JP2006030117A - Heat-resistant and corrosion-resistant high performance sensor - Google Patents

Heat-resistant and corrosion-resistant high performance sensor Download PDF

Info

Publication number
JP2006030117A
JP2006030117A JP2004212662A JP2004212662A JP2006030117A JP 2006030117 A JP2006030117 A JP 2006030117A JP 2004212662 A JP2004212662 A JP 2004212662A JP 2004212662 A JP2004212662 A JP 2004212662A JP 2006030117 A JP2006030117 A JP 2006030117A
Authority
JP
Japan
Prior art keywords
coating
sensor
resistant
corrosion
sensor according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004212662A
Other languages
Japanese (ja)
Inventor
Shintaro Ishiyama
新太郎 石山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP2004212662A priority Critical patent/JP2006030117A/en
Publication of JP2006030117A publication Critical patent/JP2006030117A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that sensor sensitivity is directly affected by the conventional sensor portion, which is made by using a noble metal such as tantalum or a cladding plate composed of stainless steel and tantalum to a diaphragm to weld the sensor portion and then a heat affected portion by a separate material or welding is left by the diaphragm itself. <P>SOLUTION: A heat-resistant and corrosion-resistant high performance sensor is obtained by glass coating under thickness control up to a nano-order, on the surface of the sensor portion made from a heat-resistant and corrosion-resistant metallic material. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、一般化学工業分野、原子力分野、宇宙・航空分野、海洋分野等において腐食性溶液又はガスを取り扱う際に、その圧力を測定するための圧力センサーのダイヤフラム基板の耐熱耐食化に関するものである。   TECHNICAL FIELD The present invention relates to heat resistance and corrosion resistance of a diaphragm substrate of a pressure sensor for measuring the pressure when a corrosive solution or gas is handled in the general chemical industry field, nuclear field, space / aviation field, marine field, etc. is there.

従来、金属製基板材料を熱遮熱することにより耐熱性を上げたり、防食手段としてセラミックスや耐熱金属でコーティングする方法が考案されているが、強酸や強アルカリ等幅広い腐食溶液やガスに対応でき、しかも高精度性が要求される圧力センサーや温度センサー等の各センサー部の素材組成・組織ならびにその計測感度や耐久性を損なわないコーティング方法はない。   Conventionally, methods have been devised to increase heat resistance by thermally insulating metal substrate materials or to coat with ceramics or refractory metals as an anticorrosion measure, but it is compatible with a wide range of corrosive solutions and gases such as strong acids and strong alkalis. In addition, there is no coating method that does not impair the material composition and structure of each sensor part such as a pressure sensor and a temperature sensor that require high accuracy, and its measurement sensitivity and durability.

それは、センサー部金属基材上への上記コーティング材を施工する場合、従来法では高温や高圧下ならびに化学反応等で行なうことにより、基板とコーティング間に反応層が形成し剛性等の変化により計測精度の低下を生じたり、高温処理により基材の変質等を生じさせるからである。   In the conventional method, when the above coating material is applied to the sensor base metal substrate, the reaction layer is formed between the substrate and the coating by high temperature, high pressure and chemical reaction. This is because the accuracy is lowered, or the base material is altered by high-temperature treatment.

