JP2006032078A - Fuel cell generator - Google Patents

Fuel cell generator Download PDF

Info

Publication number
JP2006032078A
JP2006032078A JP2004208134A JP2004208134A JP2006032078A JP 2006032078 A JP2006032078 A JP 2006032078A JP 2004208134 A JP2004208134 A JP 2004208134A JP 2004208134 A JP2004208134 A JP 2004208134A JP 2006032078 A JP2006032078 A JP 2006032078A
Authority
JP
Japan
Prior art keywords
removing means
fuel cell
nitrogen
nitrogen oxide
power generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004208134A
Other languages
Japanese (ja)
Other versions
JP4752204B2 (en
Inventor
Takahiro Umeda
孝裕 梅田
Takayuki Urata
隆行 浦田
Yasushi Sugawara
靖 菅原
Junji Morita
純司 森田
Kiichi Shibata
礎一 柴田
Norihiko Kawabata
徳彦 川畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004208134A priority Critical patent/JP4752204B2/en
Publication of JP2006032078A publication Critical patent/JP2006032078A/en
Application granted granted Critical
Publication of JP4752204B2 publication Critical patent/JP4752204B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell generator which removes nitrogen of an impurity contained in an oxidizer gas, and suppresses deterioration by nitrogen oxide, and is improved in durability. <P>SOLUTION: The fuel cell generator comprises a nitrogen oxide removing means 9 for removing nitrogen oxide contained in the oxidizer gas and a fuel cell 5 made of an electrolyte 1, a pair of electrodes 21, 22, and a pair of separator plates 41, 42. Since it removes nitrogen oxide possibly existing in the reduction gas, and prevents entering into the fuel cell 5, deterioration of the battery voltage can be suppressed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、酸化剤ガス中に含まれる窒素酸化物による劣化の抑制または耐久性の向上を図った燃料電池発電装置に関するものである。   The present invention relates to a fuel cell power generation device that is intended to suppress deterioration due to nitrogen oxides contained in an oxidant gas or to improve durability.

従来の一般的な固体高分子電解質型燃料電池の構成および動作について図3を参照しながら説明する。図3において1は水素イオン伝導性を有するパーフルオロカーボンスルフォン酸からなる固体高分子電解質であり、電解質1の両面には一対の電極としてアノード21およびカソード22が形成されている。アノード21およびカソード22は、多孔質カーボンに白金などの貴金属を担持した触媒および水素イオン伝導性を有する高分子電解質との混合物からなる触媒層と、触媒層の上に積層した通気性および電子伝導性を有するガス拡散層を備えている。また、アノード21およびカソード22の周囲にはガスの混合やリークを防止する一対のガスケット31および32がそれぞれ配置され、アノード21に少なくとも水素を含む燃料ガスを供給および排出し、カソード22に少なくとも酸素を含む酸化剤ガスを供給および排出するガス流路を有する一対の導電性のセパレータ板41および42で狭持されている。   The configuration and operation of a conventional general solid polymer electrolyte fuel cell will be described with reference to FIG. In FIG. 3, reference numeral 1 denotes a solid polymer electrolyte made of perfluorocarbon sulfonic acid having hydrogen ion conductivity. An anode 21 and a cathode 22 are formed as a pair of electrodes on both surfaces of the electrolyte 1. The anode 21 and the cathode 22 have a catalyst layer made of a mixture of a catalyst in which a noble metal such as platinum is supported on porous carbon and a polymer electrolyte having hydrogen ion conductivity, and air permeability and electronic conductivity laminated on the catalyst layer. A gas diffusion layer having a property is provided. A pair of gaskets 31 and 32 for preventing gas mixing and leakage are respectively disposed around the anode 21 and the cathode 22, and a fuel gas containing at least hydrogen is supplied to and discharged from the anode 21, and at least oxygen is supplied to the cathode 22. Is sandwiched between a pair of conductive separator plates 41 and 42 having a gas flow path for supplying and discharging an oxidant gas containing.

以上の構成からなる単セルを複数積層したものをスタックとし、単セルまたはスタックを総称して燃料電池5とする。   A stack obtained by stacking a plurality of single cells having the above configuration is referred to as a stack, and the single cell or stack is collectively referred to as a fuel cell 5.

アノード21およびカソード22にそれぞれ燃料ガスおよび酸化剤ガスを供給して電子負荷を接続すると、アノード21に供給された燃料ガス中に含まれる水素はアノード21と電解質1の界面で電子を放って水素イオンとなる(化1)。   When the fuel gas and the oxidant gas are supplied to the anode 21 and the cathode 22, respectively, and an electronic load is connected, the hydrogen contained in the fuel gas supplied to the anode 21 releases electrons at the interface between the anode 21 and the electrolyte 1 to generate hydrogen. It becomes an ion (Chemical formula 1).

Figure 2006032078
Figure 2006032078

水素イオンは電解質1を通ってカソード22へと移動し、カソード22と電解質1の界面で電子を受け取り、カソード22に供給された酸化剤ガス中に含まれる酸素と反応し、水を生成する(化2)。   The hydrogen ions move to the cathode 22 through the electrolyte 1, receive electrons at the interface between the cathode 22 and the electrolyte 1, react with oxygen contained in the oxidant gas supplied to the cathode 22, and generate water ( 2).

Figure 2006032078
Figure 2006032078

全反応を(化3)に示す。   The total reaction is shown in (Chemical Formula 3).

Figure 2006032078
Figure 2006032078

このとき電子負荷を流れる電子の流れを直流の電気エネルギーとして利用することができる。また、一連の反応は発熱反応であるため、反応熱を熱エネルギーとして利用することができる。   At this time, the flow of electrons flowing through the electronic load can be used as DC electrical energy. Moreover, since a series of reactions are exothermic reactions, the reaction heat can be used as thermal energy.

また、酸化剤ガス中に不純物として窒素酸化物が存在すると、燃料電池5の出力電圧が低下する。したがって、酸化剤ガス中に含まれる燃料電池5の特性に悪影響を与える窒素酸化物を除去する必要がある。   Further, when nitrogen oxide is present as an impurity in the oxidant gas, the output voltage of the fuel cell 5 is lowered. Therefore, it is necessary to remove nitrogen oxides that adversely affect the characteristics of the fuel cell 5 contained in the oxidant gas.

従来は、例えば、酸化剤ガスの供給経路に設けられた洗浄液が貯えられた洗浄液タンクを備え、前記洗浄液で酸化剤ガスを洗浄して供給していた(特許文献1参照)。これにより、酸化剤ガス中に含まれる不純物の窒素酸化物を除去して、燃料電池に供給するので、電池特性や寿命の低下を防止することができる。
特開2002−56877号公報
Conventionally, for example, a cleaning liquid tank provided with a cleaning liquid provided in an oxidant gas supply path is provided, and the oxidant gas is cleaned and supplied with the cleaning liquid (see Patent Document 1). Thereby, nitrogen oxides of impurities contained in the oxidant gas are removed and supplied to the fuel cell, so that it is possible to prevent deterioration of battery characteristics and life.
JP 2002-56877 A

しかしながら、前記従来の洗浄液タンクを用いて窒素酸化物を除去する方法では、装置が大型化するだけでなく、洗浄液の交換の際、排出した洗浄液の処理に手間がかかるという課題があった。また、洗浄液タンクの水圧がかかるので、洗浄液タンクでの圧力損失が大きくなり、酸化剤ガスを供給するブロワなどの空気供給手段の供給圧力を高める必要があり、それによる効率低下、騒音増大、寿命低下などの課題を有していた。   However, the conventional method for removing nitrogen oxides using the cleaning liquid tank has a problem that not only the apparatus is increased in size, but also it takes time to process the discharged cleaning liquid when the cleaning liquid is replaced. In addition, since the water pressure in the cleaning liquid tank is applied, the pressure loss in the cleaning liquid tank increases, and it is necessary to increase the supply pressure of air supply means such as a blower that supplies oxidant gas. It had problems such as decline.

本発明は、前記従来の課題を解決するもので、洗浄液タンクを用いることなく、酸化剤ガス中に含まれる不純物の窒素酸化物を除去することができる窒素酸化物除去手段を備えることにより、窒素酸化物よる電池電圧の低下を抑制する耐久性に優れた燃料電池発電装置を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and is provided with a nitrogen oxide removing means capable of removing nitrogen oxides of impurities contained in an oxidant gas without using a cleaning liquid tank. An object of the present invention is to provide a fuel cell power generator excellent in durability that suppresses a decrease in battery voltage due to oxides.

前記従来の課題を解決するために、本発明の燃料電池発電装置は、酸化剤ガス中に含まれる窒素酸化物を除去する窒素酸化物除去手段を備えるものである。   In order to solve the above-described conventional problems, the fuel cell power generator of the present invention includes nitrogen oxide removing means for removing nitrogen oxide contained in the oxidant gas.

これによって、酸化剤ガス中に含まれる窒素酸化物を除去することができ、窒素酸化物による電池電圧の低下を抑制することができる。   Thereby, nitrogen oxides contained in the oxidant gas can be removed, and a decrease in battery voltage due to nitrogen oxides can be suppressed.

以上説明したように、本発明の燃料電池発電装置によれば、比較的小型な構成で酸化剤ガス中に含まれる窒素酸化物を除去することができ、燃料電池の出力電圧の低下を抑制することができる。   As described above, according to the fuel cell power generation device of the present invention, nitrogen oxides contained in the oxidant gas can be removed with a relatively small configuration, and a decrease in the output voltage of the fuel cell is suppressed. be able to.

また、液体を用いないので、交換などのメンテナンス性が向上し、水圧も掛からないので、低圧力損失を保持することができ、ブロワなどの空気供給手段への負荷が軽減され、高効率化、低騒音化を図ることができ、耐久性に優れた燃料電池発電装置を提供することができる。   In addition, since no liquid is used, maintenance such as replacement is improved and water pressure is not applied, so low pressure loss can be maintained, and the load on air supply means such as a blower is reduced, resulting in high efficiency. Noise reduction can be achieved, and a fuel cell power generator having excellent durability can be provided.

第1の発明は、少なくとも酸素を含む酸化剤ガス中に含まれる窒素酸化物を除去する窒素酸化物除去手段と、電解質と、前記電解質を挟む一対の電極と、前記電極の一方に少なくとも水素を含む燃料ガスを供給排出し、他方に前記窒素酸化物を除去した前記酸化剤ガスを供給排出するガス流路を有する一対のセパレータ板とからなる少なくとも一つのセルを備えた燃料電池を備え、酸化剤ガス中に存在する不純物の窒素酸化物を窒素酸化物除去手段で除去するので、窒素酸化物による電池電圧の低下を抑制することができる。   According to a first aspect of the present invention, there is provided a nitrogen oxide removing means for removing nitrogen oxide contained in an oxidant gas containing at least oxygen, an electrolyte, a pair of electrodes sandwiching the electrolyte, and at least hydrogen in one of the electrodes. A fuel cell comprising at least one cell comprising a pair of separator plates having a gas flow path for supplying and discharging the fuel gas, and supplying and discharging the oxidant gas from which the nitrogen oxide has been removed, Since the nitrogen oxides of impurities present in the agent gas are removed by the nitrogen oxide removing means, it is possible to suppress a decrease in battery voltage due to nitrogen oxides.

第2の発明は、特に第1の発明の窒素酸化物除去手段は、活性炭に窒素酸化物を吸収するアルカリを添着した活性炭フィルターであり、比表面積の大きい活性炭にアルカリを添着するので、添着量を増加させることができ、窒素酸化物を吸収除去できる寿命を延ばすことができる。   In the second invention, in particular, the nitrogen oxide removing means of the first invention is an activated carbon filter in which activated carbon is impregnated with an alkali that absorbs nitrogen oxide, and the alkali is attached to activated carbon having a large specific surface area. Can be increased, and the lifetime in which nitrogen oxides can be absorbed and removed can be extended.

第3の発明は、特に第1の発明または第2の発明において、有機物を吸着する活性炭からなる有機物除去手段と、活性炭にアルカリを吸収する酸を添着したアルカリ除去手段とを備え、酸化剤ガスを窒素酸化物除去手段に流通させた後、前記有機物除去手段および前記アルカリ除去手段に流通させ、窒素酸化物だけでなく有機物やアルカリなどの不純物も同時に吸着除去するので、これら不純物による電池電圧の低下を抑制することができる。   The third invention comprises an organic substance removing means comprising activated carbon that adsorbs organic substances, and an alkali removing means in which an acid that absorbs alkali is impregnated on the activated carbon, and an oxidant gas. Is passed through the nitrogen oxide removing means and then passed through the organic substance removing means and the alkali removing means to simultaneously adsorb and remove not only nitrogen oxides but also impurities such as organic substances and alkalis. The decrease can be suppressed.

また、窒素酸化物を除去した後、有機物除去手段およびアルカリ除去手段を配置するので、活性炭により還元される二酸化窒素の量を減少させることができ、二酸化窒素に比べて活性炭では吸着除去しにくい一酸化窒素の量を減少させるので、一酸化窒素による電池電圧の低下を抑制することができる。   In addition, since the organic substance removing means and the alkali removing means are arranged after removing the nitrogen oxides, the amount of nitrogen dioxide reduced by the activated carbon can be reduced, and the activated carbon is less likely to be adsorbed and removed by the activated carbon than the nitrogen dioxide. Since the amount of nitric oxide is reduced, a decrease in battery voltage due to nitric oxide can be suppressed.

第4の発明は、特に第1の発明の窒素酸化物除去手段は、アルカリ性の官能基を付与したイオン交換樹脂であり、窒素酸化物を硝酸イオンとして吸着除去するので、二酸化窒素および一酸化窒素など窒素酸化物による電池電圧の低下を抑制することができる。   In the fourth invention, in particular, the nitrogen oxide removing means of the first invention is an ion exchange resin to which an alkaline functional group is added, and nitrogen oxide is adsorbed and removed as nitrate ions, so that nitrogen dioxide and nitrogen monoxide are removed. Thus, a decrease in battery voltage due to nitrogen oxides can be suppressed.

第5の発明は、特に第1の発明において、オゾン発生器を備え、酸化剤ガス中に含まれる一酸化窒素をオゾンで酸化して二酸化窒素とし、窒素酸化物除去手段に流通させ、二酸化窒素に比べて吸着除去しにくい一酸化窒素をあらかじめオゾンで二酸化窒素に酸化するので、一酸化窒素および二酸化窒素など窒素酸化物による電池電圧の低下を抑制することができる。   According to a fifth aspect of the present invention, in particular, in the first aspect of the invention, an ozone generator is provided, and nitrogen monoxide contained in the oxidant gas is oxidized with ozone to form nitrogen dioxide, which is circulated through the nitrogen oxide removing means. Since nitrogen monoxide, which is difficult to adsorb and remove as compared with, is previously oxidized to nitrogen dioxide with ozone, a decrease in battery voltage due to nitrogen oxides such as nitrogen monoxide and nitrogen dioxide can be suppressed.

第6の発明は、特に第1の発明または第5の発明において、オゾン分解器を備え、酸化剤ガス中に含まれるオゾンを除去して燃料電池に供給し、電池電圧に影響を与えるオゾンを除去してから酸化剤ガスを供給するので、酸化剤ガス中の酸素濃度が一定となり、電池性能の安定化を図ることができる。   In a sixth aspect of the invention, in particular, in the first or fifth aspect of the invention, an ozone decomposing device is provided to remove ozone contained in the oxidant gas and to supply the fuel cell with ozone that affects the cell voltage. Since the oxidant gas is supplied after the removal, the oxygen concentration in the oxidant gas becomes constant, and the battery performance can be stabilized.

第7の発明は、特に第1の発明の窒素酸化物除去手段は、少なくとも無機過酸化物または過マンガン酸塩を含み、酸化剤ガス中に含まれる一酸化窒素および二酸化窒素などの窒素酸化物を硝酸イオンとして効率よく吸収除去するので、窒素酸化物による電池電圧の低下を抑制することができる。   In the seventh invention, in particular, the nitrogen oxide removing means of the first invention contains at least an inorganic peroxide or a permanganate, and nitrogen oxides such as nitrogen monoxide and nitrogen dioxide contained in the oxidizing gas. Is efficiently absorbed and removed as nitrate ions, so that a decrease in battery voltage due to nitrogen oxides can be suppressed.

第8の発明は、特に第1の発明の窒素酸化物除去手段は、酸素欠損を有するペロブスカイト型複合金属酸化物を含み、酸化剤ガス中に含まれる窒素酸化物を窒素と酸素に分解除去するので、窒素酸化物による電池電圧の低下を抑制することができる。   In the eighth invention, in particular, the nitrogen oxide removing means of the first invention includes a perovskite complex metal oxide having oxygen deficiency, and decomposes and removes nitrogen oxide contained in the oxidant gas into nitrogen and oxygen. Therefore, a decrease in battery voltage due to nitrogen oxides can be suppressed.

第9の発明は、特に第1の発明において、光触媒を備え、酸化剤ガス中に含まれる一酸化窒素を二酸化窒素とし、窒素酸化物除去手段に流通させ、二酸化窒素に比べて吸着しにくい一酸化窒素をあらかじめ二酸化窒素に変換し、窒素酸化物除去手段により、二酸化窒素を効率よく除去するので、窒素酸化物による電池電圧の低下を抑制することができる。   According to a ninth invention, in particular, in the first invention, a photocatalyst is provided, and nitrogen monoxide contained in the oxidant gas is converted to nitrogen dioxide, which is circulated through the nitrogen oxide removing means. Nitrogen oxide is converted into nitrogen dioxide in advance, and nitrogen dioxide is efficiently removed by the nitrogen oxide removing means, so that a decrease in battery voltage due to nitrogen oxide can be suppressed.

以下本発明の実施例について、図面を参照しながら説明する。なお、本実施の形態によって本発明が限定されるものではない。   Embodiments of the present invention will be described below with reference to the drawings. Note that the present invention is not limited to the embodiment.

(実施の形態1)
図1は、本発明の燃料電池発電装置の構成図を示すものである。図1において、1は水素イオン伝導性を有するパーフルオロカーボンスルフォン酸ポリマからなる膜状の固体高分子電解質であり、電解質1の両面には一対の電極、アノード21およびカソード22が形成されている。電解質1は、水分を取り込むことにより、電解質1内のスルフォン酸基の水素イオンが解離して電荷担体となり、スルフォン酸基がいくつか凝集して形成される逆ミセル構造の中を通過することで水素イオン伝導性を示す。含水率が下がると電解質1の導電率が低下するため、ガスを加湿して供給し、電解質1の乾燥を防ぐ方法をとった。
(Embodiment 1)
FIG. 1 shows a configuration diagram of a fuel cell power generator according to the present invention. In FIG. 1, reference numeral 1 denotes a membrane-shaped solid polymer electrolyte made of a perfluorocarbon sulfonic acid polymer having hydrogen ion conductivity. A pair of electrodes, an anode 21 and a cathode 22 are formed on both surfaces of the electrolyte 1. When the electrolyte 1 takes in moisture, the hydrogen ions of the sulfonic acid groups in the electrolyte 1 are dissociated to become charge carriers, and the electrolyte 1 passes through a reverse micelle structure formed by aggregation of several sulfonic acid groups. Shows hydrogen ion conductivity. Since the electrical conductivity of the electrolyte 1 decreases when the water content decreases, a method of preventing the drying of the electrolyte 1 by humidifying and supplying the gas was adopted.

アノード21およびカソード22は、多孔質カーボンに白金などの貴金属を担持した触媒および水素イオン伝導性を有する高分子電解質との混合物からなる触媒層と、触媒層の上に積層した通気性および電子伝導性を有するガス拡散層からなる。アノード21には、耐CO性を有する白金−ルテニウムなどの合金触媒を用いた。また、ガス拡散層には撥水処理を施したカーボンペーパーあるいはカーボンクロスを用いた。   The anode 21 and the cathode 22 have a catalyst layer made of a mixture of a catalyst in which a noble metal such as platinum is supported on porous carbon and a polymer electrolyte having hydrogen ion conductivity, and air permeability and electronic conductivity laminated on the catalyst layer. It consists of a gas diffusion layer having properties. For the anode 21, an alloy catalyst such as platinum-ruthenium having CO resistance was used. Moreover, carbon paper or carbon cloth subjected to water repellent treatment was used for the gas diffusion layer.

そして、アノード21およびカソード22の周囲にガスの混合やリークを防止する一対のガスケット31および32をそれぞれ配置し、さらに、アノード21およびカソード22にそれぞれ燃料ガスおよび酸化剤ガスを供給および排出するガス流路を有する一対の導電性のセパレータ板41および42を用いて狭持した。以上のように構成される単セルが発生する電圧は約0.75Vであり、必要とする電圧分の複数の単セルを直列に積層(スタック)して所望出力の燃料電池を形成することができる。   A pair of gaskets 31 and 32 for preventing gas mixing and leakage are disposed around the anode 21 and the cathode 22, respectively, and further, a gas for supplying and discharging fuel gas and oxidant gas to the anode 21 and the cathode 22, respectively. A pair of conductive separator plates 41 and 42 having a flow path was used to hold them. The voltage generated by the single cell configured as described above is about 0.75 V, and a plurality of single cells corresponding to the required voltage can be stacked in series to form a fuel cell with a desired output. it can.

また、セパレータ板41および42の両端には集電板と、絶縁板および端板を配置し、締結ロッドで固定した。そして、集電板に電子負荷および電圧検出部を接続し、一定電流を流したときの燃料電池の電圧を検出できる構成とした。   In addition, current collector plates, insulating plates, and end plates were disposed at both ends of the separator plates 41 and 42, and fixed with fastening rods. And it was set as the structure which can detect the voltage of a fuel cell when an electronic load and a voltage detection part are connected to the current collecting plate, and a fixed electric current is sent.

また、酸化剤ガスは、大気からファンやポンプおよび空気ブロワなどの空気供給手段より取り込み、流量制御手段により所定の流量で燃料電池のカソード22に供給した。   The oxidant gas was taken in from the air from air supply means such as a fan, a pump and an air blower, and supplied to the cathode 22 of the fuel cell at a predetermined flow rate by the flow rate control means.

還元ガス中には自動車などの排ガスに含まれる二酸化窒素や一酸化窒素などの窒素酸化物が不純物として含まれている。燃料電池発電装置は、一般家庭や、店舗、工場などに設置されるので、このような環境においても、十分耐える必要がある。   The reducing gas contains nitrogen oxides such as nitrogen dioxide and nitrogen monoxide contained in exhaust gas from automobiles as impurities. Since the fuel cell power generator is installed in a general household, a store, a factory, etc., it is necessary to withstand even in such an environment.

したがって、空気供給手段とカソード22入口の間に酸化剤ガス中に含まれる不純物の窒素酸化物を除去する窒素酸化物除去手段9を配置した。窒素酸化物除去手段9の前流には、還元ガス中に含まれる粉塵などの粒子状物質や、空気供給手段などから発生する粉塵などの粒子状物質を除去する粗フィルター8を設けた。また、窒素酸化物除去手段9の後流には、還元ガス中に含まれている可能性のあるトルエン、メチルエチルケトンなどの有機物を除去する有機物除去手段10およびアンモニア、トリメチルアミンなどのアルカリ性不純物を除去するアルカリ除去手段11を設けた。さらに、最後流には、還元ガス中に含まれる粉塵などの粒子状物質や、前段の窒素酸化物除去手段9、有機物除去手段10およびアルカリ除去手段11自身が発生する粉塵などの粒子状物質を除去する除塵フィルター12を配置した。これらのフィルターは、筐体内に収納され、クリーンな還元ガスをカソード22に導くように配管されている。   Therefore, the nitrogen oxide removing means 9 for removing nitrogen oxides of impurities contained in the oxidant gas is disposed between the air supply means and the cathode 22 inlet. A rough filter 8 for removing particulate matter such as dust contained in the reducing gas and particulate matter such as dust generated from the air supply means is provided in the upstream of the nitrogen oxide removing means 9. Further, downstream of the nitrogen oxide removing means 9, organic substances removing means 10 for removing organic substances such as toluene and methyl ethyl ketone which may be contained in the reducing gas, and alkaline impurities such as ammonia and trimethylamine are removed. Alkali removing means 11 was provided. Further, in the final flow, particulate matter such as dust contained in the reducing gas, particulate matter such as dust generated by the nitrogen oxide removing means 9, the organic matter removing means 10 and the alkali removing means 11 themselves are included. A dust removal filter 12 to be removed was arranged. These filters are housed in a housing and are piped to guide clean reducing gas to the cathode 22.

また、有機物除去手段10は、強アルカリ性の窒素酸化物除去手段9と、強酸性のアルカリ除去手段11との間に配置されるスペーサーとしても機能し、窒素酸化物除去手段9とアルカリ除去手段11を直接接触させないので、酸とアルカリが中和反応を起こして互いの除去性能が劣化するのを防止することができる。   The organic substance removing means 10 also functions as a spacer disposed between the strong alkaline nitrogen oxide removing means 9 and the strong acidic alkali removing means 11, and the nitrogen oxide removing means 9 and the alkali removing means 11. Since the acid and alkali are not brought into direct contact with each other, it is possible to prevent the acid and alkali from causing a neutralization reaction and deteriorating the mutual removal performance.

大気より取り込まれた酸化剤ガスは、最初に粗フィルター8を通過し、次いで窒素酸化物除去手段9、有機物除去手段10、アルカリ除去手段11を通って、最後に除塵フィルター12を通って、酸化剤ガスに含まれる各種不純物の濃度を低減させる。   The oxidant gas taken in from the atmosphere first passes through the coarse filter 8, then passes through the nitrogen oxide removing means 9, the organic matter removing means 10, the alkali removing means 11, and finally passes through the dust removing filter 12 to oxidize. The concentration of various impurities contained in the agent gas is reduced.

粗フィルター8は、ポリプロピレンなどからなる繊維を帯電させた後、不織布に織ったものを用いた。粗フィルター8は、静電気を帯びた繊維一本一本が酸化剤ガス中に含まれる粉塵だけでなく、前段に配置される空気供給手段などから発生する粉塵や粒子状物質も除去する。また、窒素酸化物除去手段9およびアルカリ除去手段11の除去性能を保持するだけでなく、除塵フィルター12の負荷を軽減するので除塵フィルター12の寿命を延ばすことができる。   As the coarse filter 8, a fiber made of polypropylene or the like was charged and then woven into a nonwoven fabric. The coarse filter 8 removes not only dust in which each of the charged fibers is contained in the oxidant gas, but also dust and particulate matter generated from the air supply means disposed in the previous stage. Further, not only the removal performance of the nitrogen oxide removing means 9 and the alkali removing means 11 is maintained, but the load on the dust removing filter 12 is reduced, so that the life of the dust removing filter 12 can be extended.

窒素酸化物除去手段9は、窒素酸化物を吸収するアルカリとして水酸化カルシウムを用い、活性炭と、硬化剤を混練して、造粒した後、ハニカム型に成型して活性炭フィルター得た。硬化剤には焼石膏を用いた。焼石膏は水と混合すると硫酸カルシウムとなり、凝結硬化する。水酸化カルシウムは、二酸化窒素と(化4)で示すように反応して硝酸カルシウムを窒素酸化物除去手段上に固定して化学吸着させる。   The nitrogen oxide removing means 9 used calcium hydroxide as an alkali that absorbs nitrogen oxide, kneaded activated carbon and a curing agent, granulated, and then molded into a honeycomb type to obtain an activated carbon filter. Calcined gypsum was used as the curing agent. When calcined gypsum is mixed with water, it becomes calcium sulfate and hardens. Calcium hydroxide reacts with nitrogen dioxide as shown in (Chemical formula 4) to fix calcium nitrate on the nitrogen oxide removing means and chemically adsorb it.

Figure 2006032078
Figure 2006032078

また、窒素酸化物除去手段に用いるアルカリは窒素酸化物だけでなく、硫化水素、二酸化硫黄、塩化水素、フッ化水素などの酸性不純物も除去することができ、窒素酸化物と同様にして、各種酸性不純物を化学吸着する。例えば二酸化硫黄は(化5)で示すように反応して硫酸カルシウムとして化学吸着して固定される。   In addition, the alkali used for the nitrogen oxide removing means can remove not only nitrogen oxides but also acidic impurities such as hydrogen sulfide, sulfur dioxide, hydrogen chloride, hydrogen fluoride. Chemisorbs acidic impurities. For example, sulfur dioxide reacts as shown in (Chemical Formula 5) and is chemisorbed and fixed as calcium sulfate.

Figure 2006032078
Figure 2006032078

したがって、単に吸着するのではなく、酸性不純物とアルカリを反応させて窒素酸化物除去手段9上に固定するので、濃度や温度により脱着するようなことがなく、脱着した高濃度の酸性不純物が燃料電池に混入して電池性能を劣化させることを防ぐことができる。   Therefore, it is not simply adsorbed, but the acidic impurities and alkali are reacted and fixed on the nitrogen oxide removing means 9, so that the desorbed high-concentration acidic impurities are not desorbed depending on the concentration or temperature. It is possible to prevent the battery performance from being deteriorated by being mixed in the battery.

また、多孔質で比表面積の大きい活性炭を用いるので、細孔に添着する量を増加させることができ、窒素酸化物を吸収除去できる寿命を延ばすことができる。   In addition, since activated carbon having a large specific surface area is used, the amount attached to the pores can be increased, and the life in which nitrogen oxides can be absorbed and removed can be extended.

また、ハニカム型の構造体とすることにより、反応面積を大きくすることができ、導入する酸化剤ガスの窒素酸化物除去手段9による圧力損失が下がり、窒素酸化物除去手段9の目詰まりを抑制するので、空気供給手段などの負荷に影響が及ばず、発電効率を高い状態のまま保持することができる。   Further, by adopting the honeycomb structure, the reaction area can be increased, the pressure loss of the introduced oxidant gas by the nitrogen oxide removing means 9 is reduced, and clogging of the nitrogen oxide removing means 9 is suppressed. Therefore, the load such as the air supply means is not affected, and the power generation efficiency can be kept high.

有機物除去手段10は、繊維状の活性炭シートを用い、コルゲート型構造に成形した。多孔質な活性炭を用いるので、その細孔にトルエン、メチルエチルケトン、トリクロロエチレンなどの有機物を吸着することができ、これらの不純物による電池性能の低下を抑制することができる。   The organic substance removing means 10 was formed into a corrugated structure using a fibrous activated carbon sheet. Since porous activated carbon is used, organic substances such as toluene, methyl ethyl ketone, and trichloroethylene can be adsorbed into the pores, and deterioration of battery performance due to these impurities can be suppressed.

アルカリ除去手段11は、繊維状の活性炭シートにアルカリ性不純物の吸収剤として一定濃度に調整したリン酸溶液を含浸させ、分離して、乾燥して、さらにシートをコルゲート型に加工した。リン酸は活性炭繊維の表面に固定され、アンモニアなどのアルカリ性不純物と(化6)で示すように反応して生成したリン酸アンモニウムを活性炭繊維の表面に固定して化学吸着させる。   The alkali removing means 11 impregnated a fibrous activated carbon sheet with a phosphoric acid solution adjusted to a constant concentration as an absorbent for alkaline impurities, separated and dried, and further processed the sheet into a corrugated type. Phosphoric acid is fixed on the surface of the activated carbon fiber, and ammonium phosphate produced by reacting with an alkaline impurity such as ammonia as shown in (Chemical Formula 6) is fixed on the surface of the activated carbon fiber and chemically adsorbed.

Figure 2006032078
Figure 2006032078

したがって、単に吸着するのではなく、不純物と添着物質を反応させてアルカリ除去手段11上に固定するので、濃度や温度により脱着するようなことがなく、脱着した不純物が燃料電池に混入して電池性能を劣化させることを防ぐことができる。   Therefore, since the impurities and the adhering substance are reacted and fixed on the alkali removing means 11 instead of simply adsorbing, the desorbed impurities are mixed into the fuel cell without being desorbed depending on the concentration or temperature. It is possible to prevent the performance from deteriorating.

また、繊維状の活性炭を用いることにより、軽量化を図ることができるだけでなく、形状やサイズの自由度が増し、かけや割れといった破損をなくすことができる。また、コルゲート型の構造体とすることにより、反応面積を大きくすることができる。   Further, by using fibrous activated carbon, not only can the weight be reduced, but the degree of freedom in shape and size can be increased, and breakage such as cracks and cracks can be eliminated. In addition, the reaction area can be increased by using a corrugated structure.

また、導入する酸化剤ガスの有機物除去手段10およびアルカリ除去手段11による圧力損失を下げることができ、有機物除去手段10およびアルカリ除去手段11の目詰まりを抑制するので、空気供給手段などの負荷に影響が及ばず、発電効率を高い状態のまま保持することができる。   Further, the pressure loss of the oxidant gas introduced by the organic substance removing means 10 and the alkali removing means 11 can be reduced, and clogging of the organic substance removing means 10 and the alkali removing means 11 is suppressed. The power generation efficiency can be kept high without being affected.

除塵フィルター12は、ポリプロピレンなどからなる繊維を帯電させた後、粗フィルター8より目付量を増やして織った不織布をプリーツ状にして、枠に固定して作製した。静電気を帯びた繊維一本一本がクーロン力や誘起力の作用で、空気中に浮遊するミクロの粉塵を引き付け吸着するので、還元ガス中の粉塵などの粒子状物質および前段の窒素酸化物除去手段9や有機物除去手段10およびアルカリ除去手段11自身から発生する粉塵などの粒子状物質を効率よく除去することができる。   The dust removal filter 12 was prepared by charging a fiber made of polypropylene or the like, and then increasing the basis weight of the coarse filter 8 to make a woven nonwoven fabric into a pleated shape and fixing it to a frame. Each electrostatically charged fiber attracts and adsorbs microscopic dust floating in the air by the action of Coulomb force and induced force, so it removes particulate matter such as dust in reducing gas and nitrogen oxides in the previous stage Particulate substances such as dust generated from the means 9, the organic substance removing means 10 and the alkali removing means 11 themselves can be efficiently removed.

活性炭の細孔には様々な官能基が形成されていると思われ、官能基の種類によっては、窒素酸化物の内の二酸化窒素を一酸化窒素に還元する場合がある。一酸化窒素は二酸化窒素に比べて活性炭では吸着しにくいため、一酸化窒素の量はできるだけ少ないほうが、電池電圧に与える影響が小さい。   Various functional groups seem to be formed in the pores of the activated carbon, and depending on the type of the functional group, nitrogen dioxide in the nitrogen oxide may be reduced to nitric oxide. Since nitric oxide is less likely to be adsorbed by activated carbon than nitrogen dioxide, the amount of nitric oxide as small as possible has a smaller effect on the battery voltage.

本実施の形態においては、窒素酸化物除去手段9により窒素酸化物を除去した後、有機物除去手段10およびアルカリ除去手段11を配置するので、有機物除去手段10およびアルカリ除去手段11に含まれる活性炭により還元される二酸化窒素の量を減少させることができ、二酸化窒素に比べて活性炭では吸着除去しにくい一酸化窒素の量を減少させるので、一酸化窒素による電池電圧の低下を抑制することができる。   In the present embodiment, after removing the nitrogen oxides by the nitrogen oxide removing means 9, the organic matter removing means 10 and the alkali removing means 11 are arranged. Therefore, the activated carbon contained in the organic matter removing means 10 and the alkali removing means 11 is used. The amount of nitrogen dioxide to be reduced can be reduced, and the amount of nitric oxide that is difficult to be adsorbed and removed by activated carbon compared to nitrogen dioxide is reduced, so that a decrease in battery voltage due to nitric oxide can be suppressed.

上記のフィルター構成により、酸化剤ガス中に存在する窒素酸化物を除去して、燃料電池5への混入を防止するので、窒素酸化物による電池電圧の低下を抑制することができる。   With the filter configuration described above, nitrogen oxides present in the oxidant gas are removed to prevent entry into the fuel cell 5, so that a decrease in battery voltage due to nitrogen oxides can be suppressed.

また、フィルター全体の通気抵抗も非常に少なく、フィルターによる圧力損失は100Pa程度であり、空気供給手段などの負荷に影響を及ぼさず、発電効率を高い状態のまま保持することができる。   Further, the ventilation resistance of the entire filter is very small, the pressure loss due to the filter is about 100 Pa, and the power generation efficiency can be kept high without affecting the load such as the air supply means.

上記構成の燃料電池発電装置を用いて、各種フィルターの性能を確認した。   Using the fuel cell power generator configured as described above, the performance of various filters was confirmed.

まず、アノード21に不純物を含まない清浄な燃料ガス、カソード22にも不純物を含まない清浄な酸化剤ガスを露点がそれぞれ65℃、70℃となるように加湿して所定量供給した。燃料ガスには約20%の二酸化炭素が含まれている。そして、セル温度約70℃、燃料ガス利用率約75%、酸化剤ガス利用率約40%とし、電子負荷により電極面積に対して約0.2A/cmの一定電流を流した。このとき燃料電池に接続した電圧検出部で検出した電池電圧は約0.75Vで安定していた。 First, a clean fuel gas containing no impurities in the anode 21 and a clean oxidant gas containing no impurities in the cathode 22 were humidified so that the dew points were 65 ° C. and 70 ° C., respectively, and supplied in predetermined amounts. The fuel gas contains about 20% carbon dioxide. Then, the cell temperature was about 70 ° C., the fuel gas utilization rate was about 75%, the oxidant gas utilization rate was about 40%, and a constant current of about 0.2 A / cm 2 was applied to the electrode area by an electronic load. At this time, the battery voltage detected by the voltage detector connected to the fuel cell was stable at about 0.75V.

次に、カソード22に0.06ppmの二酸化窒素を添加した酸化剤ガスを供給し、同様の発電試験を行ったところ、電圧がふらつきながら徐々に低下し、約10時間後に電池電圧は0.74Vまで低下した。   Next, an oxidant gas added with 0.06 ppm of nitrogen dioxide was supplied to the cathode 22 and the same power generation test was conducted. As a result, the voltage gradually decreased while staggering, and after about 10 hours the battery voltage was 0.74 V. It dropped to.

次に、カソード22側に窒素酸化物除去手段9を取り付け、同様の発電試験を行ったところ、電池電圧は低下することなく、またふらつくことなく安定した値を示した。試験結果を図2にしめす。これらの試験により、本実施の形態のフィルターが酸化剤ガス中に含まれる不純物を効率よく除去することが判った。   Next, nitrogen oxide removing means 9 was attached to the cathode 22 side, and a similar power generation test was conducted. As a result, the battery voltage did not decrease and showed a stable value without wobbling. The test results are shown in FIG. From these tests, it was found that the filter of the present embodiment efficiently removes impurities contained in the oxidant gas.

(実施の形態2)
本実施の形態の特長は、窒素酸化物除去手段9が、アルカリ性の官能基を付与したイオン交換樹脂である点であり、それ以外の構成は第一の実施の形態と同様の構成である。
(Embodiment 2)
The feature of this embodiment is that the nitrogen oxide removing means 9 is an ion exchange resin provided with an alkaline functional group, and the other configuration is the same as that of the first embodiment.

イオン交換樹脂は、親水性のポリマーにアミノ基などの官能基を付与し、硝酸イオンを吸着するように成形した。   The ion exchange resin was molded so as to adsorb a functional group such as an amino group to a hydrophilic polymer and adsorb nitrate ions.

上記構成によれば、窒素酸化物を硝酸イオンとして吸着除去するので、二酸化窒素および一酸化窒素など窒素酸化物による電池電圧の低下を抑制することができる。   According to the above configuration, since nitrogen oxides are adsorbed and removed as nitrate ions, a decrease in battery voltage due to nitrogen oxides such as nitrogen dioxide and nitrogen monoxide can be suppressed.

(実施の形態3)
本実施の形態の特長は、オゾン発生器を備え、酸化剤ガス中に含まれる一酸化窒素をオゾンで酸化して二酸化窒素とし、窒素酸化物除去手段9で除去し、備えたオゾン分解器で酸化剤ガス中に残存するオゾンを除去して燃料電池に供給する点であり、それ以外の構成は第一の実施の形態と同様の構成である。
(Embodiment 3)
The feature of this embodiment is an ozone generator that includes an ozone generator, oxidizes nitrogen monoxide contained in an oxidant gas with ozone to form nitrogen dioxide, and removes it with nitrogen oxide removing means 9. This is that ozone remaining in the oxidant gas is removed and supplied to the fuel cell, and other configurations are the same as those in the first embodiment.

本実施の形態によれば、二酸化窒素に比べて吸着除去しにくい一酸化窒素をあらかじめオゾンで二酸化窒素に酸化するので、一酸化窒素および二酸化窒素など窒素酸化物による電池電圧の低下を抑制することができる。   According to the present embodiment, nitrogen monoxide, which is difficult to adsorb and remove compared with nitrogen dioxide, is oxidized to nitrogen dioxide with ozone in advance, so that the decrease in battery voltage due to nitrogen oxides such as nitrogen monoxide and nitrogen dioxide is suppressed. Can do.

また、電池電圧に影響を与えるオゾンを除去してから酸化剤ガスを供給するので、酸化剤ガス中の酸素濃度が一定となり、電池性能の安定化を図ることができる。   In addition, since the oxidant gas is supplied after removing ozone that affects the battery voltage, the oxygen concentration in the oxidant gas becomes constant, and the battery performance can be stabilized.

(実施の形態4)
本実施の形態の特長は、窒素酸化物除去手段9が、少なくとも無機過酸化物または過マンガン酸塩を含む点であり、それ以外は第一の実施の形態と同様の構成である。
(Embodiment 4)
The feature of the present embodiment is that the nitrogen oxide removing means 9 includes at least an inorganic peroxide or a permanganate, and the other configuration is the same as that of the first embodiment.

無機過酸化物は、過酸化ナトリウム、過酸化カリウム、過酸化マグネシウム、過酸化カルシウム、過酸化バリウムのいずれかであり、過マンガン酸塩としては、過マンガン酸カリウムが効果的である。   The inorganic peroxide is any of sodium peroxide, potassium peroxide, magnesium peroxide, calcium peroxide, and barium peroxide, and potassium permanganate is effective as the permanganate.

いずれも強力な吸着剤であり、一酸化窒素などの物質を強く酸化させる固体であり、酸化剤ガス中に含まれる一酸化窒素および二酸化窒素などの窒素酸化物を硝酸イオンとして効率よく吸収除去するので、窒素酸化物による電池電圧の低下を抑制することができる。   Both are powerful adsorbents, solids that strongly oxidize substances such as nitric oxide, and efficiently absorb and remove nitrogen oxides such as nitrogen monoxide and nitrogen dioxide contained in the oxidant gas as nitrate ions. Therefore, a decrease in battery voltage due to nitrogen oxides can be suppressed.

(実施の形態5)
本実施の形態の特長は、窒素酸化物除去手段9が、酸素欠損を有するペロブスカイト型複合金属酸化物を含む点であり、それ以外の構成は第一の実施の形態と同様の構成である。
(Embodiment 5)
The feature of the present embodiment is that the nitrogen oxide removing means 9 includes a perovskite-type composite metal oxide having oxygen vacancies, and the rest of the configuration is the same as that of the first embodiment.

酸素欠損を有するペロブスカイト型複合金属酸化物は、その構造的特徴から格子内に窒素酸化物を取り込み、酸化剤ガス中に含まれる窒素酸化物を窒素と酸素に分解除去するので、窒素酸化物による電池電圧の低下を抑制することができる。   Perovskite complex metal oxides with oxygen vacancies incorporate nitrogen oxides into the lattice due to their structural features, and decompose and remove nitrogen oxides contained in the oxidant gas into nitrogen and oxygen. A decrease in battery voltage can be suppressed.

(実施の形態6)
本実施の形態の特長は、光触媒を備え、酸化剤ガス中に含まれる一酸化窒素を二酸化窒素とし、窒素酸化物除去手段に流通させる点であり、それ以外の構成は第一の実施の形態と同様の構成である。
(Embodiment 6)
A feature of the present embodiment is that a photocatalyst is provided, and nitrogen monoxide contained in the oxidant gas is converted to nitrogen dioxide, which is circulated to the nitrogen oxide removing means, and the other configuration is the first embodiment. It is the same composition as.

光触媒は、酸化チタンからなり、紫外線などの光エネルギーによって活性を帯び、その結果、強い光触媒作用を持ち、一酸化窒素などを効率よく吸着、分解することができる。   The photocatalyst is made of titanium oxide and is activated by light energy such as ultraviolet rays. As a result, it has a strong photocatalytic action and can efficiently adsorb and decompose nitrogen monoxide and the like.

したがって、上記構成によれば、二酸化窒素に比べて吸着しにくい一酸化窒素をあらかじめ二酸化窒素に変換し、窒素酸化物除去手段9により、二酸化窒素を効率よく除去するので、窒素酸化物による電池電圧の低下を抑制することができる。   Therefore, according to the above configuration, nitrogen monoxide, which is less likely to be adsorbed than nitrogen dioxide, is converted into nitrogen dioxide in advance, and nitrogen dioxide is efficiently removed by the nitrogen oxide removing means 9. Can be suppressed.

本発明の燃料電池発電装置は、酸化剤ガス中に含まれる不純物の窒素酸化物による劣化の抑制または耐久性の向上という効果を有し、高分子型固体電解質膜を用いた発電装置、デバイスに有用である。   The fuel cell power generator of the present invention has an effect of suppressing deterioration due to nitrogen oxides of impurities contained in oxidant gas or improving durability, and is used for a power generator and a device using a polymer solid electrolyte membrane. Useful.

また、酸化剤ガス中に排気ガスなど不純物として窒素酸化物が存在する可能性のある屋外に設置される定置用燃料電池コジェネレーションシステムに有用である。   Further, it is useful for a stationary fuel cell cogeneration system installed outdoors where nitrogen oxides may exist as impurities such as exhaust gas in the oxidant gas.

本発明の実施の形態1の燃料電池発電装置の概略構成図1 is a schematic configuration diagram of a fuel cell power generator according to Embodiment 1 of the present invention. 同装置の電池電圧特性図Battery voltage characteristics of the device 従来の燃料電池発電装置の概略構成図Schematic configuration diagram of a conventional fuel cell power generator

符号の説明Explanation of symbols

1 電解質
5 燃料電池
9 窒素酸化物除去手段
10 有機物除去手段
11 アルカリ除去手段
21 電極(アノード)
22 電極(カソード)
41、42 セパレータ板
DESCRIPTION OF SYMBOLS 1 Electrolyte 5 Fuel cell 9 Nitrogen oxide removal means 10 Organic substance removal means 11 Alkali removal means 21 Electrode (anode)
22 electrode (cathode)
41, 42 Separator plate

Claims (9)

少なくとも酸素を含む酸化剤ガス中に含まれる窒素酸化物を除去する窒素酸化物除去手段と、電解質と、前記電解質を挟む一対の電極と、前記電極の一方に少なくとも水素を含む燃料ガスを供給排出し、他方に前記窒素酸化物を除去した前記酸化剤ガスを供給排出するガス流路を有する一対のセパレータ板とからなる少なくとも一つのセルを備えた燃料電池を備えてなる燃料電池発電装置。 Nitrogen oxide removing means for removing nitrogen oxide contained in an oxidant gas containing at least oxygen, an electrolyte, a pair of electrodes sandwiching the electrolyte, and a fuel gas containing at least hydrogen supplied to one of the electrodes On the other hand, a fuel cell power generator comprising a fuel cell comprising at least one cell comprising a pair of separator plates having a gas flow path for supplying and discharging the oxidant gas from which the nitrogen oxide has been removed. 窒素酸化物除去手段は、活性炭に窒素酸化物を吸収するアルカリを添着した活性炭フィルターである請求項1に記載の燃料電池発電装置。 2. The fuel cell power generator according to claim 1, wherein the nitrogen oxide removing means is an activated carbon filter in which activated carbon is impregnated with an alkali that absorbs nitrogen oxides. 有機物を吸着する活性炭からなる有機物除去手段と、活性炭にアルカリを吸収する酸を添着したアルカリ除去手段とを備え、酸化剤ガスを窒素酸化物除去手段に流通させた後、前記有機物除去手段および前記アルカリ除去手段に流通させる請求項1又は2に記載の燃料電池発電装置。 An organic substance removing means comprising activated carbon that adsorbs organic substances; and an alkali removing means in which an activated carbon is adsorbed with an acid that absorbs alkali; after the oxidant gas is circulated through the nitrogen oxide removing means, the organic substance removing means and the organic substance removing means The fuel cell power generator according to claim 1 or 2, wherein the fuel cell power generator is circulated through the alkali removing means. 窒素酸化物除去手段は、アルカリ性の官能基を付与したイオン交換樹脂である請求項1に記載の燃料電池発電装置。 The fuel cell power generator according to claim 1, wherein the nitrogen oxide removing means is an ion exchange resin to which an alkaline functional group is added. オゾン発生器を備え、酸化剤ガス中に含まれる一酸化窒素をオゾンで酸化して二酸化窒素とし、窒素酸化物除去手段に流通させる請求項1に記載の燃料電池発電装置。 2. The fuel cell power generator according to claim 1, further comprising an ozone generator, wherein nitrogen monoxide contained in the oxidant gas is oxidized with ozone to form nitrogen dioxide and is passed to the nitrogen oxide removing means. オゾン分解器を備え、酸化剤ガス中に含まれるオゾンを除去して燃料電池に供給する請求項1又は5に記載の燃料電池発電装置。 The fuel cell power generator according to claim 1 or 5, further comprising an ozonolysis device, supplying ozone to the fuel cell after removing ozone contained in the oxidant gas. 窒素酸化物除去手段は、少なくとも無機過酸化物または過マンガン酸塩を含む請求項1に記載の燃料電池発電装置。 The fuel cell power generator according to claim 1, wherein the nitrogen oxide removing means includes at least an inorganic peroxide or a permanganate. 窒素酸化物除去手段は、酸素欠損を有するペロブスカイト型複合金属酸化物を含む請求項1に記載の燃料電池発電装置。 The fuel cell power generator according to claim 1, wherein the nitrogen oxide removing means includes a perovskite-type composite metal oxide having an oxygen deficiency. 光触媒を備え、酸化剤ガス中に含まれる一酸化窒素を二酸化窒素とし、窒素酸化物除去手段に流通させる請求項1に記載の燃料電池発電装置。 The fuel cell power generator according to claim 1, further comprising a photocatalyst, wherein nitrogen monoxide contained in the oxidant gas is converted to nitrogen dioxide and is circulated through the nitrogen oxide removing means.
JP2004208134A 2004-07-15 2004-07-15 Fuel cell power generator Expired - Fee Related JP4752204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004208134A JP4752204B2 (en) 2004-07-15 2004-07-15 Fuel cell power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004208134A JP4752204B2 (en) 2004-07-15 2004-07-15 Fuel cell power generator

Publications (2)

Publication Number Publication Date
JP2006032078A true JP2006032078A (en) 2006-02-02
JP4752204B2 JP4752204B2 (en) 2011-08-17

Family

ID=35898182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004208134A Expired - Fee Related JP4752204B2 (en) 2004-07-15 2004-07-15 Fuel cell power generator

Country Status (1)

Country Link
JP (1) JP4752204B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016534507A (en) * 2013-08-08 2016-11-04 インテリジェント エナジー リミテッドIntelligent Energy Limited Cooling liquid purification

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52151685A (en) * 1976-06-11 1977-12-16 Matsushita Electric Ind Co Ltd No# removal filter
JPH05123533A (en) * 1991-11-05 1993-05-21 Matsushita Seiko Co Ltd Nitrogen oxide removing filter, and device and system thereof
JPH0684537A (en) * 1992-09-02 1994-03-25 Osaka Gas Co Ltd Fuel cell power generator
JPH0794200A (en) * 1993-09-28 1995-04-07 Osaka Gas Co Ltd Reaction air supply unit of fuel cell power generating system
JPH08138703A (en) * 1994-11-09 1996-05-31 Osaka Gas Co Ltd Fuel cell power generating system
JPH09155152A (en) * 1995-12-04 1997-06-17 Matsushita Electric Ind Co Ltd Method and device for removal of nitrogen oxide
JPH11267461A (en) * 1998-03-23 1999-10-05 Fujita Corp Method of purifying polluted gas
JP2000106207A (en) * 1998-09-29 2000-04-11 Fuji Electric Co Ltd Fuel cell generating system
JP2001046866A (en) * 1999-08-18 2001-02-20 Kansai Research Institute Removing material and removing method of nitrogen oxide
JP2001313057A (en) * 2000-04-27 2001-11-09 Asahi Glass Co Ltd Manufacturing method of ion-exchange filter for solid polymer fuel cell
JP2002346341A (en) * 2001-05-23 2002-12-03 Isuzu Motors Ltd Exhaust gas cleaning apparatus
JP2004273311A (en) * 2003-03-10 2004-09-30 Honda Motor Co Ltd Air supply device of fuel cell

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52151685A (en) * 1976-06-11 1977-12-16 Matsushita Electric Ind Co Ltd No# removal filter
JPH05123533A (en) * 1991-11-05 1993-05-21 Matsushita Seiko Co Ltd Nitrogen oxide removing filter, and device and system thereof
JPH0684537A (en) * 1992-09-02 1994-03-25 Osaka Gas Co Ltd Fuel cell power generator
JPH0794200A (en) * 1993-09-28 1995-04-07 Osaka Gas Co Ltd Reaction air supply unit of fuel cell power generating system
JPH08138703A (en) * 1994-11-09 1996-05-31 Osaka Gas Co Ltd Fuel cell power generating system
JPH09155152A (en) * 1995-12-04 1997-06-17 Matsushita Electric Ind Co Ltd Method and device for removal of nitrogen oxide
JPH11267461A (en) * 1998-03-23 1999-10-05 Fujita Corp Method of purifying polluted gas
JP2000106207A (en) * 1998-09-29 2000-04-11 Fuji Electric Co Ltd Fuel cell generating system
JP2001046866A (en) * 1999-08-18 2001-02-20 Kansai Research Institute Removing material and removing method of nitrogen oxide
JP2001313057A (en) * 2000-04-27 2001-11-09 Asahi Glass Co Ltd Manufacturing method of ion-exchange filter for solid polymer fuel cell
JP2002346341A (en) * 2001-05-23 2002-12-03 Isuzu Motors Ltd Exhaust gas cleaning apparatus
JP2004273311A (en) * 2003-03-10 2004-09-30 Honda Motor Co Ltd Air supply device of fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016534507A (en) * 2013-08-08 2016-11-04 インテリジェント エナジー リミテッドIntelligent Energy Limited Cooling liquid purification
US10218009B2 (en) 2013-08-08 2019-02-26 Intelligent Energy Limited Coolant purification
US10693155B2 (en) 2013-08-08 2020-06-23 Intelligent Energy Limited Coolant purification

Also Published As

Publication number Publication date
JP4752204B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
US20080026270A1 (en) Fuel cell and apparatus for purifying air supplied to fuel cell
EP2260940B1 (en) Carbonaceous catalyst for flue gas desulfurization, process for producing the same and use thereof for removal of mercury from exhaust gas
WO2006078017A1 (en) Ceramic chemical reaction device capable of decomposing solid carbon
KR102427722B1 (en) A membrane humidifier for fuel cell
CN109925874B (en) Electrochemical air purification membrane structure, purification module, purifier and purification method
US7122258B2 (en) Fuel cell air system and method
JP5071254B2 (en) Fuel cell power generation system and operation method thereof
JP2007193963A (en) Fuel cell power generating device
JP2005322506A (en) Fuel cell power generating device
JP2006286439A (en) Fuel cell generator
JP2007328976A (en) Fuel cell power generator
AU2011217490B2 (en) Method and system for purification of gas streams for solid oxide cells
JP4752204B2 (en) Fuel cell power generator
JP2005259568A (en) Fuel cell system
JP2008021492A (en) Fuel cell power generation system
EP2560226A1 (en) Method and system for purification of gas/liquid streams for fuel cells or electrolysis cells
JP2007193962A (en) Fuel cell power generating device
JP5034161B2 (en) Fuel cell power generator
JP2006107980A (en) Fuel cell generator
JP2004230322A (en) Acidic gas absorption removal agent, acidic gas absorption treatment apparatus or fuel cell system using the same
JP4843907B2 (en) Fuel cell power generator
JP2004327429A (en) Fuel cell and air purifier for fuel cell
JP2005129494A (en) Fuel cell system and its operating method
JP2016162539A (en) Fuel battery power generation device
JP5044909B2 (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070607

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070712

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110509

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees