JP2006032061A - Hydrogen combustion apparatus - Google Patents

Hydrogen combustion apparatus Download PDF

Info

Publication number
JP2006032061A
JP2006032061A JP2004207432A JP2004207432A JP2006032061A JP 2006032061 A JP2006032061 A JP 2006032061A JP 2004207432 A JP2004207432 A JP 2004207432A JP 2004207432 A JP2004207432 A JP 2004207432A JP 2006032061 A JP2006032061 A JP 2006032061A
Authority
JP
Japan
Prior art keywords
hydrogen
air
fuel cell
combustor
combustion apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004207432A
Other languages
Japanese (ja)
Inventor
Tamotsu Sugimoto
保 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2004207432A priority Critical patent/JP2006032061A/en
Publication of JP2006032061A publication Critical patent/JP2006032061A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen combustion apparatus allowing efficient combustion of a hydrogen gas by adjusting the amount of air that increases while a fuel cell system is in operation under heavy load. <P>SOLUTION: The hydrogen combustion apparatus is provided for combustion of a mixed gas composed of a mixture of a hydrogen gas and air that are discharged from a fuel cell stack 1. A hydrogen combustor 16 is provided in a main passage 18 through which air discharged from the fuel cell stack 1 flows, and a laminar flow generator 21 as an air inflow amount adjusting means for adjusting the inflow amount of air flowing through the main passage 18 is provided to surround an outer periphery of the hydrogen combustor 16. By providing the laminar flow generator 21, a large amount of air discharged while the fuel cell system is in operation under heavy load can be conveyed toward the laminar flow generator 21 while a required amount of air for combustion can be conveyed to the hydrogen combustor 16. Complete combustion of the hydrogen gas is thereby made possible. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、燃料電池システムの燃料電池スタックから排出される水素ガスと空気とを混合させて燃焼させる水素燃焼装置に関し、詳細には、燃料電池システムの高負荷運転時に増加する空気の量を調整して水素ガスを効率良く燃焼させるための燃焼技術に関する。   The present invention relates to a hydrogen combustion apparatus that mixes and burns hydrogen gas and air discharged from a fuel cell stack of a fuel cell system, and more specifically, adjusts the amount of air that increases during high-load operation of the fuel cell system. The present invention relates to a combustion technique for efficiently burning hydrogen gas.

例えば、燃料電池自動車などに搭載される燃料電池システムでは、燃料電池スタックで発電に使用されずに残った未燃焼の水素ガスが大気へそのまま放出されるのを防止するために、当該水素ガスを空気と混合させて燃焼させる水素燃焼装置が使用されている。   For example, in a fuel cell system mounted on a fuel cell vehicle or the like, in order to prevent unburned hydrogen gas remaining without being used for power generation in the fuel cell stack from being released into the atmosphere as it is, the hydrogen gas is used. 2. Description of the Related Art Hydrogen combustion apparatuses that are mixed with air and burned are used.

水素ガスを燃焼させるためには、燃焼用の空気を水素燃焼装置に供給する必要がある。空気を導入する方法としては、専用の送風機を用いて水素燃焼装置に空気を強制的に送り込む方法(例えば、特許文献1、2など参照)、または、燃料電池スタックから排出される空気を直接、水素燃焼装置に導入させる方法の二通りがある。
特開2002−122311号公報(第4頁、第1図など参照) 特開2002−372208号公報(第2頁、第8図など参照)
In order to burn hydrogen gas, it is necessary to supply combustion air to the hydrogen combustion apparatus. As a method of introducing air, a method of forcibly sending air to the hydrogen combustion apparatus using a dedicated blower (see, for example, Patent Documents 1 and 2), or directly discharging air discharged from the fuel cell stack, There are two methods of introducing into a hydrogen combustion apparatus.
Japanese Patent Laid-Open No. 2002-12211 (see page 4, FIG. 1, etc.) Japanese Patent Laid-Open No. 2002-372208 (see page 2, FIG. 8, etc.)

しかしながら、専用の送風機を用いて水素燃焼装置に空気を強制的に送り込む方法を採用した場合は、ファン、電源、制御部などが必要となり、装置構成が煩雑になる。   However, when a method of forcibly sending air to the hydrogen combustion apparatus using a dedicated blower is adopted, a fan, a power supply, a control unit, and the like are required, and the apparatus configuration becomes complicated.

一方、燃料電池スタックから排出される空気を直接、水素燃焼装置に流入させる方法を採用した場合は、燃料電池システムの高負荷運転時に増加する空気により、燃焼されずに未燃となった水素ガスがそのまま大気へ排出されるおそれがある。一般に、水素燃焼装置の燃焼率は、該水素燃焼装置に設けられる触媒と水素ガスとの接触時間に比例するため、空気流量が増加すると前記接触時間が短くなることから、水素ガスが燃焼されずに大気に放出され易くなってしまう。しかし、逆に十分な接触時間を得ようとすると、今度は触媒を大型化しなければならない。   On the other hand, when adopting the method of directly flowing the air discharged from the fuel cell stack into the hydrogen combustion device, the hydrogen gas that has not been burned but burned by the air that increases during high-load operation of the fuel cell system May be discharged into the atmosphere as it is. In general, the combustion rate of a hydrogen combustion apparatus is proportional to the contact time between the catalyst provided in the hydrogen combustion apparatus and hydrogen gas, and therefore the contact time is shortened when the air flow rate is increased. Easily released into the atmosphere. However, in order to obtain a sufficient contact time, the catalyst must be increased in size.

そこで、本発明は、上述した課題に鑑みてなされたものであり、燃料電池システムの高負荷運転時に増加する空気の量を調整して水素ガスを効率良く燃焼させることのできる水素燃焼装置を提供することを目的とする。   Accordingly, the present invention has been made in view of the above-described problems, and provides a hydrogen combustion apparatus that can efficiently burn hydrogen gas by adjusting the amount of air that increases during high-load operation of a fuel cell system. The purpose is to do.