(ア)コーティング施工時の金属基材への影響の低減
代表例として図1に高温耐食性ダイヤフラム式圧力センサーを示す。本センサーの圧力計測感度は、図中のSUS製薄板ダイヤフラム(ダイヤフラム材質)の剛性ならび変位により決まるため、このダイヤフラム接液側表面に耐食性コーティングを施工する必要がある。しかしながら、従来法では、このダイヤフラムにタンタル等貴金属を採用したり、またはSUSとタンタルのクラッディング板を用いて、主に高温溶接によりセンサー部をつくるが、これでは、ダイヤフラム自身が別材質あるいは、溶接による熱影響部をセンサー部に残すことになるため、センサー感度に直接影響を与える。そこで、SUS製ダイヤフラム表面に低温でかつ、反応層を生成しないコーティング法が望まれる。
(イ)無機反応安定性
強酸や強アルカリに対する耐食性では、従来無機ガラス、しかも高温使用としてシリカクオーツが最も安定性を有していることが分かっていることから、金属表面に低温でシリカ膜を形成できる技術が必要である。
(ウ)薄膜の膜厚安定性
図1のダイヤフラムの精度を損なわないため、できるだけダイヤフラム剛性に影響を与えないコーティング薄膜を成膜領域に均一に生成する必要がある。
(エ)緻密化
同じく、図1のダイヤフラムの精度を損なわないため、できるだけダイヤフラム剛性に影響を与えない緻密で均一な密度のコーティング薄膜を成膜領域に均一に生成する必要がある。
(オ)金属表面へのコーティング
上記(ア)〜(エ)の特性を有するガラス素材を耐熱金属製センサー表面にコーティングする必要があるが、ガラスの熱膨張率は高温でほとんどないのに対して、金属製センサー基材の熱膨張率はかなり大きいため、従来法では金属基板とガラス間に剥離や亀裂が生じていた。
(カ)価格
従来のタンタル等貴金属を利用した場合、素材費及び施工費がかさむ欠点があった。
(キ)施工及び補修
薄膜コーティングでは、その信頼性から定期的に補修作業を行なうことが望ましい。そこで、使用中のコーティング領域における損傷部位に容易に再コーティングできる技術が必要である。
(A) Reduction of influence on metal base material during coating construction As a typical example, FIG. 1 shows a high-temperature corrosion-resistant diaphragm pressure sensor. Since the pressure measurement sensitivity of this sensor is determined by the rigidity and displacement of the SUS thin diaphragm (diaphragm material) in the figure, it is necessary to apply a corrosion-resistant coating to the surface of the diaphragm in contact with the liquid. However, in the conventional method, a noble metal such as tantalum is used for the diaphragm, or a sensor part is mainly formed by high temperature welding using a cladding plate of SUS and tantalum, but in this case, the diaphragm itself is made of a different material or Since the heat affected zone by welding is left in the sensor portion, it directly affects the sensor sensitivity. Therefore, a coating method that does not generate a reaction layer at a low temperature on the surface of the SUS diaphragm is desired.
(I) Inorganic reaction stability Since it has been known that inorganic quartz and silica quartz have the highest stability for high-temperature use, the silica film on the metal surface at a low temperature has been known. A technology that can be formed is required.
(C) Film thickness stability of the thin film In order not to impair the accuracy of the diaphragm of FIG. 1, it is necessary to uniformly produce a coating thin film that does not affect the rigidity of the diaphragm as much as possible in the film formation region.
(D) Densification Similarly, in order not to impair the accuracy of the diaphragm of FIG. 1, it is necessary to uniformly form a dense and uniform coating thin film that does not affect the diaphragm rigidity as much as possible in the film formation region.
(E) Coating on the metal surface Although it is necessary to coat the glass material having the above characteristics (a) to (d) on the surface of the heat-resistant metal sensor, the thermal expansion coefficient of the glass is hardly high. Since the thermal expansion coefficient of the metal sensor base material is quite large, peeling and cracking have occurred between the metal substrate and the glass in the conventional method.
(F) Price When conventional noble metals such as tantalum were used, there was a drawback that material costs and construction costs were increased.
(G) Construction and repair In thin film coating, it is desirable to perform repair work regularly because of its reliability. Therefore, there is a need for a technique that can easily recoat damaged sites in the coating area in use.

本発明は、上記(ア)〜(キ)の諸問題を解決できる耐熱耐食性高性能センサーである。
(1)大気中で室温〜1000℃まで高温加熱することでシリカに転化できるポリシラザン類化合物、又はポリシラザン類化合物とポリカルボシラン類化合物の混合溶液をシリカコーティング被覆膜前駆体として用いる。
The present invention is a heat-resistant and corrosion-resistant high-performance sensor that can solve the above problems (a) to (g).
(1) A polysilazane compound or a mixed solution of a polysilazane compound and a polycarbosilane compound that can be converted into silica by heating at high temperature from room temperature to 1000 ° C. in the atmosphere is used as a silica coating coating film precursor.

(2)例えば、圧力センサー金属製ダイヤフラム接液部側の表面を研磨・脱脂することにより凸凹をなくし、シリカコーティング被覆膜と金属表面間に強固な接合薄膜を生成できる。   (2) For example, the unevenness can be eliminated by polishing and degreasing the surface of the pressure sensor metal diaphragm wetted part side, and a strong bonding thin film can be generated between the silica coating coating film and the metal surface.

(3)膜厚を一定に制御するため、上記(1)を(2)の塗布する場合、スピンコートやスプレー噴霧によりナノ級の膜厚制御が可能である。
(4)上記(3)の方法は同様に、施工時にも利用できることから、補修が容易である。
(3) In order to control the film thickness to be constant, when applying the above (1) to (2), nano-level film thickness control is possible by spin coating or spraying.
(4) The method of (3) is also easy to repair because it can be used during construction.

