイクロ波は、上記樹脂材料で構成されている反応容器を通過して、反応容器内部に収容されている物質を加熱し、反応が促進される。反応容器内の、温度、圧力等は、制御システムにより監視され、その情報に基づいて、マイクロ波発振器が制御され、反応容器内の反応条件を所定の値に保持する(図1)が、これらの各手段の具体的な構成は、例えば、装置の種類、大きさ、使用目的等に応じて任意に設計することができる。   The microwave heating reactor of the present invention uses the above-mentioned microwave heating vessel as a reaction vessel, and the basic configuration thereof is, for example, reaction conditions of temperature and pressure of the sample inside the reaction vessel, the microwave oscillator and the reaction vessel. It is comprised so that it can measure the temperature and pressure of the sample inside reaction container, and can control it to predetermined temperature and pressure. The microwave oscillated by the microwave oscillator is irradiated to the reaction container through the waveguide, and the microwave passes through the reaction container made of the resin material and passes through the substance contained in the reaction container. The reaction is promoted by heating. The temperature, pressure, etc. in the reaction vessel are monitored by the control system, and based on the information, the microwave oscillator is controlled to maintain the reaction conditions in the reaction vessel at predetermined values (FIG. 1). The specific configuration of each means can be arbitrarily designed according to, for example, the type, size, purpose of use, and the like of the device.

本発明の、マイクロ波加熱用容器は、その形状構造が特に限定されるものではないが、例えば、図2に示されるごとく、中空部を有する円柱状の管よりなり、その一端が開口し、他端が閉鎖された形状を有する反応容器、反応容器の中空部に挿入され、反応容器の中空部の空隙容量を所定の値に調整するためのスペーサー、及び反応容器の開口部を密封して、反応容器内部を高温高圧に保持するためのヘッドキャップからなるものが例示される。ヘッドキャップに形成された孔からは、反応容器内に熱電対が挿入されて反応系の温度が検知され、他の孔からは、反応に必要な液状の試料の注入及び反応生成物の回収が行われる。反応容器内の圧力の検知にも同孔が用いられる。これらの反応容器及びスペーサーは、好適には、上記樹脂材料から構成され、ヘッドキャップは、マイクロ波を透過しない材料から選択される。本発明では、加工性に優れた素材を反応容器に使用しているために、その開口部を、金属製のヘッドキャップの密封構造に適合させることが容易となり、反応容器内を、高温高圧に保持することが容易である。本発明で使用される、マイクロ波発振器については、反応容器の形状、構造、大きさ、その内部に収容する試料の量、反応温度等の条件に応じて適宜選択され、特に制限されるものではない。   Although the shape structure of the microwave heating container of the present invention is not particularly limited, for example, as shown in FIG. 2, it is composed of a cylindrical tube having a hollow portion, one end of which is opened, Seal the reaction vessel having a closed shape at the other end, a spacer inserted into the hollow portion of the reaction vessel, and adjust the void volume of the hollow portion of the reaction vessel to a predetermined value, and the opening of the reaction vessel. Examples thereof include a head cap for maintaining the inside of the reaction vessel at a high temperature and a high pressure. From the hole formed in the head cap, a thermocouple is inserted into the reaction vessel to detect the temperature of the reaction system, and from other holes, a liquid sample necessary for the reaction is injected and the reaction product is recovered. Done. The same hole is also used for detecting the pressure in the reaction vessel. These reaction vessels and spacers are preferably made of the above resin material, and the head cap is selected from materials that do not transmit microwaves. In the present invention, since a material excellent in processability is used for the reaction vessel, it becomes easy to adapt the opening to the sealing structure of the metal head cap, and the inside of the reaction vessel is kept at high temperature and high pressure. It is easy to hold. The microwave oscillator used in the present invention is appropriately selected according to conditions such as the shape, structure, and size of the reaction vessel, the amount of sample accommodated therein, the reaction temperature, and the like, and is not particularly limited. Absent.

