JP2006033686A - Single-core two-way communication system - Google Patents

Single-core two-way communication system Download PDF

Info

Publication number
JP2006033686A
JP2006033686A JP2004212754A JP2004212754A JP2006033686A JP 2006033686 A JP2006033686 A JP 2006033686A JP 2004212754 A JP2004212754 A JP 2004212754A JP 2004212754 A JP2004212754 A JP 2004212754A JP 2006033686 A JP2006033686 A JP 2006033686A
Authority
JP
Japan
Prior art keywords
signal
wavelength
data signal
slave station
station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004212754A
Other languages
Japanese (ja)
Inventor
Takuya Aizawa
卓也 相沢
Tetsuya Sakai
哲弥 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2004212754A priority Critical patent/JP2006033686A/en
Publication of JP2006033686A publication Critical patent/JP2006033686A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a single-core two-way communication system capable of suppressing the deterioration of transmission characteristics caused by a Raman amplification effect in a subscriber optical communication system wherein two-way optical communication is performed by a single core optical fiber. <P>SOLUTION: A single-core two-way communication system comprises: a master station for transmitting a plurality of downlink data signals to a slave station and receiving a plurality of uplink data signals from the slave station; the slave station for transmitting the plurality of uplink data signals to the master station and receiving the plurality of downlink data signals from the master station; and a pair of optical branching filters provided between one terminal of a single core optical fiber and the master station and between the other terminal and the slave station for transmitting the plurality of downlink signals and the plurality of uplink signals via the single core optical fiber, respectively. The master station includes a means for transmitting a dummy signal of which the bits are inverted from a data signal and the wavelength is proximate to the data signal, in addition to an analog modulated video signal and the digital modulated data signal, and the slave station uses a wavelength selection filter to receive and demodulate the data signal separately from the dummy signal. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光通信システムに関し、さらに詳細には、交換局内の光終端装置(親局)と、複数の加入者宅内端末を収容する加入者端末収容装置(子局)とを一心の光ファイバで接続し、この一心の光ファイバを通じて双方向光通信を行うための一心双方向通信システムに関する。   The present invention relates to an optical communication system. More specifically, the present invention relates to an optical terminator (master station) in a switching center and a subscriber terminal accommodating device (slave station) accommodating a plurality of subscriber premises terminals. And a single-fiber bidirectional communication system for performing bidirectional optical communication through this single-fiber optical fiber.

通信の多様性及び高速性の要求に答えるために、通信基盤の根幹である加入者ネットワークの光化が促進されている。加入者系の全光化を実現するためには、現在既存のメタル線で提供されているサービスを光ファイバで経済的に提供することが必要不可欠となる。このための方式として提案されているものに、PDS(Passive Double Star)光加入者伝送方式がある。この方式は、センタ局C(OSU:Optical Subscriber Unit)に受動(Passive)部品である光スターカプラ(SC:Star Coupler)を介して加入者装置(ONU:Optical Network Unit)を備えた複数の子局が収容される方式で、複数の子局を効率的に収容できることから、精力的に開発が進められている。   In order to respond to the demands for communication diversity and high speed, opticalization of the subscriber network, which is the basis of the communication infrastructure, is being promoted. In order to realize all-optical subscriber systems, it is indispensable to economically provide services currently provided by existing metal wires using optical fibers. As a method for this purpose, there is a PDS (Passive Double Star) optical subscriber transmission method. In this method, a center station C (OSU: Optical Subscriber Unit) has a plurality of slave units (ONU: Optical Network Unit) provided via an optical star coupler (SC) that is a passive component. Since a station is accommodated, a plurality of slave stations can be efficiently accommodated, and therefore, development is being advanced energetically.

従来方式の構成としては、伝送路として二心の光ファイバを用いていたが、近年、FTTH(Fiber To The Home)サービスの経済化を図ることを目的として、一心の光ファイバで通信と映像配信を実現する構成が提案されている(例えば、特許文献1,2参照。)。
特開平5−183520号公報 特開平8−23309号公報
In the conventional system, a two-core optical fiber was used as the transmission line, but in recent years, communication and video distribution were performed using a single-fiber optical fiber for the purpose of economicalizing the FTTH (Fiber To The Home) service. The structure which implement | achieves is proposed (for example, refer patent document 1, 2).
JP-A-5-183520 JP-A-8-23309

従来のネットワークでは、波長1.49μmのデータ信号と波長1.55μmの映像信号とを同一の光ファイバを通して伝送されており、波長1.49μmのデータ信号と波長1.55μmの映像信号との波長差が僅か0.06μmしか離れていないため、波長1.55μmの映像信号光が1.49μmのデータ信号光によりラマン増幅を受け、映像信号に雑音が発生するという問題があった。   In a conventional network, a data signal with a wavelength of 1.49 μm and a video signal with a wavelength of 1.55 μm are transmitted through the same optical fiber, and the wavelength of the data signal with a wavelength of 1.49 μm and the video signal with a wavelength of 1.55 μm is transmitted. Since the difference is only 0.06 μm, there is a problem that the video signal light having a wavelength of 1.55 μm is subjected to Raman amplification by the data signal light having a wavelength of 1.49 μm, and noise is generated in the video signal.

図3に、波長1.49μmの光信号により発生するラマン利得の波長特性を示す。石英系ファイバ中でのラマン増幅の特徴から、励起光である波長1.49μmの光信号から約0.1μm離れた約1.59μmにおいて最大の利得が発生するが、映像信号の波長である波長1.55μm付近においてもかなりの大きさのラマン利得を有することがわかる。これにより、波長1.49μmのデータ信号が励起光となり波長1.55μmの映像信号を増幅する現象が発生してしまい、映像信号に雑音が発生してしまう。   FIG. 3 shows the wavelength characteristics of Raman gain generated by an optical signal having a wavelength of 1.49 μm. Due to the characteristics of Raman amplification in the silica-based fiber, the maximum gain occurs at about 1.59 μm, which is about 0.1 μm away from the optical signal having the wavelength of 1.49 μm, which is the excitation light, but the wavelength that is the wavelength of the video signal It can be seen that there is a considerable Raman gain even in the vicinity of 1.55 μm. As a result, a phenomenon occurs in which a data signal having a wavelength of 1.49 μm becomes excitation light and a video signal having a wavelength of 1.55 μm is amplified, and noise is generated in the video signal.

本発明は前記事情に鑑みてなされ、光ファイバ一心で双方向光通信を行う加入者系光通信システムにおいて、ラマン増幅効果による伝送特性の劣化を抑制可能な一心双方向通信システムの提供を目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a single-fiber bidirectional communication system capable of suppressing deterioration of transmission characteristics due to a Raman amplification effect in a subscriber optical communication system that performs bidirectional optical communication with a single optical fiber. To do.

前記目的を達成するため、本発明は、一心の光ファイバを通じて双方向通信を行う一心双方向通信システムであって、子局へ複数の下りデータ信号を送信し、かつ子局から複数の上りデータ信号を受信する親局と、該親局へ複数の上りデータ信号を送信し、かつ親局から複数の下りデータ信号を受信する子局と、一心の光ファイバの一端と前記親局の間及び他端と子局の間にそれぞれ設けられ、複数の下り信号及び複数の上り信号を前記一心の光ファイバを通じて伝送可能にする一対の光合分波器とを備え、前記親局は、アナログ変調された映像信号とデジタル変調されたデータ信号に加えて、前記データ信号とビットが反転し、波長がデータ信号と近接するダミー信号を送信する手段を含み、前記子局は、波長選択フィルタを用いてデータ信号をダミー信号と分離して受信し復調することを特徴とする一心双方向通信システムを提供する。
本発明の一心双方向通信システムにおいて、下りダミー信号と下りデータ信号の波長差が0.1nm〜10nmの範囲内であることが好ましい。
本発明の一心双方向通信システムにおいて、下りダミー信号が下りデータ信号よりも長波長側にあることが好ましい。
In order to achieve the above object, the present invention is a single-fiber bidirectional communication system that performs bidirectional communication through a single optical fiber, which transmits a plurality of downlink data signals to a slave station, and a plurality of uplink data signals from the slave station , A slave station that transmits a plurality of uplink data signals to the master station, and receives a plurality of downlink data signals from the master station, between one end of a single optical fiber and the master station and others A pair of optical multiplexers / demultiplexers that are respectively provided between the terminal and the slave station and allow a plurality of downlink signals and a plurality of uplink signals to be transmitted through the single optical fiber, and the master station is analog-modulated In addition to the video signal and the digitally modulated data signal, the data signal and the bit are inverted, and includes means for transmitting a dummy signal whose wavelength is close to that of the data signal. Providing fiber bidirectional communication system, characterized by receiving demodulated separately from the dummy signal No..
In the single-core bidirectional communication system of the present invention, it is preferable that the wavelength difference between the downstream dummy signal and the downstream data signal is in the range of 0.1 nm to 10 nm.
In the single-core bidirectional communication system of the present invention, the downstream dummy signal is preferably on the longer wavelength side than the downstream data signal.

本発明の一心双方向通信システムによれば、波長差が僅かなデータ信号と映像信号の間に生じるラマン増幅、例えば波長1.49μmの下りデータ信号が波長1.55μmの映像信号に及ぼすラマン増幅を、ビット反転したダミー信号でうち消すことが可能なので、ラマン増幅の影響を回避することができ、良好な伝送品質が得られるという利点がある。   According to the single-core bidirectional communication system of the present invention, Raman amplification occurs between a data signal and a video signal having a slight wavelength difference, for example, a Raman amplification in which a downstream data signal having a wavelength of 1.49 μm affects a video signal having a wavelength of 1.55 μm. Can be erased with a dummy signal that has been bit-inverted, so that the influence of Raman amplification can be avoided and there is an advantage that good transmission quality can be obtained.

本発明の一心双方向通信システムでは、波長1.49μmデータ信号(下り信号A)を発生する信号光源に対して、光パワーが同一でかつ波長が0.1〜10nm離れた信号であり、該1.49μmデータ信号のビットが反転したダミー信号(下り信号A´)を該1.49μmデータ信号に合波させた後に波長1.55μm帯の映像信号(下り信号B)と合波させ、光ファイバを通して伝送する。   In the single-core bidirectional communication system of the present invention, a signal light source generating a data signal having a wavelength of 1.49 μm (downlink signal A) is a signal having the same optical power and a wavelength of 0.1 to 10 nm, 1. A dummy signal (downstream signal A ′) in which the bit of the 1.49 μm data signal is inverted is combined with the 1.49 μm data signal, and then combined with a video signal (downstream signal B) of a wavelength of 1.55 μm, Transmit through fiber.

受信側では、波長フィルタにより前記下り信号Bと、下り信号A及び下り信号A´を分波し、波長選択フィルタにより下り信号A及び下り信号A´のうちで下り信号A´だけを遮断した後、受光装置で受光する。   On the receiving side, the downstream signal B, the downstream signal A, and the downstream signal A ′ are demultiplexed by the wavelength filter, and only the downstream signal A ′ is blocked from the downstream signal A and the downstream signal A ′ by the wavelength selection filter. The light is received by the light receiving device.

このような光双方向通信を行う際、下り信号AがONの瞬間には、下り信号Bにラマン増幅効果を及ぼし、下り信号AがOFFの瞬間には下り信号Bにラマン増幅効果を及ぼさない。一方、下り信号AがOFFの瞬間には、下り信号A´がONとなるために、この下り信号A´が下り信号Bにラマン増幅効果を及ぼし、逆に下り信号AがONの瞬間には下り信号A´がOFFとなるために、この下り信号A´が下り信号Bにラマン増幅効果を及ぼすことになる。   When performing such bidirectional optical communication, the Raman amplification effect is exerted on the downlink signal B when the downlink signal A is ON, and the Raman amplification effect is not exerted on the downlink signal B when the downlink signal A is OFF. . On the other hand, since the downstream signal A ′ is turned on when the downstream signal A is OFF, this downstream signal A ′ exerts a Raman amplification effect on the downstream signal B, and conversely, when the downstream signal A is ON. Since the downstream signal A ′ is OFF, the downstream signal A ′ exerts a Raman amplification effect on the downstream signal B.

一般にラマン増幅係数は、励起光と増幅光の波長が約100nm離れたときに最大となり(波長1.55μm帯の場合)、波長がそれよりも近くとも遠くとも利得はなだらかに減少する。信号Aと信号A´は波長が異なるために、信号Bに及ぼすラマン増幅の効果は異なるが、波長が近接している場合には、ほぼ同じ程度のラマン利得を得ることができる。したがって、信号Aと信号A´の波長は、近ければ近いほど望ましいことになるが、あまり近すぎると受信側で信号Aと信号A´を分離することが困難になるため、受信側での波長分離フィルタの分解能によって制限される。また逆に、信号Aと信号A´の波長が離れていると受光側での分離が容易になる反面、信号Bに及ぼすラマン増幅の効果の差異が大きく異なってしまい、ラマン増幅による雑音の影響を取り除く効果が小さくなると言う問題がある。   In general, the Raman amplification coefficient becomes maximum when the wavelengths of the pumping light and the amplified light are about 100 nm apart (in the case of a wavelength of 1.55 μm band), and the gain gradually decreases regardless of whether the wavelength is nearer or farther than that. Since the signal A and the signal A ′ have different wavelengths, the effect of Raman amplification on the signal B is different. However, when the wavelengths are close to each other, almost the same Raman gain can be obtained. Accordingly, the closer the wavelengths of the signal A and the signal A ′ are, the better. However, if the wavelength is too close, it is difficult to separate the signal A and the signal A ′ on the receiving side. Limited by the resolution of the separation filter. Conversely, if the wavelengths of the signal A and the signal A ′ are separated, separation on the light receiving side is easy, but the difference in the effect of Raman amplification on the signal B is greatly different, and the influence of noise due to Raman amplification. There is a problem that the effect of removing is reduced.

ここで、信号Aと信号A´における波長差の絶対値が同じ場合には、信号A´の波長は信号Aの波長よりも長波長側に設置することが望ましい。これは、ラマン利得が利得最大波長よりも短波長側ではゆるやかに低減するのに対して、長波長側では利得が比較的急峻に低減するためである。   Here, when the absolute value of the wavelength difference between the signal A and the signal A ′ is the same, it is desirable that the wavelength of the signal A ′ is set longer than the wavelength of the signal A. This is because the Raman gain is gradually reduced on the shorter wavelength side than the maximum gain wavelength, whereas the gain is relatively steeply reduced on the longer wavelength side.

このように、下り信号AのON/OFFの状態にかかわらず、信号Bは定常的にラマン増幅効果を受け続けることになるので、ラマン増幅効果の有無によるパワーの変動を受けない。すなわち、映像信号の劣化が回避される。   As described above, regardless of the ON / OFF state of the downstream signal A, the signal B continuously receives the Raman amplification effect, and thus is not subject to power fluctuations due to the presence or absence of the Raman amplification effect. That is, deterioration of the video signal is avoided.

図1と図2は、本発明の一心双方向通信システムの一実施形態を示す構成図であり、図1はシステムの全体構成を示す構成図、図2はイーサネット(登録商標)受動光ネットワーク(以下、E−PONと記す。)局用装置とE−PON加入者用装置との構成を示す構成図である。これらの図中、符号1は光ファイバ、2は親局、3は子局、4は放送(映像)処理部、5は通信(データ)処理部、6は親局側の光合分波器となる波長多重フィルタ、7は混合・分配部、8は光送信機、9は光増幅器、10はスターカプラ、11は光増幅器、12はスイッチングハブ、13はE−PON局用装置、14はスターカプラ、15は子局側の光合分波器となる波長多重フィルタ、16は加入者線終端装置であるビデオ−光ネットワークユニット(以下、V−ONUと記す。)、17はE−PON加入者用装置、18は1.3μm受信機、19は1.49μm送信機、20は1.495μm送信機、21は光カプラ、22及び23はWDMカプラ、24は1.3μm送信機、25は1.49μm受信機、26は1.495μm遮断フィルタである。   1 and 2 are block diagrams showing an embodiment of the single-core bidirectional communication system of the present invention. FIG. 1 is a block diagram showing the overall configuration of the system. FIG. 2 is an Ethernet (registered trademark) passive optical network ( Hereinafter, this is referred to as “E-PON.”) It is a configuration diagram showing configurations of a station apparatus and an E-PON subscriber apparatus. In these drawings, reference numeral 1 is an optical fiber, 2 is a master station, 3 is a slave station, 4 is a broadcast (video) processing unit, 5 is a communication (data) processing unit, and 6 is an optical multiplexer / demultiplexer on the master station side. 8 is an optical transmitter, 9 is an optical amplifier, 10 is a star coupler, 11 is an optical amplifier, 12 is a switching hub, 13 is a device for an E-PON station, and 14 is a star. A coupler, 15 is a wavelength division multiplexing filter serving as an optical multiplexer / demultiplexer on the slave station side, 16 is a video-optical network unit (hereinafter referred to as V-ONU) which is a subscriber line terminating device, and 17 is an E-PON subscriber. Device, 18 is a 1.3 μm receiver, 19 is a 1.49 μm transmitter, 20 is a 1.495 μm transmitter, 21 is an optical coupler, 22 and 23 are WDM couplers, 24 is a 1.3 μm transmitter, and 25 is 1 .49μm receiver, 26 is 1.495μm blocking film It is.

この一心双方向通信システムは、一心の光ファイバ1を通して子局3へ複数の下りデータ信号を送信し、かつ子局3から複数の上りデータ信号を受信する親局2と、該親局2へ複数の上りデータ信号を送信し、かつ親局から複数の下りデータ信号を受信する子局3と、一心の光ファイバ1の一端と親局の間及び他端と子局の間にそれぞれ設けられ、複数の下り信号及び複数の上り信号を光ファイバ1を通じて伝送可能にする一対の光合分波器となる波長多重フィルタ6及び波長多重フィルタ15とを備えて構成され、前記親局2は、アナログ変調された映像信号とデジタル変調されたデータ信号に加えて、前記データ信号とビットが反転し、波長がデータ信号と近接するダミー信号を送信する1.495μm送信機20を含み、また子局3は、波長選択フィルタとなる1.495μm遮断フィルタ26を用いてデータ信号をダミー信号と分離して受信し復調することを特徴としている。   This one-core two-way communication system transmits a plurality of downlink data signals to a slave station 3 through a single optical fiber 1 and receives a plurality of uplink data signals from the slave station 3. A slave station 3 that transmits a plurality of downlink data signals from the master station, and is provided between one end of the single optical fiber 1 and the master station and between the other end and the slave station, respectively. It comprises a wavelength multiplexing filter 6 and a wavelength multiplexing filter 15 as a pair of optical multiplexers / demultiplexers that enable transmission of a plurality of downstream signals and a plurality of upstream signals through the optical fiber 1. In addition to the generated video signal and the digitally modulated data signal, the data signal and the bit are inverted, and a 1.495 μm transmitter 20 for transmitting a dummy signal whose wavelength is close to that of the data signal is included. It is characterized in that the received separated and demodulated data signal and dummy signal using a 1.495μm cutoff filter 26 which is a wavelength selective filter.

図1及び図2に示す例示において、親局2から光ファイバ1を通して子局3に送られる映像信号は、波長1.55μmの光信号を用いている。また親局2と子局3との間のデータ信号のうち、下りデータ信号は波長1.49μmの光信号を用い、上りデータ信号は波長1.3μmの光信号を用い、さらに前記下りデータ信号と合波して子局3側に送るダミー信号は波長1.495μmを用いている。本例示では、下りデータ信号(波長1.49μm)とダミー信号(波長1.495μm)との波長差(絶対値)が約5nmになっている。   In the example shown in FIGS. 1 and 2, the video signal transmitted from the master station 2 to the slave station 3 through the optical fiber 1 is an optical signal having a wavelength of 1.55 μm. Of the data signals between the master station 2 and the slave station 3, the downlink data signal uses an optical signal with a wavelength of 1.49 μm, the uplink data signal uses an optical signal with a wavelength of 1.3 μm, and the downlink data signal And a dummy signal transmitted to the slave station 3 side using a wavelength of 1.495 μm. In this example, the wavelength difference (absolute value) between the downstream data signal (wavelength 1.49 μm) and the dummy signal (wavelength 1.495 μm) is about 5 nm.

前記親局2は、子局3側に波長1.55μmの映像信号を送るための放送(映像)処理部4と、子局3とデータ信号のやり取りを行うための通信(データ)処理部5と、放送(映像)処理部4からの映像信号、通信(データ)処理部5からの下りデータ信号及びダミー信号を合波して光ファイバ1に送るとともに、子局3から光ファイバ1を通して親局側に送られる上りデータ信号を通信(データ)処理部5に送る光合分波器としての波長多重フィルタ6とを備えて構成されている。   The master station 2 includes a broadcast (video) processing unit 4 for sending a video signal having a wavelength of 1.55 μm to the slave station 3 side, and a communication (data) processing unit 5 for exchanging data signals with the slave station 3. In addition, the video signal from the broadcast (video) processing unit 4, the downstream data signal from the communication (data) processing unit 5, and the dummy signal are combined and sent to the optical fiber 1, and from the slave station 3 through the optical fiber 1. It comprises a wavelength multiplexing filter 6 as an optical multiplexer / demultiplexer that sends an upstream data signal sent to the station side to a communication (data) processing unit 5.

前記放送(映像)処理部4は、衛星放送(BS、CS)や地上波などの各種の受信信号を混合して分配する混合・分配部7と、その信号を波長1.55μmの光信号(映像信号)として送信する光送信機8と、その映像信号を増幅する光増幅器9と、増幅光を多数のポートに分岐(例えば16分岐)するスターカプラ10と、その分岐側ポートにそれぞれ接続された複数の光増幅器11とを備えて構成されている。
前記通信(データ)部5は、スイッチングハブ12と、E−PON局用装置13とを備え、スイッチングハブ12はインターネットと接続可能になっている。
The broadcast (video) processing unit 4 mixes and distributes various received signals such as satellite broadcast (BS, CS) and terrestrial waves, and an optical signal (wavelength 1.55 μm). An optical transmitter 8 that transmits the video signal, an optical amplifier 9 that amplifies the video signal, a star coupler 10 that branches the amplified light into a number of ports (for example, 16 branches), and a branch side port. And a plurality of optical amplifiers 11.
The communication (data) unit 5 includes a switching hub 12 and an E-PON station device 13, and the switching hub 12 can be connected to the Internet.

子局3は、波長多重フィルタ15と、加入者線終端装置であるV−ONU16と、E−PON加入者用装置17とを備えて構成されている。子局3は各加入者の家庭に設けられるものであり、光ファイバ1の加入者側にスターカプラ14を設け、このスターカプラ14のそれぞれの分岐側ポートに子局3が接続されるようになっている。   The slave station 3 includes a wavelength multiplexing filter 15, a V-ONU 16 that is a subscriber line termination device, and an E-PON subscriber device 17. The slave station 3 is provided in each subscriber's home, and a star coupler 14 is provided on the subscriber side of the optical fiber 1 so that the slave station 3 is connected to each branch side port of the star coupler 14. It has become.

図2に示す通り、親局側のE−PON局用装置13は、子局3側から送られる波長1.3μmの上りデータ信号を受信する1.3μm受信機18と、親局2から子局3側に送る波長1.49μmの下りデータ信号を送信する1.49μm送信機19と、波長1.495μmの光源を用いて下りデータ信号と同じ光パワーでビットが反転したダミー信号を送信する1.495μm送信機20と、1.49μm送信機19から送信された下りデータ信号と1.495μm送信機20から送信されたダミー信号を合波する光カプラ21と、このE−PON局用装置13と光ファイバ1との間に介されたWDMカプラ22とを備えて構成されている。   As shown in FIG. 2, the E-PON station device 13 on the parent station side includes a 1.3 μm receiver 18 that receives an uplink data signal having a wavelength of 1.3 μm transmitted from the child station 3 side, and A 1.49 μm transmitter 19 for transmitting a downstream data signal having a wavelength of 1.49 μm to be transmitted to the station 3 side, and a dummy signal having bits inverted with the same optical power as the downstream data signal, using a light source having a wavelength of 1.495 μm. 1.95 μm transmitter 20, optical coupler 21 for combining the downlink data signal transmitted from 1.49 μm transmitter 19 and the dummy signal transmitted from 1.495 μm transmitter 20, and this E-PON station apparatus 13 and a WDM coupler 22 interposed between the optical fiber 1 and the optical fiber 1.

子局側のE−PON加入者用装置17は、親局2に送る波長1.3μmの上りデータ信号を送信する1.3μm送信機24と、親局2から送られる上りデータ信号を、ダミー信号を遮断する1.495μm遮断フィルタ26を通した後で受信する1.49μm受信機25と、このE−PON加入者用装置17と光ファイバ1との間に介されたWDMカプラ22とを備えて構成されている。   The E-PON subscriber unit 17 on the slave station side transmits a 1.3 μm transmitter 24 for transmitting an uplink data signal having a wavelength of 1.3 μm to be transmitted to the master station 2 and an uplink data signal transmitted from the master station 2 as a dummy. A 1.49 μm receiver 25 that receives the signal after passing through a 1.495 μm blocking filter 26 that blocks the signal, and a WDM coupler 22 interposed between the E-PON subscriber device 17 and the optical fiber 1. It is prepared for.

本例示による一心双方向通信システムは、映像信号を波長1.55μmの光信号にのせ、データ信号を波長1.49μmの光信号にのせて波長多重フィルタにて合波し、親局から子局へ伝送する。この際、E−PON局内用装置13において、波長1.495μm送信機20を用いて、下りデータ信号と同じ光パワーでビットが反転したダミー信号を波長1.49μmの下りデータ信号と合波させ、光ファイバ1を通して加入者側の各子局3へ送信する。また子局3側では、E−PON加入者用装置17内で波長1.495μm遮断フィルタ26を用いて波長1.49μmの下りデータ信号のみを受信する。   In the single-fiber bidirectional communication system according to the present example, a video signal is placed on an optical signal having a wavelength of 1.55 μm, a data signal is placed on an optical signal having a wavelength of 1.49 μm, and multiplexed by a wavelength multiplexing filter. Transmit to. At this time, the E-PON station internal device 13 uses the wavelength 1.495 μm transmitter 20 to multiplex the dummy signal whose bit is inverted with the same optical power as the downlink data signal with the downlink data signal of the wavelength 1.49 μm. Then, the data is transmitted to each subscriber station 3 on the subscriber side through the optical fiber 1. On the slave station 3 side, only the downlink data signal having the wavelength of 1.49 μm is received by using the wavelength 1.495 μm cutoff filter 26 in the E-PON subscriber device 17.

このように、波長1.55μmの映像信号にラマン増幅を生じさせる、波長1.49μmの下りデータ信号を親局2から子局3側に送る際、この下りデータ信号と近似した波長(1.495μm)でありかつ同じ光パワーでビットが反転したダミー信号を、下りデータ信号と合波させて光ファイバ1を通して加入者側の子局3に送ることにより、下り信号のON/OFFの状態にかかわらず、映像信号は定常的にラマン増幅効果を受け続けることになるので、ラマン増幅効果の有無によるパワーの変動を受けない。したがって、ラマン増幅の影響を回避することができ、良好な伝送品質が得られる。   In this way, when a downlink data signal having a wavelength of 1.49 μm, which causes Raman amplification in a video signal having a wavelength of 1.55 μm, is sent from the master station 2 to the slave station 3 side, a wavelength (1. 495 μm) and a dummy signal whose bit is inverted with the same optical power is combined with the downlink data signal and sent to the subscriber station 3 on the subscriber side through the optical fiber 1, so that the downstream signal is turned on / off. Regardless, the video signal is constantly subjected to the Raman amplification effect, and thus is not subject to power fluctuations due to the presence or absence of the Raman amplification effect. Therefore, the influence of Raman amplification can be avoided and good transmission quality can be obtained.

なお、本例示においては波長1.49μmデータ信号と波長1.495μmダミー信号の合波用に光カプラ21(3dBカプラ)を用いているが、波長合波器で代用することも可能である。
また、波長1.495μm遮断フィルタ26の代わりに波長合波器を用いることも可能である。
In this example, the optical coupler 21 (3 dB coupler) is used for multiplexing the wavelength 1.49 μm data signal and the wavelength 1.495 μm dummy signal, but a wavelength multiplexer can be used instead.
Further, a wavelength multiplexer can be used in place of the wavelength 1.495 μm cutoff filter 26.

本発明の一心双方向通信システムの一実施形態を示す構成図である。It is a block diagram which shows one Embodiment of the single core bidirectional | two-way communication system of this invention. 図1のシステム内のE−PON局用装置とE−PON加入者用装置との構成を示す構成図である。It is a block diagram which shows the structure of the apparatus for E-PON stations and the apparatus for E-PON subscribers in the system of FIG. 石英系光ファイバ中で波長1.49μmの光信号により発生するラマン利得の波長特性を示すグラフである。It is a graph which shows the wavelength characteristic of the Raman gain which generate | occur | produces with the optical signal of wavelength 1.49 micrometer in a silica type optical fiber.

符号の説明Explanation of symbols

1…光ファイバ、2…親局、3…子局、4…放送(映像)処理部、5…通信(データ)処理部、6…波長多重フィルタ、7…混合・分配部、8…光送信機、9…光増幅器、10…スターカプラ、11…光増幅器、12…スイッチングハブ、13…E−PON局用装置、14…スターカプラ、15…波長多重フィルタ、16…V−ONU、17…E−PON加入者用装置、18…1.3μm受信機、19…1.49μm送信機、20…1.495μm送信機、21…光カプラ、22,23…WDMカプラ、24…1.3μm送信機、25…1.49μm受信機、26…1.495μm遮断フィルタ。
DESCRIPTION OF SYMBOLS 1 ... Optical fiber, 2 ... Master station, 3 ... Slave station, 4 ... Broadcast (video) processing part, 5 ... Communication (data) processing part, 6 ... Wavelength multiplexing filter, 7 ... Mixing / distribution part, 8 ... Optical transmission 9 ... Optical amplifier, 10 ... Star coupler, 11 ... Optical amplifier, 12 ... Switching hub, 13 ... E-PON station equipment, 14 ... Star coupler, 15 ... Wavelength multiplexing filter, 16 ... V-ONU, 17 ... E-PON subscriber equipment, 18 ... 1.3 [mu] m receiver, 19 ... 1.49 [mu] m transmitter, 20 ... 1.495 [mu] m transmitter, 21 ... Optical coupler, 22, 23 ... WDM coupler, 24 ... 1.3 [mu] m transmission 25 ... 1.49 μm receiver, 26 ... 1.495 μm blocking filter.

Claims (3)

一心の光ファイバを通じて双方向通信を行う一心双方向通信システムであって、子局へ複数の下りデータ信号を送信し、かつ子局から複数の上りデータ信号を受信する親局と、該親局へ複数の上りデータ信号を送信し、かつ親局から複数の下りデータ信号を受信する子局と、一心の光ファイバの一端と前記親局の間及び他端と子局の間にそれぞれ設けられ、複数の下り信号及び複数の上り信号を前記一心の光ファイバを通じて伝送可能にする一対の光合分波器とを備え、前記親局は、アナログ変調された映像信号とデジタル変調されたデータ信号に加えて、前記データ信号とビットが反転し、波長がデータ信号と近接するダミー信号を送信する手段を含み、前記子局は、波長選択フィルタを用いてデータ信号をダミー信号と分離して受信し復調することを特徴とする一心双方向通信システム。   A single-fiber bidirectional communication system that performs bidirectional communication through a single optical fiber, a master station that transmits a plurality of downlink data signals to a slave station and receives a plurality of uplink data signals from the slave station, and the master station A slave station that transmits a plurality of uplink data signals and receives a plurality of downlink data signals from a master station, and is provided between one end of a single optical fiber and the master station and between the other end and the slave station, A pair of optical multiplexers / demultiplexers that allow a plurality of downstream signals and a plurality of upstream signals to be transmitted through the single optical fiber, wherein the master station adds an analog-modulated video signal and a digital-modulated data signal And means for transmitting a dummy signal whose bit is inverted with respect to the data signal and whose wavelength is close to that of the data signal. The slave station receives the data signal separately from the dummy signal using a wavelength selection filter, and receives and recovers the data signal. Fiber bidirectional communication system, characterized by. 下りダミー信号と下りデータ信号の波長差が0.1nm〜10nmの範囲内であることを特徴とする請求項1に記載の一心双方向通信システム。   The single-core bidirectional communication system according to claim 1, wherein a wavelength difference between the downstream dummy signal and the downstream data signal is in a range of 0.1 nm to 10 nm. 下りダミー信号が下りデータ信号よりも長波長側にあることを特徴とする請求項1又は2に記載の一心双方向通信システム。
The single-core bidirectional communication system according to claim 1 or 2, wherein the downstream dummy signal is on a longer wavelength side than the downstream data signal.
JP2004212754A 2004-07-21 2004-07-21 Single-core two-way communication system Withdrawn JP2006033686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004212754A JP2006033686A (en) 2004-07-21 2004-07-21 Single-core two-way communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004212754A JP2006033686A (en) 2004-07-21 2004-07-21 Single-core two-way communication system

Publications (1)

Publication Number Publication Date
JP2006033686A true JP2006033686A (en) 2006-02-02

Family

ID=35899451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004212754A Withdrawn JP2006033686A (en) 2004-07-21 2004-07-21 Single-core two-way communication system

Country Status (1)

Country Link
JP (1) JP2006033686A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006115454A (en) * 2004-09-17 2006-04-27 Sumitomo Electric Ind Ltd Optical communications system, master station device and slave station device for optical communication
JP5665958B1 (en) * 2013-12-17 2015-02-04 日本電信電話株式会社 Wavelength multiplexing optical communication system, optical transmitter, and wavelength multiplexing optical communication method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006115454A (en) * 2004-09-17 2006-04-27 Sumitomo Electric Ind Ltd Optical communications system, master station device and slave station device for optical communication
JP5665958B1 (en) * 2013-12-17 2015-02-04 日本電信電話株式会社 Wavelength multiplexing optical communication system, optical transmitter, and wavelength multiplexing optical communication method

Similar Documents

Publication Publication Date Title
JP4371577B2 (en) Method and apparatus for simultaneous transmission of digital telephone and analog video using wavelength division multiplexing
US7502562B2 (en) Distributed terminal optical transmission system
KR100724902B1 (en) Ftth system based on passive optical network for broadcasting service
US8750707B2 (en) System and method for establishing secure communications between transceivers in undersea optical communication systems
US6597482B1 (en) Multiplexing/demultiplexing apparatus for wavelength division multiplexed system and wavelength division multiplexed passive optical subscriber networks using the same apparatus
JP5604514B2 (en) System and method for transmitting optical signals
JP2022022319A5 (en)
JP5741086B2 (en) Method and system for compensating for optical dispersion in optical signals
US20130121693A1 (en) Optical transmission system, pump-light supply control method, and pump light supply apparatus
JPWO2018193835A1 (en) Bidirectional optical transmission system and bidirectional optical transmission method
KR100324797B1 (en) Wavelength-division-multiplexed free-space optical communication systems
JP2013509136A (en) Separate dispersion compensation for coherent and non-coherent channels
JP2007201670A (en) Optical transmission system
JP2004343266A (en) One-core two-way optical transmission system and one-core two-way optical amplifier
US10547405B1 (en) Multi-mode wavelength division multiplexing for free-space optical communications
JP2006033686A (en) Single-core two-way communication system
JP2006166465A (en) Method of transmitting broadcasting signal in passive optical subscriber network system, and the passive optical subscriber network system
JP2012257160A (en) Communication system
CA3017061C (en) Aggregator-based cost-optimized communications topology for a point-to-multipoint network
JP2002290379A (en) Signal transmission system
KR100434454B1 (en) Daisy chain wavelength division multiplexing device and daisy chain wavelength division multiplexing system and transmission network utilizing the device
JP2010206598A (en) Single-core bidirectional optical transmission system, single-core bidirectional optical amplifier, and single-core bidirectional optical transmission method
JP2002051008A (en) Optical transmission system and optical transmitter
JP6120383B2 (en) Optical communication system
US11523193B2 (en) Optical communications module link extender including ethernet and PON amplification

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071002