(5)生成膜シリカの単価は安く、かつ(3)による施工法によりコーティング費用は安くできる。
即ち、本発明のセンサーは、圧力センサー金属製ダイヤフラム接液部側の表面を研磨・脱脂し、その研磨・脱脂表面に、高温加熱することでシリカに転化できるポリシラザン類化合物、又はポリシラザン類化合物とポリカルボシラン類化合物との混合溶液をスピンコートやスプレー噴霧により塗布し、大気中で室温〜1000℃まで高温加熱することにより、上記金属製ダイヤフラム接液部側の表面上にナノ級までの厚み制御されたシリカコーティング被覆薄膜を生成させたものである。
(5) The unit cost of the produced film silica is low, and the coating cost can be reduced by the construction method according to (3).
That is, the sensor of the present invention comprises a polysilazane compound, or a polysilazane compound that can be converted to silica by polishing and degreasing the surface of the pressure sensor metal diaphragm wetted part side and heating the surface at a high temperature. Apply a mixed solution with polycarbosilane compounds by spin coating or spray spraying, and heat to high temperature from room temperature to 1000 ° C in the atmosphere, so that the thickness on the metal diaphragm wetted part side is nano-class thickness A controlled silica coating coated thin film was produced.

本発明により、従来の耐熱合金表面に化学的に安定なシリカガラスをコーティングできることにより、高温高圧腐食環境下における各種センサー類の使用が高精度で可能となる。それにより、一般化学プラント、海洋などの腐食環境下における制御用センサーの信頼性や耐久性を格段に向上させることが安価にできる。   According to the present invention, the surface of a conventional heat-resistant alloy can be coated with a chemically stable silica glass, so that various sensors can be used with high accuracy in a high-temperature and high-pressure corrosion environment. Thereby, the reliability and durability of the control sensor in a corrosive environment such as a general chemical plant or the ocean can be remarkably improved.

本発明の耐熱耐腐食性センサーをHIx循環試験装置の圧力計において使用した場合を図3に基づいて説明する。
上記HIx循環試験装置においては、この装置に腐食サンプルを設置し、高温耐食性バルブを通してヨウ化水素溶液を装置に導入し、その溶液をマグネットポンプにより装置内を循環してサンプルに接触させてその腐食程度を計測用観察ポートから観察する。この装置内を循環するヨウ化水素溶液の圧力は、高温耐食性圧力計で測定されるが、この圧力計のダイヤフラム式圧力センサーとして使用される薄板ダイヤフラム基板に、本発明のガラスコーティングを施した圧力センサーが使用されている。
A case where the heat and corrosion resistance sensor of the present invention is used in a pressure gauge of an HIx circulation test apparatus will be described with reference to FIG.
In the above HIx circulation test equipment, a corrosion sample is installed in this equipment, a hydrogen iodide solution is introduced into the equipment through a high temperature corrosion resistance valve, and the solution is circulated through the equipment using a magnet pump and brought into contact with the sample to cause the corrosion. Observe the degree from the observation port for measurement. The pressure of the hydrogen iodide solution circulating in the apparatus is measured with a high-temperature corrosion-resistant pressure gauge, and a pressure obtained by applying the glass coating of the present invention to a thin diaphragm substrate used as a diaphragm type pressure sensor of this pressure gauge. Sensor is in use.

試験装置内を循環する溶液の温度は高温耐食性温度計で測定され、その流量は超音波流量計で測定される。その試験装置を構成する循環配管としては、ガラスライニング直線配管、ガラスライニングエルボー配管が使用され、その必要箇所にはテフロン(登録商標)製パッキング、Ta製継手等が施されている。ライニング又はパッキング材としては、ポリテトラフルオロエチレン(PTFE)が使用されている。   The temperature of the solution circulating in the test apparatus is measured with a high temperature corrosion resistance thermometer, and the flow rate is measured with an ultrasonic flow meter. As the circulation pipe constituting the test apparatus, a glass lining straight pipe and a glass lining elbow pipe are used, and Teflon (registered trademark) packing, Ta joint, and the like are provided at necessary portions. Polytetrafluoroethylene (PTFE) is used as the lining or packing material.