本発明のマイクロ波加熱用容器は、その中に収容されている物質を、マイクロ波により加熱することができるものであり、高温高圧の水熱反応、亜臨界ないし超臨界の媒体を使用した反応等に使用することが可能であり、例えば、水熱反応によるゼオライトの製造、塩素化エチレンの水熱分解反応、超臨界二酸化炭素中でのフェノールの水素化反応等に好適に適用することが可能である。また、本発明のマイクロ波加熱用容器によるマイクロ波加熱では、物質の分子の分極性に基づき加熱作用が左右されるので、分子の分極性が低い溶媒分子を加熱しないで、分極性の高い溶質のみをマイクロ波で加熱する反応方式、また、分子の分極性の高い溶媒をマイクロ波により加熱する反応方式等の様々な応用が期待される。本発明のマイクロ波加熱用容器は、例えば、高温高圧水、超界の媒体としての、二酸化炭素、フッ化炭素、エチレン、プロパン、キセノン等を用いた高温、高圧反応におけるマイクロ波加熱用容器として使用することができるが、本発明のマイクロ波加熱用容器は、耐熱温度約150℃まで、耐圧圧力約40MPaまでの範囲内であれば、いかなる媒体にも使用することができる。   The container for microwave heating according to the present invention is capable of heating a substance contained therein by microwaves, and is a reaction using a high-temperature and high-pressure hydrothermal reaction or a subcritical or supercritical medium. For example, it can be suitably applied to zeolite production by hydrothermal reaction, hydrothermal decomposition reaction of chlorinated ethylene, hydrogenation reaction of phenol in supercritical carbon dioxide, etc. It is. Further, in the microwave heating by the microwave heating container of the present invention, the heating action depends on the polarizability of the molecules of the substance, so that the highly polarizable solute is not heated without heating the solvent molecules having the low polarizability of the molecules. Various applications such as a reaction method in which only a solvent is heated by microwaves and a reaction method in which a solvent having high molecular polarizability is heated by microwaves are expected. The microwave heating container of the present invention is, for example, a microwave heating container in a high-temperature, high-pressure reaction using carbon dioxide, fluorocarbon, ethylene, propane, xenon or the like as high-temperature and high-pressure water or a super-field medium. Although the microwave heating container of the present invention can be used, it can be used for any medium as long as the heat resistant temperature is about 150 ° C. and the pressure resistance is about 40 MPa.

本発明により、(1)セラミックスやガラス製等の反応容器に比較して、優れたマイクロ波透過性、耐圧性、耐熱性及び加工性を有し、マイクロ波加熱反応装置等の反応容器に適合したコンパクトな構造を有し、気密性に優れたマイクロ波加熱用容器を提供することができる、(2)誘電特性に優れ、その誘電正接が0.01以下で、温度依存性並びに周波数依存性が極めて小さく、マイクロ波透過性に優れたマイクロ波加熱用容器を提供することができる、(3)安価で、信頼性の高い、高性能なマイクロ波加熱用反応容器を提供することができる、(4)加工性が良く、機密性を高めることが容易であり、高温高圧の化学反応を遂行するために適合した、マイクロ波加熱用高温高圧容器を提供することができる、(5)このマイクロ波加熱用高温高圧容器を反応容器として使用したマイクロ波加熱反応装置を提供できる、という格別の効果が奏される。   According to the present invention, (1) Compared to ceramic and glass reaction vessels, it has excellent microwave permeability, pressure resistance, heat resistance and workability, and is suitable for reaction vessels such as microwave heating reactors. It is possible to provide a microwave heating container having a compact structure and excellent airtightness. (2) Excellent dielectric properties, a dielectric loss tangent of 0.01 or less, temperature dependence and frequency dependence. Can provide a microwave heating vessel with extremely small and excellent microwave permeability, (3) can provide an inexpensive, reliable and high-performance microwave heating reaction vessel, (4) It is possible to provide a high-temperature and high-pressure vessel for microwave heating, which has good processability and is easy to improve confidentiality, and which is suitable for carrying out high-temperature and high-pressure chemical reactions. (5) This micro Wave The use high-temperature high-pressure vessel can provide a microwave heating reactor was used as the reaction vessel, special effect can be attained.

次に、本発明を実施例に基づいて具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。   EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Examples.

本発明のマイクロ波加熱用反応容器としての高温高圧樹脂製反応容器と、これを反応容器として使用したマイクロ波加熱反応装置の一例を、図2及び図1に示す。この反応容器は、円柱状の管よりなり、その一端が開口し、他端が閉鎖された形状を有する反応容器本体(セル本体)、反応容器の中空部に挿入され、反応容器の中空部の容量を所定の値に調整するためのスペーサー、及び反応容器の開口部を密封するヘッドキャップより主に構成されている。ヘッドキャップには、複数の孔が形成され、その一つから、熱電対を反応容器内に挿入して反応温度が検知される。他の孔は、反応に必要な液状の試料の注入、及び反応生成物の回収に使用し、反応容器内の圧力検知器も同孔に接続される。これらの反応容器及びスペーサーは、マイクロ波を透過するポリエーテルエーテルケトン(poly(ether−ether)ketone)から作製され、反応容器の容積はスペーサーにより15cmに調整した。ヘッドキャップは、SUS316からなり、反応容器の開口部との密封性は、樹脂製O−リングにより確保した。本実施例では、加工性に優れた素材である、ポリエーテルエーテルケトンを使用しているために、気密性を確保することが容易であった。反応容器内には、磁気攪拌子を設置した。反応継続中は、反応温度及び圧力を監視することにより、制御システムを通じて温度及び圧力の反応条件を適正な範囲に保持した。 FIG. 2 and FIG. 1 show an example of a reaction vessel made of high-temperature and high-pressure resin as a reaction vessel for microwave heating according to the present invention and a microwave heating reactor using this as a reaction vessel. This reaction vessel is composed of a cylindrical tube, one end of which is open and the other end is closed. The reaction vessel body (cell body) is inserted into a hollow portion of the reaction vessel, It is mainly composed of a spacer for adjusting the volume to a predetermined value and a head cap for sealing the opening of the reaction vessel. A plurality of holes are formed in the head cap, and from one of them, a thermocouple is inserted into the reaction vessel, and the reaction temperature is detected. The other holes are used for injecting a liquid sample necessary for the reaction and collecting the reaction product, and a pressure detector in the reaction vessel is also connected to the hole. These reaction vessels and spacers were made of polyether ether ketone (poly (ether-ether) ketone) that transmits microwaves, and the volume of the reaction vessel was adjusted to 15 cm 3 with the spacers. The head cap was made of SUS316, and the sealing property with the opening of the reaction vessel was secured by a resin O-ring. In this example, since polyether ether ketone, which is a material excellent in workability, is used, it was easy to ensure airtightness. A magnetic stir bar was installed in the reaction vessel. While the reaction continued, the reaction temperature and pressure were monitored to maintain the temperature and pressure reaction conditions within the proper range through the control system.

本実施例では、マイクロ波加熱用容器として使用する材料の相違に基づく、容器中の物質の温度変化の差を従来の容器と対比し、検討した。実施例として、特定の樹脂材料製の反応容器、対照例として、マイクロ波加熱に通常使用されているガラス製反応容器を使用して試験した。容積15cmの各反応容器中に、水を入れ、マイクロ波の照射により70℃まで温度を上昇させて、両者の昇温曲線を比較した結果を図3に示す。両容器ともに、ほぼ同程度の急激な温度上昇を示した。このことは、上記樹脂材料製の反応容器が、マイクロ波加熱による物質の加熱に適していることを示している。次いで、各種の樹脂材料、即ち、ポリアミド系、ポリイミド系、ポリエーテル系、ポリフェニレン系、ポリサルホン系、ポリベンゾイミダゾール系の樹脂材料を使用して反応容器を作製し、反応温度、圧力を広範囲に変化させながら、同様の試験を繰り返すことにより、反応容器の耐熱、耐圧条件を検討した。その結果、これらの特定の樹脂材料を用いた反応容器は、水熱条件下では、〜約150℃、〜約40MPaの圧力下で十分な実用性があることが確認された。 In this example, the difference in the temperature change of the substance in the container based on the difference in the materials used as the microwave heating container was compared with the conventional container and examined. As an example, it tested using the reaction container made from a specific resin material, and the glass reaction container normally used for the microwave heating as a control example. FIG. 3 shows the results of comparing the temperature rise curves of water in each reaction vessel having a volume of 15 cm 3 and raising the temperature to 70 ° C. by microwave irradiation. Both containers showed a similar temperature rise. This indicates that the reaction vessel made of the resin material is suitable for heating a substance by microwave heating. Next, a reaction vessel is prepared using various resin materials, that is, polyamide-based, polyimide-based, polyether-based, polyphenylene-based, polysulfone-based, and polybenzimidazole-based resin materials, and the reaction temperature and pressure are changed over a wide range. Then, the same test was repeated to examine the heat resistance and pressure resistance conditions of the reaction vessel. As a result, it was confirmed that the reaction vessel using these specific resin materials has sufficient practicality under a hydrothermal condition under a pressure of about 150 ° C. and about 40 MPa.