請求項1に記載の発明は、燃料電池スタックからそれぞれ排出される水素ガスと空気とを混合させた混合ガスを燃焼させる水素燃焼装置において、前記燃料電池スタックから排出される空気が流れる主流路に水素燃焼器を設け、且つ当該水素燃焼器の外周囲を取り囲むようにして、該主流路を流れる空気の流入量を調整する空気流入量調整手段を設けたことを特徴とする。   The invention according to claim 1 is a hydrogen combustion apparatus for combusting a mixed gas obtained by mixing hydrogen gas and air discharged from a fuel cell stack, respectively, in a main flow path through which air discharged from the fuel cell stack flows. A hydrogen combustor is provided, and air inflow amount adjusting means for adjusting the inflow amount of air flowing through the main flow path is provided so as to surround the outer periphery of the hydrogen combustor.

請求項2に記載の発明は、請求項1に記載の水素燃焼装置であって、前記空気流入量調整手段は、前記主流路を流れる空気を層流とする層流発生器からなることを特徴とする。   A second aspect of the present invention is the hydrogen combustion apparatus according to the first aspect, wherein the air inflow amount adjusting means comprises a laminar flow generator that uses the air flowing through the main flow path as a laminar flow. And

請求項3に記載の発明は、請求項1または請求項2に記載の水素燃焼装置であって、前記燃料電池スタックから前記空気とともに排出される水を排水するための排水路を、前記主流路と分岐して設けたことを特徴とする。   Invention of Claim 3 is a hydrogen combustion apparatus of Claim 1 or Claim 2, Comprising: The drainage channel for draining the water discharged | emitted with the said air from the said fuel cell stack is said main flow path It is characterized by being branched.

請求項1に記載の発明によれば、燃料電池スタックから排出される空気が流れる主流路に水素燃焼装置を設け、また、その水素燃焼装置の外周囲を取り囲むようにして空気流入量調整手段を設けたので、燃料電池システムの高負荷運転時には、空気流入量調整手段を調整することで、前記水素燃焼装置へは水素燃焼に適した空気量を導入でき、前記空気流入量調整手段へはより多くの空気を流すことができる。   According to the first aspect of the present invention, the hydrogen combustion apparatus is provided in the main flow path through which the air discharged from the fuel cell stack flows, and the air inflow amount adjusting means is provided so as to surround the outer periphery of the hydrogen combustion apparatus. Therefore, during high load operation of the fuel cell system, by adjusting the air inflow amount adjusting means, it is possible to introduce an air amount suitable for hydrogen combustion into the hydrogen combustion apparatus, and to the air inflow amount adjusting means, A lot of air can flow.

したがって、本発明によれば、燃料電池システムの運転状態に拘わらず、常に水素ガスを効率良く燃焼させることができ、未燃焼の水素ガスの大気への放出を防止することができる。   Therefore, according to the present invention, hydrogen gas can always be efficiently burned regardless of the operating state of the fuel cell system, and release of unburned hydrogen gas into the atmosphere can be prevented.

しかも、水素燃焼装置の外周囲を取り囲むようにして空気流入量調整手段を設けたので、該空気流入量調整手段が、水素燃焼装置で発生する熱を吸収する断熱作用をする。したがって、水素燃焼装置に専用の断熱部を設ける必要がなく、その分、水素燃焼装置を小型・軽量化することができる。   In addition, since the air inflow amount adjusting means is provided so as to surround the outer periphery of the hydrogen combustion apparatus, the air inflow amount adjusting means performs a heat insulating action to absorb heat generated in the hydrogen combustion apparatus. Therefore, it is not necessary to provide a dedicated heat insulation part in the hydrogen combustion apparatus, and the hydrogen combustion apparatus can be reduced in size and weight accordingly.

請求項2に記載の発明によれば、主流路を流れる空気を層流とする層流発生器を空気流入量調整手段としているので、燃料電池システムの高負荷運転時には、燃料電池スタックから排出された空気の多くを層流発生器へと流すことができる。   According to the second aspect of the present invention, since the laminar flow generator using the air flowing through the main flow path as a laminar flow is used as the air inflow adjustment means, the fuel cell system is discharged from the fuel cell stack during high load operation. Much of the air can flow to the laminar flow generator.

請求項3に記載の発明によれば、燃料電池スタックから空気とともに排出される水を排水するための排水路を主流路と分岐して設けたので、主流路内を流れる空気の圧力によって、該主流路の底部に溜まる水(水滴)を前記排水路へと排出させることができ、当該主流路内の水素燃焼器近傍に該水が溜まるのを防止できる。   According to the invention of claim 3, since the drainage channel for draining the water discharged together with the air from the fuel cell stack is provided so as to branch from the main channel, the pressure of the air flowing in the main channel causes the Water (water droplets) collected at the bottom of the main channel can be discharged to the drainage channel, and the water can be prevented from collecting near the hydrogen combustor in the main channel.

以下、本発明を適用した具体的な実施の形態について図面を参照しながら詳細に説明する。   Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings.

なお、本実施の形態は、本発明の水素燃焼装置を、燃料電池自動車に搭載される燃料電池システムに適用した例である。   The present embodiment is an example in which the hydrogen combustion apparatus of the present invention is applied to a fuel cell system mounted on a fuel cell vehicle.

「燃料電池システムの概略説明」
先ず、燃料電池システムについて簡単に説明する。図1は燃料電池システムの概略構成図である。図1中、細い実線αは酸素(空気)の流通経路、一点鎖線βは水素の流通経路、破線γは冷却液の流通経路、太い実線δは加湿用の純水の流通経路をそれぞれ示す。
"Overview of fuel cell system"
First, the fuel cell system will be briefly described. FIG. 1 is a schematic configuration diagram of a fuel cell system. In FIG. 1, a thin solid line α indicates a flow path of oxygen (air), a one-dot chain line β indicates a flow path of hydrogen, a broken line γ indicates a flow path of coolant, and a thick solid line δ indicates a flow path of pure water for humidification.

燃料電池スタック1は、圧縮水素タンク2より水素ガスが導入される燃料極3と、外部から取り入れられる酸化剤ガスである空気が導入される空気極4とを備える。そして、この燃料電池スタック1では、燃料極3に導入された水素ガスと、空気極4に導入された酸素とを、これら燃料極3と空気極4の間に配置された電解質膜(図示は省略する)を介して反応させることにより発電させるようになっている。   The fuel cell stack 1 includes a fuel electrode 3 into which hydrogen gas is introduced from a compressed hydrogen tank 2 and an air electrode 4 into which air that is an oxidant gas taken from the outside is introduced. In the fuel cell stack 1, the hydrogen gas introduced into the fuel electrode 3 and the oxygen introduced into the air electrode 4 are combined with an electrolyte membrane (not shown) disposed between the fuel electrode 3 and the air electrode 4. The power is generated by reacting through (omitted).

燃料電池スタック1に供給される水素ガスと酸素は、発電作用の活性化および電解質膜の劣化防止のため加湿器5で加湿される。加湿器5には、純水を貯水するとともに燃料電池システムを停止したときに燃料電池スタック1内に残存する純水を回収する純水タンク6に貯水された純水が、純水導出パイプ7と純水汲み上げポンプ8とにより供給される。   The hydrogen gas and oxygen supplied to the fuel cell stack 1 are humidified by the humidifier 5 to activate the power generation action and prevent the electrolyte membrane from being deteriorated. In the humidifier 5, pure water stored in the pure water tank 6 that stores pure water and collects pure water remaining in the fuel cell stack 1 when the fuel cell system is stopped is supplied to the pure water outlet pipe 7. And pure water pumping pump 8.

純水タンク6は、加湿器5に供給する純水を所定量貯水して置く貯水タンクとして使用される他、例えば氷点下の外気温度以下の下に燃料電池システムを停止して長時間停止させたときに燃料電池スタック1内の純水が凍って破裂するのを防止するために、システム運転終了後に純水経路内の純水を純水回収パイプ9を介して抜き取り貯水しておくのにも使用される。   The pure water tank 6 is used as a water storage tank for storing a predetermined amount of pure water to be supplied to the humidifier 5, and for example, the fuel cell system is stopped for a long time under an outside air temperature below freezing point. In order to prevent the pure water in the fuel cell stack 1 from freezing and rupturing sometimes, the pure water in the pure water path is extracted through the pure water recovery pipe 9 and stored after the system operation is completed. used.

また、燃料電池スタック1では、発電時に発熱するため、この燃料電池スタック1にラジエータ10から冷却液ポンプ11により冷却液を循環させ、当該燃料電池スタック1を冷却するようにしている。冷却液には、例えば不凍液(LLC液)が使用される。   Further, since the fuel cell stack 1 generates heat during power generation, the coolant is circulated from the radiator 10 to the fuel cell stack 1 by the coolant pump 11 to cool the fuel cell stack 1. As the cooling liquid, for example, an antifreeze liquid (LLC liquid) is used.

また、冷却液経路12には、ラジエータ10をバイパス(迂回)するバイパス通路13が設けられている。燃料電池システムの始動時には、この冷却液経路12に設けた3方弁14によって、前記ラジエータ10をバイパスさせるようにしている。このバイパス通路13は、燃料電池システムの始動時にのみ使用され、システム運転時には、このバイパス通路13には冷却液が流れないように制御される。   The coolant passage 12 is provided with a bypass passage 13 that bypasses the radiator 10. At the start of the fuel cell system, the radiator 10 is bypassed by the three-way valve 14 provided in the coolant path 12. The bypass passage 13 is used only when the fuel cell system is started, and is controlled so that the coolant does not flow through the bypass passage 13 during system operation.

さらに、バイパス通路13には、冷却液を加熱するための電熱又は水素燃焼熱を利用したヒータ15が設置されており、このヒータ15によって冷却液を加熱して燃料電池スタック1の暖気促進を図り、早急に発電システムを起動可能としている。   Furthermore, a heater 15 using electric heat or hydrogen combustion heat for heating the coolant is installed in the bypass passage 13, and the heater 15 is used to heat the coolant to promote warming of the fuel cell stack 1. The power generation system can be activated as soon as possible.

また、この燃料電池システムでは、燃料電池スタック1で発電に使用されずに残った未燃焼の水素ガスがそのまま大気へ放出されないように、本発明の水素燃焼器16で水素ガスを燃焼させた後、サイレンサー17で消音させて大気へ放出させている。   Further, in this fuel cell system, after the hydrogen gas is burned by the hydrogen combustor 16 of the present invention, the unburned hydrogen gas that is not used for power generation in the fuel cell stack 1 is not released to the atmosphere as it is. The sound is silenced by the silencer 17 and released to the atmosphere.

「水素燃焼装置の構成」
次に、本発明を適用した水素燃焼装置について説明する。図2は水素燃焼装置の概略構成を示す断面図、図3(A)は燃料噴出パイプの乱流板の斜視図、図3(B)は燃料噴出パイプの断面図、図4は混合部の混合板を示す斜視図、図5(A)は層流発生器の斜視図、図5(B)は層流発生器の構成部品の斜視図である。
"Hydrogen combustion system configuration"
Next, a hydrogen combustion apparatus to which the present invention is applied will be described. 2 is a sectional view showing a schematic configuration of the hydrogen combustion apparatus, FIG. 3A is a perspective view of a turbulent plate of a fuel ejection pipe, FIG. 3B is a sectional view of the fuel ejection pipe, and FIG. FIG. 5A is a perspective view of a laminar flow generator, and FIG. 5B is a perspective view of components of the laminar flow generator.

水素燃焼装置は、図2に示すように、燃料電池スタック1から排出される空気が流れる主流路18に設けられた水素燃焼器16と、この水素燃焼器16の外周囲を取り囲むようにして設けられた空気流入量調整手段である層流発生器21とからなる。   As shown in FIG. 2, the hydrogen combustion apparatus is provided so as to surround a hydrogen combustor 16 provided in a main flow path 18 through which air discharged from the fuel cell stack 1 flows, and an outer periphery of the hydrogen combustor 16. And a laminar flow generator 21 which is an air flow rate adjusting means.

水素燃焼器16は、円筒形状をなす燃焼器22に、水素ガスを内部に噴出させる燃料噴出部23と、流入された酸素と噴出された水素ガスとを混合させる混合部24と、混合部24で混合された混合ガスを燃焼させる燃焼部25と、該燃焼部25の温度を測定する測温素子26とを有する。   The hydrogen combustor 16 includes a fuel injection unit 23 that injects hydrogen gas into a cylindrical combustor 22, a mixing unit 24 that mixes inflowing oxygen and the injected hydrogen gas, and a mixing unit 24. And a temperature measuring element 26 for measuring the temperature of the combustion unit 25.

燃焼器22は、燃焼温度・圧力に耐えられる材質、例えばステンレス(SUS304)などから形成され、所定の大きさとされた円筒形状として形成されている。なお、この燃焼器22は、燃焼システムとして要求されるガス流量・発熱量などの要求を満足できる設計になれば、その他の形状、材質などとしてもよい。   The combustor 22 is formed of a material that can withstand the combustion temperature and pressure, such as stainless steel (SUS304), and is formed in a cylindrical shape having a predetermined size. The combustor 22 may have other shapes and materials as long as the combustor 22 is designed to satisfy requirements such as a gas flow rate and a calorific value required for the combustion system.

燃料噴出部23は、燃料電池スタック1から排出される未燃焼の水素ガスを燃焼器22内に噴出する部分であり、アノードオフガス配管に接続された燃料噴出パイプ27から構成されている。そして、この燃料噴出部23では、燃料噴出パイプ27の先端側部を燃焼器22内に突出させ、その先端側部に形成した複数個の燃料噴出孔28から水素ガスを噴出させる。   The fuel injection part 23 is a part for injecting unburned hydrogen gas discharged from the fuel cell stack 1 into the combustor 22, and includes a fuel injection pipe 27 connected to an anode off-gas pipe. In the fuel ejection portion 23, the front end side portion of the fuel ejection pipe 27 is projected into the combustor 22, and hydrogen gas is ejected from a plurality of fuel ejection holes 28 formed in the front end side portion.

燃料噴出パイプ27は、図3(A)および図3(B)に示すように、例えばステンレスパイプからなる配管とされ、そのパイプ先端側周面に水素ガスを噴出する燃料噴出孔28を複数形成している。この燃料噴出孔28は、パイプ周面の中心に一箇所でもよく、または、円周方向に複数箇所設けてもよい。そして、この燃料噴出パイプ27の先端には、円盤形状の乱流板30が取り付けられている。   As shown in FIGS. 3A and 3B, the fuel ejection pipe 27 is a pipe made of, for example, a stainless steel pipe, and a plurality of fuel ejection holes 28 for ejecting hydrogen gas are formed on the peripheral surface of the pipe tip side. is doing. This fuel ejection hole 28 may be provided at one location in the center of the pipe circumferential surface, or may be provided at a plurality of locations in the circumferential direction. A disc-shaped turbulent flow plate 30 is attached to the tip of the fuel ejection pipe 27.

混合部24は、水素ガスと酸素を混合させて混合気(混合ガス)を形成する部分であり、燃料噴出部23の排気方向下流側に位置して設けられている。この混合部24は、例えば複数枚の混合板31、32を所定間隔を置いて燃焼器22内に配置固定することで構成される。燃料噴出部23側に配置される混合板31は、図4に示すように、中央に大きな円形孔33が形成された円盤として形成されている。これに対して、他方の複数の混合板32は、小さな円形孔34が複数形成された円盤として形成されている。これら二種類の混合板31、32に形成されたそれぞれの円形孔33、34を水素ガスと酸素が乱流を形成し通過することでこれらが混合された後、その混合された混合気が、燃焼器後方側の燃焼部25へと送られる。   The mixing unit 24 is a part that forms an air-fuel mixture (mixed gas) by mixing hydrogen gas and oxygen, and is provided at the downstream side of the fuel ejection unit 23 in the exhaust direction. The mixing unit 24 is configured, for example, by arranging and fixing a plurality of mixing plates 31 and 32 in the combustor 22 at a predetermined interval. As shown in FIG. 4, the mixing plate 31 disposed on the fuel ejection portion 23 side is formed as a disk having a large circular hole 33 formed in the center. On the other hand, the other plurality of mixing plates 32 are formed as a disk in which a plurality of small circular holes 34 are formed. After the hydrogen gas and oxygen form a turbulent flow through the circular holes 33 and 34 formed in the two kinds of mixing plates 31 and 32 and these are mixed, the mixed gas mixture is It is sent to the combustion section 25 on the rear side of the combustor.

燃焼部25は、混合部24で混合された水素ガスと酸素からなる混合気を燃焼させる部分であり、該混合部24の後方(排気下流側)に設けられている。燃焼部25には、混合気と接触することによって該混合気を燃焼させる触媒35が配置されている。触媒35には、メタルハニカムやセラミックハニカム等の担体に白金(Pt)等の貴金属を担持した、従来公知の触媒技術を用いることができる。   The combustion unit 25 is a part that burns an air-fuel mixture composed of hydrogen gas and oxygen mixed in the mixing unit 24, and is provided behind the mixing unit 24 (on the exhaust downstream side). A catalyst 35 that burns the air-fuel mixture by being in contact with the air-fuel mixture is disposed in the combustion unit 25. As the catalyst 35, a conventionally known catalyst technique in which a noble metal such as platinum (Pt) is supported on a carrier such as a metal honeycomb or a ceramic honeycomb can be used.

測温素子26は、燃焼部25で発生する熱を測定し、燃焼器22内へと挿入して設けられている。   The temperature measuring element 26 measures heat generated in the combustion unit 25 and is inserted into the combustor 22.

層流発生器21は、燃焼器22の外周を取り囲むように配置されており、図5(A)および図5(B)に示すように、例えばステンレスなどからなる平板36と波板37とを重ね合わせ、中心に燃焼器挿通孔29を有した円筒体として形成される。このように形成された層流発生器21は、いわゆるハニカム形状とされる。そして、この層流発生器21を、主流路18に設けた水素燃焼器16の外周囲に装着すれば、該層流発生器21を流れる空気流は層流となる。   The laminar flow generator 21 is arranged so as to surround the outer periphery of the combustor 22, and as shown in FIGS. 5A and 5B, a flat plate 36 made of, for example, stainless steel and a corrugated plate 37 are provided. Overlapping and forming a cylindrical body having a combustor insertion hole 29 in the center. The laminar flow generator 21 thus formed has a so-called honeycomb shape. If this laminar flow generator 21 is attached to the outer periphery of the hydrogen combustor 16 provided in the main flow path 18, the air flow flowing through the laminar flow generator 21 becomes a laminar flow.

かかる構成に加えて、主流路18には、水素燃焼器16の前方と後方でそれぞれ連結され、該主流路18から分岐した排水路20が、当該主流路18と平行となるようにバイパスされている。この排水路20は、燃料電池スタック1から空気とともに排出される水(水滴)を、主流路18内を流れる空気の圧力によって排出するようになされている。   In addition to this configuration, the main flow path 18 is connected to the front and rear of the hydrogen combustor 16, and the drainage path 20 branched from the main flow path 18 is bypassed so as to be parallel to the main flow path 18. Yes. The drainage channel 20 discharges water (water droplets) discharged together with air from the fuel cell stack 1 by the pressure of the air flowing in the main flow path 18.

「作用・効果」
次に、水素燃焼器16を配置した主流路18に層流発生器21を設けた水素燃焼装置の作用・効果を説明する。
"Action / Effect"
Next, operations and effects of the hydrogen combustion apparatus in which the laminar flow generator 21 is provided in the main flow path 18 in which the hydrogen combustor 16 is disposed will be described.

本実施の形態の水素燃焼装置では、主流路18における水素燃焼器16近傍の入口側の圧力が低いとき(燃料電池システムの低負荷運転時)は、水素燃焼器16側に流れる空気流量V1と層流発生器21側を流れる空気流量V2はほぼ同じになる。しかしながら、前記入口側の圧力が高いとき(燃料電池システムの高負荷運転時)は、単に水素燃焼器16と主流路18との間に空間を設けただけ(これら水素燃焼器16と主流路18との間には層流発生器21を設置していない場合)では、前記空間側に空気が多く流れ、未燃焼の水素ガスがそのまま大気へと放出されてしまう。   In the hydrogen combustion apparatus of the present embodiment, when the pressure on the inlet side in the vicinity of the hydrogen combustor 16 in the main flow path 18 is low (during low load operation of the fuel cell system), the air flow rate V1 flowing to the hydrogen combustor 16 side and The air flow rate V2 flowing through the laminar flow generator 21 is substantially the same. However, when the pressure on the inlet side is high (during high-load operation of the fuel cell system), a space is simply provided between the hydrogen combustor 16 and the main flow path 18 (the hydrogen combustor 16 and the main flow path 18). When the laminar flow generator 21 is not installed between the two, a large amount of air flows to the space side, and unburned hydrogen gas is released to the atmosphere as it is.

一般に、流体の圧力損失ΔPは、層流のときはΔP=K1V、乱流のときはΔP=K2Vで表される。但し、Kは常数、Vは流量である。これらの式から判るように、流体(本実施の形態の場合は空気)の流量が増加すれば、乱流の場合の圧力損失は流量の二乗として増加し、層流の場合の圧力損失は流量の増加に比例して増加する程度で、乱流の場合に比べてその圧力損失の増加量が小さくて済む。つまり、層流の場合は、空気流量が増大しても圧力損失はそれ程、増大しないことになる。 In general, the pressure loss [Delta] P of the fluid, the [Delta] P = K1v when laminar flow, when the turbulence is expressed by [Delta] P = K2V 2. However, K is a constant and V is a flow rate. As can be seen from these equations, if the flow rate of fluid (air in this embodiment) increases, the pressure loss in the case of turbulent flow increases as the square of the flow rate, and the pressure loss in the case of laminar flow increases by the flow rate. The amount of increase in pressure loss is small compared to the case of turbulent flow. That is, in the case of laminar flow, the pressure loss does not increase so much even if the air flow rate increases.

また、主流路18における水素燃焼器16近傍の入口側の圧力が増大して空気流量が増すと、圧力損失の低い層流となる層流発生器21が配置された空間側の空気流量が増加することになる。したがって、水素燃焼器16側を流れる空気の量は、圧力の増加ほどには増加しないことになる。但し、この水素燃焼器16には、燃焼に必要な量の空気は流れる。つまり、燃料電池システムの高負荷運転時でも水素燃焼器16の空気量を大きく増大することなく、全空気量を増加できることになる。   Further, when the pressure on the inlet side in the vicinity of the hydrogen combustor 16 in the main flow path 18 increases and the air flow rate increases, the air flow rate on the space side where the laminar flow generator 21 that is a laminar flow with low pressure loss is arranged increases. Will do. Therefore, the amount of air flowing through the hydrogen combustor 16 does not increase as much as the pressure increases. However, an amount of air necessary for combustion flows through the hydrogen combustor 16. That is, the total amount of air can be increased without greatly increasing the amount of air in the hydrogen combustor 16 even during high load operation of the fuel cell system.

図6は主流路18の水素燃焼器16近傍の入口側における入口圧力と空気流量(水素燃焼器16側および層流発生器21側のそれぞれについて)との関係を示す図、図7は水素燃焼器16側と層流発生器21側とをそれぞれ流れる空気流量を示す図である。   FIG. 6 is a diagram showing the relationship between the inlet pressure on the inlet side of the main flow path 18 near the hydrogen combustor 16 and the air flow rate (for each of the hydrogen combustor 16 side and the laminar flow generator 21 side), and FIG. 7 shows hydrogen combustion. It is a figure which shows the air flow rate which flows through the container 16 side and the laminar flow generator 21 side, respectively.

図6からは、入口側の入口圧力と空気流量とはほぼ比例関係にあり、入口圧力が増加すればこれに比例して空気流量も増加することが判る。また、上述したように、水素燃焼器16側に比較して、ハニカム形状の層流発生器21側に空気流量が多くなる傾向が判る。   From FIG. 6, it can be seen that the inlet pressure on the inlet side and the air flow rate are substantially proportional to each other, and that the air flow rate increases in proportion to the increase in the inlet pressure. Further, as described above, it can be seen that the air flow rate tends to increase on the honeycomb-shaped laminar flow generator 21 side as compared with the hydrogen combustor 16 side.

また、図7からは、層流発生器21側の空気流量に比べて、水素燃焼器16側の空気流量が遙かに低い値を示していることが判る。例えば、層流発生器21側を流れる空気流量が2000〔L/min〕のときに、水素燃焼器16側を流れる空気流量は僅か600〔L/min〕程度である。つまり、水素燃焼器16側に対して層流発生器21側に多量の空気が流れることになる。   7 that the air flow rate on the hydrogen combustor 16 side is much lower than the air flow rate on the laminar flow generator 21 side. For example, when the flow rate of air flowing through the laminar flow generator 21 is 2000 [L / min], the flow rate of air flowing through the hydrogen combustor 16 is only about 600 [L / min]. That is, a large amount of air flows to the laminar flow generator 21 side with respect to the hydrogen combustor 16 side.

実際に、本実施の形態の水素燃焼装置を使用して混合ガスを燃焼させたところ、燃料電池システムの低負荷運転時(空気流量1200〔L/min〕、水素ガス流量20〔L/min〕)と、高負荷運転時(空気流量2000〔L/min〕、水素ガス流量30〔L/min〕)の何れにおいても混合ガスを安全且つ完全に燃焼させることができた。   Actually, when the mixed gas was combusted using the hydrogen combustion apparatus of the present embodiment, the fuel cell system was operated at a low load (air flow rate 1200 [L / min], hydrogen gas flow rate 20 [L / min]. ) And during high load operation (air flow rate 2000 [L / min], hydrogen gas flow rate 30 [L / min]), the mixed gas could be burned safely and completely.

また、例えば図2との対応部分に同一符号を付した図8に示すような既存の水素燃焼装置と、本実施の形態の水素燃焼装置とにおいて、それぞれ上述と同条件で混合ガスを燃焼させて比較した場合の結果を表1に示す。この表から判るように、従来(既存)の水素燃焼器40における触媒容量が295〔mL〕程度であるのに対して本実施の形態の水素燃焼器16における触媒容量は75〔mL〕程度であり、排出される水素濃度は、前者が0.3〔%〕程度、後者が0.1〔%〕以下であることが判った。そして、そのときの圧力損失は、前者が約3.1〔kPa〕程度、後者が1.3〔kPa〕程度に過ぎなかった。なお、圧力損失は、層流発生器21の直径と長さで決まるが、本実施の形態では、外径76〔mm〕、内径49〔mm〕、長さ80〔mm〕のものを用いた。

Figure 2006032061
Further, for example, in the existing hydrogen combustion apparatus as shown in FIG. 8 in which the same reference numerals are assigned to the corresponding parts as in FIG. 2 and the hydrogen combustion apparatus of the present embodiment, the mixed gas is burned under the same conditions as described above. Table 1 shows the results of comparison. As can be seen from the table, the catalyst capacity of the conventional (existing) hydrogen combustor 40 is about 295 [mL], whereas the catalyst capacity of the hydrogen combustor 16 of the present embodiment is about 75 [mL]. It was found that the concentration of discharged hydrogen was about 0.3% in the former and 0.1% or less in the latter. The pressure loss at that time was about 3.1 [kPa] for the former and only about 1.3 [kPa] for the latter. The pressure loss is determined by the diameter and length of the laminar flow generator 21, but in this embodiment, the one having an outer diameter of 76 [mm], an inner diameter of 49 [mm], and a length of 80 [mm] was used. .
Figure 2006032061

以上、説明したように、本実施の形態の水素燃焼装置によれば、燃料電池スタック1から排出される空気が流れる主流路18に水素燃焼器16を設けるとともに、水素燃焼器16の外周囲を取り囲むようにして、該主流路18を流れる空気の流入量を調整する層流発生器21を設けたので、燃料電池システムの高負荷運転時に燃料電池スタック1から排出される空気流量が増大しても、燃焼に必要な空気量を水素燃焼器16へ送りつつも層流発生器21へ多量の空気を流すことができる。その結果、水素ガスを完全に燃焼させることができ、未燃焼のまま水素ガスを大気へ放出させることを防止できる。   As described above, according to the hydrogen combustion apparatus of the present embodiment, the hydrogen combustor 16 is provided in the main flow path 18 through which the air discharged from the fuel cell stack 1 flows, and the outer periphery of the hydrogen combustor 16 is provided. Since the laminar flow generator 21 for adjusting the inflow amount of the air flowing through the main flow path 18 is provided so as to surround, the flow rate of air discharged from the fuel cell stack 1 during high load operation of the fuel cell system increases. However, a large amount of air can flow to the laminar flow generator 21 while sending the amount of air necessary for combustion to the hydrogen combustor 16. As a result, the hydrogen gas can be completely burned, and the hydrogen gas can be prevented from being released to the atmosphere without being burned.

したがって、この水素燃焼装置によれば、燃料電池システムの運転状態に拘わらず、常に水素ガスを効率良く燃焼させることができ、未燃焼の水素ガスの大気への放出を防止することができる。   Therefore, according to this hydrogen combustion apparatus, hydrogen gas can always be efficiently burned regardless of the operating state of the fuel cell system, and release of unburned hydrogen gas into the atmosphere can be prevented.

しかも、水素燃焼器16の外周囲を取り囲むようにして層流発生器21を設けたので、該層流発生器21が、前記水素燃焼器16で発生する熱を吸収する断熱作用をする。したがって、水素燃焼器16に専用の断熱部を設ける必要がなく、その分、水素燃焼装置を小型・軽量化することができる。   In addition, since the laminar flow generator 21 is provided so as to surround the outer periphery of the hydrogen combustor 16, the laminar flow generator 21 performs a heat insulating action to absorb heat generated in the hydrogen combustor 16. Therefore, it is not necessary to provide a dedicated heat insulating portion in the hydrogen combustor 16, and the hydrogen combustion apparatus can be reduced in size and weight accordingly.

また、本実施の形態の水素燃焼装置によれば、大きな圧力損失を発生させることもない。一方、従来のように、燃料電池スタック1から排出される空気を直接、水素燃焼器16に流入させた場合には、燃料電池システムの高負荷運転時において水素燃焼不良が生じたり圧力損失が増大する。   Moreover, according to the hydrogen combustion apparatus of the present embodiment, a large pressure loss is not generated. On the other hand, when the air discharged from the fuel cell stack 1 is directly flown into the hydrogen combustor 16 as in the prior art, defective hydrogen combustion occurs or pressure loss increases during high load operation of the fuel cell system. To do.

さらに、本実施の形態の水素燃焼装置によれば、空気流入量調整手段として、主流路18を流れる空気を層流とする層流発生器21を用いているので、燃料電池システムの高負荷運転時には、該燃料電池スタック1から排出された空気を積極的にこの層流発生器21へと流すことができる。   Furthermore, according to the hydrogen combustion apparatus of the present embodiment, the laminar flow generator 21 that uses the air flowing through the main flow path 18 as a laminar flow is used as the air inflow amount adjusting means. Sometimes, the air discharged from the fuel cell stack 1 can be actively flowed to the laminar flow generator 21.

さらに、本実施の形態の水素燃焼装置によれば、燃料電池スタック1から空気とともに排出される水を排水するための排水路20を主流路18と分岐して設けたたので、該主流路18内を流れる空気の圧力によって、該主流路18の底部に溜まる水(水滴)を前記排水路20へと排出させることができ、当該主流路18内の水素燃焼器16近傍に該水が溜まるのを防止できる。   Furthermore, according to the hydrogen combustion apparatus of the present embodiment, the drainage channel 20 for draining the water discharged together with the air from the fuel cell stack 1 is provided so as to be branched from the main channel 18. The water (water droplets) accumulated at the bottom of the main channel 18 can be discharged to the drainage channel 20 by the pressure of the air flowing inside, and the water accumulates in the vicinity of the hydrogen combustor 16 in the main channel 18. Can be prevented.

以上、本発明の実施形態について説明したが、上述した実施形態の開示の一部をなす論述および図面はこの発明を限定するものであると理解するべきではない。この開示から当業者には様々な代替の実施の形態、実施例および運用技術が明らかとなろう。   As mentioned above, although embodiment of this invention was described, it should not be understood that description and drawing which make a part of indication of embodiment mentioned above limit this invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.

燃料電池システムの概略構成図である。It is a schematic block diagram of a fuel cell system. 本実施の形態の水素燃焼装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the hydrogen combustion apparatus of this Embodiment. 図3(A)は燃料噴出パイプの乱流板の斜視図、図3(B)は燃料噴出パイプの断面図である。FIG. 3A is a perspective view of the turbulent flow plate of the fuel ejection pipe, and FIG. 3B is a cross-sectional view of the fuel ejection pipe. 水素燃焼器における混合部の混合板を示す斜視図である。It is a perspective view which shows the mixing plate of the mixing part in a hydrogen combustor. 図5(A)は層流発生器の斜視図、図5(B)は層流発生器の構成部品の斜視図である。5A is a perspective view of a laminar flow generator, and FIG. 5B is a perspective view of components of the laminar flow generator. 主流路と分岐流路が交差する入口側における入口圧力と空気流量との関係を示す図である。It is a figure which shows the relationship between the inlet pressure and the air flow rate in the inlet side in which a main flow path and a branch flow path cross | intersect. 主流路における水素燃焼器側と層流発生器側とをそれぞれ流れる空気流量を示す図である。It is a figure which shows the air flow rate which each flows through the hydrogen combustor side and laminar flow generator side in a main flow path. 水素燃焼器の外周囲に断熱層を設けた既存の水素燃焼装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the existing hydrogen combustion apparatus which provided the heat insulation layer in the outer periphery of a hydrogen combustor.

符号の説明Explanation of symbols

1…燃料電池スタック
16…水素燃焼器
18…主流路
20…排水路
21…層流発生器
22…燃焼器
23…燃料噴出部
24…混合部
25…燃焼部
26…測温素子
DESCRIPTION OF SYMBOLS 1 ... Fuel cell stack 16 ... Hydrogen combustor 18 ... Main flow path 20 ... Drainage channel 21 ... Laminar flow generator 22 ... Combustor 23 ... Fuel injection part 24 ... Mixing part 25 ... Combustion part 26 ... Temperature measuring element

Claims (3)

燃料電池スタック(1)からそれぞれ排出される水素ガスと空気とを混合させた混合ガスを燃焼させる水素燃焼装置において、
前記燃料電池スタック(1)から排出される空気が流れる主流路(18)に水素燃焼器(16)を設け、且つ当該水素燃焼器(16)の外周囲を取り囲むようにして、該主流路(18)を流れる空気の流入量を調整する空気流入量調整手段(21)を設けた
ことを特徴とする水素燃焼装置。
In a hydrogen combustion apparatus for burning a mixed gas in which hydrogen gas and air discharged from the fuel cell stack (1) are mixed,
A hydrogen combustor (16) is provided in a main channel (18) through which air discharged from the fuel cell stack (1) flows, and the main channel (18) is surrounded by an outer periphery of the hydrogen combustor (16). 18) A hydrogen combustion apparatus comprising an air inflow amount adjusting means (21) for adjusting an inflow amount of air flowing through 18).
請求項1に記載の水素燃焼装置であって、
前記空気流入量調整手段は、前記主流路(18)を流れる空気を層流とする層流発生器(21)からなる
ことを特徴とする水素燃焼装置。
The hydrogen combustion apparatus according to claim 1,
The hydrogen inflow apparatus characterized in that the air inflow amount adjusting means includes a laminar flow generator (21) that uses air flowing through the main flow path (18) as a laminar flow.
請求項1または請求項2に記載の水素燃焼装置であって、
前記燃料電池スタック(1)から前記空気とともに排出される水を排水するための排水路(20)を、前記主流路(18)と分岐して設けた
ことを特徴とする水素燃焼装置。
The hydrogen combustion apparatus according to claim 1 or 2,
A hydrogen combustion apparatus characterized in that a drainage channel (20) for draining water discharged together with the air from the fuel cell stack (1) is branched from the main channel (18).
JP2004207432A 2004-07-14 2004-07-14 Hydrogen combustion apparatus Withdrawn JP2006032061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004207432A JP2006032061A (en) 2004-07-14 2004-07-14 Hydrogen combustion apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004207432A JP2006032061A (en) 2004-07-14 2004-07-14 Hydrogen combustion apparatus

Publications (1)

Publication Number Publication Date
JP2006032061A true JP2006032061A (en) 2006-02-02

Family

ID=35898166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004207432A Withdrawn JP2006032061A (en) 2004-07-14 2004-07-14 Hydrogen combustion apparatus

Country Status (1)

Country Link
JP (1) JP2006032061A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009266588A (en) * 2008-04-24 2009-11-12 Mitsubishi Heavy Ind Ltd Fuel battery module
KR101984952B1 (en) * 2018-12-11 2019-06-03 순천대학교 산학협력단 Combustion device to minimise hazardous materials

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009266588A (en) * 2008-04-24 2009-11-12 Mitsubishi Heavy Ind Ltd Fuel battery module
KR101984952B1 (en) * 2018-12-11 2019-06-03 순천대학교 산학협력단 Combustion device to minimise hazardous materials
WO2020122336A1 (en) * 2018-12-11 2020-06-18 순천대학교 산학협력단 Combustion device capable of minimizing hazardous materials

Similar Documents

Publication Publication Date Title
US7968242B2 (en) Onboard fuel cell system and method of discharging hydrogen-off gas
JP4575701B2 (en) Fuel cell system
JP2007531969A (en) Fuel release management for fuel cell systems
JP4418358B2 (en) Heat exchanger
US20030031970A1 (en) Boil-off gas processing system using electric heater
US20050172619A1 (en) Catalytic combustion apparatus
JP6838577B2 (en) Fuel cell system
JP2007042597A (en) Catalytic combustor
JP4259203B2 (en) Fuel reformer and fuel cell system
US20130029236A1 (en) Device for Providing Hot Exhaust Gases
JP2007053006A (en) Fuel cell power generation system
JP2006032061A (en) Hydrogen combustion apparatus
JP4747469B2 (en) Combustion device
US20100178577A1 (en) Fuel cell system
JP6506783B2 (en) Method and system for eliminating reverse current decay of a fuel cell
JP5203652B2 (en) Catalytic combustion device
JP2006017397A (en) Hydrogen combustion device
US20130036749A1 (en) Fuel Cell System and Method for Operating a Fuel Cell System
JP3177391B2 (en) Portable fuel cell
JP4074617B2 (en) Catalyst combustor, combustion heater, and fuel cell system
JP2006226542A (en) Catalytic combustion device
JP2004234862A (en) Fuel cell system
US7846601B2 (en) Fuel cell design and control method to facilitate self heating through catalytic combustion of anode exhaust
JP5268371B2 (en) Fuel cell vehicle
JP4784078B2 (en) Catalytic combustor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070424

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091202