この試験装置においては、腐食性溶液の液面が圧力計に到達していない場合には、この溶液から生ずる腐食ガスのガス圧を測定することができ、又液面が圧力計に到達している場合には腐食性溶液の液圧を測定することができる。   In this test apparatus, when the level of the corrosive solution does not reach the pressure gauge, the gas pressure of the corrosive gas generated from this solution can be measured, and the level of the corrosive solution reaches the pressure gauge. If so, the hydraulic pressure of the corrosive solution can be measured.

更に、この試験装置には、耐食性破裂板が設けられており、これは、装置内の異常昇圧時にこの破裂板を破裂させることにより循環配管や計測装置などを安全に守るためのガス抜きとして用いられる。   Furthermore, this test device is provided with a corrosion-resistant rupturable plate, which is used as a gas vent for safely protecting the circulation pipes and measuring devices by rupturing the rupturable plate at the time of abnormal pressure increase in the device. It is done.

図2に、図1に示すSUS316製ダイヤフラム接液部表面にコーティングしたガラス薄膜を示す。図3にこの圧力センサー(高温耐食性圧力計)をISプロセス(ヨウ素と二酸化硫黄を繰り返し使用して水素を製造する閉サイクルプロセス)のヨウ化水素循環系を模擬したHIx循環試験装置に取り付け、80℃以上の高温において循環させているヨウ化水素溶液の圧力及び温度を1000時間以上にわたり連続的にモニターしている。この温度は、循環配管内の溶液流れ中に、その表面をガラスコーティングして防食した温度計を配置して測定される。   FIG. 2 shows a glass thin film coated on the surface of the SUS316 diaphragm wetted part shown in FIG. Fig. 3 shows how this pressure sensor (high-temperature corrosion-resistant pressure gauge) is attached to the HIx circulation test equipment that simulates the hydrogen iodide circulation system of the IS process (closed cycle process that repeatedly uses iodine and sulfur dioxide to produce hydrogen). The pressure and temperature of the hydrogen iodide solution circulated at a high temperature of not lower than ° C. are continuously monitored over 1000 hours. This temperature is measured by placing a thermometer whose surface is coated with glass to prevent corrosion in the solution flow in the circulation pipe.

本発明の耐熱耐食性高性能センサーにより、IS水素製造プロセスにおける硫酸及びヨウ化水素系の高温高圧下での圧力や温度を高精度で計測することができる。   The high temperature and corrosion resistant high performance sensor of the present invention can measure the pressure and temperature of sulfuric acid and hydrogen iodide based on high temperature and high pressure in IS hydrogen production process with high accuracy.

ダイヤフラム式圧力計の構造を示す図である。It is a figure which shows the structure of a diaphragm type pressure gauge. SUS316L製ダイヤフラム表面にコーティングしたガラスナノ薄膜を示す図である。It is a figure which shows the glass nano thin film coated on the SUS316L diaphragm surface. HIx循環試験装置とガラスコーティング圧力計を示す図である。It is a figure which shows a HIx circulation test apparatus and a glass coating pressure gauge.

Claims (8)

耐熱耐食金属材料製のセンサー部表面上にナノ級までの厚み制御下でガラスコーティングすることにより得られた耐熱耐食性高性能センサー。   Heat-resistant and corrosion-resistant high-performance sensor obtained by glass coating on the surface of sensor parts made of heat-resistant and corrosion-resistant metal materials under thickness control down to the nano level. 硫酸やヨウ化水素などの強酸及び強アルカリ腐食溶液やこれら腐食ガスの圧力を高精度で計測できる請求項1記載のセンサー。   The sensor according to claim 1, wherein the pressure of a strong acid such as sulfuric acid or hydrogen iodide, a strong alkaline corrosion solution, or the pressure of these corrosive gases can be measured with high accuracy. 硫酸やヨウ化水素などの強酸及び強アルカリ腐食溶液やこれら腐食ガスの温度を高精度で計測できる請求項1記載のセンサー。   The sensor according to claim 1, wherein the temperature of a strong acid such as sulfuric acid or hydrogen iodide, a strong alkaline corrosive solution, or a corrosive gas thereof can be measured with high accuracy. 使用途中のガラスコーティングセンサー部の損傷部位を再コーティングして補修することにより長寿命化できる請求項1乃至請求項3のいずれかに記載のセンサー。   The sensor according to any one of claims 1 to 3, wherein the service life can be extended by recoating and repairing a damaged part of the glass coating sensor part in use. 1000℃までの高温と高圧環境下で耐えるガラスコーティングを有する請求項1乃至請求項4のいずれかに記載のセンサー。   The sensor according to any one of claims 1 to 4, further comprising a glass coating that can withstand high temperatures up to 1000 ° C and high pressure environments. ポリシラザン類化合物、及びポリシラザン類化合物とポリカルボシラン類化合物の混合溶液をガラスコーティングのシリカ被膜前駆体とする請求項1乃至請求項5のいずれかに記載のセンサー。   The sensor according to any one of claims 1 to 5, wherein a polysilazane compound and a mixed solution of the polysilazane compound and the polycarbosilane compound are used as a silica coating precursor of the glass coating. 耐熱金属表面を研磨・脱脂しつつ、コーティング中に不純物が入らないようにコーティング作業環境中の大気中不純物粒子を排除しつつコーティングすることにより得られた請求項1乃至請求項6記載のセンサー。   The sensor according to any one of claims 1 to 6, wherein the sensor is obtained by coating the surface of the refractory metal while polishing and degreasing and eliminating impurities in the atmosphere in the coating work environment so that impurities do not enter the coating. 請求項6の前駆体をセンサー部に塗布後、室温から1000℃で1〜5時間焼成し、コーティング成膜することにより得られた請求項6又は請求項7記載のセンサー。


















The sensor according to claim 6 or 7 obtained by coating the precursor of claim 6 on the sensor part, firing the coating at room temperature to 1000 ° C for 1 to 5 hours, and forming a coating film.


















JP2004212662A 2004-07-21 2004-07-21 Heat-resistant and corrosion-resistant high performance sensor Withdrawn JP2006030117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004212662A JP2006030117A (en) 2004-07-21 2004-07-21 Heat-resistant and corrosion-resistant high performance sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004212662A JP2006030117A (en) 2004-07-21 2004-07-21 Heat-resistant and corrosion-resistant high performance sensor

Publications (1)

Publication Number Publication Date
JP2006030117A true JP2006030117A (en) 2006-02-02

Family

ID=35896644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004212662A Withdrawn JP2006030117A (en) 2004-07-21 2004-07-21 Heat-resistant and corrosion-resistant high performance sensor

Country Status (1)

Country Link
JP (1) JP2006030117A (en)

Similar Documents

Publication Publication Date Title
US7540197B2 (en) Sensors, methods and systems for determining physical effects of a fluid
EP1271636A1 (en) Thermal oxidation process control by controlling oxidation agent partial pressure
US20110286492A1 (en) Sensor, and method for continuously measuring the fouling level
Li et al. Boiling performance of graphene oxide coated copper surfaces at high pressures
Cao et al. Localized corrosion of corrosion resistant alloys in H2S-containing environments
Choi et al. Microfabrication and characterization of metal-embedded thin-film thermomechanical microsensors for applications in hostile manufacturing environments
CN101158660A (en) Laser heat conducting instrument
CN1160562C (en) Gas detection sensor
CN113177298A (en) Non-intrusive temperature measurement method for pipeline fluid, electronic equipment and storage medium
JP2006030117A (en) Heat-resistant and corrosion-resistant high performance sensor
Rahimian et al. Boiling heat transfer and critical heat flux enhancement using electrophoretic deposition of SiO2 nanofluid
US20170315010A1 (en) Chemically Resistant Multilayered Coating for a Measuring Device Used in Process Engineering
EP2791647A1 (en) Method for quantifying corrosion at a pressure containing boundary
CN113252548B (en) Electrode system of electrochemical test system for molten salt corrosion experiment
CN113670809A (en) Corrosion electrochemical measuring device and method for coupling heat transfer and flow field
KR100337128B1 (en) Experimental apparatus of corrosion on plate for plate heat exchange
CN205719122U (en) A kind of anti-corrosion type orifice flowmeter
JP4594887B2 (en) Lined damage detection method and corrosive fluid container
Li et al. Critical Heat Flux of Graphene Coated Copper Surface at High Pressures
Chiang et al. Aluminum and Nickel Alloy Multielectrode Sensors for Corrosion Monitoring at High Temperatures
RU203571U1 (en) High temperature thermoelectric converter
CN113237827B (en) Electrochemical test system for molten salt corrosion experiment
CN217006912U (en) Test device for critical pitting temperature of stainless steel
CN107702846A (en) Pressure transmitter for strong acid media
CN118150450A (en) Device and method for detecting high-temperature gas corrosion resistance of coating

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060223

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071002