本実施例では、亜臨界ないし超臨界媒体を、上記特定の樹脂材料製の反応容器に収容し、マイクロ波加熱により上記実施例2と同様に加熱実験を行った。反応容器に、300Wのマイクロ波を5分間照射しても、非極性の分子である二酸化炭素(臨界温度Tc=31.0℃、臨界圧力Pc=7.4MPa)には何ら影響を与えることはなく、実質的な、温度、圧力の変化は生じなかった(表1参照)。しかしながら、CHF(臨界温度Tc=25.9℃、臨界圧力Pc=4.8MPa)では、二酸化炭素と同条件でマイクロ波を照射すると、その分子の極性が高いために、圧力及び温度の上昇が認められた(表1参照)。図4に、マイクロ波加熱装置で樹脂製セルを用いて高圧条件下で、CHFを加熱したときの試料温度の時間変化を示す。こうした、温度と圧力の上昇は、初期の圧力が大きいほど顕著であった。このことは、圧力が高くなるほど、媒体の密度が増加し、誘電率が上昇することに起因する。このように、反応媒体により加熱特性が相違することは、反応媒体の特性に基づいて、特異な反応を進行させることが可能であることを示すものである。 In this example, a subcritical or supercritical medium was accommodated in a reaction vessel made of the specific resin material, and a heating experiment was performed in the same manner as in Example 2 by microwave heating. Even if the reaction vessel is irradiated with 300 W microwave for 5 minutes, carbon dioxide (critical temperature Tc = 31.0 ° C., critical pressure Pc = 7.4 MPa), which is a non-polar molecule, has no effect. There was no substantial change in temperature and pressure (see Table 1). However, in CHF 3 (critical temperature Tc = 25.9 ° C., critical pressure Pc = 4.8 MPa), when microwaves are irradiated under the same conditions as carbon dioxide, the polarity of the molecule is high, so the pressure and temperature increase. (See Table 1). FIG. 4 shows the time change of the sample temperature when CHF 3 is heated under high pressure using a resin cell in a microwave heating apparatus. Such increases in temperature and pressure were more remarkable as the initial pressure was larger. This is due to the fact that the higher the pressure, the higher the density of the medium and the higher the dielectric constant. Thus, the difference in heating characteristics depending on the reaction medium indicates that a specific reaction can proceed based on the characteristics of the reaction medium.

以上詳述したように、本発明は、所定のマイクロ波の透過性、耐圧性、耐熱性及び加工性を有するマイクロ波加熱用容器、及びマイクロ波加熱反応装置に係るものであり、本発明により、セラミックスやガラス製等の反応容器に比較して加工性が容易であり、マイクロ波照射装置にあわせたコンパクトな反応容器を、簡便に作製することが可能であり、加工性が良く、機密性を高めることが容易な、マイクロ波加熱用容器を提供することができる。また、本発明は、誘電特性に優れ、その誘電正接が0.01以下で温度依存性並びに周波数依存性が極めて小さく、加熱特性に優れたマイク波加熱用容器を提供することを可能とする。更に、本発明は、上記マイクロ波加熱用容器を利用した、安価で、高性能の、マイクロ波加熱による高温高圧反応を遂行することが可能な、マイクロ波加熱反応装置を提供するものとして有用である。   As described above in detail, the present invention relates to a microwave heating vessel and a microwave heating reactor having predetermined microwave permeability, pressure resistance, heat resistance and processability, and according to the present invention. Compared with reaction vessels made of ceramics, glass, etc., processability is easy, and it is possible to easily produce a compact reaction vessel suitable for a microwave irradiation device. It is possible to provide a microwave heating container that can easily increase the temperature. In addition, the present invention makes it possible to provide a microwave heating container that is excellent in dielectric properties, has a dielectric loss tangent of 0.01 or less, has extremely low temperature dependency and frequency dependency, and has excellent heating properties. Furthermore, the present invention is useful as an inexpensive and high-performance microwave heating reactor capable of performing a high-temperature and high-pressure reaction by microwave heating using the above-mentioned microwave heating container. is there.

本発明の、マイクロ波加熱反応装置の概略図を示す。The schematic of the microwave heating reaction apparatus of this invention is shown. 本発明の、高温高圧樹脂製反応容器を示す。The reaction container made from a high temperature / high pressure resin of the present invention is shown. マイクロ波加熱装置で、ガラス製フラスコ(○)と樹脂製セル(●)を用いて、水を70℃に加熱したときの試料の温度変化を示す。The temperature change of a sample when a glass flask ((circle)) and resin-made cells ((circle)) are heated to 70 degreeC with a microwave heating apparatus is shown. マイクロ波加熱装置で、樹脂製セルを用いて高圧条件下でCHFを加熱したときの試料温度と照射時間の関係を示す。The relationship between sample temperature and irradiation time when CHF 3 is heated under a high pressure condition using a resin-made cell with a microwave heating apparatus is shown.

符号の説明Explanation of symbols

1:ヘッドキャップ
2:セル本体
3:スペーサー
1: Head cap 2: Cell body 3: Spacer

Claims (9)

マイクロ波加熱用容器としての所定のマイクロ波透過性、耐圧性、耐熱性及び加工性を有するマイクロ波加熱用容器であって、該容器本体の一部又は全部を、ポリアミド系、ポリイミド系、ポリエーテル系、ポリフェニレン系、ポリサルホン系、又はポリベンゾイミダゾール系の樹脂材料で構成したことを特徴とするマイクロ波加熱用容器。   A microwave heating container having predetermined microwave permeability, pressure resistance, heat resistance, and processability as a microwave heating container, wherein a part or all of the container body is made of polyamide, polyimide, poly A microwave heating vessel comprising an ether, polyphenylene, polysulfone, or polybenzimidazole resin material. マイクロ波加熱用容器が、高温高圧容器である、請求項1に記載のマイクロ波加熱用容器。   The container for microwave heating according to claim 1, wherein the container for microwave heating is a high-temperature high-pressure container. 高温高圧容器が、150℃までの耐熱性、及び40MPaまでの耐圧性を有する、請求項2に記載のマイクロ波加熱用容器。   The container for microwave heating according to claim 2, wherein the high-temperature and high-pressure container has heat resistance up to 150 ° C and pressure resistance up to 40 MPa. 高温高圧容器が、水熱反応、又は亜臨界ないし超臨界の媒体中での反応を遂行するための反応容器である、請求項2に記載のマイクロ波加熱用容器。   The microwave heating vessel according to claim 2, wherein the high-temperature and high-pressure vessel is a reaction vessel for performing a hydrothermal reaction or a reaction in a subcritical or supercritical medium. 亜臨界ないし超臨界の媒体が、二酸化炭素又は水である、請求項4に記載のマイクロ波加熱用容器。   The container for microwave heating according to claim 4, wherein the subcritical or supercritical medium is carbon dioxide or water. 請求項2から5のいずれかに記載のマイクロ波加熱用容器を反応容器として使用したマイクロ波加熱反応装置であって、該反応容器、反応容器内部の試料の温度及び圧力を計測するための計測器、反応容器内部の試料をマイクロ波加熱するためのマイクロ波発振器、及び反応容器内部の試料の温度及び圧力の反応条件を制御するための制御システムを構成要素として含み、加熱用容器内部の試料の温度及び圧力を計測して、所定の温度及び圧力に制御する機能を有することを特徴とするマイクロ波加熱反応装置。   A microwave heating reaction apparatus using the microwave heating container according to any one of claims 2 to 5 as a reaction container, the measurement for measuring the temperature and pressure of the reaction container and the sample inside the reaction container And a control system for controlling reaction conditions of temperature and pressure of the sample inside the reaction vessel as components, and a sample inside the heating vessel A microwave heating reaction apparatus characterized by having a function of measuring the temperature and pressure of the gas and controlling it to a predetermined temperature and pressure. 反応容器が、反応容器内の容積を所定の値に調整するためのスペーサー及び開口部を密封するためのヘッドキャップを有する、請求項6に記載のマイクロ波加熱反応装置。   The microwave heating reaction apparatus according to claim 6, wherein the reaction container has a spacer for adjusting the volume in the reaction container to a predetermined value and a head cap for sealing the opening. 反応容器及びスペーサーを、ポリエーテルエーテルケトンから構成した、請求項7に記載のマイクロ波加熱反応装置。   The microwave heating reactor according to claim 7, wherein the reaction vessel and the spacer are composed of polyetheretherketone. 水熱反応、又は亜臨界ないし超臨界の媒体中での反応を遂行するための反応装置である、請求項6から8のいずれかに記載のマイクロ波加熱反応装置。
The microwave heating reaction apparatus according to any one of claims 6 to 8, which is a reaction apparatus for performing a hydrothermal reaction or a reaction in a subcritical or supercritical medium.
JP2004216629A 2004-07-23 2004-07-23 Microwave heating container Expired - Fee Related JP4997414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004216629A JP4997414B2 (en) 2004-07-23 2004-07-23 Microwave heating container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004216629A JP4997414B2 (en) 2004-07-23 2004-07-23 Microwave heating container

Publications (2)

Publication Number Publication Date
JP2006035056A true JP2006035056A (en) 2006-02-09
JP4997414B2 JP4997414B2 (en) 2012-08-08

Family

ID=35900618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004216629A Expired - Fee Related JP4997414B2 (en) 2004-07-23 2004-07-23 Microwave heating container

Country Status (1)

Country Link
JP (1) JP4997414B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011011179A (en) * 2009-07-06 2011-01-20 Kimoto Denshi Kogyo Kk Supercritical microwave reaction apparatus
JP2013013890A (en) * 2011-06-30 2013-01-24 Cem Corp Instrument for performing microwave-assisted reactions
JP2013050301A (en) * 2006-03-30 2013-03-14 Advanced Composite Materials Llc Composite material and device comprising single crystal silicon carbide heated by electromagnetic radiation
JP2013079738A (en) * 2011-10-01 2013-05-02 Hi-Van:Kk Manufacturing method of warming fluid
JP2015074644A (en) * 2013-10-11 2015-04-20 東ソー・ファインケム株式会社 Method for producing methylaluminoxane composition by using microwave

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62227307A (en) * 1986-03-28 1987-10-06 大日本印刷株式会社 Food container for microwave cooking
JPH04229590A (en) * 1990-05-04 1992-08-19 Cem Corp Microwave heater
JPH06254386A (en) * 1993-03-09 1994-09-13 Toruku Seimitsu Kogyo Kk Reaction vessel
JP2001085151A (en) * 1999-09-10 2001-03-30 Otsuka Chem Co Ltd High frequency heating device
JP2002113350A (en) * 2000-10-11 2002-04-16 Shikoku Instrumentation Co Ltd High-temperature and high-pressure vessel with microwave supplying apparatus for promoting chemical reaction
JP2003117409A (en) * 2001-10-10 2003-04-22 Starlite Co Ltd Device for microchemistry

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62227307A (en) * 1986-03-28 1987-10-06 大日本印刷株式会社 Food container for microwave cooking
JPH04229590A (en) * 1990-05-04 1992-08-19 Cem Corp Microwave heater
JPH06254386A (en) * 1993-03-09 1994-09-13 Toruku Seimitsu Kogyo Kk Reaction vessel
JP2001085151A (en) * 1999-09-10 2001-03-30 Otsuka Chem Co Ltd High frequency heating device
JP2002113350A (en) * 2000-10-11 2002-04-16 Shikoku Instrumentation Co Ltd High-temperature and high-pressure vessel with microwave supplying apparatus for promoting chemical reaction
JP2003117409A (en) * 2001-10-10 2003-04-22 Starlite Co Ltd Device for microchemistry

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013050301A (en) * 2006-03-30 2013-03-14 Advanced Composite Materials Llc Composite material and device comprising single crystal silicon carbide heated by electromagnetic radiation
US9688583B2 (en) 2006-03-30 2017-06-27 Advanced Composite Materials, Llc Composite materials and devices comprising single crystal silicon carbide heated by electromagnetic radiation
JP2011011179A (en) * 2009-07-06 2011-01-20 Kimoto Denshi Kogyo Kk Supercritical microwave reaction apparatus
JP2013013890A (en) * 2011-06-30 2013-01-24 Cem Corp Instrument for performing microwave-assisted reactions
JP2014138940A (en) * 2011-06-30 2014-07-31 Cem Corp Apparatus for performing microwave assisted reaction
US9161395B2 (en) 2011-06-30 2015-10-13 Cem Corporation Instrument for performing microwave-assisted reactions
JP2016041425A (en) * 2011-06-30 2016-03-31 シーイーエム・コーポレーション Apparatus for performing microwave assisted reaction
US9769885B2 (en) 2011-06-30 2017-09-19 Cem Corporation Instrument for performing microwave-assisted reactions
JP2013079738A (en) * 2011-10-01 2013-05-02 Hi-Van:Kk Manufacturing method of warming fluid
JP2015074644A (en) * 2013-10-11 2015-04-20 東ソー・ファインケム株式会社 Method for producing methylaluminoxane composition by using microwave

Also Published As

Publication number Publication date
JP4997414B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
Ikushima et al. An in situ Raman spectroscopy study of subcritical and supercritical water: The peculiarity of hydrogen bonding near the critical point
Dauenhauer et al. Reactive boiling of cellulose for integrated catalysis through an intermediate liquid
Nüchter et al. Microwave assisted synthesis–a critical technology overview
JP5342097B2 (en) Methods and apparatus for low temperature microwave assisted organic chemical synthesis
Yoshida et al. Gasification of cellulose, xylan, and lignin mixtures in supercritical water
Maier et al. Development of customized 3D printed stainless steel reactors with inline oxygen sensors for aerobic oxidation of Grignard reagents in continuous flow
Nishioka et al. Single-mode microwave reactor used for continuous flow reactions under elevated pressure
JP2010184230A (en) Continuous microwave reactor and continuous microwave reaction system
Smith Jr et al. Phase behavior and reaction of nylon 6/6 in water at high temperatures and pressures
US20050230381A1 (en) Controlled flow instrument for microwave assisted chemistry with high viscosity liquids and heterogeneous mixtures
JP4997414B2 (en) Microwave heating container
Kappe The use of microwave irradiation in organic synthesis. From laboratory curiosity to standard practice in twenty years
Chen et al. Microwave heating-induced temperature gradients in liquid–liquid biphasic systems
Tassaing et al. The dynamics of supercritical water: A quasielastic incoherent neutron scattering study
Slocombe et al. Microwaves in chemistry
Parthun et al. Localized relaxations in the glassy states of several molecular materials before and after their polymerization
Hukkanen et al. A novel continuous multiphase reactor for chemically processing polymer fibers
Shen et al. Form‐stable phase change materials supported by nanostructured zinc polyacrylate weakening super cooling of polyethylene glycol
Feng et al. Thermal degradation behavior and kinetics of 3D porous polycarbonate monoliths
Nishioka et al. Controlled heating of palladium dispersed porous alumina tube and continuous oxidation of ethylene using frequency-variable single-mode microwave reactor
Kemmere et al. A Novel Process for Ultrasound‐Induced Radical Polymerization in CO2‐Expanded Fluids
Epps et al. Accelerated Multi‐Stage Synthesis of Indium Phosphide Quantum Dots in Modular Flow Reactors
Wojnarowicz et al. 12. Microwaves applied to hydrothermal synthesis of nanoparticles
CN107051347A (en) A kind of device of microwave coupling reaction and its application
JP7288484B2 (en) Method for producing carbon monoxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100628

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100706

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120406

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees